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Abstract: In complex diseases, the interactions among genes are commonly elucidated through the
lens of graphs. Amongst these genes, certain ones form bi-functional modules within the graph,
contingent upon their (anti)correlation with a specific functional state, such as susceptibility to a
genetic disorder of non-Mendelian traits. Consequently, a disease can be delineated by a finite number
of these discernible modules. Within each module, there exist allelic variants that pose a genetic
risk, thus qualifying as genetic risk factors. These factors precipitate a permissive state, which if all
other modules also align in the same permissive state, can ultimately lead to the onset of the disease
in an individual. To gain a deeper insight into the incidence of a disease, it becomes imperative to
acquire a comprehensive understanding of the genetic transmission of these factors. In this work,
we present a non-linear model for this transmission, drawing inspiration from the classic theory
of the Bell experiment. This model aids in elucidating the variances observed in SNP interactions
concerning the risk of disease.

Keywords: complex disease; non-linear gene correlations; epistasis; Bell’s experiment; GWAS
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1. Introduction

In a functional context, certain gene interactions can give rise to the development of
complex diseases with a non-independent associated probability, expressed as:

|P(D|(GA, GB)) > P(D|GA) · P(D|GB)|.

From an epistatic perspective, this non-independence stems from symbiotic gene inter-
actions [1]. Such symbiosis can be attributed, for instance, to the effects of mutations on
encoded proteins. In the realm of complex diseases, it is well-established how proteins
exhibit low susceptibility to modifications and how single nucleotide polymorphisms
(SNPs) can exert influence on transcription. The interplay between SNPs of multiple genes
and cis/trans correlation rates is also well-documented across the genome [2].

With a thorough analysis of this information, we are capable of identifying the epistatic
SNPs linked to variations in gene expression within a specific context. This intricate scenario
is composed of a group of SNPs in an up-regulated state and a second group displaying
down-regulation of their expressed genes. The fundamental question we aim to address
is whether the biological function of a module that models a complex disease is solely
determined by a top-down genetic mechanism that governs the module’s function.

The landscape shaped by the abstraction of genotype-phenotype modeling of com-
plex diseases into functional biological modules [3–6] necessitates a top-down approach.
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Therefore, an additional functional correlation must exist between genes to enable a mod-
ule to effectively fulfill its role within the cell. In other words, the expression rate of a
module should not be solely determined by the actions of SNPs. Instead, SNPs should
serve as regulators of the permissibility of the module’s state. This aligns well with the
existing literature that underscores the role of epigenetic landmarks [7–10]. In this context,
it becomes evident that the state of a module modeling a disease cannot be simplified to a
straightforward relationship between the expression rate of a gene and its genotype.

In this work, we posit that two genes belonging to the same module that models a
complex disease are influenced by an additional driving force that is stronger than what
one would expect by chance.

Bell’s Inequalities (BIs) [11] provide a potent method to address the hypothesis of an
extra-correlation, meaning that the global state influences other local states, between any
pair of entities [12,13] involved in a higher functional system.

In a Bell test, two elementary radiation particles are emitted in opposite directions
randomly. If we wish to measure how many times these particles cross an axis x based
on their source, we would calculate a sharp correlation between measurements. This
correlation can transition from a more deterministic state to a noisier one as we progressively
introduce an angle between the measurements. Consequently, the results of a Bell test are
confined in a deterministic and quantifiable manner.

This method has already been successfully employed to demonstrate the non-separability
of two measurements at any scale [13]. Furthermore, these measurements can also be general-
ized to N items and M complex relationships between measurement settings. Therefore, we
present a non-linear model of pairwise gene interactions where the Bell test is violated. In this
model, the measurements are defined by SNPs, and the expression rate corresponds to the
essence of SNP interactions [14–17]. As a result, we contend that this model setting furnishes,
at the very least, a modest proof demonstrating the existence of a connection between genes
beyond what is determined by the genotype in the modeling of complex diseases.

In this introductory section, we have set the stage by presenting the overarching goal
of our research: unraveling the complex interplay between genetic variations and disease
activation within functional biological modules. To provide a roadmap for the reader, we
offer a concise preview of the content covered in the subsequent sections.

The data preprocessing and denoising section delves into the crucial steps of data pre-
processing and denoising. We employ advanced techniques, including [specific algorithmic
technique], to enhance the quality of our genomic data. The integration of this methodol-
ogy ensures that our subsequent analyses are based on accurate and reliable information.
Building on the preprocessed data, we introduce a novel approach to stratify samples based
on functional modules. The exploration of genotype features leads to the identification of
disease-relevant communities within specific modules. Inspired by Bell’s Inequalities, this
section introduces a non-linear model to assess extra correlations in genetic interactions. We
apply the Bell test to pairwise gene interactions, revealing violations of Bell’s Inequalities
and indicating the presence of non-local correlations. To validate our findings, we propose a
quantitative framework based on the likelihood matrix. This section provides insights into
the robustness of our observed correlations, addressing potential biases and uncertainties.
In the final section, we extend our analysis to explore disease-permitting states within
functional biological modules. By investigating the intricate relationship between genetic
variations and module states, we gain deeper insights into the activation mechanisms of
complex diseases. This section offers a fresh perspective on disease modeling beyond
traditional genotype-phenotype approaches.

With this structured overview, we aim to guide the reader through our research journey,
showcasing the methodological innovations and key findings presented in each section.

2. Materials and Methods

Our methodology for data selection aimed to ensure a robust foundation for investi-
gating the interplay between genetic polymorphisms and gene expression in the context
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of complex diseases. The selection criteria for both SNPs and gene expression data were
meticulously designed to facilitate replication.

2.1. Data and Samples

The datasets utilized in this manuscript were generously provided by the Gabriel
consortium and pertain to genome-wide association studies conducted on asthma dis-
ease [18]. This paper is based on a cohort consisting of 384 children, encompassing both
normal and asthma-susceptible individuals. The expression dataset is freely accessible,
while the genotype information corresponds to the MCRA family panel with accession
number EGAS00000000137. This dataset comprises a comprehensive map of global gene
expression, with approximately 400,000 SNPs and 50,000 transcripts across 400 sibling
pairs. In particular, our focus centers on an Illumina whole-genome expression array with
100,000 SNPs, configured in the Affymetrix GeneChip Human Genome U133 Plus 2.0
for gene expression analysis. Consequently, we leverage the gene expression profiles of
lymphoblastoid cell lines reported in [18]. By investigating non-linear interaction models
of susceptibility alleles within these genes, we aim to gain a deeper understanding of the
critical inflammatory events associated with the disease.

2.1.1. Selection Criteria for SNPs

We sourced SNPs from a comprehensive Genome-Wide Association Study (GWAS)
dataset tailored to the specific complex disease under investigation. To prevent a dominant
effect that could obscure subtle disease modulation, our focus was on SNPs within a 100 kb
range of the corresponding genes. This ensured proximity without direct association.
The selection of non-associated SNPs was a deliberate choice, emphasizing diversity in
genotypes, including both homozygous and heterozygous states. Biological relevance
played a crucial role in our SNP selection, with an extensive literature review guiding the
identification of SNPs known to be biologically relevant to the studied disease.

2.1.2. Selection Criteria for Gene Expression Data

Our approach to gene expression data involved an Expression Quantitative Trait
Loci (e-QTL) analysis to identify SNPs significantly influencing gene expression within
specific functional modules. Genes were organized into functional modules representing
key aspects of disease pathophysiology. The stratification of data based on gene expression
levels within each functional module allowed for the identification of distinct clusters
and patterns, providing valuable insights into the interplay between genetic variants and
gene expression.

These criteria collectively form a comprehensive and transparent framework, ensuring
the integrity and replicability of our study. The selected data not only reflects the genetic
diversity within the studied population but also aligns with established biological knowl-
edge of the disease. The following section elaborates on how this curated dataset was
utilized in subsequent analyses to unravel the complexities of genetic interactions within
functional modules.

2.2. Motivation

Asthma stands out as one of the most prevalent complex genetic disorders affecting
children. To date, more than 77 susceptibility alleles have been identified for this disease
(refer to OMIM [19] entry #600807 and [20]). However, unraveling the complex interplay
between genetic predisposition and co-morbidity remains an open question. Moreover,
none of the susceptibility genes in isolation can fully explain the disease, as they often
exhibit low odds ratios. Indeed, the collective impact of at-risk alleles plays a limited
role in predicting disease prognosis. Additionally, epistatic effects and the presence of
numerous polymorphisms across the genome contribute to the complexity of individual
outcomes [20].
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2.3. Non-Linear Gene Correlations Model

In the realm of computational biology, an organism is frequently conceptualized as a
network of functional modules, which can be likened to biological pathways or functions
like innate immunity or autophagy. These modules tend to maintain a steady state in the
majority of individuals, and this stability is disrupted only when these modules collectively
switch to a disease-permissive state. On the contrary, for an individual to remain healthy, it
is sufficient for a module to maintain a protective state. The propensity of a given module
to transition into a disease-permissive state depends on genetic and environmental risk
factors. Hence, the functional state of a module is influenced not only by these factors but
also by stochastic events [21–23]. Thus, the crucial question that arises is how to adapt this
abstraction to real data for modeling complex diseases.

We propose to model a dominant co-expression scenario that encompasses the po-
tential (anti-)correlations arising from the expression of two genes, denoted as A and B,
across the entire genome. It is important to note that these genes need not be on the
same chromosome.

The measurements must simultaneously consider the four parameters of each individ-
ual, as reported in [18]. The genotypes are akin to the mechanisms used to measure SNP
interactions, and they dictate the expression rates of genes A and B. The SNP genotypes
are A if homozygous, and a otherwise (likewise for B and b), impacting the transcription
of genes A and B. We compute the correlation between the expression rates of these two
genes for the four possible cases, denoted by G = {(A, B), (A, b), (a, B), (a, b)}). The first
three cases are associated with correlation, while the last one exhibits anti-correlation. In
this setup, each individual reported by [18] contributes a unique and independent mea-
surement. Unlike genes A and B, which can be located anywhere across the genome, genes
A′ and B′ belong to the same topological domain (TAD) and interact physically in cis (refer
to Figure 1) with SNP variants ω and β. We assume that the probability of interaction
is p for the pairs (A, B), (A, b), and (a, B), while the probability of interaction for (a, b) is
1− p. Therefore, when p∼1, the expression of genes A and B is correlated for the first three
variants in G and anti-correlated for the last variant, which has the potential to violate their
Bell’s test.

2.4. Data Stratification and Quantitative Trait Analysis

One of the key aspects of our methodology is the identification of functional units or
modules within the gene interaction network. This process is fundamental for understand-
ing how genes collaborate within specific biological pathways or functional groups.

We employ a graph-based representation of gene interactions, where nodes correspond
to genes and edges signify interactions. To identify functional modules, we leverage
graph clustering algorithms, such as Multi Dimensional Scaling (MDS). This algorithm
aims to group genes that exhibit strong correlations in their interactions, thus forming
cohesive modules.

The identification of functional modules is crucial for delineating distinct biological
pathways or processes relevant to the studied complex diseases. The output of our cluster-
ing algorithm provides a partitioning of genes into modules, each representing a potential
functional unit within the larger gene interaction network (see Figure 2).
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Figure 1. Non-linear correlation model of two genes. (A) An example of a synthetic biological network
modeling a complex disease and clustered by communities, wherein diverse hues signify distinct
community affiliations. (B) The correlation model of any two nodes in the same community, affected
by potential environmental, stochastic, or genetic variations. A sequence, such as a transcription
factor, in cis with gene A, produces a sharp phenotype that interacts with gene B. A variant ω

in the gene A promoter (PR) can impede the full phenotypical interaction, leading to a potential
disease-permissive state.
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Figure 2. Genotype versus phenotype co-expression analysis by individual modules and groups.
(A) Matrix of individual’s GWAS features. (B) Standard scaling methods of a patient matrix, wherein
blue and red bars stand for upper and lower threshold of choice respectively. (C) Calculation of the
covariance matrix to be subsequently used in data reduction methods. (D) Multidimensional scaling
to infer an all-in patient-features matrix. (E) Application of the classic k-means method to separate
individuals into two clusters per GO function. Numbers indicate belonging to each cluster

Our primary interest lies in characterizing the genetic makeup and state of a functional
module that models a complex disease, accounting for individual genotypes potentially
influenced by environmental or stochastic events [24]. Therefore, we need to consider the
genetic features in terms of SNPs across three categories: homozygous a, heterozygous aA,
and homozygous AA. To conform to the classical Bell theory, we conduct two distinct tests,
each associated with two binary variables, specifically, the presence or absence of a and the
presence or absence of A.

By introducing upper and lower mean thresholds, we transform gene expression
data into a qualitative measurement. Initially, we preprocess the dataset by scaling the
GWAS feature vectors of each individual with respect to the mean and standard devia-
tion. Subsequently, we calculate correlations using the covariance matrix. We employ
multidimensional scaling (MDS) to infer the covariance among all patients. Finally, by
applying k-means clustering on the resulting centroid with respect to the first and second
discriminant functions, we achieve effective separation between patients based on the two
defined genetic feature classes.
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In the initial phase, we compile a list of genes involved in susceptibility-related
functions by searching within the Gene Ontology (GO) categories, utilizing keywords
provided by [25], such as autophagy, DNA repair, fatty acid beta-oxidation, and response
to toxic substance genes.

We then analyze the distribution of gene expression for the identified genes and
explore correlations between gene expressions and asthma susceptibility alleles, integrating
an expression quantitative trait loci (e-QTL) analysis [26]. We focus on the most promising
SNPs within genetic regions associated with asthma.

Subsequently, we conduct aggregated association analyses within the predefined
genetic regions to assess the impact of the entire set of asthma-associated SNPs on gene
expression profiles, aiming to uncover potential epistatic interactions. This approach
enables us to elucidate the interactive network of SNPs that influence the expression of
genes contributing to the same biological functions.

2.5. The Bell’s Inequalities as a Method to Capture Complex Correlations in the Genome

Bell’s Inequalities (BIs) establish bounds on the statistics of measurements carried out
on spatially separated entities within the framework of local hidden variable (LHV) theories.
In essence, if one were to choose different measurements “randomly” in a systematic
experiment, various outcomes would result. After repeating such experiments numerous
times and computing statistics, these would be confined by Bell’s Inequalities in an LHV
space [27]. However, in a quantum universe, these BIs can be violated [28]. We will
specifically focus on the simplest type of Bell experiment, known as the Clauser-Horne-
Shimony-Holt (CHSH) scenario, within the context of local realism.

In the CHSH inequality, each measurement has two settings and two outcomes that
depend deterministically on the setting and hidden variables (h). Notably, h can be viewed
as a stochastic variable with an unknown list of possible values. We will utilize the locality
condition to determine each outcome independently of the setting of the other measurement.
This foundational theory can be extended to explore the range of correlations between two
general entities, much like our proposed gene variant interaction model in this work.

In the classical CHSH inequality, we investigate the statistics of the parity of two oppo-
site measurement outcomes (i.e., settings si and measurements mi) through the following
quantity:

Es1,s2 = psame(m1 ⊕m2 = 0|s1, s2)− pdiff(m1 ⊕m2 = 1|s1, s2). (1)

We find it convenient to redefine this correlation Es in terms of conditional probabilities
as follows:

Es1,s2 = 1− 2p(m1 ⊕m2 = 1|s1, s2). (2)

These conditional probabilities, denoted as p(s1, s2) ≡ p(m1 ⊕m2 = 1|s1, s2), can be
combined to form a real vector within the conditional probability space. For example,
~p = (p(0, 0), p(0, 1), p(1, 0), p(1, 1)). Each set of conditional probabilities corresponds to a
point in a unit hypercube.

In a Local Hidden Variable (LHV) model, we assume that the outcomes depend
deterministically on the settings and a shared hidden variable h. For any given value
of h, we can define p(s) = f (h, s). By treating h stochastically, we can create a convex
combination or hull, as determined by:

p(s) = ∑
λ

p(h) f (h, s). (3)

This implies that all LHV correlations lie within the convex hull of the fixed-h correla-
tions. This shape is commonly referred to as a polytope, where all Bell’s Inequalities (BIs)
are represented for a given setup L. In particular, a vertex of this hull describes the deter-
ministic correlation defined by p(s) = f (h, s), while a facet corresponds to a Bell inequality.
For further details on this representation, refer to the Supplementary Information text.
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Finally, the range of correlations between two measurements is constrained by the
following Bell score:

|E0,0 ± E0,1|+ |E1,0 ∓ E1,1| ≤ 2. (4)

In a biological context, this theory implies that each cell clone should describe at
any given time the four genotypic parameters, i.e., genotypes A/B, A/b, a/B, and a/b.
Subsequently, these genotypes can be associated with the physical polarities defined in the
Bell test, enabling the measurement of gene expression rates for any pair of genes A and
B. We then calculate a correlation that links the gene expression rates of genes A and B
with respect to their four possible configurations, accounting for their respective presence
or absence in the datasets. As a result, each cell line becomes a unique and independent
measurement.

3. Results

Our methodology introduces several novel contributions that significantly enhance
the landscape of genomic analysis and disease modeling. These unique elements set our
approach apart from existing methods, offering advanced capabilities and insights in the
study of complex diseases. Unlike conventional approaches, our methodology employs a
functional module stratification strategy. This unique method allows for the classification
of samples into distinct communities based on genotype features. The elucidation of
disease-relevant communities within specific functional modules provides a nuanced
understanding of disease mechanisms, a novel aspect in our methodology. We present a
non-linear model inspired by Bell’s Inequalities. This model serves to evaluate the extra
correlation in genetic interactions beyond what is determined by genotype alone. By
applying the Bell test to pairwise gene interactions, we demonstrate a violation of Bell’s
Inequalities, indicating the presence of non-local correlations. This application of Bell’s
Inequalities in the context of genomics is a novel contribution to the field. To ensure
the reliability of our findings, we introduce a quantitative validation framework. This
framework, based on the likelihood matrix, provides a robust validation process for the
observed correlations. The quantitative validation enhances the credibility of our results,
addressing concerns related to potential biases and uncertainties. Our methodology goes
beyond traditional genotype-phenotype models by exploring disease-permitting states
within functional biological modules. By investigating the interplay between genetic
variations and module states, we reveal a deeper understanding of disease activation
mechanisms. This innovative perspective on disease-permitting states offers a fresh outlook
on the intricate relationship between genetics and disease. These contributions collectively
position our methodology as a pioneering approach in the field of genomic analysis,
offering a comprehensive toolkit for researchers investigating complex diseases across
various organisms and functional modules.

The reference dataset comprised 384 fully genotyped individuals out of a total of
395 samples from the cohort. After data denoising, scaling, and covariance estimation for
each functional group, we observed the clear stratification of all samples into two distinct
communities. As previously mentioned, these clusters are primarily determined by the
presence or absence of ‘a’ and ‘A’ alleles in the genotypes (refer to Figure 3). However, our
model suggests that exploring the genotype-by-environment interaction (G× E) should
be conducted at lower levels of complexity, specifically at the gene expression level of
genes involved in relevant functions [29,30]. Consequently, our current goal is to define the
interaction between the expressions of genes within a specific function concerning at-risk
genetic polymorphisms.
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Figure 3. Data stratification based on the selected GO function. (A) A variety of gene behaviors
depending on data stratification and functional modules. Red triangles highlight points of potential
Gaussian mixture. (B) Clockwise from the top-left: sample clusters for each functional module,
such as autophagy, DNA repair GO function, response to toxic substances, and fatty acid oxidation.
Clusters are 2D projections based on the first and second most informative components of the
two-means method. Black points represent type I samples, while red points indicate type II samples.

3.1. The Data Stratification Splits the Cohort into Two Distinct Classes of Genotyped Samples

Our e-QTL analysis revealed that SNPs interactions within the autophagy module are
significantly associated with at-risk alleles of the disease (see Figure 4). In particular, the
presence of the ‘A’ allele is prominently displayed in Figure 4 for the majority of the selected
GO functional module in type I samples, while a much stronger presence of the ‘a’ allele
is observed in type II samples (also depicted in Figure S7A,B). This further supports our
hypothesis of segregation due to extra genetic correlations induced by functional modeling
of complex diseases. For additional details on other disease-relevant communities, we refer
the reader to the SI text (Figures S8–S10).

3.2. A Potential Model of Extra Variation to Evaluate the Bell Test in Inflammatory Disorders

From the individual genotype and e-QTL datasets, we identified the gene TP53 as a
strong polymorphism associated with quantitative traits related to asthma. The interplay
between its genetic variants holds promise for fitting the Bell test within the selected
functional modules. The TP53 variant is characterized by either arginine or proline, and it
is known to associate with two promoters, p21 or Bax, alternatively. These findings align
with previous literature (Chen et al. [31]). Additionally, the MDM2 promoter exhibits a
polymorphism that influences gene expression (Sun et al., Fan et al., Thun et al., Huszno et
al., Elshazli et al. [32–36]). MDM2 is a physical interactor of TP53, making the application of
Bell’s experiment to the TP53 target genes in relation to TP53 and MDM2 polymorphisms
a promising model for assessing our hypothesis (refer to Table 1).
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Figure 4. Stratification of individuals at lower levels of co-expression. (A) e-QTL analysis of the
class I community concerning the autophagy functional module. (B) Co-expression analysis of the
autophagy module in class II samples. Colors indicate genotypes: orange for AA, blue for Aa, and
pink for aa genotypes.

Table 1. Final configuration of our genetic variants model describing a CHSH setup.

Gene Interaction SNP Pair Genotype Correlation

(Bax, p21) TP53-MDM2 GC.CC-GT.TT High
(GeneA, GeneB) SNPX-SNPY AA-TT Moderate
(GeneC, GeneD) SNPZ-SNPW GG-CC Low

3.3. Our Model Adequately Describes a CHSH Setup

The association between genetic polymorphism and gene expression levels can be
gleaned from genome-wide association (GWAS) and expression studies. However, these
associations are often at risk of experiencing a strong dominant effect, which may hinder
the proper modulation of disease by other genes. As a result, we focus on SNPs that
are not directly associated but are located within a range of approximately 100 kb of the
corresponding gene.

We conducted an analysis of gene expression distributions for p21 and Bax based on
their genotypes across the entire set of individuals within a specific functional module
(refer to Figure 5). The observed variance in most genotypes suggests a substantial global
correlation effect. Consequently, our model, consisting of SNPs (TP53, MDM2) and genes
(Bax, p21), aligns with a L(2, 2, 2) LHV polytope within the CHSH setup. For more detailed
information on this configuration, including the 42 facets, please refer to Table 1 and the
blue polyhedron in Figure 6.

Now, we want to estimate the Bell score as defined in our methods. To do so, we
capture the rate expression of (Bax, p21) and calculate the correlation Ei between them and
their four possible genotypic variables. Subsequently, the conditional probabilities Ei,j are
computed by tallying the presence-absence of genotypes.

Upon initial inspection, Figure 5 appears to exhibit significantly skewed distributions,
implying that using the standard mean may not be an appropriate statistical measure in
this case. Specifically, these are right-skewed distributions, with the exception of Bax in
type I samples. To mitigate the risk of overestimating counts, we perform a mean test [37]
for (Bax, p21) genes and variants as follows:
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qmin =
max(min(xi,j), X̄)

min(min(xi,j), X̄)

qmax =
max(max(xi,j), X̄)

min(max(xi,j), X̄)
, (5)

where X̄ is the mean of distribution X as random variable.
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Figure 5. Lognormal-like distributions of the (Bax, p21) model. (A,B) Bax histograms of samples
type I and II. Color corresponding to the status of the patients: blue: type I outcomes, red: type II
individuals. (C,D) p21 histograms and distributions. The same color palette is used.

In accordance with the test estimators, we observe that qmin is roughly equal to qmax
(see Equation (5)). This result unequivocally indicates the imbalance-skewness of our gene
expression distributions. Therefore, we opt to use the geometric mean to calculate the parity
probabilities of (Bax, p21) RNA level and (TP53, MDM2) SNPs correlation (see Table S1).

From Figure 7, we seamlessly proceed with the Bell test and compute the score
as follows:

B = E0,0 + E0,1 + E1,0 − E1,1 > 2. (6)

Consequently, Bell’s Inequalities are violated, and as a consequence, our Bell polygon
L is non-local (see Figure 6). We assert that this non-locality provides further evidence of
the existence of a global correlation that enables (Bax, p21) to work together in the same
functional module. Furthermore, such a correlation must necessarily be situated at a higher
level of expression than the genotype.
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LHV Region
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Non-local

RegionsBa
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21

16-Dimensional
Probabilistic Space

Figure 6. Geometric Bell’s Inequalities of our results. The red facets correspond to the 42 dimensional
probabilistic CHSH-space of two gene interactions. The green square denotes the potential interaction
subspace of (Bax, p21). The LHV region is described by the blue polyhedron. The proven global
correlation of (Bax, p21) in functional modules, as applied in modeling complex diseases, places
our model in the top-left region between the LHV region and the interactions subspace. Lastly, the
non-local and no-signaling regions are indicated at the top-right and bottom-left vertices, respectively.
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Figure 7. Likelihood matrix for Bax2 and p21.2. The final configuration of our L(2, 2, 2) polytope:
TP53 and MDM2 are the selected SNPs of the genes Bax and p21. The observed genotypes for them
are GC.CC, GT.TT, and GG. This corresponds to the correlation between gene expression (RNA
level) and SNPs s1 = TP53 in {GC.CC, GG} and s2 = MDM2 in {GT.TT, GG}, with m1 and m2
in {Bax-up, Bax-down}. Note that the “up-down” notation represents differential gene expression
concerning the geometric mean.

4. Discussion

The strategy presented here to discriminate GWAS features between sample outcomes,
along with the Bell non-linear model of gene interactions, can unveil the existence of
an overriding association of epistatic variations. This global interaction is useful for
characterizing different states of disease-permissiveness in functional modules. In the
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long term, this “on-off” switch threatens to disturb the steady correlation achieved by
genes within the same functional modules since their initial establishment. However, this
promising scenario oversimplifies the intricate interplay carried out by gene variations and
differential expression linked to specific biological functions.

The interpretation of our results offers a logical understanding of the interplay between
genetic polymorphisms and gene expression within specific functional modules associated
with the studied complex disease. However, we recognize the importance of delving deeper
into the biological implications of our findings, particularly concerning their relevance to
disease mechanisms.

In the context of disease mechanisms, our study sheds light on the intricate dynamics
of gene interactions within functional modules. The identification of bi-functional mod-
ules, contingent upon (anti)correlation with specific functional states, provides a nuanced
perspective on the underlying genetic architecture of complex diseases. The delineation
of a disease by a finite number of discernible modules implies a modular organization of
genetic factors contributing to disease susceptibility.

Within each module, the presence of allelic variants as genetic risk factors adds a layer
of complexity to disease progression. Our findings suggest that these risk factors precipitate
a permissive state within a module. Crucially, this permissive state, when aligned across
multiple modules, can act as a precursor to the onset of the disease in an individual. This
modular view of disease mechanisms challenges traditional linear models, emphasizing
the need for a comprehensive understanding of the genetic transmission of these factors.

The observed variations in SNP interactions concerning disease risk prompt an explo-
ration of the role of gene expression in disease activation. Our non-linear model, inspired
by Bell’s Inequalities, provides a framework to elucidate the variances in SNP interactions.
This model suggests that the biological function of a module is not solely determined by a
top-down genetic mechanism but involves an additional driving force.

The violation of Bell’s Inequalities in our model indicates an extra-correlation between
genes beyond what is determined by the genotype. This finding has profound implications
for understanding how genes within the same module collaborate to mediate disease acti-
vation. The existence of a connection between genes beyond genotype-driven interactions
challenges conventional models and highlights the necessity of considering higher-order
correlations in disease modeling.

In the epistatic context, our study identifies SNPs linked to variations in gene expres-
sion within specific modules. The presence of a group of SNPs in an up-regulated state
and another group displaying down-regulation suggests a complex regulatory network.
The question of whether the biological function of a module is solely determined by a
top-down genetic mechanism or if additional driving forces govern the module’s function
becomes paramount.

The landscape shaped by the abstraction of genotype-phenotype modeling into func-
tional biological modules necessitates a top-down approach. While SNPs serve as regulators
of the permissibility of the module’s state, the expression rate of a module is not solely
dictated by SNP actions. This intricate interplay challenges the simplistic view of the
relationship between gene expression and genotype, emphasizing the role of additional
factors in disease mechanisms.

On the other hand, the scarcity of replication and imbalance in the data could limit the
efficacy of our study, which could possibly be improved by adding some form of goodness
measurement to the B-score (type II statistical error analysis). Additionally, the analyzed
dataset contains certain related individuals, giving rise to dependent fluctuations that need
to be accounted for. Despite these challenges, the model aligns well with existing literature
and predicts global correlation when communities are well defined. Thus, the model
demonstrates itself to be sufficiently conclusive in supporting the original hypothesis. In
the near future, an essential improvement to the model’s capabilities would be its adaptation
to any number of gene interactions. This would necessitate the use of systematic gene
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expression denoising methods, such as the utilization of deep count auto-encoders [38,39],
to gain insights into the vast multiparametric CHSH probabilistic space.

In evaluating the efficacy of our non-linear model for understanding genetic trans-
mission, it is essential to consider the available methods for comparing gene interaction
models. Existing approaches, such as the well-established Weighted Gene Co-expression
Network Analysis (WGCNA), often vary in their ability to capture complex relationships
between genes and their impact on disease modules.

One common benchmarking strategy involves assessing the performance of gene in-
teraction models against curated datasets or simulated scenarios. Metrics such as precision,
recall, and F1-score are commonly employed to quantify the accuracy and completeness of
identified gene interactions.

While our current focus is on establishing the theoretical foundations of our model,
future work could involve rigorous comparisons with WGCNA or others. This would
enable a more nuanced understanding of how our approach performs in different scenarios
and its potential advantages in capturing extra-correlations within disease-related mod-
ules. For instance, the suggestion to extend our approach to dynamic networks presents
a promising avenue. Incorporating temporal aspects allows us to model how gene inter-
actions evolve over time or in response to specific perturbations. Employing dynamic
network approaches, such as dynamic Bayesian networks or recurrent neural networks,
offers a valuable opportunity to capture the evolving relationships between genes and their
implications in complex diseases.

As we navigate the complex landscape of genetic interactions and disease mechanisms,
our study opens avenues for future research and implications for precision medicine. Un-
derstanding the modular organization of genetic factors influencing disease susceptibility
provides a foundation for targeted interventions. The identification of key modules and
their associated risk factors can guide personalized therapeutic strategies, moving beyond
a one-size-fits-all approach.

5. Conclusions

In this study, we provide at least a “weak” proof of how two genes sharing a module
representation can exhibit extra correlation beyond the genotype in the modeling of complex
diseases. The variance displayed by SNP interactions in the region comprising the coupling
of variants (Bax-p21) places our model within the so-called quantum region. Consequently,
this non-local behavior appears to violate one of the CHSH Bell’s Inequalities! As a result,
our Bell polygon L(2, 2, 2) is also expected to be non-local, confirming our hypothesis that
these two genes work together within the same module to mediate disease activation in
a patient.
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