
Citation: Hadžić, N.; Ložar, V.;

Opetuk, T.; Keser, R. Transient

Response of Homogenous and

Nonhomogenous Bernoulli

Production Lines. Mathematics 2023,

11, 4945. https://doi.org/

10.3390/math11244945

Academic Editor: Manuel

Ivan Rodriguez Borbon

Received: 9 November 2023

Revised: 11 December 2023

Accepted: 12 December 2023

Published: 13 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Transient Response of Homogenous and Nonhomogenous
Bernoulli Production Lines
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Abstract: The transient response of production systems is of significant importance especially if
present advancements in Digital Twinning technology are taken into account. While the steady-state
response enables long-term strategic decision making, the transient response enables more detailed
simulation concerning aspects like production losses and preventive maintenance. This is especially
relevant if nonhomogenous aspects of production systems are taken into account. An analytical and
approximative solution to the problem of the transient response of homogenous and nonhomogenous
Bernoulli production systems is developed in this paper based on the eigendecomposition of transition
matrices, the eigenvalue problem, and the finite-state method. In particular, sub-resonant and
resonant nonhomogeneous production lines are introduced for the first time. Also, the most significant
key performance indicators are developed as functions of the time elapsed from the first cycle. Finally,
the relationship between the number of eigenvalues and the accuracy of the results is inspected by
employing a sensitivity analysis. The presented theoretical framework was employed in the case of a
wood processing facility to present the potential application of the theory in the case of long- and
short-term management of production systems.

Keywords: production system engineering; Bernoulli production line; transient response; finite-state
method; key performance indicators; digital twin

MSC: 60J20

1. Introduction

Production systems play a central role in the modern manufacturing of goods and
products distributed all over the world. In an economic sense, manufacturing stands for a
path to creating and developing new jobs, incomes, and sophisticated supply chains. It has
significant potential to tackle environmental and social issues by introducing sustainable,
energy-efficient, and cost-effective production concepts as well as suitable incomes for
workers of different qualifications [1,2]. Also, production systems are often recognized as
the driving force of the Digital Twinning concept, especially since it was first introduced in
the case of manufacturing systems and associated lifecycle management of products [3].
However, these concepts would remain a mere list of hypothetical ideas if sophisticated
mathematical models were not employed. Indeed, the mathematical background of produc-
tion system engineering and the associated modeling approaches are the key enablers of
frameworks such as Digital Twinning, factories for the future, Overall Equipment Efficiency
(OEE), Lean production, Industry 4.0, the Internet of Things, Augmented and Virtual
Reality, and others [4].

The existing mathematical models employ different approaches to evaluate the key
performance indicators (KPIs) of production systems and address design issues. Some of
them include Markov processes, queuing models, stochastic automata networks, Petri nets,
and process and diodic algebra used to evaluate configurations such as serial, assembly,
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splitting, re-entrant, and rework lines as well as job shops, flexible manufacturing cells,
or other specific systems [5–7]. Amongst these, Markov chains and simulations based on
queuing models are usually addressed in the majority of publications and applications.
Hence, potentially significant financial benefits, a wide application range of production
system engineering, and the large community of scientists and professionals employing it
in a variety of cases justify the constant requirement for deepening our understanding and
knowledge of mathematical modeling, especially concerning Markov chains as one of the
most representative cases.

The application of the Markovian framework in the case of production systems was
considered in 1962 for the first time by Sevast’yanov [8] in the case of a rather simple
production system composed of two machines and one buffer placed between them. At that
time, a quite complex analytical solution to the steady-state response of the system based
on integral equations was formulated, leading to a conclusion that further generalizations
were simply elusive. This fact motivated intensive research on approximative approaches
to the problem, including more realistic arrangements of production systems with more
than two machines. First, the decomposition method was presented by Gershwin [9] as
an approximative procedure to evaluate the key performance indicators of serial lines.
Then, an asymptotic analysis technique (or the aggregation procedure) was introduced
by Lim et al. [10] and successfully applied later on in many cases, including primarily
the steady-state response of serial, splitting, or assembly production lines composed of
machines of Bernoulli, exponential, or non-exponential reliability [11]. Finally, an analytical
solution to the problem has been developed in [12], followed by the newly introduced
finite-state method, e.g., [13,14]. All three approximative methodologies, the decomposition
method, the aggregation procedure, and the finite-state method, were successfully applied
in the steady-state case of production systems.

The transient response has been seldom reported in the present literature. A few
examples include only the application of the aggregation procedure in the case of Bernoulli
production lines [15]. The main reasons for that can be found in the demanding theoretical
framework as well as in the computational burden associated with the transient analysis of
large-scale and transition-rich stochastic systems leading to a lack of analytical results that
could be used to validate approximative approaches. Nevertheless, the importance of the
production system’s transient response is reflected in the ability to evaluate the production
losses due to the warm-up period and to schedule the production in a way that minimizes
such losses [16]. Also, such an approach is a prerequisite to the development and support of
preventive maintenance planning and raw material management as it enables the analysis
of nonhomogenous (reliability of machines is a function of time) production systems [17,18].
Therefore, transient analysis embraces all aspects of the production dynamics and may be
considered a step toward a more realistic description of production systems, especially in
the context of Digital Twinning.

Hence, the main purpose of this paper is to evaluate the transient response of produc-
tion systems including the homogenous and nonhomogenous reliability of machines. First,
the analytical solution to the transient response of production systems will be developed
using a direct solution of balance equations and the mode superposition method. Then,
the same problem will be considered in the framework of the finite-state method (FSM) to
address dimensionality issues of the problem including computation time and data storage
demands. In all cases, the key performance indicators will be presented as a function of
time elapsed from the production initialization.

The remainder of the paper is structured as follows: A brief literature review is
presented in the next subsection. The analytical solution to the problem is presented in
Section 2, including the approximative approach as well. Illustrative examples of homoge-
nous and nonhomogenous serial production lines are presented in detail in Section 3,
including implications for splitting and assembly systems as well. Finally, the main conclu-
sions and prospects for further research are outlined in Section 4.
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Brief Literature Review

The available literature related to the transient behavior of production systems is
sparse and only a few references can be pointed out as relevant to production system
engineering problems. Some of the earliest works on similar topics include the Markov
drift model of a fluid movement between producers and consumers mutually coupled
by a buffer [19], production losses of a single machine of exponential reliability [20], and
a continuous model of two machines with finite intermediary buffer [21]. The problem
of production losses due to the transient effects of serial production lines with Bernoulli
machines was first considered in [16] using the aggregation procedure as an approximative
approach. The problem was solved by employing the second-largest eigenvalue and pre-
exponential factors, yielding the production rate and the work-in-process as functions of
the time slot. In that way, production losses could be evaluated concerning the steady-state
values obtained using the standard aggregation procedure [11]. The key assumption of
this approach is the application of the pseudo-modal superposition method that employs
only the first two eigenvalues of the transition matrix while neglecting others. However,
this may be misleading as other eigenvalues may be of the same order of magnitude as the
second one and may in that way impact the dynamics of the system’s transition toward its
steady-state response. Based on these facts, transient analysis of production systems was
pointed out as a still open area, especially regarding complex systems [22].

The same problem with the Bernoulli serial production line was addressed in [15],
including transient aspects of the consumption rate as well as probabilities of blockage
and starvation. All of the key performance indicators were considered in that case using
the exact evaluation and the aggregation-based algorithm relying on the second-largest
eigenvalue only. Besides that, the aggregation approach to the transient effects of the
Bernoulli serial production lines was applied in several other cases including serial lines
with two geometric machines [23], float-based systems with two Bernoulli machines [24],
and dairy filling and packing systems [25]. Also, the same effects were considered in the
case of serial lines with geometric machines [26], closed production lines with Bernoulli
machines [27], serial lines with perishable products [28,29], and assembly systems with
Bernoulli machines [30].

The governing idea behind the presented approaches to the transient analysis of
production lines is the possibility of evaluating the key performance indicators more
realistically by taking into account the initial state of the system as well as its movement
through the system space toward steady-state behavior. However, the vast majority of
considered problems are assumed to be homogenous Markov chains, while omitting
nonhomogenous cases except for, according to the authors’ best knowledge, the research
presented in [15]. But, in reality, the reliability of machines is a function of the time elapsed
from the last scheduled maintenance. Hence, nonhomogenous aspects of the problem can
contribute to the development of more realistic mathematical models reflecting both the
productivity and maintainability aspects of production systems [31].

Given that, the main goal of this paper is to develop a mathematical model of Bernoulli
production lines capable of evaluating transient performance by employing homogenous
and nonhomogenous Markov chains. First, the analytical model will be presented using the
homogenous and nonhomogenous formulation of the generalized transition matrix [12],
direct solution of balance equations, and modal superposition approach. Second, the
finite-state method [32,33] will be further extended to the case of transient evaluation
of homogenous and nonhomogenous systems to cope with well-known CPU (Central
Processing Unit) and memory storage issues of large-scale and transition-rich stochastic
systems. It is expected that this new approach will enable the integration of a more
realistic Markovian framework within continuously developing Digital Twinning platforms,
yielding more reliable predictive analytics as well as maintenance scheduling conditioned
to lesser production losses.
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2. Mathematical Modeling

As outlined in the Introduction section, the mathematical modeling of Bernoulli pro-
duction lines will take into account analytical and approximate approaches. The importance
of the analytical solution, although computationally demanding, is reflected in the pos-
sibility of validating the approximative approaches. Also, it will enable quantification
of the relationship between the number of modes taken into account within the modal
superposition method and the accuracy of the results. This is of theoretical and practical
interest as the second-largest eigenvalue assumption may not be sufficient to represent
the dynamic behavior of a random system. Following this conclusion, the extent of the
frequency band which has to be taken into account can be defined.

2.1. Analytical Solution

Consider a serial production line composed of M machines mi, i = 1, 2, . . ., M where
each one is of the Bernoulli reliability, and M − 1 buffers bi, i = 1, 2, . . ., M − 1, each placed
between two adjacent machines. Assume that all machines have identical cycle times and
that the first machine can not be starved (infinite material source capacity) nor the last
one can be blocked (infinite product sink capacity). Also, assume that the status of each
machine is determined independently of others at the beginning of each cycle and that the
system obeys the mass conservation law. This kind of production line is usually referred to
as a Bernoulli production line [11] and is associated with the state space spanning over all
possible combinations of buffer occupancies. The dynamics of this kind of random system
can be mathematically described through a transition matrix as a Markov chain. Hence,
given the initial state of the system, {π}0, and the transition matrix [P], the state of the
system in the cycle n, {π}n, can be determined as [34,35]

{π}n = [P]n{π}0, (1)

or alternatively as
{π}n = [P]{π}n−1, n ≥ 1. (2)

Given the transition matrix, [P], Equations (1) and (2) can be solved directly for each
cycle n. Indeed, the available formulations of transition matrices in the case of serial,
splitting, and assembly Bernoulli production lines [12,13,15] stand as the key enablers of a
direct approach to the problem. However, for complexity reasons, the direct solution of
Equation (1) or (2) quickly becomes rather cumbersome, especially in the case of large-scale,
dense, and transition-rich systems. Also, we are often interested in the relationship between
the system properties reflected in the transition matrix and the key performance indicators.
Hence, a different path such as the eigendecomposition and the modal superposition
method may be of interest.

The eigendecomposition of a transition matrix, [P], yields

[P] = [U][Λ][U]−1, (3)

where [U] is a matrix whose columns are the right eigenvectors of [P], and [Λ] is the

diagonal matrix with corresponding eigenvalues λ1, λ2, . . ., λd, d =
M−1
∏

e=1
(Ne + 1). If the

right eigenvectors {u}i are normalized using the left eigenvectors 〈v〉i in a way that a
relationship 〈u〉i{v}i = 1, i = 1, 2, . . ., d, holds, Equation (3) can be simplified into

[P] = [U][Λ][V]T, (4)

using the identity [U]−1 = [V]T, where [V] is a matrix whose rows are the left eigen-
vectors of [P]. Consequently, introducing Equation (4) into Equation (2), the following
relationship holds

{π}n = [U][Λ][V]T{π}n−1, n ≥ 1, (5)
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which can be presented more conveniently in the form of a sum as

{π}n =
d

∑
i=1

λi{u}i〈v〉i{π}n−1, (6)

also known as the modal superposition approach. Each summand in Equation (6) represents
a probability distribution vector associated with the ith eigenvalue. Consequently, each key
performance indicator associated with the nth cycle may be presented in the form of a sum,
where each summand will correspond to a particular eigenvalue.

A very important concept justifying the application of Markov chains in the case of
production system engineering is the ergodic theorem ensuring that the distribution {π}n
is unique for each n and limiting when n→ ∞ . In the homogenous case, a Markov chain is
ergodic if it is irreducible (all system states communicate with each other) and aperiodic (at
least one diagonal element of a transition matrix is larger than 0). Provided that it remains
irreducible and aperiodic, the nonhomogenous Markov chain must meet additional criteria
on weak and strong ergodicity to comply with standard concepts of production system
engineering. The weak ergodicity criterion is based on Dobrushin’s ergodic coefficient, δ,

δ =
1
2

sup
i,j

∑
k

∣∣∣pik(n)− pjk(n)
∣∣∣, (7)

representing the supremum of the difference between matrix rows. The weak condition
is met if lim

n→∞
δ = 0, that is if rows of the transition matrix become more and more similar

with each cycle. Also, the condition

∞

∑
s=0

(1− δ[P(ns, ns+1)]) = ∞, (8)

must hold for the family of transition matrices [P(ns, ns+1)] where ns is a strictly increasing
sequence of integers [34]. Each weakly ergodic Markov chain is also strongly ergodic if
a unique steady-state distribution exists in each cycle n, which is by definition valid for
all aperiodic and irreducible random systems. As demonstrated earlier in [12–15], the
transition matrices associated with serial, splitting, and assembly Bernoulli production
lines stand for irreducible and aperiodic random processes and have unique and limiting
distributions referred to as the steady-state probability distributions. Since in that way
the conditions in Equations (7) and (8) are met, Equation (6) can be extended to the
nonhomogenous case as

{π}n =
d

∑
i=1

λi(m){u(m)}i〈v(m)〉i{π}n−1, n, m ≥ 1, (9)

where the eigenvalues λi(m) and right and left eigenvectors, {u(m)}i and 〈v(m)〉i, are
functions of the second-order cycle, m, representing a nonhomogenous transition matrix
[P(m)] with entries pij(m). Given the standard assumptions of the Bernoulli production
lines, a ratio m/n may take two distinct values: m/n > 1 and m/n = 1, which can be referred
to as the sub-resonant and resonant nonhomogenous Bernoulli production lines. The
over-resonant case, m/n < 1, implies variability of machine reliability during cycle time and
for that reason does not meet the set of standard assumptions. Hence, it can be addressed
only as a reduction to the resonant case if the cycle time is condensed to some subset of
production activities.

Finally, by observing Equation (9), the problem of the transient response reduces to
the eigenvalue problem employed to calculate eigenvalues and the associated right and
left eigenvectors of a transition matrix for each cycle n, respectively, second-order cycle
m. Both eigenvalues and eigenvectors can be real numbers and may also appear as com-
plex conjugate pairs [34,36,37], while the first (and the largest) eigenvalue always takes
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unit value. Thus, given the transition matrix, they may be calculated using some of the
well-known procedures like the Power or QR method [38]. However, for dimensionality
issues, it may easily become inconvenient especially when realistic production systems
are considered. For these reasons, an approximative procedure to evaluate the transient
response of nonhomogenous Bernoulli production lines will be presented and validated
against corresponding analytical solutions. To do that, the transient response of a nonho-
mogeneous Bernoulli production line composed of two machines and one buffer will be
considered and the results will be used as a basis for an approximative solution using the
finite-state method.

2.2. Two-Machine One-Buffer Bernoulli Production Line

Consider a serial production line composed of two machines of Bernoulli reliability
and one buffer of capacity N. Then, the associated transition matrix, [P(m)], takes a well-
known form [11]

1− p1 (1− p1)p2 0 0 0 . . . . . . 0 0

0 D (1− p1)p2 0
. . .

...
...

... p1(1− p2) D (1− p1)p2
. . .

0 p1(1− p2) D
. . .

... 0 (1− p1)p2
. . .

0
... 0

. . .

p1
...

. . . . . . 0

0
. . . (1− p1)p2 0

...
. . . D p1(1− p2)

0 0 0 0 0 . . . . . . p1(1− p2) p1 p2 + (1− p2)



(10)

where D = (1− p1)(1− p2) + p1 p2. Note that the reliabilities p1 and p2 are functions of
the second-order cycle, m; however, for clarity reasons, this notation was omitted from
Equation (10). The right eigenvector {u(m)}i corresponding to eigenvalue λi and second-
order cycle m equals

{u(m)}i
T =

〈
Pi,0 Pi,1 Pi,2 · · · Pi,N

〉
, (11)

where
Pi,1 =

−(1−p1−λi)Pi,0
(1−p1)p2

,

Pi,2 =
−p1Pi,0−(D−λi)Pi,1

(1−p1)p2
,

Pi,j =
−p1(1−p2)Pi,j−2−(D−λi)Pi,j−1

(1−p1)p2
, j = 3, 4, . . . , N.

(12)

Similarly, the left eigenvector 〈v(m)〉i takes the form

〈v(m)〉i =
〈

Qi,0 Qi,1 Qi,2 · · · Qi,N
〉
, (13)

where
Qi,0 = 1,

Qi,1 =
−(1−p1−λi)Qi,0

p1
,

Qi,j =
−(1−p1)p2Qi,j−2−(D−λi)Qi,j−1

p1(1−p2)
, j = 2, 3, . . . , N.

(14)

The remaining unknowns λi and Pi,0 can be determined using additional conditions. In the
first case, the last row of the transition matrix, Equation (10), may be employed since the
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system of equations is overdetermined. Hence, it follows that the unknown eigenvalue can
be calculated iteratively using a relationship

Pi,N =
−p1(1− p2)

p1 p2 + (1− p2)− λi
Pi,N−1. (15)

In the second case, the unknown probability Pi,0 equals

Pi,0 =
1

〈u〉i{v}i
, (16)

since the eigendecomposition of a transition matrix is based on normalization through
the left eigenvectors. It may be easily verified that in the case when i = 1 and λ1 = 1,
Equations (11)–(16) result in a left eigenvector taking a unit value and the right one cor-
responding to the steady-state probability distribution of a system at hand, as presented
in [11]. Also, note that according to Equation (15), λi ∈ R. This relationship is valid only
for a line composed of two machines and one buffer. However, this is not necessarily the
case for nonsymmetric matrices with real entries such as transition matrices associated
with lines composed of more than two machines. In these more complex cases, eigenvalues
may take real or complex values, with the latter appearing in complex conjugate pairs.

2.3. The Finite-State Method

The finite-state method is based on the discretization of the system’s state space using
finite-state elements and the associated proportionality property of element-level probabil-
ity distributions, resulting in a possibility to assume the independence of events at each
buffer and to reconstruct the probability distribution at the system level, {π}n. This ap-
proach has so far been successfully applied and validated against rigorous analytical results
in cases of the steady-state response of serial [14], splitting [11], and assembly [15] Bernoulli
production lines. Here, as a further generalization, it will be extended to the transient
behavior of Bernoulli production lines assuming both homogenous and nonhomogenous
definitions of machine reliabilities, i.e., of the transition matrix.

The finite-state method employs a set of finite-state elements, each composed of only
two machines and one intermediate buffer. Depending on the particular arrangement of the
production line, each finite-state element may be characterized as upstream or downstream
conditioned to the position of the least reliable machine, mm. In the first case, each upstream
element is composed of machine me, buffer be, and machine mm where e < m, while in the
second case, each downstream element consists of machine mm, buffer be, and machine me+1,
where e ≥ m. Consequently, in the upstream case reliabilities p1 and p2, Equations (11)–(16)
are identical to pe, e < m, respectively, pm, while in the downstream case, they are identical
to pm, respectively, pe+1, e ≥ m.

Hence, the unknown eigenvalues, λe
i , and eigenvectors, ({u(m)}e

i )
T =〈

Pi,0 Pi,1 Pi,2 · · · Pi,N
〉e and 〈v(m)〉ei =

〈
Qi,0 Qi,1 Qi,2 · · · Qi,N

〉e, at the level
of finite-state element e, e = 1, 2, . . ., M − 1 can be determined using Equations (11)–(16).
Given the eigenvalues λe

i and the independence of events assumption, the system-level
eigenvalues, λi, equal

λi = λe=1
j λe=2

k . . . λe=M−1
l , (17)

where i = 0, 1, . . . , d, d =
M−1
∏

e=1
(Ne + 1), and j, k, . . . , l = 0, 1, . . . , Ne. Similarly, the element

f of the system-level eigenvectors, u(m)i, f and v(m)i, f , associated with eigenvalue λi,
Equation (17), equals

ui, f (m) = Pe=1
i,j Pe=2

i,k . . . Pe=M−1
i,l ,

vi, f (m) = Qe=1
i,j Qe=2

i,k . . . Qe=M−1
i,l ,

(18)
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where i, f = 0, 1, . . . , d, d =
M−1
∏

e=1
(Ne + 1), and j, k, . . . , l = 0, 1, . . . , Ne. Note that each

element f of the right and left eigenvector corresponds to a unique combination of indices
j, k, . . ., l reflecting the occupancy level of each buffer. All combinations may thus be
represented as a Cartesian product

{(j, k, . . . , l) = (h1, h2, . . . , hM−1)} = {j = h1, h1 ∈ 0, 1, . . . , N1}×
{k = h2, h2 ∈ 0, 1, . . . , N2} × . . .× {l = hM−1, hM−1 ∈ 0, 1, . . . , NM−1},

(19)

where he, e = 0, 1, . . . , M− 1 is the occupancy level of the eth buffer.

2.4. Key Performance Indicators

The key performance indicators may be determined once the system-level eigenvalues
and corresponding eigenvectors as well as the probability distribution vector are known.
Although many different indicators can be employed in realistic cases, here we will focus
only on the production rate of the sth machine, PRs, the work-in-process at the eth buffer,
WIPe, and the probabilities of blockage and starvation of the sth machine, BLs and STs, as
generic key performance indicators. Other indicators, such as the expected lead time, ex-
pected energy consumption, expected production costs, expected profitability, or efficiency,
are considered case-specific. Hence, they will be omitted from this paper. However, once
the probability distribution vector is defined, their evaluation is quite straightforward.

The production rate, PRs, stands for the expected number of products delivered by
the machine s. Usually, the production rates of the last machine in the serial or assembly
line or of the last machine in each branch of the splitting system are of interest. Let us, for
simplicity, first consider the simplest case of the serial production line. In that case, the
production rate of the machine M equals

PRM(n, m) = P({bM−1 is not empty} ∩ {mM is not down}). (20)

By employing Equations (9) and (18), Equation (20) yields

PRM(n, m) = pM

(
1−

N1

∑
h1=0

N2

∑
h2=0

. . .
NM−2

∑
hM−2=0

d

∑
i=1

λiPe=1
i,h1

Pe=2
i,h2

. . . Pe=M−2
i,hM−2

Pe=M−1
i,0 〈v〉i{π}n−1

)
, (21)

that for proportionality reasons [32] can be simplified into

PRM(n, m) = pM

(
1−

d

∑
i=1

λiPe=M−1
i,0 〈v〉i{π}n−1

)
. (22)

By the same logic, the production rate associated with machine s equals

PRs(n, m) = ps

(
1−

d

∑
i=1

λiPe=s−1
i,0 〈v〉i{π}n−1

)
, s = 2, 3, . . . , M. (23)

The work-in-process, WIPe, states the average number of parts contained at the buffer be
and can be expressed for each finite-state element, e, as

WIPe(n, m) =
N1

∑
h1=0

N2

∑
h2=0

. . .
NM−1

∑
hM−1=0

hePh1h2 ...hM−1 . (24)

Hence, by employing Equations (9) and (18), Equation (24) can be presented as

WIPe(n, m) =
N1

∑
h1=0

N2

∑
h2=0

. . .
NM−1

∑
hM−1=0

d

∑
i=1

λihePe=1
i,h1

Pe=2
i,h2

. . . Pe=M−1
i,hM−1

〈v〉i{π}n−1, (25)
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which for proportionality reasons simplifies into

WIPe(n, m) =
Ne

∑
he=0

d

∑
i=1

λihePe
i,he
〈v〉i{π}n−1, e = 1, 2, . . . M− 1. (26)

Further, the probabilities of blockage and starvation, BLs and STs, stand for probabilities
of events

BLs = P({ms is up} ∩ {bs is full} ∩ {ms+1 is down}

∪{ms is up} ∩ {bs is full} ∩ {ms+1 is blocked}), s = 1, 2, . . . , M− 1,

STs = P({ms is up} ∩ {bs−1 is empty}), s = 2, 3, . . . , M.

(27)

Again, by employing Equations (9) and (18), Equation (27) after simplification yields

BLs(n, m) = ps(1− ps+1 + BLs+1)
d
∑

i=1
λiPe=s

i,Ne
〈v〉i{π}n−1, s = 1, 2, . . . , M− 1; BLM = 0,

STs(n, m) = ps
d
∑

i=1
λiPe=s−1

i,0 〈v〉i{π}n−1, s = 2, 3, . . . , M; ST1 = 0.
(28)

It is also of interest to consider the key performance indicators in a special case
when the transition matrix is homogenous and when the initial distribution {π}0 states
that all buffers are empty. In that case, since Qi,1 = 1, ({π}0)

T =
〈
1 0 . . . 0

〉
, and

〈v〉i{π}0 = 1, Equations (23), (26), and (28) can be simplified into

PRs(n) = ps

(
1−

d
∑

i=1
λn

i Pe=s−1
i,0

)
, s = 2, 3, . . . , M,

WIPe(n) =
Ne
∑

he=0

d
∑

i=1
λn

i hePe
i,he

, e = 1, 2, . . . , M− 1,

BLs(n) = ps(1− ps+1 + BLs+1)
d
∑

i=1
λn

i Pe=s
i,Ne

, s = 1, 2, . . . , M− 1; BLM = 0,

STs(n) = ps
d
∑

i=1
λn

i Pe=s−1
i,0 , s = 2, 3, . . . , M; ST1 = 0.

(29)

In addition, note that when i = 1, λi takes a unit value and Equation (28) becomes identical
to the key performance indicators valid in the steady-state case [32]. Finally, it may seem
that the key performance indicators presented in Equation (28) are not dependent on the
initial distribution {π}0. However, such a conclusion may be misleading. Although it
does not appear directly in Equation (28), it will indirectly influence the key performance
indicators through the gradual buildup of available system states. In other words, as the
cycles pass one after another more and more system states will be included in the state
space until its full dimension d is achieved.

2.5. KPI Evaluation Algorithm

As already pointed out, the main goal of the presented analytical and approximative
procedures is to evaluate KPIs associated with different production systems. Hence, a KPI
evaluation algorithm was developed in a general-purpose and imperative programming
language using Equations (20)–(28) with the probability distribution vector, {π}, deter-
mined according to Equation (9) in the case of an analytical approach and Equation (18) in
the case of an approximative approach. In both cases, the eigendecomposition is employed
to cope with dimensionality issues of the eigenvalue problem. Additionally, the finite-state
method is employed to bypass the issue of the transition matrix formulation using a set
of two-machine one-buffer elements and the independence of events assumption. The
developed algorithm and model assumptions are summarized in Figure 1.
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Figure 1. Methodology of KPI evaluation using the analytical and approximative approach.

3. Application of the Developed Theory

The introduced theory has been applied in benchmark cases of Bernoulli serial lines
composed of five machines and four buffers, each with a capacity of 5, to validate the
approximative approach against the analytical solution to the problem. Three different
cases were considered, namely the transient response of a homogenous serial Bernoulli
production line, as well as the transient response of the sub-resonant and resonant nonho-
mogenous Bernoulli production lines. The considered input data are outlined in Table 1
including reliabilities of machines, pi, second-order cycles, m, and machine deterioration
rates, ∆pi. In all cases, the initial state of the system was set to 0 at each buffer, while planned
maintenance of all machines was assumed between cycles 100 and 101 for nonhomogenous
lines. Each case was first evaluated using the analytical approach (AN), Equation (2), to
obtain the probability distribution vector for each cycle, n. In that way, the key performance
indicators were determined using Equations (20), (24), and (27). Similarly, the probability
distribution vectors and the associated key performance indicators were calculated using
the finite-state method (FSM), Equations (18), (22), (26), and (28). A comparison between
the obtained results is presented in Figures 2–5 to justify the application of the finite-state
method in more complex cases involving significantly larger system states.
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Table 1. The input data for benchmark cases, N1 = N2 = N3 = N4 = 5.

Reliability of Machine mi

Homogenous Nonhomogenous

/ m/n > 1 m/n = 1
m ∆pi m ∆pi m ∆pi

p1 0.4 / / 10n 0.01 n 0.001
p2 0.5 / / 10n 0.01 n 0.001
p3 0.6 / / 10n 0.01 n 0.001
p4 0.7 / / 10n 0.01 n 0.001
p5 0.8 / / 10n 0.01 n 0.001
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approach: (a) the production rate, PR, (b) the work-in-process, WIPi, (c) the probability of blockage,
BLi, and (d) the probability of starvation, STi.

A comparison between Re(λ) calculated using the AN and FSM approach in the case
of a homogenous serial Bernoulli line is presented in Figure 2. Quite good agreement
between both methods may be noted, especially in the range of the most influential system
states for d < 500, while some minor discrepancies are present for d > 1100 since, by
definition, Equation (17), the FSM yields only positive and real-valued eigenvalues based
on eigenvalues of each finite-state element. This fact, as well as the absence of the imaginary
part of the eigenvalue, does not impact the accuracy of the FSM since Im(λ) << Re(λ) and
Im({pn}) << Re({pn}).

A detailed comparison between KPIs (the production rate, PR, the work-in-process,
WIPi, the probability of blockage, BLi, and the probability of starvation, STi) obtained using
the analytical (AN) and the approximative approach (FSM) is presented in Figures 3–5 in
cases of homogenous, sub-resonant nonhomogenous, and resonant nonhomogenous serial
Bernoulli production lines, Table 1. In all cases, quite good agreement between the obtained
results may be noted except in the case of the earliest phase of the system operation where
FSM demonstrates a more pronounced gradient of KPIs concerning the cycle number, n.
This effect is present since a gradual increase in the available system states results in a
rather coarse discretization of the state space. It, however, diminishes once all available
states become reachable.
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In the case of a homogenous Bernoulli production line, all KPIs asymptotically ap-
proach the steady-state values which, in cases of the production rate and the probability
of starvation, equal PRsteady-state = min{pi}, i = 1, 2, . . ., M, respectively, STi, steady-state =
pi − PRsteady-state, i = 2, 3, . . ., M, while the work-in-process and the probability of blockage
converge to a constant value given the ascending arrangement of the machine reliabilities.
Also, the transport delay related to the time required for input to reach output may be
noted in the case of all KPIs, especially in the case of the production rate, Figure 3a, taking
zero value for n < 4, or more generally for n < M − 1 [11]. On the other hand, the transient
response of both sub-resonant and resonant nonhomogenous Bernoulli production lines,
Figures 4 and 5, closely resembles the dynamics of the machine deterioration rates. Thus,
in the first case, all KPIs result in stepwise functions, Figure 4, while in the second case,
they become continuous except for the stepwise increase due to scheduled maintenance,
Figure 5. In addition, the transportation delay is present in both cases for all KPIs, similar
to the homogenous case.
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As already pointed out in the Introduction section, an important issue related to the
transient response evaluation of production systems is the number of eigenvalues taken
into account within the modal superposition method. Its reduction may decrease the CPU
requirements; however, the associated impact on the accuracy of the results is not known.
Presently, the only known reference to this issue may be found in [11], where the second
largest eigenvalue is associated with the duration of transient behavior as a function of the
system properties. Therefore, a sensitivity analysis concerning the number of eigenvalues
and the accuracy of the results was performed for the resonant nonhomogenous Bernoulli
serial line as the most representative case. First, the number of eigenvalues was decreased
to five by excluding the smallest eigenvalue at the level of finite-state elements. In that way,
the scale of the problem was reduced to d = 625 (recall that d stands for the total number of
eigenvalues at the level of the production system). Similarly, the sensitivity analysis was
performed by taking into account four, three, two, and only the largest eigenvalue for each
finite-state element leading to the problem scales d = 256, d = 81, d = 16, and d = 1. In all
cases, a comparison against the full-scale problem including six eigenvalues per element
and d = 1296 was enabled. Surprisingly, the reduction in the problem scale did not impact
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the final results at all, except for the case d = 1 where negligible disagreement between
the results was detected during the first 10 to 50 cycles, depending on the particular KPI,
Figures 6–9. For clarity reasons, Figures 6–9 bring cases d = 1296, d = 16, and d = 1, while
all other cases remain identical to the referent one. Also, Figures 6–9 present only cycles
associated with some influence of the problem scale reduction, while in all other cycles
each KPI remains the same as the referent one, i.e., it is not affected by the problem scale
reduction. Consequently, a significant reduction in the problem scale may be introduced
for practical problems without impacting the accuracy of the KPI evaluations. In the most
extreme case, the problem of the transient response may be even reduced to d = 1 by taking
into account only steady-state probability distributions,

{
ue

1
}

and
{

ve
1
}

, and the associated
eigenvalues, λe

1 = 1, for each finite-state element.
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3.1. Implications for Splitting and Assembly Systems

The developed theory has so far been presented in the case of serial production lines.
However, practical engineering problems often involve production systems composed of
splitting and assembly lines as well. Consequently, the transient response of such systems
is of great interest and it may be addressed using the finite-state method and the outlined
theory. This conclusion may be justified by the fact that the application of the finite-state
framework in the case of splitting [13] and assembly [15] lines boils down to a set of
mutually communicating serial lines representing primary and secondary material flows.
In the first case, this communication is realized through splitting factors, while in the second
case it is governed by states of buffers placed immediately before machines involved in
merging operations. Hence, once formulated, the finite-state elements of the splitting or
assembly production line are combined according to the proportionality property into
a system-leveled eigenvector and employed further on in Equation (9) to determine the
associated probability distribution vector, {p}n, in cycle n. Finally, all conclusions related to
the transient response of serial Bernoulli production lines are also valid in the splitting and
assembly case as well.

3.2. Application Case

The introduced transient response evaluation of the Bernoulli production system was
applied in the case of a wood processing facility producing flooring elements, Figure 10.
The steady-state response of the same system was already addressed in [13], including
factory-floor acquisition of machine reliabilities, storage capacities, splitting rates, and
reliability of the acquired data. Hence, only its brief description will be provided here,
while focusing on the associated transient behavior and its comparison to the steady-
state values. Additionally, transient properties of production systems may heavily impact
(especially in terms of financial losses) facilities with large series of products. It is, thus,
of interest to demonstrate the application of the derived theory in the case of a wood
processing facility as one representative of high-volume production.
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Figure 10. Mathematical model of the wood processing facility [13].

The production facility consists of seven machines where operations of log debarking,
band sawing, circular sawing, and multiple rip sawing are performed. The reliability of
each machine, the capacity of buffers, and splitting rates were acquired through the factory-
floor measurement, Table 2. The final product of the facility is 2-m-long and 50-mm-thick
wooden beams produced at the machine m7, while all other products including sawn boards
of thickness less than 50 mm, beams of thickness less than 50 mm, and beams of length less
than 2 m are stored immediately after operations m3, m6, and m7 for further processing. The
transient response of the system at hand was evaluated for a period of 2200 cycles starting
with empty buffers. In that way, a typical working shift of the facility was simulated using a
nonhomogenous Bernoulli splitting production line. The finite-state method was employed
and the deterioration rate, ∆pi, of 0.01 per 100 cycles was assumed for each machine. Only
the largest eigenvalue and the associated eigenvector were employed for each finite-state
element. The obtained KPIs are presented In Figures 11–13 as functions of the cycle number,
n, including production rates of machines m3, m6, and m7, work-in-process contained at
buffers b2, b3, b4, b5, and b6, and probabilities of starvation of machines m4, m5, m6, and m7.
As probabilities of blockage take values well below 10−4, we are omitting them from the
presentation of the results.
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Table 2. The reliability of machines, the capacity of buffers, and splitting rates [13].

Wood Processing Facility

Reliability of
machines

p1 p2 p3 p4 p5 p6 p7

1 0.956 0.985 0.992 0.962 0.979 0.985

Capacity of
buffers

N1 N2 N3 N4 N5 N6

13 6 4 6 11 6

Rates
r1 r2 r3 r4 r5 r6

0.4 0.6 0.8 0.2 0.7 0.3
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The obtained results, Figures 11–13, resemble the behavior of the wood processing
facility during one working shift. The stepwise nature of all KPIs may be noted as a
result of the nonhomogenous effects and machine deterioration rates. Also, all KPIs
associated with the 100th cycle remain equal to KPIs obtained for the steady-state and
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homogenous response of the same system, Table 3. The reliability of the approach may
also be noted if its results are compared with the data acquired at the factory floor [13].
This is especially valid in the case of PR7A and PR7B, with some discrepancies related to
the work-in-process. These discrepancies are dominantly caused by the measurement
uncertainty conditioned to the factory floor environment. Given the properties of the
system, production rates and probabilities of starvation decrease with the increase in the
cycle number, Figures 11 and 13, while work-in-process increases simultaneously, Figure 12.
The decrease and increase in KPIs closely obey the linear relationship between machine
deterioration rates and the number of cycles with gradients dominated by splitting rates.
The most interesting KPI of the system at hand is PR7A, which may be pointed out as quite
sensitive to the nonhomogenous effects of the production system leading to an expected
production loss of about 73 pieces per working shift. By considering its long-term effects,
this loss could be decreased if preventive maintenance is introduced to the system at the
point when the accumulated financial loss meets the maintenance cost. Otherwise, it will
be decreased only partly.

Table 3. Comparison between KPIs: steady-state response of the homogenous splitting line, transient
response of the nonhomogenous splitting line, n = 100, and the factory floor data.

KPIs Nonhomogenous
Case, n = 100

Steady-State,
Homogenous Case [13] Factory-Floor Data [13]

PR3 0.382 0.382 n/a
PR6 0.115 0.114 n/a

PR7A 0.321 0.321 0.331
PR7B 0.138 0.138 0.176
WIP2 0.391 0.392 1.093
WIP3 0.585 0.585 0.506
WIP4 0.630 0.630 0.909
WIP5 0.118 0.117 0.695
WIP6 0.472 0.472 0.283
ST3 0.603 0.603 n/a
ST4 0.418 0.418 n/a
ST5 0.388 0.388 n/a
ST6 0.864 0.865 n/a
ST7 0.526 0.526 n/a

4. Conclusions

Mathematical modeling has an important role in the development of production sys-
tem engineering, especially when Digital Twinning, the cost-effectiveness, and energy
efficiency of manufacturing processes are taken into account. These can be considered
within the Markovian framework using analytical and approximative approaches. Both
of them were addressed in this paper. First, the analytical solution to the problem was
developed as a direct solution to the balance equations by employing the eigendecomposi-
tion of homogenous and nonhomogenous transition matrices. Second, the same problem
was solved using the finite-state method to tackle issues such as CPU and memory storage
requirements associated with large-scale and transition-rich stochastic systems. A good
agreement between the obtained results was proven in both cases.

In addition to that, a sensitivity analysis regarding the relationship between the
number of eigenvalues and the accuracy of the results was performed pointing to the
possibility of additional CPU and memory storage reduction by employing only the first
two eigenvalues per finite-state element, or even by employing the steady state solution
only. Finally, the developed theory was applied in the case of the transient response of
a wood processing facility producing flooring elements. The mathematical model of the
facility was developed as a sub-resonant nonhomogenous Bernoulli splitting production
line, and all of the relevant KPIs were evaluated for each of the 2200 cycles representing
one working shift. The assumed machine deterioration rate resulted in an expected loss of
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about 73 pieces of final product per one working shift. Hence, it was suggested to develop
a maintenance strategy that would minimize these losses concerning maintenance costs.

The transient response of production systems is a challenging topic that should be fur-
ther extended to cases including machine reliabilities defined using geometric, exponential,
or non-exponential probability distributions as well as by assuming asynchronous relation-
ships between machine cycles. This implies a broader incorporation of nonhomogenous
aspects into the modeling and analysis of production systems. In addition, nonhomogenous
properties of the system could be extended to cases including limited material sources or
sinks to simulate the behavior of systems more realistically, including possible failures
in the raw material supply or final product delivery. The outlined theory could also be
applied effectively in the development of different preventive maintenance strategies by
considering different aspects of cost–benefit analysis, especially in the context of Digital
Twinning. Finally, it is well-known that stochastic modeling is relevant to a variety of
scientific areas including not only mass, job-shop, or project-based production but also
finance, physics, communication systems, biology, ecosystem, and others. Hence, the
presented research may be also applied beyond production system engineering including
the diversity of dense, transition-rich, homogenous and nonhomogenous systems.
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