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Abstract: In 1957, M. Krasner described a complete valued field (K, v) as the inverse limit of a
system of certain structures, called hyperfields, associated with (K, v). We put this result in purely
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1. Introduction

If one considers the operations of classical algebraic structures (such as groups, rings,
fields, . . . ) by looking at their graphs, then one sees that they satisfy two fundamental
assumptions: they are left total and functional. In other words, these properties can be
spelled out as operations being everywhere defined (i.e., the operation can be applied to
any two elements to obtain at least one result) and single-valued (i.e., an application of
the operation to any two elements yields at most one result). A hyperfield is a field-like
structure where the latter property is relaxed for the additive operation. In the literature,
such structures appear perhaps more than one would expect: hyperfields are of interest,
e.g., in tropical geometry [1–3], symmetrization [4–6], projective geometry [7], valuation
theory [8–11], and ordered algebra [12–14]. There are even reasons to believe that their
theory generalizes field theory in ways that can be used to tackle deep problems such as
the description of F1, the “field of characteristic one” (cf. [7,15]).

More generally, since the pioneer papers [16–18] of F. Marty, structures with multival-
ued operations (also called hyperstructures) generalizing classical single-valued structures
have been the object of several research projects. For example, modules with a multivalued
operation and a scalar multiplication over Krasner hyperrings (the old brothers of hyper-
fields) have been studied, e.g., in [19–21]. In addition, hypergroups are mentioned in a
journal of theoretical physics, in [22].

In this article, we focus on valued hyperfields, generalizing valued fields: the object of
study of classical valuation theory. In [23], after having introduced valued hyperfields for
the first time, Krasner associates to any valued field (K, v) a projective systemH = H(K, v)
of valued hyperfields, indexed by the non-negative elements of the value group of (K, v).
Krasner proves that the projective limit of the systemH is isomorphic (as a valued field) to
the valuation-theoretic completion of (K, v). His proof makes heavy use of a metric structure
of the hyperfields inH, which is induced by the canonical valuation metric on K. On the
other hand, while axioms of valuation maps generalize readily to the setting of hyperfields,
these are not anymore sufficient to induce a metric in the general case. Krasner’s approach
to this obstacle has been to postulate one further axiom for valued hyperfields, which
becomes tautological in the case of a single-valued addition. Nevertheless, examples of
hyperfields with interesting valuation maps that do not induce a metric as required by
Krasner are now known. Among these examples, particularly important for the present
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article are the generalized tropical hyperfields T (Γ) ([24] Example 2.14), which naturally
encode ordered abelian groups as valued hyperfields and include the tropical hyperfield,
which became a fundamental object of study in tropical geometry (cf. [1–3]). Other such
examples can be found in [8] (Example 4.3) or [25].

In addition, without the metric condition, valuation maps on (hyper)fields are nothing
but homomorphisms (with a specific target) in the category vHyp of valued hyperfields
and their homomorphisms, making vHyp a natural framework for classical valuation
theory too.

The main aims of this article are the following:

• To generalize the above-mentioned limit construction of Krasner to valued fields of
any (finite or infinite) Archimedean rank.

• To describe the generalized limit construction in vHyp respecting the principle
of equivalence (i.e., avoiding elements-dependent arguments, including Krasner’s
metric arguments).

While the first aim does not present relevant difficulties, the possibility of achieving the
second aim may, at first glance, raise some doubts. We will prove that the necessary metric-
dependent properties of the systemsH are a reflection of the fact that the limit construction
of Krasner is performed locally in vHyp. The latter means that these properties can be
deduced by seeingH as a diagram in the slice categories of vHyp over-generalized tropical
hyperfields. In this slice category, Krasner’s result is in fact nothing but the computation of
limit cones over completely determined diagrams. A category-theoretic characterization of
the full subcategory of vHyp whose objects are generalized tropical hyperfields has not
been fully achieved yet. We shall give our reasons to believe that this is possible and to
which other research problems this one is connected in the conclusions section.

This article starts with a brief review in Section 2 of the necessary category-theoretic
background as well as the notation adopted. A survey of the algebraic theory of hyperfields
follows in Section 3, with the above-mentioned generalization of Krasner’s construction
of the projective systems H(K, v) to arbitrary Archimedean rank. The category vHyp of
valued hyperfields is also defined in this section. In addition, the embedding of the category
of ordered abelian groups and order-preserving group homomorphisms into vHyp via
generalized tropical hyperfields is described. In the main Section 4, the transition to slice
categories is formalized by proving that the diagramH(K, v) descends to the slice category
vHyp/T (Γ), for all ordered abelian group extensions Γ of the value group vK and that
the vertex of a limit cone over the latter diagram, is isomorphic to the valuation-theoretic
completion of (K, v) in vHyp/T (Γ), as well as, consequently, in vHyp and in the category
of valued fields and value-preserving field-homomorphisms. The conclusive Section 5
describes related open problems, tracing lines for future investigations.

2. Category-Theoretic Preliminaries and Terminology

Many references for category theory may be cited, which cover the necessary back-
ground for the scope of this paper. The classic [26] is certainly one of them, and we found
particularly useful the following books as well [27–29].

Since we believe that one way to better appreciate our contribution is to be as precise
as possible with terminology and notation, we shall assume only some familiarity with the
concepts of category, small category, and functor in this preliminary section.

As for basic notations, for a category C, we write A ∈ Ob(C) to mean that A is an
object in C, and for any ordered pair (A, B) of objects in C, we denote the set of arrows
f : A −→ B in C by C(A, B). For the composition of arrows, the symbol ◦ will be employed,
and the identity C-arrow of A ∈ Ob(C) will be written as 1A : A −→ A.
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If C is an object in C, then the slice category C/C has C-arrows f : A −→ C, with
A ∈ Ob(C), as objects, while a C-arrow a : A −→ B is an arrow

A B

C C

f g

in C/C if and only if the following triangular diagram

A

C

B

a

f

g

is commutative in C, i.e., g ◦ a = f .
The concept of a limit in a category is fundamental and, partly due to its generality,

admits many equivalent definitions. The terminology we adopt for limits is similar to
that of [29], which seemed to be the most appropriate in this case. Let us go through a
brief recap.

Limits

Fix a category C. If S is a small category, then a functor D : S −→ C is called a diagram
in C of shape S . A cone on a diagram D : S −→ C consists of an object V in C, called the
vertex of the cone, together with a family, indexed by the collection of objects in S ,

(
V D(I)

)
I∈Ob(S)

sI (1)

of C-arrows, called the sides of the cone such that the following triangular diagram

D(I)

V

D(J)

D( f )

sJ

sI

is commutative, for all arrows f ∈ S(I, J).
A cone with vertex L and sides pI over a diagram D : S −→ C is called a limit cone if it

satisfies the following universal property: for any cone on D as in (1), there exists a unique
arrow h : V −→ L such that pI ◦ h = sI holds, for all I ∈ Ob(S).

By a limit of a diagram D : S −→ C, we mean the vertex of a limit cone over D.
An isomorphism between objects A, B in a category C is a C-arrow f : A −→ B with the

property that a C-arrow f−1 : B −→ A exists such that f−1 ◦ f = 1A and f ◦ f−1 = 1B. The
notation f−1 used for this arrow suggests that from the mere existence, uniqueness follows
too, which is in fact well known to be the case.

The uniqueness of the arrows whose existence is guaranteed by the universal prop-
erty of limit cones implies that, when they exist, limit cones are unique up to (a unique)
isomorphism (of cones). In particular, limits in a category C are unique up to (a unique)
C-isomorphism. It is up to this isomorphism that we speak of the limit of a diagram.

The sides of limit cones are often called projections. This name comes from the analogy
with the limit of diagrams of shape 2, that is, the category consisting of 2 objects with their
identity arrows solely. The latter specially shaped limits are called (binary) products. In
fact, in the category Set of sets and functions, their vertex is the familiar Cartesian product
of sets, while their sides are nothing but the projections onto its components. For the
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product (A× B, p1, p2) of two objects A1, A2 ∈ Ob(C), where pi : A1 × A2 −→ Ai denote
the projections (i = 1, 2), the universal property of limits has the following form: for any
object B in C admitting two arrows fi : B −→ Ai (i = 1, 2) in C, there exists a unique arrow
f1 × f2 : B −→ A1 × A2 such that the following diagram

A1

B A1 × A2

A2

f1× f2

f1

f2

p2

p1

is commutative.
Another specially shaped limit, which is named terminal object, is defined in a category

C as the limit cone of the unique diagram ∅ −→ C, where ∅ denotes the category with no
objects and, consequently, no arrows (the empty category). If T is a terminal object in C, then
the universal property of limits has the following form: for any object C in C, there exists a
unique arrow !C : C −→ T.

When limit cones on diagrams of a certain shape S exist in a category C, then one says
that C has limits of shape S . One then usually simplifies the terminology further in case the
particular shape has been given a name. For instance, phrases like “C has products” or “C
has a terminal object” mean that C has limits of shape 2 and ∅, respectively.

Remark 1. It is important to keep in mind that uniqueness up to isomorphism does not necessarily
mean absolute uniqueness (following the remark on terminology in the preface of [30], one may
phrase this as “categorial uniqueness is not categorical”). For example, in the category Set of sets
and functions, where isomorphisms are bijections, all singleton sets are terminal objects.

3. Valued Fields and Hyperfields

Let (K,+, ·, 0, 1) be a field and (Γ,≤,+, 0) a linearly ordered abelian group (always
denoted additively) (Note that we use the same symbols to denote the additive structure of
K and the abelian group structure of Γ. This is standard practice and will cause no confu-
sion).That is, Γ is an abelian group equipped with a linear order relation ≤ and an abelian
group structure whose operation + is compatible with ≤, i.e., the following implication:

γ ≤ δ =⇒ γ + ε ≤ δ + ε

holds, for all γ, δ, ε ∈ Γ. A map v : K −→ Γ ∪ {∞}, where ∞ is a symbol such that
γ + ∞ = ∞ + γ = ∞ > γ for all γ ∈ Γ, is called a (Krull) valuation on K if and only if it
satisfies all of the following three properties:

(VAL1) v(x) = ∞ if and only if x = 0, for all x ∈ K.

(VAL2) v(xy) = v(x) + v(y), for all x, y ∈ K.

(VAL3) v(x + y) ≥ min{v(x), v(y)}, for all x, y ∈ K.

If a valuation v on a field K is given, then (K, v) is called a valued field, while the image
of v in Γ, denoted by vK, is called the value group of (K, v). The value v(x) of x ∈ K will be
written as vx whenever no risk of confusion arises. If (K, v) is a valued field, then

Ov := {x ∈ K | vx ≥ 0}

is a subring of K, called the valuation ring of (K, v). It determines the valuation map v up to
valuation equivalence, i.e., up to composition with an order-preserving isomorphism of the
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value group. The prime ideals of the valuation ring Ov are linearly ordered by set inclusion
and have the following form:

m∆
v := {x ∈ K | vx > δ, for all δ ∈ ∆},

where ∆ is a convex subgroup of vK (see [31] Lemma 2.3.1). The ideal mv := m
{0}
v , corre-

sponding to the trivial convex subgroup {0} of vK, is the unique maximal ideal of Ov. The
field Kv, defined as the quotient ring Ov/mv, is called the residue field of (K, v).

A homomorphism of valued fields from (K, v) to (L, w) can be defined as a homomorphism
of fields σ : K −→ L such that σ(Ov) ⊆ Ow. The latter condition is sometimes phrased
as “σ preserves the valuation”. Since homomorphisms of valued fields are in particular
homomorphisms of fields, they are automatically injective and will thus sometimes be
called embeddings. We say that (L, w) is a valued field extension of (K, v) if K ⊆ L and
the inclusion map is an embedding of valued fields. In this way, valued fields and their
homomorphisms form a category vFld, which is a subcategory of Set. By an isomorphism
of valued fields, we mean an isomorphism in vFld, namely, a bijective homomorphism of
valued fields whose inverse (as a function) is an arrow in vFld too. This can be spelled out
further as follows: a function σ : K −→ L is an isomorphism of valued fields (K, v) ' (L, w)
if and only if it is an isomorphism of fields K ' L such that σ(Ov) = Ow.

Fix now a valued field (K, v). There is a smallest ordinal (such ordinal κ is usu-
ally called the cofinality of vK) κ serving as the index set of a sequence (γν)ν<κ that
is cofinal in vK, i.e., such that for each δ ∈ vK there exists ν < κ such that δ < γν.
We say that a sequence (xν)ν<κ of elements of K is a Cauchy sequence if and only if
for every γ ∈ vK there exists ν0 < κ such that if ν0 ≤ ν, µ < κ, then v(xν − xµ) > γ.

A sequence (xν)ν<κ is, instead, said to be convergent to an element x belonging to some
valued field extension (L, w) of (K, v) if and only if for every γ ∈ wL there exists ν0 < κ
such that if ν0 ≤ ν < κ, then w(x− xν) > γ.

If the latter property happens to hold, then we also say that the sequence (xν)ν<κ

converges in L. If (L, w) is a valued field extension of (K, v), then we say that K lies dense in
L if every Cauchy sequence in K converges in L, while (K, v) is called complete if and only if
every Cauchy sequence in K converges in K.

Fact 1 (Theorem 2.4.3 in [31]). Every valued field (K, v) admits one and (up to isomorphism of
valued fields) only one valued field extension (Kc, vc)—called the completion of (K, v)—which is
complete and in which K lies dense.

An important consequence of the fact that K lies dense in Kc is that the value group
vcKc and the residue field Kcvc of (Kc, vc) are (canonically) isomorphic to vK and Kv,
respectively (cf. [31] Proposition 2.4.4).

Krasner Hyperfields

Hyperfields first appeared in [23]. In introducing them, Krasner was motivated by
his interest in certain structures obtained from valued fields by means of the “factor (or
quotient) construction”, which he himself described for the first time in the same article and
later in [32]. For the algebraic definition of hyperfields, we refer to [24] (Definition 2.7) and
the references therein. A more categorial treatment of these structures within the category
of sets and (total) relations can be found in [33].

The following definition of homomorphism for hyperfields has become standard in
the literature.

Definition 1. Let (H,�, ·, 0, 1), (H′,�′, ·′, 0′, 1′) be hyperfields. A function

σ : H −→ H′
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is called a homomorphism of hyperfields if σ(0) = 0′, its restriction to the multiplicative groups
is a homomorphism of groups, and in addition,

σ(x � y) ⊆ σ(x)�′ σ(y) (2)

holds, for all x, y ∈ H.

We now define a projective system of hyperfields associated with any valued field of
arbitrary Archimedean rank (see also [9,10]).

For a valued field (K, v) and an element γ ∈ vK such that γ ≥ 0, consider the group
of the 1-units of level γ in K×:

Uγ
v := {u ∈ K | v(u− 1) > γ}.

It can be easily verified that vu = 0 for all u ∈ Uγ
v , so that the valuation map v on K

factors through the quotient group K×γ := K×/Uγ
v and yields a map vγ : Kγ −→ vK ∪ {∞},

where Kγ := K×γ ∪ {[0]γ}. We follow the notation of [9] and denote the multiplicative
coset xUγ

v of x ∈ K in Kγ as [x]γ (in particular, [0]γ = {0}) and call the valued γ-hyperfield
associated with (K, v) the hyperfield (Kγ,�, ·, [0]γ, [1]γ), where

[x]γ � [y]γ := {[x + yu]γ | u ∈ Uγ
v } and [x]γ · [y]γ := [xy]γ .

The verification of the fact that the above defined structures Kγ are in fact hyperfields,
for all γ ∈ vK such that γ ≥ 0, is analogous to Krasner’s one for the Archimedean rank
1 case. The same conclusion also follows from the more general quotient construction
described in [32]. The use of the term “valued” is motivated once one observes that the
map vγ satisfies (VAL1), (VAL2) and the following property analogous to (VAL3):

(VAL3*) vγ[z]γ ≥ min{vγ[x]γ, v[x]γ}, for all [x]γ , [y]γ ∈ Kγ and all [z]γ ∈ [x]γ � [y]γ

see also [8,24,34]. More generally, we shall call (H, v) a valued hyperfield whenever v is a map
from the hyperfield H to an ordered abelian group Γ (with the addition of ∞) satisfying
(VAL1), (VAL2) and (VAL3*). These requirements are equivalent (cf., e.g., [24] Lemma 3.4)
to v being a homomorphism of hyperfields H −→ T (Γ), where T (Γ) denotes the generalized
tropical hyperfield associated with Γ:

Example 1 (Example 2.14 in [24]). Let ∞ be a symbol such that γ + ∞ = ∞ + γ = ∞ > γ for
all γ ∈ Γ. For γ, δ ∈ Γ ∪ {∞}, we denote by [γ, δ] the closed interval containing all ε ∈ Γ ∪ {∞}
satisfying γ ≤ ε ≤ δ. Then, by setting γ � ∞ = ∞ � γ = {γ} for all γ ∈ T (Γ) and:

γ � δ :=

{
{min{γ, δ}} if γ 6= δ,
[γ, ∞] if γ = δ.

(γ, δ ∈ T (Γ))

It is not difficult to check that (T (Γ),�,+, ∞, 0) is a hyperfield, called generalized tropical
hyperfield associated with Γ. Moreover, the identity homomorphism T (Γ)→ T (Γ) is a valuation
on T (Γ). Finally, note that the order of Γ can be recovered as follows:

γ ≤ δ ⇐⇒ δ ∈ γ � γ

and that this observation yields an embedding of the category of ordered abelian groups and order-
preserving group homomorphisms into the category of hyperfields and their homomorphisms.

Example 2 (Trivial valuation). Let H be any hyperfield, Γ any ordered abelian group, and
v : H → T (Γ) be defined as v(0) = ∞ and vx = 0 for all x ∈ H \ {0}. Then, v is a valuation on
H, called the trivial valuation.
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It is well known that finite fields only admit the trivial valuation. Among infinite fields,
another known example is the algebraic closures of finite fields. The next example describes
a class containing finite and infinite hyperfields that all only admit the trivial valuation.

Example 3 ([35]). The following multivalued operation � on a set M with a distinguished element
0 ∈M, is defined by Massouros in [35] as follows:

x � y =


{x, y} if x, y 6= 0 and x 6= y,
M \ {x} if y = x 6= 0,
{x} otherwise.

In [35] (Proposition 2), it is proved that any abelian group structure (M \ {0}, ·, 1) on M
such that 0 · x = x · 0 = 0, for all x ∈M, yields a hyperfield (M,�, ·, 0, 1).

Let v : M→ T (Γ) be a valuation on M and suppose that x ∈M \ {0} satisfies vx > v(1).
Then, in particular, x 6= 1, and since x 6= 0, we obtain that x � 1 = {x, 1} by definition. On the
other hand, by standard arguments in valuation theory (see, e.g., [8] Lemma 4.5(4)) from x ∈ x � 1
and vx > v(1), we deduce the contradicting statement vx = v(1). Thus, M only admits the trivial
valuation, as contended.

Remark 2. The hyperfields of the form M were introduced by Massouros’ as an example that
negatively answers the question (posed in [32]) whether all hyperfields can be obtained from fields
with a multiplicative quotient construction.

The question whether all hyperfields admitting non-trivial valuations can be obtained from
fields with that multiplicative quotient construction is, to our knowledge, open. This particular
problem is more extensively discussed in [10].

In [24] (Section 3), the author shows that, as in the case of fields, the set Ov of the
elements in a valued hyperfield (H, v) with non-negative value under v determines the
valuation map (up to valuation-equivalence). As a consequence, homomorphisms of
valued hyperfields are defined analogously to arrows in vFld, and a category vHyp is
thus obtained. A field K with additive operation + can be viewed as a hyperfield with
additive operation � defined by the formula x � y := {x + y}. Conversely, any hyperfield
with a singlevalued additive operation, i.e., such that x � y is a singleton for all x, y ∈ H,
can be viewed as a field. We have described an embedding of vFld into vHyp. By the
observations made in Example 1 above, a valuation v : H −→ Γ ∪ {∞} on a hyperfield H
is, equivalently, a vHyp-arrow (H, v) −→ (T (Γ), 1T (Γ)).

Let us now fix a valued field (K, v). The following statement contains a number of fun-
damental properties of the valued γ-hyperfields associated with (K, v), where 0 ≤ γ ∈ vK.

Lemma 1 (Lee Lemma). Take x, y, x0, . . . , xk ∈ K for some positive integer k, and let γ ∈ vK be
such that γ ≥ 0. The following assertions hold:

(i) If x 6= 0, then [x]γ = {y ∈ K | v(x− y) > γ + vx}.

(ii) If x and y are not both 0, then⋃
([x]γ � [y]γ) = {z ∈ K | v(z− (x + y)) > γ + min{vx, vy}}.

(iii) If x and y are not both 0, then

0 ∈
⋃
([x]γ � [y]γ) ⇐⇒

⋃
([x]γ � [y]γ) =

{
z ∈ K | vz > γ + min{vx, vy}

}
.

(iv) [x0 + . . . + xk]γ ∈ [x0]γ � . . . � [xk]γ .
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(v) If x0, . . . , xk ∈ Ov are not all 0, then

[y]γ ∈ [x0]γ � . . . � [xk]γ =⇒ v(x0 + . . . + xk − y) > γ.

Proof. See [9] (Lemma 3.1) or [34] (Lemma 3.3).

From the above fundamental properties, we now wish to isolate the following impor-
tant consequences.

Proposition 1. Take [x]γ , [y]γ ∈ Kγ, where (Kγ, vγ) denotes the valued γ-hyperfield of (K, v)
for some γ ∈ vK such that γ ≥ 0. Then, all elements of [x]γ � [y]γ have the same value under vγ,
unless [0]γ ∈ [x]γ � [y]γ.

Proof. See [23] (§ 3) or [34] (Proposition 3.19).

The above proposition permits to induce from vγ an ultrametric distance on Kγ, which
we denote by dγ (see, e.g., [24] Definition 4.1).

Proposition 2. Let (Kγ, vγ) be the valued γ-hyperfield of a valued field (K, v), where 0 ≤ γ ∈ vK.
If x and y are not both 0, then [x]γ � [y]γ is the open ultrametric ball of radius δ := γ + min{vx, vy}
around [x + y]γ ∈ Kγ with respect to dγ.

Proof. See [23] (§ 3) or [34] (Proposition 3.26).

4. Main Results

For the rest of the paper:

• (K, v) denotes a valued field.
• (Γ,≤,+, 0) denotes an ordered abelian group containing (vK,≤,+, 0) as a substruc-

ture in the language {≤,+, 0} of ordered groups.

In the first result of this final section, we highlight another consequence of the fact that
a valued field lies dense in its completion. As usual, if a homomorphism of hyperfields σ
is bijective and its inverse is a homomorphism of hyperfields as well, then σ is called an
isomorphism of hyperfields.

Lemma 2. Let (Kc, vc) be the completion of (K, v) and identify K and vK with the subsets of Kc

and vcKc to which they are canonically isomorphic. Then, for all γ ∈ vK such that γ ≥ 0, there is
an isomorphism of hyperfields σγ : Kγ −→ Kc

γ such that vγ(σγ(a)) = vc
γ(a) holds, for all a ∈ Kc

γ.

Proof. Fix γ ∈ vK such that γ ≥ 0. Just for this proof, we will denote by [x]c the class
of x ∈ Kc in Kc

γ and by [y] the class of y ∈ K in Kγ. It follows from Lemma 1 (i) that,
for all nonzero x ∈ Kc, we have that [x]c, as a subset of Kc, is an open ultrametric ball
(with respect to the ultrametric induced on Kc by vc). Since K lies dense in Kc, there is
y ∈ K such that y ∈ [x]c. On the other hand, [x]c is an equivalence class in Kc with respect
to an equivalence relation whose restriction to K has [y] among its equivalence classes.
Consequently, [y]c = [x]c as subsets of Kc and if y′ ∈ K satisfies y′ ∈ [x]c as well, then
[y]c = [x]c = [y′]c and thus [y] = [y′] must hold. Since all x ∈ K belong to the class [x]c in
Kc

γ, this proves that the assignment [x] 7→ [x]c defines a bijective function σγ : Kγ −→ Kc
γ.

From the definitions and the inclusion Uγ
v ⊆ Uγ

vc , it easily follows at this point that σγ is an
isomorphism of hyperfields satisfying the assertion of the lemma.
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The next result is that the valued γ-hyperfields of (K, v), form a diagram
Kδ

T (Γ)

Kγ

ρδ,γ

vδ

vγ


δ≥γ≥0

(3)

(of shape the poset category associated with vK≥0) in the slice category vHyp/T (Γ).

Lemma 3. If γ, δ ∈ vK ⊆ Γ satisfy 0 ≤ γ ≤ δ, then the functions

ρδ,γ : Kδ Kγ

[x]δ [x]γ

are arrows in the slice category vHyp/T (Γ). Furthermore, if γ ≤ δ ≤ ε are non-negative elements
of vK, then

ρε,γ = ρδ,γ ◦ ρε,δ .

Proof. First we show that ρδ,γ is well defined for all γ, δ as in the statement. To this end,
assume that [x]δ = [y]δ . Then, there exists t ∈ U δ

v such that x = yt. Since γ ≤ δ, we have
that U δ

v ⊆ U
γ
v , so we obtain that x = yt for some t ∈ Uγ

v and thus

ρδ,γ([x]δ) = [x]γ = [y]γ = ρδ,γ([y]δ).

It is clear that ρδ,γ[0]δ = [0]γ holds. Furthermore, the following computation:

ρδ,γ([x]δ[y]−1
δ ) = ρδ,γ([xy−1]δ) = [xy−1]γ = [x]γ[y]−1

γ = ρδ,γ([x]δ)ρδ,γ([y]δ)−1,

for all x, y ∈ K with y 6= 0, shows that the restriction of ρδ,γ to K×δ is a homomorphism of
groups (with codomain K×γ ). In addition, we have that

ρδ,γ([x]δ �δ [y]δ) = {ρδ,γ([x + yt]δ) | t ∈ U δ
v}

= {[x + yt]γ | t ∈ U δ
v}

⊆ {[x + yt]γ | t ∈ Uγ
v }

= [x]γ �γ [y]γ
= ρδ,γ([x]δ)�γ ρδ,γ([y]δ).

where �δ and �γ denote the additive operation of Kδ and Kγ, respectively, and we used
again the fact that U δ

v ⊆ U
γ
v . We have proved that ρδ,γ is a homomorphism of hyperfields.

We deduce that ρδ,γ is an arrow in vHyp/T (Γ) by noticing that the following chain
of equalities:

vδ[x]δ = vx = vγ[x]γ = vγ(ρδ,γ[x]δ)

holds, for all [x]δ ∈ Kδ, by the definition of the valuations vγ and vδ. The last assertion of
the lemma follows immediately from the definition of the functions ρδ,γ (δ ≥ γ ≥ 0).
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The assignment x 7→ [x]γ defines a function ργ : K −→ Kγ, for all non-negative
γ ∈ vK. It follows from the definitions that these functions are homomorphisms of valued
hyperfields such that vx = vγ[x]γ for all x ∈ K, i.e., the following triangular diagrams:

K

T (Γ)

Kγ

ργ

v

vγ


γ≥0

commute in vHyp. Therefore, the functions ργ are arrows in the slice category vHyp/T (Γ).
Moreover, they respect the functions ρδ,γ in the sense that, for all non-negative γ, δ ∈ vK,
we have that the following diagram

Kδ

K

Kγ

ρδ,γ

ργ

ρδ

commutes in vHyp. The above discussion shows that (K, v) is the vertex of a cone over the
diagram (3) in vHyp/T (Γ), i.e., the following diagram

Kδ

K T (Γ)

Kγ

ρδ,γ

vδ

ργ

ρδ

v

vγ

is commutative in vHyp. Now consider the completion (Kc, vc) of (K, v). If, as before,
we identify vK with the subset of vcKc to which it is canonically isomorphic, then from
Lemma 2, we deduce that Kc too is the vertex of a cone over the same diagram (3). In
addition, K embeds as a valued field in Kc by Fact 1, and such an embedding can be seen
to be an arrow in vHyp/T (Γ). Before moving forward, let us prove the following useful
lemma, which states that (with the right choice of Γ) all cones in vHyp/T (Γ) over the
diagram (3) are (valued) fields.

Lemma 4. Let (H, w) be a valued hyperfield such that there are order-preserving group-embeddings
vK ↪→ wH ↪→ Γ, and assume that (H, w) is the vertex of a cone in vHyp/T (Γ) over the
diagram (3). Then, H is a field, i.e., for all x, y ∈ H, we have that x � y is a singleton, where �
denotes the additive operation of the hyperfield H.

Proof. We work up to the given embeddings of ordered abelian groups. Fix γ ∈ vK such
that γ ≥ 0. We denote by fγ : H −→ Kγ the sides of the given cone in vHyp/T (Γ). Pick
x, y ∈ H× and z, z′ ∈ x � y. We claim that 0 ∈ z′ � z−, where z−. Since fγ is an an arrow
in the slice category vHyp/T (Γ), we obtain that fγ(z), fγ(z′) ∈ fγ(x)�γ fγ(y) holds in
Kγ, where �γ denotes the additive operation of the hyperfield Kγ. In addition, we obtain
that the equalities wx = vγ fγ(x) and wy = vγ fγ(y) hold in Γ. Thus, by Proposition 2,
we have that fγ(x)�γ fγ(y) is an open ultrametric ball in Kγ of radius γ + min{wx, wy}.
Let now (γν)ν<κ be an increasing and cofinal sequence of non-negative elements of vK,
and take an arbitrary δ ∈ vK. We consider some ν < κ that is large enough so that
γν + min{wx, wy} > δ holds in Γ. If we suppose that [0]γν /∈ fγν(z

′)�γν fγν(z)
−, then by
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Proposition 1, and since fγν is a homomorphism of hyperfields, we obtain that for any
a ∈ z′ − z−, the value wa = vγν fγν(a) ∈ vK ∪ {∞} is larger than δ. Since δ is arbitrary in
vK, this implies that wa = ∞ and so a = 0. We deduce that

[0]γν = fγν(a) ∈ fγν(z
′)�γν fγν(z)

−.

This contradiction shows that [0]γν ∈ fγν(z
′)�γν fγν(z)

− must hold in Kγν , and as
a consequence, we obtain that fγν(z

′) = fγν(z). Furthermore, since fγν is an arrow in
vHyp/T (Γ), we have that wz′ = wz, and by enlarging ν (if necessary), we can ensure that
γν + wz > δ as well. Now, for all a ∈ z′ � z−, we obtain that fγν(a) ∈ fγν(z

′)�γν fγν(z)
−

and, again by Proposition 2, fγν(z
′)�γν fγν(z)

− is an open ultrametric ball of radius γν +wz
and center [0]γν . Therefore, wa = vγν fγν(a) ∈ vK ∪ {∞} will be larger than δ, and since δ is
arbitrary in vK, it follows that a = 0 anyway. At this point, our claim is proved, and z′ = z
follows. The proof is complete.

By the following theorem, the valued field extensions of a valued field that embed in
its completion are characterized in terms of the diagram (3).

Theorem 1. Let (L, w) be a valued field extension of (K, v) such that there is an order-preserving
group-embedding wL ↪→ Γ. Then, the following statements are equivalent:

(i) (L, w) embeds as a valued field into (Kc, vc).

(ii) For all γ ∈ vK such that γ ≥ 0, there is an isomorphism in vHyp/T (Γ):

σγ : (Lγ, wγ) (Kγ, vγ).

Proof. We begin by proving that (i) implies (ii). Since L contains K, which lies dense in Kc,
it follows that L lies dense in Kc too. Hence, (ii) follows as in the proof of Lemma 2.

For the implication from (ii) to (i), a little more effort is needed. First, we need to fix
an increasing and cofinal sequence of non-negative elements (γν)ν<κ in the value group
vK, as we have shown in the proof of Lemma 4. Then, for any x ∈ L× and all ν < κ, we set
yν ∈ K× to be a representative for the class σγν([x]γν) ∈ K×γν

. By the assumption (ii) and
the definition of the hyperfield valuations vγν and wγν , we deduce that vyν = wx holds in
Γ for all ν < κ. In addition, since (γν)ν<κ is increasing, Lemma 1 (i) yields that

v(yν − yµ) > γν + wx

holds in Γ, for all ν < µ < κ. Now, by the cofinality of (γν)ν<κ in vK, the latter inequality
implies that (yν)ν<κ is a Cauchy sequence in K, which then converges to some y ∈ Kc.

We claim that y does not depend on the choice of the representatives yν ∈ K, but
only on the class σ([x]γν) ∈ K×γ . For let y′ν ∈ K be such that [y′ν]γν = σγν([x]γν) be another
choice. As above, (y′ν)ν<κ is a Cauchy sequence in K and we denote by y′ its limit in Kc. If
δ ∈ vK and ν < κ are such that γν + wx > δ and vc(y− yν), vc(y′ν − y′) > δ hold in Γ, then,
by Lemma 1 (i), and since vy′ν = wx = vyν, we obtain that

v(yν − y′ν) > γν + wx > δ

and then

vc(y− y′) = vc(y− yν + yν − y′ν + y′ν − y′)

≥ min{vc(y− yν), vc(yν − y′ν), vc(y′ν − y′)} > δ

hold in Γ. Since δ is arbitrary in vK = vKc, we may conclude that vc(y − y′) = ∞, i.e.,
y′ = y holds in Kc.

Our next claim is that the assignment x 7→ y defines an embedding of valued fields

σ : (L, w) (Kc, vc).
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To see why this holds, most of the efforts are devoted to the verification that σ preserves
the additive operations. Take x, y ∈ L, and assume without loss of generality that wx ≤ wy.
If zν, aν, bν ∈ K are such that [zν]γν = [x + y]γν , [aν]γν = [x]γν and [bν]γν = [y]γν for all
ν < κ, then, as before, these elements form Cauchy sequences in K. Let us then denote
by z, a and b their limits in Kc, respectively. By definition of σ, we have that σ(x + y) = z,
σ(x) = a and σ(y) = b. Our aim now will be to prove that z = a + b holds in Kc. We first
obtain from Lemma 1 (iv) that

zν ∈
⋃
([aν]γν + [bν]γν)

holds, for all ν < κ. Therefore, if we fix any δ ∈ vK and let ν < κ be large enough so that
γν + wx > δ and

vc(a− aν), vc(b− bν), vc(z− zν) > δ

hold in Γ, then an application of Lemma 1 (ii) yields that

v(aν + yν − zν) > γν + wx > δ

holds in Γ, where we used the fact that vaν = wx for all ν < κ. Thus, we obtain that

vc(aν + bν − z) = vc(aν + bν − zν + zν − z)

≥ min{vc(aν + bν − zν), vc(zν − z)} > δ

and, consequently,

vc(a + b− z) = vc(a− aν + b− bν + aν + bν − z)

≥ min{vc(a− aν), vc(b− bν), vc(aν + bν − z)} > δ

hold in Γ. Since δ is arbitrary in vK and vc(a + b − z) ∈ vK ∪ {∞}, we deduce that
vc(a + b− z) = ∞ and, consequently, z = a + b, as contended.

Now, it suffices to recall that [−x]γ = −[x]γ and that if y 6= 0, then [xy−1]γ = [x]γ[y]−1
γ

hold in Lγ to immediately deduce that σ(−x) = σ(x)− and that σ(ab−1) = σ(a)σ(b)−1

must hold in Kc
γ. We have proved that σ is a homomorphism of fields and, as such,

an embedding.
Finally, since vyν = wx holds in Γ, for all x ∈ L× and all ν < κ (as we have already

shown above) it can be easily verified from the definition of convergent sequences, that
the element σ(x) ∈ Kc, to which the Cauchy sequence (yν)ν<κ in K converges, satisfies
vc(σ(x)) = vyν, for all ν < κ. We conclude that v(σ(x)) = wx holds, for all x ∈ L. In
particular, we have that σ is an embedding of valued fields.

In the proof of the implication from (ii) to (i) in the above theorem, we have used the
assumption that (L, w) is an extension of (K, v) only for identifying vK and vcKc with a
canonical subset of wL. However, in the final analysis, this identification is not necessary
and is performed only for a smoother exposition of the reasonings in the proof.

Scholium 1 (The term ‘scholium’ (literally, a marginal note) is used, e.g., in [36] to denote
something that follows directly from the proof of a preceding result, as opposed to a corollary
that follows directly from the statement of the preceding result). If (L, w) is any valued field
such that there is an order-preserving group-embedding wL ↪→ Γ and, up to this embedding,
Condition (ii) of Theorem 1 holds, then there is a vHyp/T (Γ)-arrow (L, w) −→ (Kc, vc).

Now, under the assumptions of the above result, for a valued hyperfield (L, w), we
deduce, first, that L is a field by Lemma 4. Then, we denote by fγ : L→ Lγ ' Kγ and by
ρ̃γ : Kc → Kc

γ ' Kγ the projections onto the valued γ-hyperfields associated with (K, v) of
(L, w) and (Kc, vc), respectively. It is so straightforward to verify that the embedding σ that
we have constructed in the proof of Theorem 1 is unique with the property that fγ = ρ̃γ ◦ σ
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for all γ ∈ vK such that γ ≥ 0. Indeed, this conclusion follows from the fact that for any
x ∈ L×, the classes ([x]γ)γ∈vK≥0 form a chain of ultrametric balls in L of increasing radii
and, moreover, the set of this radii is cofinal in vK. We have now fully proved Krasner’s
result [23] (§ 4) in a purely categorial language:

Theorem 2. The completion (Kc, vc) of (K, v) is (vHyp-isomorphic to) the limit of Diagram (3)
in vHyp/T (Γ), for any ordered abelian group extension Γ of vK.

We note moreover, that in the above setting the assumption Γ = vK = wL is a posteriori
not restrictive.

Corollary 1. (K, v) is complete if and only if it is the limit of the diagram (3), with Γ = vK, in
vHyp/T (Γ).

We conclude by describing the above abstract and general constructions and results in
one concrete example.

Example 4 (t-adic valuations on formal Laurent series fields). Let K be a field and t any
transcendental over K. We denote by K[t] the polynomial ring, by K(t) the field of rational
functions, by K[[t]] the formal power series ring and by K((t)) the field of formal Laurent series,
i.e., the fraction field of K[[t]].

A map vt is defined on a non-zero power series f ∈ K[[t]] as the exponent vt( f ) ∈ Z≥0 of
the highest power of t dividing f . The restriction of vt to K[t] is extended to a discrete valuation
vt : K(t)→ Z∪ {∞}, called the t-adic valuation, by setting:

vt

(
f
g

)
:= vt( f )− vt(g)

for all f , g ∈ K[t]. It is well known that the completion of the valued field (K(t), vt) with respect to
vt is K((t)) and throughout this example, we shall denote vc

t again by vt.
By definition, a principal unit u ∈ K((t)) of level n ∈ N =

(
vtK((t))

)
≥0 has the form:

1 + tn

(
+∞

∑
i=1

aiti

)
∈ K[[t]]

with ai ∈ K.
Thus, the elements (with non-negative value) of the valued n-hyperfield H associated with

(K((t)), vt) correspond to truncated power series. That is, two power series in K[[t]] are in
the same class in H if and only if all of their coefficients up to the n-th coincide. While, since
n ≥ 0, the product in K((t)) descends to H, the additive operation does not as some cancellations
may occur that cannot be determined on the basis of the coefficients of degree ≤ n. For instance,
while [1]n � [−1]n certainly contains [0]n as 1− 1 = 0 holds in K((t)), by a distinct choice of
representatives we also find that [1]n � [−1]n contains, e.g., the class of:

1 + tn+1 − (1− tn+1) = 2tn+1

which has value n + 1 < ∞ under vt and is hence is not [0]n.
The multivalued operation of H is defined as to include all possibilities given by the indetermi-

nacy caused by the above mentioned cancellations of terms of order greater than n.
From a metric perspective, two power series are close to each other in (K((t)), vt) if their

difference can be divided by a high power of t. Thus, the above-described truncations correspond to
an identification of power series that are closer to each other than a fixed finite distance.

An application of Lemma 2 in this case shows that for all n ∈ N and any non-zero power series
f ∈ K[[t]], a rational function exists whose power series expansion has the coefficients of ti equal to
those of f for all i ≤ n, respectively.
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The limit construction culminated in Theorem 2 above, is a general and formal form of the
intuitive idea that when “truncations” at all finite levels are known, then the additive indeterminacy
can be resolved and full information on the power series ring K[[t]]—and consequently on the valued
field (K((t)), vt)—can be derived. On the other hand, due to the density of K(t) in K((t)), the
just-described procedure cannot be used to identify the valued subfield (K(t), vt).

Several deep open questions in mathematics are related to the study of valuations
of (finite or infinite) Archimedean rank > 1 (see, e.g., [37] and the references therein).
The above example on valuations of rank 1 includes fields as Fp((t)) (where p is a prime
number), which are as well sources of deep unresolved problems on which intuitions often
struggle in dealing with unexpected counterexamples (cf. [38]).

In this article, which certainly constitutes a tiny drop in the ocean, the intuitive idea of
truncation of power series described in Example 4 is formally extended to the general case,
showing at the same time that it constitutes a fundamental and deep property shared by all
(non-trivially) valued fields. Our approach is in line with other extension results, such as
the fractal geometry induced on the power series rings Fp[[t]] by t-adic valuations ([39],
Example 3), which has been generalized to discretely valued fields in [39] (Proposition 5).

5. Conclusions and Future Work

We trace below possible future developments.

• A diagram of the form (3) as above can be associated with any non-trivially valued
hyperfield (cf. [10] Proposition 1.17). As a corollary to the results presented in this
article, we may deduce the following statement:

If among the cones over the diagram (3), where (K, v) is only assumed to
be a non-trivially valued hyperfield, there is one whose vertex is a valued
field (L, w), then the limit cone of that shape exists in vHyp and its vertex is
isomorphic to the valuation-theoretic completion of (L, w).

Let us note that the hypothesis of the above assertion holds under weaker assumptions
on (K, v) than that of K being a field. For instance, by [10] (Proposition 1.27), it suffices
that v satisfies Krasner’s further assumption (such valuations are called Krasner
valuations in [24] (Section 4)). The problem of whether the just mentioned assumption
on (K, v) is also necessary is outside the scope of this work and left open for future
investigations. This is also related to the open problem mentioned in Remark 2 above.

• Generalized tropical hyperfields are characterized in [24] (Theorem 5.2). This charac-
terization result relates the problem of isolating the full subcategory of vHyp, whose
objects are generalized tropical hyperfields, to the broader class of stringent hyper-
fields. These have been characterized in [40], but the current form of Bowler and Su’s
characterization theorem is not yet fully element-independent.

• In conclusion, let us note that the recent theory of enriched valuations mentioned in [25],
Example 3.16 suggests further extensions of our approach, where the target of an
(enriched) valuation is taken from a wider class of hyperfields than that of generalized
tropical hyperfields or stringent hyperfields.
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