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Abstract: We proposed and analyzed the fractional simultaneous technique for approximating all
the roots of nonlinear equations in this research study. The newly developed fractional Caputo-
type simultaneous scheme’s order of convergence is 3¢ + 5, according to convergence analysis.
Engineering-related numerical test problems are taken into consideration to demonstrate the efficiency
and stability of fractional numerical schemes when compared to previously published numerical
iterative methods. The newly developed fractional simultaneous approach converges on random
starting guess values at random times, demonstrating its global convergence behavior. Although
the newly developed method shows global convergent behavior when all starting guess values are
distinct, the method diverges otherwise. The total computational time, number of iterations, error
graphs and maximum residual error all clearly illustrate the stability and consistency of the developed
scheme. The rate of convergence increases as the fractional parameter’s value rises from 0.1 to 1.0.

Keywords: computational efficiency; error graph; optimal order; simultaneous methods; computer
algorithm
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1. Introduction

When analytical approaches are not available, iterative schemes are the only viable
strategy for numerically approximating the roots of nonlinear equations

f(r) =0, @

in a stable manner. They start with an initial approximation and iteratively refine the
solution using algebraic equations until a satisfactory approximation is obtained. This
approximation of the solution is carried out in this manner until every root is identified.
There are two types of iterative root-finding schemes: simultaneous techniques, which
approximate all roots simultaneously, and methods which approximate one root at a time
(see, for example, Traub’s method [1], Jarratt’s method [2], King’s method [3], Ostrowski’s
method [4], Chun et al.’s method [5], and many others). In recent years, simultaneous
techniques have grown in popularity as a result of their global convergence and inherent
parallelism (see, for example, the works by Weierstrass [6], Kanno [7], Proinov [8], Mir [9],
Farmer [10], Nourein [11], Aberth [12], and Cholakov [13] and the references therein). On
the other hand, because of the intrinsic difficulties of these equations, such as the non-
linearity and non-locality, standard analytical, semi-analytical, and classical numerical
approaches are typically ineffective.

In order to decrease the overall computational time, parallel numerical schemes utilize
parallel computing [14] to solve nonlinear equations. This is achieved by decomposing the
problem into smaller tasks, which can be executed simultaneously on multiple processors
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or cores. Therefore, these schemes are particularly useful when dealing with large-scale or
computationally intensive engineering problems [15]. A comprehensive understanding
of parallel programming techniques, algorithms, and the specific characteristics of the
problem at hand is necessary for the effective implementation of parallel numerical schemes.
Furthermore, the selection of a parallel scheme is often influenced by the nature of the
nonlinear equations being solved, the hardware at hand, and the size of the problem. An
overview of parallel numerical methods for solving nonlinear equations can be found
in [16-18].

The performance of simultaneous root-finding algorithms varies depending on the
initial guess and the problem at hand, and convergence is not always guaranteed [19-21].
As a result, efforts have been made to develop more robust and efficient procedures. In this
research, we propose highly efficient fractional numerical techniques for simultaneously
approximating all the roots of nonlinear equations. Fractional simultaneous methods
utilize fractional-order derivatives of the function to solve (1). Fractional calculus,
which is concerned with non-integer-order derivatives and integrals, is used in many
areas, including physics, engineering, and finance [22-24]. A comprehensive analysis
of the convergence and of the computational complexity of our method is derived. The
performance and global convergence behavior of the algorithm is assessed for solving
some practical engineering applications by considering various factors, including CPU
time, maximum computational time on random initial guess values, maximum residual
error, and local computational order of convergence.

The structure of the paper is outlined as follows. After the introduction, we discuss
some basic definitions in Section 2. In Section 3, parallel computing schemes are developed
and analyzed to solve (1). Section 4 compares the computational aspects of newly proposed
simultaneous techniques to existing methods in the literature. In Section 5, we discuss
the numerical results of the newly developed scheme. The conclusion of the paper is in
Section 6.

2. Some Preliminaries

In this section, we will go over some fundamental aspects of fractional calculus as
well as the fractional iterative approach to solving nonlinear equations using Caputo-type
derivatives, even though, apart from the Caputo derivative, all fractional-type derivatives
do not fulfill the criteria for a fractional calculus. [D¢](1) = 0 if ¢ is not a natural number.

The gamma function is described as follows [25]:

—+o0

I(r)= /urfle*”du, )

0

where r > 0. Gamma is a generalization of the factorial function due to I'(1) = 1 and
I'(n+1) =n!, wheren € N.
Order ¢’s Caputo fractional derivative [26-29] with ¢ > 0,61, ¢6,7 € R is stated as:

.
f%f %dt m—1<¢g<meN,
) 2 (3)

Lf(r), ¢=meN,

[cDng(r) =

where I'(r) is a gamma function with » > 0.

Theorem 1 (Generalized Taylor formula [30,31]). Suppose [CDZﬂ f(r) € C([g1,62]) for
j=1,...,n+ 1 whereg € (0,1], then
] ey T80 T e (1= 6™
) = L [eD | e Frtis + [0 FOp o @

i=0
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and g1 < & < r,Vr € (¢1,62) and [cD¢y| = [cDg,].[cDg,] - .. [cDg,] (n-times).

In terms of the Caputo-type Taylor development of f(r) around ¢1 = ¢, then

D¢ | £(2) D)
) = [(;(i =0+ [E(zil) (r— 2% +0(r — &)™ ®)
Taking the [Crl()ifl(f) common, we have:
Dg | f(©)
flr) = [i(j}ﬂ) [(r =0 +Ca(r— &) +0tr -2y, (©)
where

c,= et [CDgg}f(g),fy_z,s,... )

T Tt D) [pg]£(e)

The corresponding derivative of the Caputo type of f(r) around ¢ is

D| £(8)
P/ = E(il)[r(g“”mczu—gf +O(r-8%.  ®

The classic Newton-Raphson technique is the most widely used method for locating a
single root:

[9]
o =ide - S 910, F ) 2o 9
]/ f,(r[lﬂ)’( 7= )’f( )# ()
Akgiil et al. [31], Torres-Hernandez et al. [32], Gajori et al. [33] and Kumar et al. [34]
discuss the fractional Newton method with different types of fractional derivatives. For the
Caputo type of the classical Newton’s method (FNN), Candelario et al. [35] propose the
following fractional version:

18] 1/¢
61

where [Dg, | (%) ~ [CDE} f(€) for any ¢ € R. The order of convergence of the fractional
Newton method is ¢ + 1, satisfying the following error equation:

_ 12
JIo+1] _ (F(Zg }12)@ il()g +1) ) C (ehﬂ)g“ +0 ( (em)%“), (11)

re
here el — 218 _ = and elfl — 78 _ zand ¢, — (L ) (1PEL®Y o5
where e z ¢ande r ¢and C, (r(%ﬂ)) [cDg]f(é") Y

Candelario et al. [35] also present the following fractional numerical scheme (M) for
solving simple roots of nonlinear equations:

1/¢
8] — ,I8] _ e
Y r (r(g +1) [<DE, T7 () ’

o) \e (12
0] _ 8] G
v Y <T(€ +1) [cDél]f(r[“’l)) )
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The order of convergence of M” is 2¢ + 1, and the error equation is given as:

(26 +1) —T2(c+1 2+1 S+
Aﬁu:_< <g§&@+é§ >)A@ng +o(@w) >, (13)

LR+ -T2(c+1) g pl6+1] — o8] _ c.

where A = T2(c1)

3. Construction of Fractional Parallel Computing Scheme for Estimating All Distinct
and Multiple Roots

Weierstrass-Dochive [18] presents the following local quadratic convergence scheme:

A = 10 1), (14)
where 6]
T ..
I:I(rl[ ] _ r[ ])

is Weierstrass’ Correction.
In [19], Nedzibove et al. present two new modifications to (14) as:

(16)

In order to construct an iterative process for approximating all the multiple roots of
polynomial, let us assume a monic polynomial of degree n with roots ¢; having known

m
multiplicities a; such that ) a; =n:

=1

f(r)=r"+ A" 4 +ayr? +ax +ag = H}“:l(r _ Cj)a/- (17)
(9]
Consider the Newton correction UZ.W] = J{ ,Eriﬁ]; and
1/¢
o[ £l )
ui - r(g—f—l)i . (18)
( [CDgl}f(r[ﬂ])

This implies that

= —, (19)

where ¢; is the exact root and r]m is its approximation. This gives
(10
1) m T

Ol Vet St Rl Dl pe @)

u; fri™)  gEr =& =G jETr — G

j=1 j=1
1y Y

BTG SO @)
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gi:rl[ﬂ]_ : E“i L,(1':1,2,...,m). (22)
ulr J#i ( ‘fj)

I ] 1

Substituting the roots §; by its approximations r ( j # i) in (19), we obtain the third-
order convergent Ehrlich—Aberth method [36] for the roots with multiplicities «;.

[9+1] [9] 9

ri =r - ,X]_ , (23)
lf? o J#z
Ui j=1 l f
where r[ 1 is new approximation to the root ¢;. Instead of simple approximation r[ﬁ], we

]
can apply some better approximation to ¢;. The main goal in this accelerating process is

to improve convergence. The aim can be achieved by choosing Newton’s approximation
r}m — & LI]M instead of §; in (22):

B+1 _ 9] &
i T T ”‘]’
u’ 17&1 e

1

(24)

Now, we derive a new 3¢ + 5-order method for the determination of all the roots
of (1). Let 419], rg ], e, r,[ff] be reasonably close approximations to the roots Cl, C2seeorCmy

respectively, of polynomial f(r), which means that |e;| = maxj<j<p|r

— Cl‘ is a
sufficiently small quantity. Let us return to the relation (19) by replacmg ¢;j with
r]w] + —l—uc]-lljw]. We have:

1 1 1
= . 25)
LIRS RND & = o (
ri rj 7; + ac]U (rl[ﬁ] [19]> (1 n a] v ]>
" ]
wul?
Assuming that |¢;| is small enough to provide ﬁ < 1, we use the development
z T
into geometric series and obtain:
(8]
(X/'U»
1 1 ! 2 7]7,[.0] +
= N2 (26)
T 18] (=Y | (o ? ’
! ! T, T9] + Olei
i
(8]
a]LI
1 1= mt
= T TN N2 (27)
(r[ﬂ] - r[ﬂ]) Ul 2 .
1 ] RO +0 |€i|
T’i —V]»
Neglecting terms of a higher order in the last relations, we obtain:
1 1
_ (28)
rl[ﬂ] _ [0 A0 [19] + oo u[lﬂ
j i ]
[0 8\ °
1 a; U a;U;
_ 1- 04| (29)
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Replacing r]w] by z][-ﬁ], U].M by lvl][ﬁ] in (29) and using in (23), we have

J0+1]

1 1 [
i (“’zufu >+
£i 9 0
1 m ( & ) ] (l Z])

o i | e | T 9]\ 2
I\ A w [ 2(0”)
J#z (w 2[0])3

Ti J

(30)

We name the method introduced in (30) as the SEFM7-Method. Now, we calculate the
convergence order of the SFM”-Method. Firstly, we introduce some notations as:

2 _ 1 m m
d = min|&; — Gil, 8= " 7 and ) ) instead of } ) respectively. (31)
11,72] J# J=1j#

Now, we suppose the condition

d 1
€ < m = ?, (32)

wherei = (1,2,...,m). The conditions hold for each, where rlw] — & =€
Convergence Analysis: Here, we prove the following lemma:

Lemma1l. Letrq,1y,...,ty be reasonably close approximations of roots G1,Ca, . . ., Gm, tespectively.
Let r[ —C =€ (—: = er — ¢, where r%ﬂﬂ],rggﬂ],. .. ,r,[gﬂ] are the new approximations
produced by the ztemtzve SFM" If (32) is satisfied, then the following estimate is also true:
3g+3
i) |l <35 |€1| 21#1’61‘

” |€1/’ <2n71_g€/( 12,. )
Proof. Taking into account (31), we find:

S 5 B 1 O] [ R €

*Cj’ - ‘(Ci —¢j)+ ¥ )

1 2n — 2
_d<1_2n—1) _d(Zn—l) (34)

Using (34), we obtain:
-2

[9]
= (35)
Iri” —¢jl = 2
Now, considering (33) and (34), we have:
A =2 =10 = &) + & -2 2 107 - gl - lg -7, (36)
O] 01| _ 0 ay a0 22 1 2n-3
ri z; ‘_\ri §]| |§] Z; | > 2 PR (37)
Now, we introduce some new notations:
1
Y=Y @)
1, j#i 7’ C]

o
Z“j_z [19]] , (39)

1,i jE T Gj
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Thus, using (35), we obtain:

Y a

< Z nfl Za], (40)

Li j#i Ir | ) 7
&j 8
L <) < s (- ay), (41)
7 A gl 2=
asn —aj < n—1 for every i, this implies
gn-1) _g
o ]7&1 |r[l9] | 2(n—1) 2
9]
1 f(rl[ ) o ;
= = = +) ;. (43)
) 8 Z 8 [ j
ul? f(rlU) 11r[] g rl“—zf]' 1i
8
Asrl[ ] —C¢i=c¢€,
+1
1 &; €7 Y
= Tty = (44)
Z‘[19] €;;+1 o eig—i-l
c+1
“ [9 €
- S 5)
o+ € )i
Using (32) and (35) in the above result, we have:
g+1 |€§+1| 2
‘ — i < - (46)
T 1 +1
& e e[ Zie| &
Asa; > 1, ¢ = ﬁ
1
[9] gt 2
! ‘< mer s 47)
g2
From (34), we have €; = rlm —Ci € =r1; [-+1] — ¢;. Therefore,
[8+1 X
e =n"" g =1 — O —6ir (48)
1 « hel AN
T T L )y A D
u]_[lﬂ j#i V,[ﬂ] 0] ki (;M 721[‘19])2 i (71[19] 721[0])3
Xi
e ) 49
e s oa@y
1 - +5, e - E
Ul[ j#i [o] m i ( ij)z £ (r,[”]fz,[””)s
and therefore,
€ =ei— & . (50)

e+ Xz w] =, = Lj#i w] w] +2;¢,
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€ =¢€ HEi
= €; ) ) a]l:lw] !Xz(l:lmy ’
0+ € Yt 0 | T~ e T ok SR
g AT (O ()
]
! Xi€i
€ =€ — ,
i 1 rl[ﬂ]iz/[ﬂ] (rl[a] C]) lxjv][ﬂ] “/2 u][g] 2
w; + € Zj;éz o (f,[ﬂ]*éﬁ (r,sz][&]) + (rl[‘ﬂ—zw])z - (r[ﬁ]iz]w]f
e = ¢ Xi€j
’ 8110110l w1l “2(“[0])2 ’
] ! ] )
&+ € Y ( j) (r[ﬂ] z["]> (1) ([&] Z[a]>3
! ! ] i j
ni€;
€ =€ — O

4 [
57" " (9,

using Newton’s correction, we obtain,
g+1
€3
g -
o +1 ’
ajte i

N+ €Y s 0 [(V,M—Cj) (r][a]_zj[p]) + (rl[“’]fz]w])z - (rl[ﬁ]iz][ﬂ]f

O+ € ) s ) 2( g+1)2

!/
€i=€i—

+1 {
Wi+ €Y s 06]'€]§ oe;

—1 EK]'

! ]

F) (=) =Ry e

- p
(! —Z]M ? (“ﬁ'ﬂgﬂ Y “i)

€i

/
€i:€i7

(" ][-0])(06'+€§+1 Laiai)+a; <71M*§]‘)
mje]?” (rl[ﬂ]_(f])( 1[19] ﬂ]) (a/+€/g_+1 Y ai)

(" 20)3( o)

/ €;

4

7(",[&]7 1[19) g+1 211“17“] 70 ) ( é})

(r;
¢+1 <TI[0] g])(l Z )2 aj+€; Yaiu l

DC]GJ

3
(rlm —z]w]> (zx/+€/ Ya,i ai)z

7

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)
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€i

L (61)
! —(rl —Z]w] )€j L i it grlm &7, ‘ZJM)
9] (8] __[6]
i r =) (1 2, ajte; Yok
L8 e (H"-¢)( ]ﬂ%m D)
- 3
Y ety
€i
e 62
i 7(71[19] Zj[g])ég+1211“z & jg+l ( )
(9] (9] __[8] ¢+l
i 1 =) (1 =z jter Lain
+ & L ajes b2 ],XZZQL )
B i€
(F=7) (o™ )
€
e 63
i aj— r;ﬂ]—z]Lg])Zl,i"‘l ( )
9 B L1\ (e
. et =g ) (r = i+ Yo,
14 Zi i “]€]g+ (r ffj) (r z; 2‘2(041 € 4 a)
. i
<rlmfz[ ]) (Dc]-Jre]ﬁl Z1z“1>
/ €i
ei =€ — i 2g+2 4 (64)
1+%Zj;éia]€] Bj;
where,
9 9
| o (£ ) 5
Bi = [0 _ [0} ot
(n =) (" ==") (s + € L)
2
o [0\ o
(1 =2") (e D)
1
B?j = [8] [9] ’ (65)
+
=) e mm)
9 9
o — (1’1[ ] Z][' ]) Y1, i “]2
9 o _ o
(" - g) (R =2") (& +e5" o)
1
. . (66)
] ) 0\ 2 1
(= e o)

( o (046 o )( -3 )
(n" = 2") T+ D) o3 (1" - )
(=) (" =2") (+ " 1)

[ 2 rlw}; ) e g (10— 217) - ]
B* — (rl[l’] me) Laju ( +€]§+ L% ) 4 <rll9 ) (67)
QT v
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+1 +1 (9] [9]
oc]ze]g + txzje]g Y (ri —z ) —
O N RO S o
Y Bl +1 2
(7 =g) (" ==") (s ¢ Euyo)
From (55), we get:
c+1
« [0] i 2
o = < , (69)
<9 1 2
- et g

c+
e )

Now, applying Equations (31), (32) and (39) in the above relation in (70), we obtain:

+1 +1 4 9
o 2 |e€ |+ lagl€§ T il Iy — %)
9 1
" A — 22l €6 ) 71
ij= \r[ §||r[l9]—zw]|3|oc'+eg+lz )2 @1
i j j /AR Lj ™
+1 +1 2 11
e () () 38l
Bj; < , (72)

] —

i
() (o) ()

+1 2n-3 2n-3
B*<|g|{ +(n)+(n)} )
] = ( ) 3|€g+l|
Therefore, B;} < Bjj* |€]§+1 |, where
[n i (2n 3) i (2n73)2}
By < —— - (74)
z(q?) (2n—3)3e5 T2
and therefore,
€ =€ — & (75)
2 1
14 8% ajer 2By |57
€ =¢€ — i (76)
33
1+ o Ljiti A€ " Bjj
€? 3¢+3 3¢+3
oGt u L By ¥ By -
i= : 313 = 3, 7
L+ G Xjzinje; By L+ 2 Dyzinie; By
{4;1 +2n(2n73)+(2n73)2}
7
Bjj < , (78)
_ 11
25 ) (2n — 3Pl P

4n?+4n® —6n+4n?+9-12
§ [ n“+4n n4+ n-+ n} B 82(12;,12 _ 18n+9) (79)
- 2(%)(2n—3)3|e;‘“|2 2(n—1)[e§T (21 —3)3
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P 12n* —18n+9
T72n—-1)lel” (2n-3)3

(80)

(12n2—18n+49)
2n—3)3
the above the absolute values of B;;. We have:

Since ,n > 3 is a monotonically decreasing sequence, let us estimate from

Bl-j<g—2+1 (81)
2(n—1)le;" 2

3¢+3
< IS T e[, @

E

i

Sincea; > 1= L <1and % < 1forall,
1

2
3g+3 1| 3¢+3 7_ g
|Z wjle[ ™ By < T2 ) il T
Lo iyt 2(” - 1)|€]€+ |2
lei] g+1
= LY ale
Jaéz
1 g2
< g€+1 ZangJrl'Z(n—l)’
J#i
1
) 83
NCES)) ®3)
Using ) izijaj=n—wa; <n—1 for all i, we obtain:
€ 3¢+3 1
— € Bl < ——(n—1) = =, 84
D‘ij;ajej ij| = 2(7’1—1) (Tl ) 2 (84)
also from (84)
; 1
14+ Y 0B, > 11— S Y e B > . (85)
“jzi “ijzi 2
Using Equations (81) and (85) in Equation (77), we obtain
3g+3 g
il i e n—1)Je; [T
j 2+2
’€:| < T ! == |ez| sz]’e]| ot (86)
2 j#i

Hence, we have the proof of Lemma 1 (i). Now, from Equation (86), we have 6; <

2 9 11 1 1
P Ui Mg = G (1~ ) = e (n—1) = &,

d 1 1
o < > el < %, (87)
Po2n—1 g€ g5

which completes the proof of Lemma 1 (ii). O

of 40

Let r; be the good initial guesses to roots ¢1,G,...,6, of an algebraic

polynomial f and suppose elw] = 1[19] — Gj, where r?], . [ ] approximations are obtained
in the 9" iterative step by the simultaneous SFM‘T-method. Usmg the conditions of Lemma

1, now we state the main convergence theorem of our SFM?-Method.
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Theorem 2. According to the following assumptions

i _1
2n—1 g~

el[o] = ‘r[o] —

< (i=1,2,...,m), (88)

i

the iterative formula SFM is convergent, having convergent order 3¢ + 5.

Proof. In Lemma 1 (i), we develop the results (86) under the assumptions (32). Using the
same arguments under condition (88) of theorem 1, we have from (86):

4
M« & o2y, 0se+s 1
|€1 | < n—1|€1 | ];tx]kl | < gg(z,...,m). (89)
So according to Lemma 1 (ii), we have:
0] d __1_ .1 d__ 1.
l€; |<2n_1—g:>\ei \<2n_1—gg(z,...,m). (90)

We prove the theorem by mathematical induction; condition (88) implies

4
[19“1‘1] < g [19] 2 . [19] 3¢+3 l . 1
le; ] < 7n—1|€1 \ j;aﬂel | < gg(z,...,m), (91)
(0]
forevery, ¥ =0,1,2,...andi =1,2,...,m. Using |el[l9]| = té",—g, (91) becomes
482 o
9+1] g |ti | i .
£l < < Lim), ©2)
i n—1 gz ; gg+3 gg
(%2
41y o 1 eaers _ L
|t; |§n—1;|tf | <gg(z,...,m). (93)
1
Let tl = maxi<j<m \tl[ﬂ] |, then from assumptions (93), it follows that gg‘el[o]’ = tl[o] <

9]

tl0] < 1. Foralli = 1,2,...,mand from (93), we obtain ¢
i=1,2,...,m. Therefore, from (93), we obtain:

<1,foreach¥4=0,1,2,...and

0+1 %112
|t1[ ]| < ﬁ(”*“]‘)

(92
|t][19] |3§+3 < Lf_|1 (7’[ o 1)|t][l9] |3§+3 S |t[l9] |3§+5, (94)

which shows that the proposition {tlw] :i=1,2,...,m} converges to zero. Consequently,
the sequence {\tlw] |} also converges to zero. That is, 1,1[19} — {;, for all i as @ increases. Finally,
from (94), it can be concluded that the method (SFM”-Method) has convergence order

3¢+5. O

4. Computational Analysis of Simultaneous Methods

Global convergence behavior dominates the computing complexity of the
simultaneous technique as compared to a simple roots-finding computer algorithm. This
implies that the overall complexity of the parallel computer technique for (1) is O(n?). As
presented in [37], the computational efficiency of an iterative method can be estimated
using the efficiency index given by

logr
zUuSASm + WmMm + WdDm ’

EL(m) = (95)
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Applying (95) and the data given in Table 1, we compute the efficiency ratio
0*(SFM”t — SFM“%,SFM") [37] as:

SFM% — SFM%
*
0" (SFM”t — SFM%,SFM?) = —1 ) x100. (96)
SFM°
Figure la—e graphically illustrate these percentage ratios.
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Figure 1. (a—e) The computational efficiency ratios of fractional simultaneous schemes with respect
to each other for different fractional parameter values. (a) Computational efficiency ratio of
SFMt with respect to SFM?. (b) Computational efficiency ratio of SFM? with respect to SEM".
(c) Computational efficiency ratio of SFM? with respect to SFM. (d) Computational efficiency ratio
of SFM% with respect to SFM?. (e) Computational efficiency ratio of SFM? with respect to SEM“1.

Table 1. Operations per cycle.

Methods Addition and Subtraction Multiplications Divisions
SFM“”1 —SFM%+ 5 1’1’12 + A11 4 I’I‘l2 + A11 2 l’n2 + Aq1
SFM“ 5 1’1’12 + A11 7 l’lf‘l2 + A11 2 1’1’12 + A11

Here, A1; = O(m), and SFM” is a simultaneous method for the fractional parameter

value equals one.

5. Numerical Outcomes

To compare our recently developed simultaneous methods SFM?t —SFMY of order
3¢ + 5 to SFMY, we look at a few numerical test examples in this section. With Maple 18’s
64 digits floating point arithmetic, all calculations were completed. The parallel computer
algorithm was terminated based on the following conditions:
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[cD

G
61

Jf(r) =

ezw] = ‘ (rlwﬂ] — rlw]>‘ <e=10"%,

where e[ﬁ] denotes the absolute error of consecutive iterations. In Table, 2-21, the numerical

schemes for various fractional parameter values, i.e., 0.1, 0.3, 0.5, 0.8, 1.0, are represented
by SEM”1 —SFEM, SFM? respectively, and B** denotes digits floating point arithmetic. In
all tables, we use the following computer terminating criteria (Algorithm 1).

Algorithm 1 For the fractional numerical scheme SFM”

| For initial estimates r[O] (ii =1,..,N),tolerance €> 0 and set kk = 0 for iterations pp
- ) 1/g
Calculate z[ - r[w] I'(c+ 1)% .
[CDgl]f(7] )
Update er] rl[ﬁ] — &
1 A
Cl ]fl 721.0]
2201 ] o3 (1)
27;1 ( o0 2) R ( ]wg MY
(7 _Z/‘) =1 (i_j)
1[19+1] A9 = 1, . ).
1fe (r [6-+1] ) ‘ <€=10"% or ¢ > pp, then stop.
Set kk kk + 1and go to step 2.
| End do.

Engineering Applications

This section presents many problems in engineering whose solutions are approximated
by our newly created parallel approaches SFM“t —SFM“ and SFM?.

Engineering Application 1: Emden-Fowler equation

The Emden—Fowler second-order nonlinear differential equation arises in various
fields of physics and engineering, fluid dynamics, heat transfer, and astrophysics, in
particular, to model the structure of self-gravitating, spherically symmetric objects, such as
stars. The equation is named in honor of Ralph H. Fowler and Robert Emden, two German
astrophysicists who made significant contributions to its formulation. The general form of
the Emden-Fowler equation is given by [38,39]:

{ 0N+ gy +g(r) =y, ©7)
y(0) = 0,y'(0) = 0.

Because of its nonlinearity, solving the Emden—Fowler equation is often difficult, and
closed-form solutions exists only in specific cases. Choosing n = 2, g1(r) = 2, ¢>(r) = %,

and g(r) = * — 15 in (97), we obtain the following nonlinear initial value problem:

{dﬂ+§3+2ﬂp+ﬂﬂ=y% ©8)
y(0) = 0,y'(0) =0.

Using the procedure described in [40], the numerical solution of (98) can be performed
by solving the following polynomial:

79 1306
2 4714 U6 g
F) =1~ seo01725" t 57747108815 (99)
The Caputo-type derivative of (99) is given as:
[(3) 2 79 T(15) g4 1306 T(19) | 15
MB-¢  BRUBI(5-¢  57aros tie—g) (100)
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The exact solution of (99) up to four decimal places is:

01 = —3.1792—-0.2571i,0p = —3.1792 + 0.2575i, {5 = —2.4135 — 1.4797i
ly = —24135+41.4797i,05 = —1.4797 — 2.4135i, ¢ = —1.4797 4 2.4135i
{7 = —0.25758 —3.1792i, (g = —0.2575 4 3.17923i, {9 10 = 0.0,

{11 = 02575 —3.17923i, (1, = 0.2575 + 3.1792i, {13 = 1.4797 — 2.4135i

l1a = 14797 + 241351, (15 = 2.41359 — 1.479751, {14 = 2.4135 + 1.4797i

l17 = 3.1792 —0.25758i, {18 = 3.1792 + 0.2575i.

In order to determine the global convergence behavior of the parallel scheme, we
generate a random initial guess ranging from rﬁ} to réoj using Matlab as explained in
Appendix A Table Al. According to the results presented in Table 2, when an arbitrary
starting value is used, SEM” —SFM%, SEM" converges to exact zeros after 19, 17, 13, 10, and
10 iterations for fraction parameters 0.1, 0.3, 0.5, 0.8, and 1.0, respectively. The corresponding
CPU times are 2.1254, 1.0874, 1.0078, 0.0784 and 0.0078 as shown in Table 3. The acceleration
of the convergence rate of SEMt —SFM“, SFM” as the fractional parameter value increases
from 0.1 to 1.0 can be clearly seen in Table 4. Global convergence is demonstrated by the
fact that the newly developed method converges to exact roots for randomly generated
initial guess values.

Table 2. Experiments using random initial approximation for finding all polynomial roots

simultaneously.
— 1

F(r) =7 — sostms”™* + sasiomis”
Ini-V Number of Iterations
rl0) SFM™ SFM™ SFM" SFM“ SFM”
L0 19.0 17.0 13.0 10.0 10.0
L) 19.0 17.0 13.0 10.0 10.0
) 19.0 17.0 13.0 10.0 10.0
rl 19.0 17.0 13.0 10.0 10.0
L 19.0 17.0 13.0 10.0 10.0

Iteration are computed by using 64 D**

Table 3. CPU-Time using random initial approximation for finding all polynomial roots.

18

— 2 79 14 1306
f(T) = 1" — 5g9917a5" + 57747104415 "

R-Initial Computational CPU-Time in Seconds

70l SFM?1 SFM?2 SFM? SFMY: SFM?
L0 1.0124 1.0012 1.0014 0.0417 0.0045
) 2.0125 1.0415 1.0045 0.0784 0.0048
rL 2.1254 1.0148 1.0047 0.0745 0.0078
P 1.5241 1.0874 1.0078 0.0451 0.0071
rl 1.7451 1.0741 1.0078 0.0874 0.0069

Maximum CPU-Time is equal to 2.1254 using 64 D**
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Table 4. Local computational order of convergence using random initial approximation.

flr) =r*— 28932745 44+ 5774173'1(&415 r18

Ini-V Local Computational Order of Convergence

Y SFM”t SFM2 SFMUs SEM"% SFM”

L 6.0019 6.7215 7.7124 7.9115 7.9414

L 7.0128 6.4515 7.4236 8.0365 7.5210

P 4.9917 6.6454 7.0148 7.9914 7.8456

o 5.8748 5.9874 7.5154 7.7214 8.0147

L 6.1427 6.8748 7.3174 7.6148 7.4878

Maximum LCOC is equal to 8.0147 using 64 D**

Table 2 shows the number of iterations of the fractional simultaneous scheme
SEM”1 —SFM%, SEMY for different choices of the random initial vector given in
Appendix A, Table Al. Table 2 clearly shows that the number of iterations decreased
as the fractional parameter values increased from 0.1 to 1.0.

Table 5 shows the maximum error (Max-Err) computed by the fractional simultaneous
scheme SFM“1 —SFM?, SEM for different selections of the random initial vector given
in Appendix A Table A1 to approximate all roots of the polynomial equations used in
application 1. Table 5 clearly demonstrates that as the fractional parameter values increased
from 0.1 to 1.0, the accuracy computed by the simultaneous scheme increased significantly
(Figure 2).

Table 5. Maximum error using random initial approximation for finding all polynomial roots.

f(r) = —2949.604r* + 14748.02r% — 62295.63648r2 + 2.229900624 X 10°r — 2.675880749 x 10°

R-Initial Maximum Error

rl0) SFM"t SFM™ SFMs SFM SFM”

L 3.1 % 10715 0.1x 10718 6.3 %1072 9.5 x 1022 02 %1072
) 0.01 x 10715 12 x 10718 6.5x 10724 8.8 x 10727 3.5 x 10720
L) 0.1x 1071 0.1x 10718 0.1 x 10-2 38x10°% 15 x 10725
P 0.4 x 10713 9.5 x 10718 9.0 x 1021 32 %1072 12 x 10725
L 7.7 x 10715 7.8 x 10718 3.9 x 1021 0.2 x 1073 0.5x 103

Residual errors are equal to 10730 using 64 D**

Table 4 shows the approximate local computational order of convergence. The
approximate local computational order of convergence increases as the fractional parameter
values increase from 0.1 to 1.0.

Table 3 shows the computational CPU time in seconds to approximate all roots of the
polynomial equation used in application 1 employing the fractional simultaneous scheme.

The rate of convergence increases as the initial guess values are chosen to be sufficiently
close to the exact root of (99) as:
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Log of Residual

AT = g1 020 = 314020 = 2414
A = 24140 = 14240 = 14404
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Figure 2. Residual error of the SFMY for approximating all polynomial equation roots used in
engineering application 1 for various fractional parameter values, namely ¢ = 0.1,0.3,0.7,0.8, 1.0.

If we start with initial guessed values that are close to the exact root, Table 6
demonstrates that the fractional simultaneous scheme’s accuracy and convergence order
improve. As the fractional parameter value was increased from 0.1 to 1.0, the residual error
calculated using numerical methods also increased.

Engineering Application 2: Under Conservative Force—Mass Spring System

Let us now examine an external force acting on a vibrating mass on a spring. A
driving force that causes the spring support to oscillate vertically, for instance, could be
represented by f(r). If the mechanical system is conservative, the following nonlinear
equation arises [41,42]:

F'(r)+ (F/(r))* +32 = 160r =0,
{ f(0)=0,f(0) = 0. (101)
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Table 6. Computation of all polynomial equation roots.

Methods SFM?: SFM? SFM? SFMY SFM?
Error it % =09 % =09 9 =07 % =06 % =06
CPU 0.0141 0.016 0.054 0.067 0.065

ol 2.1 %1073 0.7 x 1073 0.3 x 1012 0.7 x 10-32 0.3 x 1042
el 5.2 x 102 2.6 x 1074 9.1x 10716 2.1x 10726 2.8 x 10764
el 2.1 x 1072 32x1073 3.2 x 10716 32 x 10736 3.5 x 10746
el 3.1x 1072 41x 1076 41x 10716 41x 1072 41 x 104
el 2.1 %1073 0.7 x 1073 0.3 x 10712 0.7 x 10-32 0.3 x 1042
el 20x1073 0.7 x 1073 0.3 x 1012 0.7 x 10-32 0.3 x 1042
el 0.2 x 102 0.1 x 104 9.1x 10716 4.1 x 10726 2.7 x 1074
el 5.1 % 1072 12 %1075 11x 1014 0.2 x 10731 3.0x 1042
el 0.1x 1073 0.6 x 106 0.1x 10715 4110726 6.1 x 1073
9 52 % 1072 2.9 x 10~ 9.1x 10716 41 %1072 27 %1074
ol 0.1x 101 12 %1075 11 x 1014 0.2 x 10731 3.0 x 102
el 0.2x 107! 3.6 x 1072 9.8 x 10716 8.1x 10726 2.6 x 10742
el 2.8 x 1072 7.2 % 1073 32 % 10716 0.7 x 10736 33x10°%
ol 1.1 x 102 12x10°° 411071 42 x 1073 3.0 x 10742
ol 0.1x 1073 0.7 x 103 7.3 x 10712 0.7 x 1032 1.3 x 1041
ol 0.2 x 1072 36x 1074 9.8 x 1016 8.1x 10726 2.6 x 102
ol 2.8 x 102 7.2 %1073 32x 10716 0.0 x 10736 33 x 1074
ol 8.1 x 1072 0.1x 1076 41x 10716 0.1x10°26 41x 1074

[o-1] 21212 22312 2.0451 25112 3.14212
Using the method described in [40], the following polynomial is used to simulate (101)
as:

flr) = —Wrm 4259932167’9 B 2785925121’8 n
B 189 405 3
1024000 , 4096384 5
- 256
63 r 45 r’+ r

4 1
40 300 rt 4 §r3 — 801 (102)

The Caputo-type derivative of (102) is given as:

43359567872 T(11) 40 425993216 T(10) o
D¢ - S S _
[cDg 1 £(r) 189 T(l-¢) 7 205 TA0-¢o)"
278592512 T(9) 4 . 1024000 T(8) ,_
63 TI(9—¢) 63 T(8—¢)
4096384 T(7) 4 . T(6) s
256—— 576
5 T(7-¢ T°Te-o
6400 T(5) 4 16 T(4)
5 T6-¢ '3TE-9)

3 I3 -
o6 — 80@7’ 5 (103)

The exact solution up to four decimal places is written as:
01 = —0.12909 — 0.0824i, , = —0.1290 + 0.0824i, 3 = —0.0513 — 0.1495;,

7y = —0.0513+0.1495i, 56 = 0.0, 7 = 0.0525 — 0.1493i, {5 = 0.0525 + 0.1493i,
Zo = 0.1301 — 0.0822i, ;9 = 0.13010 + 0.0822i.
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To determine the global convergence component of the parallel scheme, use
Matlab to generate a random initial guess value ranging from rﬁ] - rgﬂ as specified in
Appendix A Table A2. With an arbitrary starting value, SEM? —SFEM%, SEM? converges
to exact zeros after 19, 16, 14, 10 and 10 iterations as indicated in Table 7 for fraction
parameters values 0.1, 0.3, 0.5, 0.8, and 1.0, respectively. As described in Table 8, the
corresponding CPU times are 3.1254, 1.0729, 1.0137, 0.0881 and 0.0141, respectively. Table 9
clearly illustrates how the rate of convergence of SFM“1 —SFM% SFM" accelerates as the
value of the fractional parameter increases from 0.1 to 1.0. The newly developed method
converges to exact roots for randomly generated initial guess values, demonstrating its
global convergence.

Table 7. Iteration numbers using random initial approximation for finding all polynomial roots.

f(r) — 43359387872 10 + 42599;216 1,9 _ 27856932512 1’8+

102643000 7 _ 4096384 6 + 2567 %1‘4-’-

%61‘3 — 8072

Ini-V Number of Iterations

rl0) SFM"! SFM™ SFMs SFM" SFM”
L 19.0 16.0 14.0 10.0 10.0
P 19.0 16.0 14.0 10.0 10.0
rL 19.0 16.0 14.0 10.0 10.0
i 19.0 16.0 14.0 10.0 10.0
L 19.0 16.0 14.0 10.0 10.0

Residual errors are equal to 1030 using 64 D**

Table 8. CPU-Time using random initial approximation for finding all polynomial roots.

f(r) — 43359567872 10 + 42599;216 1,9 _ 27856932512 1‘8+

102643000 7 4096384 6 _|_ 2561" @1’4%—

136 3 — 80r2.

R-Initial Computational CPU-Time in Seconds

710l SEM‘! SFM?2 SEMs SEMY SFM”
L 3.0114 1.0012 0.0015 0.0417 0.0031
) 2.1105 1.0317 1.0080 0.0881 0.0141
P 3.1254 1.0159 1.0137 0.0765 0.0039
o 1.4201 1.0678 1.0061 0.0430 0.0067
L 1.7465 1.0729 1.0070 0.09143 0.0073

Residual errors are equal to 1073 using 64 D**

Table 7 shows the number of iterations of fractional simultaneous scheme
SFM?1 —SFM“, SEM? for different random initial vectors given in Appendix A Table A2.
Table 7 clearly shows that the number of iterations decreased as the fractional parameter
values increased from 0.1 to 1.0.

Table 9 shows the maximum error (Max-Err) computed by fractional simultaneous
scheme SFM?1—SFM%, SFMY for different random initial vectors given in
Appendix A Table A2 to approximate all the roots of polynomial equations used in
application 2. Table 9 clearly demonstrates that as the fractional parameter values increased
from 0.1 to 1.0, the accuracy computed by simultaneous scheme increased significantly
(Figure 3).
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Table 9. Maximum error using random initial approximation for finding all polynomial roots.

(1‘) — 43359587872 10 + 42599;216 9 27856932512 3 + 1024000 7 — 4096384 6 + 25615 643&1.4 + %13 _ 801’2.

R-Initial Maximum Error

rl0) SFM SFM2 SFM? SFM SFM?

L 0.1x 10716 1.1x 10718 6.3 x 10-20 45x 1073 6.1 x 10°%
o) 2.1x 10716 6.2 x 1071 15 x 1072 7.8 x 1072 3.0 x 10726
L 0.1x 10715 6.1 x 10718 0.4 %1072 7.8 x 1072 25x10°%
r) 3.4 x 10714 6.5 x 10718 0.1 x 10720 32x 10728 62 x 1072
L 9.7 x 1017 1.8 x 10719 32x 10721 9.2 x 10-33 3.5 x 10732

Residual errors are equal to 1030 using 64 D**

The approximate local computational order of convergence is shown in Table 10. From
0.1 to 1.0, as the fractional parameter values increase, the approximate local computational
order of convergence increases.

Table 10. Local computational order of convergence using random initial approximation.

f(r) — 43359587872 10 _|_ 425993216 9 278569325121,8+

102643000 7 4096384 6 + 2561’ 64300 4+

%r“" — 8072,

Ini-V Local Computational Order of Conergence

rl0] SFM“t SFM? SFMYs SFMY% SFM?
AL 5.0119 6.7005 7.7354 7.9195 7.9654
) 7.0128 6.4515 7.4236 7.4365 8.1210
) 49917 6.6454 7.0148 7.9914 7.8456
r 5.1708 49104 7.5154 7.7114 8.0101
L 51127 5.8018 7.0074 7.0048 7.9018

Residual errors are equal to 1073 using 64 D**

According to the fractional simultaneous scheme, Table 10 displays the local
computational order of convergence needed for the approximation of all roots of the
polynomial equation used in application 2. Convergence rates increase as the following
initial estimations are sufficiently adjusted to the exact roots of the engineering application 2:

0] _ o _

ri- = —01-0.01; r[ —0.1+40.017, 75 —0.01 —0.14,
AL = 001401, b 001, 19— 0.1, 1 = 0.05 — 0.14i,
0

p — 0.05+ 0140, 7o — 0.1 — 0.08i, r-0 — 0.1+ 0.08i,

are chosen as initial guessed values.

Table 11 shows that the convergence order and accuracy of the fractional simultaneous
scheme are increased if we take the initial guessed values close to the exact root. The
residual error computed by numerical methods also increased as we increased the fractional
parameter value from 0.1 to 1.0.
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Table 11. Determination of all polynomial equation roots.

Methods SFMC SFM? SFMC SFMU SFM?
Error it % =09 ¥ =09 % =08 % =08 % =05
CPU 0.0141 0.016 0.054 0.067 0.065
ol 02x1073 1.7 x 104 13x 1011 57 %1073 03 x 1042
e 7.2 x 1072 2.8 x 1075 9.9 x 10777 5.5 x 1077 2.8 x 1074
el 25%1073 32%1073 32 % 10716 1.2 x 10736 3.0 x 104
e 31 %102 99 %107 48 x 10716 49 x 102 41x10°%
elf! 7.7 % 103 6.7 x 106 6.5 x 1016 6.5 x 1026 6.5 x 1046
el 25 %102 43 %1077 48 %107V 40 x 10~ 4.0 x 10~
el 1.6 x 102 3.0 x 1076 3.0 x 10716 7.7 x 1073 3.0 x 10746
el 74 %1073 44 %1077 29x10°15 2.9 x 10~40 2.4 x 104
el 3.0 x 104 2.8 x 1076 2.0 x 10716 2.7 x 1073 11x10°%
e%] 3.5x 1072 21x1077 45 x 1016 2.0x107% 2.7 x 1074
o1l 2.1012 2.2452 2.0491 3.5112 3.18742
SFM® o SFM% o SFM®s
10 10 .
10” g™ 100** DR
3 3 3 Yo g R R,
= = 107" 10T %’:ﬁ‘ -----
§ En ~20 g 0 *
10 070 R i
107 - - - 107 - - ;
0 5 10 15 20 0 5 10 15
Number of Iterations Number of Iterations Number of Iterations
o SFM%s 0 SFM°®
= ¥ = rootl 10 : : : 10 : :
= 3 = root2 * 0§ .*' *.
= % = root3 _ 10" 3o e Y- g Sl ERREEITS _ 10" gl - \5*-*: cag ERNETEe
root4 E .*._*_** *‘-t*&l E *.*._,#**_*“\ 3:1
P Db TR R L Dl T TR R
root7 s - - - *: < s - TE-w \*h\‘*-- L ALY
= 3 = root8 § \ 5 \'*ﬁ.‘ B ~*§|:“
— % = 1009 1070 NI N T TR R ERPRE I Sk~
= % = root10 v P
107 . . * 107

Number of Iterations Number of Iterations

Figure 3. The residual error of SFMY for approximating all polynomial equation roots used in
engineering application 2 for various fractional parameter values, namely ¢ = 0.1,0.3,0.7,0.8, 1.0.

Engineering Application 3: Series Circuit Analogue

Consider a flexible spring that is stretched vertically from a rigid support and has a
mass m attached to its free end. Naturally, the mass will determine how much the spring
elongates or stretches; different weight masses will result in different ways that the spring
will stretch. Hooke’s law states that the spring itself generates a restoring force F that is
opposed to the direction of elongation and proportional to the amount of elongation s.
In short, a proportionality constant is defined as F = ks, where k is the spring constant.
In an undamped spring/mass system, the differential equation represents F(x), which is
mathematically modeled as [40,42]:

(104)
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Using the method described in [40], the following polynomial is used to simulate (104)
as:
f(r)=—05r" =052 +r+1. (105)

The Caputo-type derivative of (105) is given as:

B r4) 5 r(3) ,_ re) - 1
[cDg | f(r) _—0.5@1’3 5—0.5r(37g)r2 €+r(27€)r1 €+r(17g)r S, (106)

The exact solution of (105) up to the decimal places is written as follows:
01 = —1,0, = 1.414213562, {3 = —1.414213562.

To determine the global convergence component of the parallel scheme, use
Matlab to generate a random initial guess value ranging from rﬂ - rgﬂ as specified in
Appendix A Table A3. With an arbitrary starting value, SFM?1 —SFM“, SFM” converges to
exact zeros after 19, 16, 13, 8, and 8 iterations as indicated in Table 12 for various fractional
parameters, i.e., 0.1, 0.3, 0.5, 0.8, and 1.0. As described in Table 13 , the corresponding
CPU times are 3.1364, 1.0701, 1.0078, 0.0874 and 0.0975, respectively. Table 14 clearly
illustrates how the rate of convergence of SEM’ —SFM“, SFM" accelerates as the value
of the fractional parameter increases from 0.1 to 1.0. The newly developed method
converges to exact roots for randomly generated initial guess values, demonstrating its
global convergence.

Table 12. Using random initial approximation for finding all polynomial roots simultaneously.

f(r) = —05r% — 0502 +r+1

Ini-V Number of Iterations

rl0) SFM"! SFM™ SFMYs SFM" SFM”
L 19.0 16.0 13.0 8.0 8.0
) 19.0 16.0 13.0 8.0 8.0
rL 19.0 16.0 13.0 8.0 8.0
ri 19.0 16.0 13.0 8.0 8.0
L 19.0 16.0 13.0 8.0 8.0

Residual errors are equal to 1030 using 64 D**

Table 13. CPU-Time using random initial values for finding all polynomial roots.

f(r) = —05r — 052 +r+1

Ini-V Computational CPU-Time in Seconds

rl0] SFM“t SFM? SFMY SFMY% SFM?
L 0.0159 0.0491 14514 0.0319 0.0455
) 2.0136 1.0464 1.0045 0.0694 0.0107
P 3.1364 1.0139 1.0047 0.0646 0.0059
P 15209 0.0874 1.0078 0.0456 0.0975
L 1.7451 1.0701 1.0038 0.0874 0.0048

Maximum CPU-Time is equale to 2.1254 using 64 D**

Table 12 shows the number of iterations of fractional simultaneous scheme
SFM“1 —SFM%, SFM for different random initial vectors given in Appendix A Table A3.
Table 12 clearly shows that the number of iterations decreased as the fractional parameter
values increased from 0.1 to 1.0.
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Table 14. Maximum error using random initial approximation for finding all polynomial roots.

f(r) = =053 — 0572 +7r+1

R-Initial Maximum Error

rl0l SFM? SFM? SFM7 SFM SFM?

L 32x 10719 9.1x 10717 0.3 x 1021 9.5 x 10-2 9.1x10°3
o) 24 x 10716 121077 6.1x 1072 8.1x 1072 35 x 1077
o 0.1x10 05 x 10719 0.4 x 102 0.8 x 102 9.5 x 102
r) 6.4 x 10715 6.5 x 10718 0.1 x 10720 32x 10728 62 x 1072
L 7.7 x 10715 7.8 x 10718 72 x10-23 6.6 x 10736 6.7 x 10731

Residual errors are equal to 1030 using 64 D**

Table 14 shows the maximum error (Max-Err) computed by fractional
simultaneous scheme SFMY1—SFM%, SFEM’ for different random initial vectors
given in Appendix A Table A3 to approximate all roots of the polynomial equations used
in application 3. Table 14 clearly demonstrates that as the fractional parameter values
increased from 0.1 to 1.0, the accuracy computed by simultaneous scheme increased
significantly (Figure 4).

The approximate local computational order of convergence is shown in Table 15. As the
fractional parameter values increase from 0.1 to 1.0, the approximate local computational
order of convergence increases.

Table 15. Local computational order of convergence using random initial approximation.

f(r) = —05r% — 050> +r+1

Ini-V Local Computational Order of Convergence

rl0] SFM™ SFM SFM SFM% SFM”
. 5.0429 6.4013 7.1234 7.9011 7.9012
) 7.0128 6.4515 7.4416 8.1301 7.9210
P 5.5927 6.6114 6.9141 7.0914 8.8151
o 5.4501 5.9174 7.5124 7.7014 8.0140
L 5.1121 6.5701 7.1104 7.8108 8.0038

Residual errors are equal to 1073 using 64 D**

Table 13 displays the computational CPU time in seconds required to approximate all
roots of the polynomial equation used in application 3 using the fractional simultaneous
scheme.

Convergence rates increase as the following initial estimations are sufficiently adjusted
to the exact root of engineering application 3:

0 0
n=01, =149 = 14,

are chosen as the initial guessed values.

Table 16 shows how the convergence order and accuracy of the fractional simultaneous
scheme increase when we use initial guessed values close to the exact root. The residual
error computed by numerical schemes increased as we increased the fractional parameter
value from 0.1 to 1.0.
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Figure 4. The residual error of the SEM? for approximating all polynomial equation roots used in

engineering application 3 for various fractional parameter values, namely ¢ = 0.1,0.3,0.7,0.8, 1.0.

Table 16. Determination of all polynomial equation roots.

Methods SFM?: SFM? SFM? SFM? SFM?
Error it % =09 % =09 % =08 % =08 % =05
CPU 0.0124 0.017 0.039 0.077 0.015

el 9.9 x 10~ 0.1x 1074 5.5 % 1016 9.1 %103 0.3 x 10~2
el 5.2 x 102 0.6 x 1075 9.1x 10716 5.0 x 1072 2.8 x 1074
el 7.3 x 1073 8.4 x 1072 6.6 x 10719 6.2 x 103 3.5 x 10746
ol 1.1009 3.2546 2.0451 2.55412 6.78921

as:

Application 4: Hanging Object
A chain attached to an object on the ground is pulled vertically upward by constant
forces against gravity, causing the following nonlinear initial value problem:

dar?
y(0) =0,4'(0)

@—(%)zﬂsrﬂ:o,

-1
241"

(107)

Using the method described in [40], the following polynomial is used to simulate (107)

flr) =

—0.02590111180r* — 0.1066166681r> — 0.2099871708r% + 0.7615941560r.

The Caputo-type derivative of (108) is given as:

[CDgl}f(r)

r(5)

= —0.02590111180 ———~+*7¢ — 0.1066166681 ———~—3~¢
Ir'(-g) I'(4-g)
I'3) - re) -
—0.2099871708 ————#2>7¢ + 0.7615941560 ———~— 1 ~¢
I(3—¢) r2-g)

T(4)

7

(108)

(109)
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The exact solution of (109) up to 4 decimal places is written as follows:
01 =20,00 = 1.6609, (3 = —2.8886 + 3.0592i, {4 = —2.8886 — 3.0592i.

To determine the global convergence component of the parallel scheme, use
Matlab to generate a random initial guess value ranging from rﬁ] — rg as specified in
Appendix A Table A4. With an arbitrary starting value, SFM”1 —SFM“, SEM’ converges to
exact zeros after 19, 16, 14, 8 and 8 iterations as indicated in Table 17 for various fractional
parameters, i.e., 0.1, 0.3, 0.5, 0.8, and 1.0. The newly developed method converges to exact
roots for randomly generated initial guess values, demonstrating its global convergence.

Table 17 shows the number of iterations of fractional simultaneous scheme
SFM?1 —SFM", SEMY for different random initial vectors given in Appendix A Table A4.
Table 18 shows the maximum error (Max-Err) computed by fractional simultaneous scheme
SFM”1 —SFM%, SEM" for different random initial vectors given in Appendix A Table A4
to approximate all roots of the polynomial equations used in application 4. Table 18
clearly demonstrates that as the fractional parameter values increased from 0.1 to 1.0, the
accuracy computed by the simultaneous scheme increased significantly (Figure 5). This
indicates the behavior of our recently developed simultaneous scheme in terms of global
convergence. Table 19 clearly illustrates how the computational order of convergence of
SFM?1 —SFM?, SEM" increase as the value of the fractional parameter increases from 0.1
to 1.0. As described in Table 20, the corresponding CPU times are 2.1254, 1.0874, 1.0078,
0.0874, and 0.0078, are consumed respectively.

Table 17. Using random initial approximation for finding all polynomial roots simultaneously.

f(r) = —0.02590111180r* — 0.1066166681r° — 0.209987170872 + 0.7615941560

Ini-V Number of Iterations

r[0) SFM“t SFM? SFM? SFM: SFM?
A 19.0 16.0 14.0 8.0 8.0
o 19.0 16.0 14.0 8.0 8.0
L 19.0 16.0 14.0 8.0 8.0
ro 19.0 16.0 14.0 8.0 8.0
L 19.0 16.0 14.0 8.0 8.0

Residual errors are equal to 10730 using 64 D**

Table 18. Maximum error using random initial approximation for finding all polynomial roots.

f(r) = —0.025901111807* — 0.1066166681r3 — 0.2099871708+2 + 0.7615941560r

R-Initial Maximum Error

rl0) SFM"! SFM” SFM SFM SFM”

L 3.1x 1071 6.1 x 1071 6.9 x 10721 9.9 x 1023 02x 102
r) 2.6 x 10713 02 x 1077 6.5 x 102+ 0.8 x 1072 5.5 x 1077
L 0.1x 1071 5.1 % 10718 0.4 x 10726 8.8 x 10~ 25x107%
o) 34x 10713 85 x 1071 2.1x 1072 52 x 1072 62 x 1072
L 7.7 x 10715 7.7 x 1019 32x 1072 02x10°% 9.5 % 10-%

Residual errors are equal to 1030 using 64 D**

order of convergence increases.

The approximate local computational order of convergence is shown in Table 19. As the
fractional parameter values increase from 0.1 to 1.0, the approximate local computational
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Table 19. Local computational order of convergence using random initial approximation.

£(r) = —0.02590111180r* — 0.1066166681r> — 0.209987170872 -+ 0.7615941560r

Ini-V Local Computational Order of Convergence

Y SFM”t SFM2 SFMUs SEM"% SFM”

i 5.1813 5.9243 7.7124 7.0515 7.7165

o 7.0878 6.4985 7.4236 8.1364 7.5243

L 49917 6.9404 7.0148 73911 7.8656

o 5.8748 5.9874 75154 7.6212 8.5447

L 6.5421 6.8748 7.7177 7.0148 8.4873

Log of Residual

Residual errors are equal to 10730 using 64 D**

Table 20 displays the computational CPU time in seconds required to approximate all
roots of the polynomial equation used in application 4 using the fractional simultaneous

scheme.

Table 20. CPU-Time using random initial values for finding all polynomial roots.

f(r) = —0.02590111180+* — 0.1066166681r> — 0.2099871708+>

1-0.7615941560r
Ini-V Computational CPU-Time in Seconds
rl0] SFM SFM?2 SFM? SFMY+ SFM?
L 3.0194 2.0514 1.0454 0.0403 0.0049
) 2.0120 1.0314 1.0028 0.0644 0.0070
L 21114 1.0141 2.0061 0.0749 0.0031
) 1.3231 1.0804 1.0078 0.0409 0.0090
L 1.7300 1.0761 1.0078 0.0741 0.0093
Maximum CPU-Time is equal to 2.1254 using 64 D**
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Figure 5. The residual error of the SFM7 for approximating all polynomial equation roots used in

engineering application 4 for various fractional parameter values, namely ¢ = 0.1,0.3,0.7,0.8, 1.0.
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Convergence rates increase as the following initial estimations are sufficiently adjusted
to the exact answer of engineering application 4:

A =02, 1y =14,/

— —28+3.0i," = —28—3.0i.
are chosen as initial guessed values.

Table 21 shows how the convergence order and accuracy of the fractional simultaneous
scheme increase when we use initial guessed values close to the exact root. The residual
error computed by the numerical schemes increased as we increased the fractional
parameter value from 0.1 to 1.0.

Table 21. Determination of all polynomial equation roots.

Methods SFM° SFM© SFMY SFM? SEM?
Error it 8 =09 8 =09 8 =08 8 =08 § =05
CPU 0.0141 0.717 0.262 0.092 0.073

el 91 %104 0.5 x 104 0.1 x 1012 57 x 10~ 93x10~%
el 1.0 x 10~4 2.6 x 104 9.1 x 1016 51x10~2% 0.3 x 10~4
ol 62 %104 26x1074 9.1 x 1016 45 %102 8.8 x 1048
el 2.1 x 102 0.2 x 102 9.9 x 10716 72 %107 05 x 102
o0 2.1864 25002 4.0481 55872 719212

6. Conclusions

¢ In order to approximate all roots of nonlinear equations, a new fractional parallel
approach with convergence orders of 3¢ + 5 is presented. The global convergence
behavior of the fractional parallel schemes is demonstrated using a variety of random
starting estimates of SFM1 —SFM%, SEM?.

*  Thenumerical results of the engineering applications from Tables 1-21 and Figures 1-5
clearly show the efficiency of the newly developed methods in terms of CPU-
time, computational error, maximum residual error, and local computational order
of convergence (LCOC). The acceleration of the convergence rate is observed
when the initial approximations close to the exact roots are selected as shown in
Tables 6, 11, 16 and 21.

* In the future, higher-order parallel iterative approaches for solving (1) will be
developed to handle more difficult engineering problems using fractional derivatives
of Riemann-Liouville and Grunwald-Letnikov types.
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Abbreviations

The following abbreviations are utilized in this study’s article:

SFM“! —SFM“3, SEMY
Error it
Ex-Time
(1)
p gi
Per-E
Ini-V
D**
CPU-Time

Appendix A

Fractional parallel scheme

Iteration number

Computer CPU-Time in seconds
Computational local order of convergence
Percentage effectiveness

Initial vector

Digits floating point arithmetic
Computational time in seconds

Table Al. Initial random vectors used in fractional simultaneous schemes for approximating all

polynomial roots used in engineering application 1.

O T B b i
rg(l] [—0.160, 0.643, 0.967, 0.085, 0.967, 0.881, 0.760, 0.643, 0.874, 0.475, 0.876, —0.153, 0.392, 0.615, 0.171, 0.743, 0.643, 0.967]
rgi] [0.743, 0.392, 0.655, 0.171, 0.743, 0.392, 0.855, 0.071, 0.145, 0.874, 0.775, 0.076, 0.643, 0.967, 0.085, 0.967, 0.881, 0.076]

0] [—0.145, 0.874, 0.475, 0.876, —0.153, 0.392, 0.615, 0.171, 0.743, 0.775, 0.076, 0.3456, 0.74125, 0.643, 0.967, 0.874, 0.473, 0.145]

[

Table A2. Initial random vectors used in fractional simultaneous schemes for approximating all

polynomial roots used in engineering application 2.

e 0, 0,30

rﬁl [—0.760, 0.643,0.967, 0.881, 0.760, 0.643, 0.967, 0.085, 0.01451, 0.1452]

rgi] [—0.153, 0.392, 0.615, 0.171, 0.743, 0.392, 0.855, 0.071, 0.4512, 0.5641]
0] [—0.905, 0.874, 0.473, 0.076, 0.145, 0.874, 0.775, 0.076, 0.3456, 0.74125]

Table A3. Initial random vectors used in fractional simultaneous schemes for approximating all

polynomial roots used in engineering application 3.

710l [1{0] , rgo] , rgo] ]

L0 [~0.760, 0.643,0.967]

) [0.743, 0.392, 0.855]
o) [0.076, 0.145, 0.874]

R

Table A4. Initial random vectors used in fractional simultaneous schemes for approximating all

polynomial roots used in engineering application 4.

g A

L [—0.160, 0.643, 0.967, 0.085]

) [0.743,0.392, 0.655, 0.171]
(0]

[0.145, 0.874, 0.475, 0.876]
[y L 5y ]
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