
Citation: Ji, X.; Hu, W.; Liang, Y.

Hierarchical and Bidirectional Joint

Multi-Task Classifiers for Natural

Language Understanding.

Mathematics 2023, 11, 4895. https://

doi.org/10.3390/math11244895

Academic Editors: Nebojsa Bacanin

and Catalin Stoean

Received: 26 October 2023

Revised: 29 November 2023

Accepted: 4 December 2023

Published: 7 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Hierarchical and Bidirectional Joint Multi-Task Classifiers for
Natural Language Understanding
Xiaoyu Ji 1,2 , Wanyang Hu 3,* and Yanyan Liang 1,4,*

1 School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of
Science and Technology, Macau, China; 1909853xii3001@student.must.edu.mo

2 Guangxi Key Laboratory of Machine Vision and Intelligent Control, Wuzhou 543002, China
3 Faculty of Informatics, Università della Svizzera Italiana, 6962 Lugano, Switzerland
4 CEI High-Tech Research Institute Co., Ltd., Macau, China
* Correspondence: wanyang.hu@alumni.usi.ch (W.H.); yyliang@must.edu.mo (Y.L.)

Abstract: The MASSIVE dataset is a spoken-language comprehension resource package for slot
filling, intent classification, and virtual assistant evaluation tasks. It contains multi-language utter-
ances from human beings communicating with a virtual assistant. In this paper, we exploited the
relationship between intent classification and slot filling to improve the exact match accuracy by
proposing five models with hierarchical and bidirectional architectures. There are two variants for
hierarchical architectures and three variants for bidirectional architectures. These are the hierarchical
concatenation model, the hierarchical attention-based model, the bidirectional max-pooling model,
the bidirectional LSTM model, and the bidirectional attention-based model. The results of our models
showed a significant improvement in the averaged exact match accuracy. The hierarchical attention-
based model improved the accuracy by 1.01 points for the full training dataset. As for the zero-shot
setup, we observed that the exact match accuracy increased from 53.43 to 53.91. In this study, we
observed that, for multi-task problems, utilizing the relevance between different tasks can help in
improving the model’s overall performance.

Keywords: multi-task classifier; hierarchical structure; bidirectional joint structure; MASSIVE dataset

MSC: 68T07; 68T50

1. Introduction

Natural language understanding (NLU) plays an important role in information-
processing systems, and the most common application of NLU is in virtual assistants
like Alexa, Siri, and Google Assistant. With the help of a virtual assistant, people can
achieve a desired task by just saying it instead of inputting it in devices. For example, when
people say “Play music relating to the music I listened to this morning”, a virtual assistant
will start to play the relevant music without requiring the user to press any buttons.

Furthermore, with the support of smart home devices like lights, ovens, and televisions,
virtual assistants can be much more powerful and efficient in helping the disabled and the
aged. People do not need to remember how to use these devices, and, furthermore, such
information is somewhat complicated for the elderly. Users can tell their virtual assistant
their intentions, and the virtual assistant will operate the devices as the user wishes.

To perform this function in its entirety, in the first step, the virtual assistants have
to understand what people are saying, which is the prime objective in NLU. Generally,
the NLU ability is measured according to the accuracy of the machine understanding the
meaning of and figuring out the corresponding entities in a given text, also known as intent
classification and slot filling in many papers, including this paper.

For a specific example, given the text “order me a cheese burger from tommy’s
burgers”, an NLU model should recognize the intent as “takeaway_order” and also fill the

Mathematics 2023, 11, 4895. https://doi.org/10.3390/math11244895 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11244895
https://doi.org/10.3390/math11244895
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9259-607X
https://orcid.org/0000-0002-5780-8540
https://doi.org/10.3390/math11244895
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11244895?type=check_update&version=1

Mathematics 2023, 11, 4895 2 of 22

slot as “food_type: cheese burger” and “business_name: tommy’s burgers”. The intent
label tells the virtual assistant to make a takeaway order, and the slot labels give the details
of this order, i.e., ordering a cheeseburger from a burger shop called Tommy’s Burgers.

For voice-based virtual assistants, spoken language understanding (SLU) [1,2] is the
foundation for completing an entire task. In SLU, the user’s audio is converted into text
before applying the NLU model. We skipped this part in this paper since the MASSIVE [3]
dataset offers utterances from raw audio for training and evaluating the NLU model.
In Section 1.1, we discuss the details of the MASSIVE dataset and explain why we chose it
for the experiment.

An NLU model consists of several components for the splitting of subtasks. Firstly,
a tokenizer in the NLU model maps the words in the sentence to vocabulary IDs since the
model cannot deal with the text directly. By applying an embedding layer, the vocabulary
ID is represented by a vector (embedding features), and synonyms will have similar
embedding features.

By transforming a sentence into a sequence of embedding features, the encoder in
the NLU model computes the hidden features that constitute the semantic information of
the sentence. The last components of the NLU model are the classifiers for addressing the
main purposes, intent detecting, and slot filling. Since predicting only the intent or slot
labels will not allow a virtual assistant to perform an operation properly, we also need to
evaluate the exact match accuracy, which means that the model needs to predict all kinds
of labels correctly.

1.1. Dataset

The MASSIVE dataset [3] is a new dataset released last year. It consists of 1M new
realistic, human-created virtual assistant utterances in text form covering 51 languages
from 14 language families and in 21 distinct scripts.

Compared to other popular datasets in the NLP community, the quantity of languages
in MASSIVE is the largest, while there are only nine in Multi ATIS++ [4], six in MTOP [5],
and three in ATIS, with Hindi and Turkish [6] and Cross-lingual Multilingual Task-Oriented
Dialog [7]. As research on such a large number of languages grows, more people using
different languages can benefit from the results.

The utterances employed, spanning 18 domains, the same size as the SLURP [8]
and NLU Evaluation datasets [9], can be used in most aspects of our daily lives. The
60 intent data points and 55 slot types specify the key information in the utterances and
allow the virtual assistant to ‘understand’ the next operation. By improving intent classifi-
cation accuracy and slot-filling scores, more precisely, the accuracy of exact matching (both
intent- and slot-matched), virtual assistants could provide better service to their users.

The MASSIVE dataset contains 587K training, 104K validation, and 152K testing
samples. There are 19,521 utterances for each language, and the similar sizes of the samples
can reduce the influence of the unbalanced data size.

Every piece of data is organized into the files of JSON lines. An example JSON line
includes the following information:

• ID—the original ID in the SLURP [8] collection;
• Locale—the language and country code;
• Partition—this can be either train, dev, or test, according to the original split in

SLURP [8];
• Scenario—the general domain of an utterance;
• Intent—the specific intent of an utterance within a domain formatted as {scenario}_

{intent};
• utt—the raw utterance text without annotations;
• annot_utt—the text from utt with slot annotations formatted as [{label}:{entity}];
• worker_id—the obfuscated worker ID from the MTurk of the worker completing the

localization of the utterance;

Mathematics 2023, 11, 4895 3 of 22

• slot_method—(optional) measurement of whether the slot usage is correct or not when
the locale is not en-US;

• Judgments—(optional) scores for the expression comment assigned by native speakers
when the locale is not en-US.

In our experiment, we only used ‘scenario’, ‘intent’, ‘utt’, ‘locale’, ‘annot_utt’, ‘id’,
and ‘partition’ to perform the training set, the validation set, and the test set splitting
according to the information in ‘partition’.

The results are shown in Table 1 for massively multilingual NLU (MMNLU) model-
ing [3] as the initial model benchmarks. They choose two models, XLM-Roberta
(XLM-R; [10]) and mT5 [11], with tree architectures, XLM-R Base, mT5 Base (encoder-
only), and mT5 Base (text-to-text), to train on the MASSIVE dataset in two ways: one
using the full training set and the other, zero-shot, trained on English data, validated in all
languages, and tested on all non-English locales. We discuss the difference between setting
up the model using the two training methods in Section 3. The configurations and results
analyses for the two training methods are presented in Section 4.

Table 1. Benchmarks of MASSIVE dataset [3].

Model Avg Intent Acc (%) Avg Slot F1 (%) Avg Exact Match Acc (%)

XLM-R base 85.1 ± 0.2 83.6 ± 0.2 75.0 ± 0.2
mT5 base

(encoder-only) 86.1 ± 0.2 82.2 ± 0.2 74.7 ± 0.2
mT5 base

(text-to-text) 85.3 ± 0.2 81.3 ± 0.2 73.8 ± 0.2

(a) Test results when using the full training set.

XLM-R base 70.6 ± 0.2 64.2 ± 0.3 52.9 ± 0.3
mT5 base

(encoder-only) 61.2 ± 0.2 56.9 ± 0.3 42.8 ± 0.3
mT5 base

(text-to-text) 62.9 ± 0.2 50.6 ± 0.3 42.8 ± 0.3

(b) Zero-shot test results after training on en-US alone.

1.2. Motivation

As shown in Table 1a, in the full training set case, the gaps between the intent ac-
curacies and slot-filling scores are 1.5 in the XLM-R base model, 3.9 in the mT5 base
(encoder-only) model, and 4.0 points in the mT5 base (text-to-text) model. However,
the gaps between the intent and exact match accuracies expand to 10.1, 11.4, and 11.5. We
can see a similar situation in the zero-shot case, but the differences are much greater.

Usually, we set classifiers for detecting intent and filling slots and then evaluate
the accuracy and scores independently. But, obviously, intent labels and slot labels are
interrelated. If the intent label of the text is “transport_query”, the possibility of filling the
slot with “song_name” or “audiobook_author” would be extremely low.

The two tasks, namely intent detection and slot filling, are separate and relevant, giving
us an idea about how to explore a way in which to increase the logical relevance between
intent and slot labels. Based on this idea, we designed hierarchical and bidirectional
architectures to utilize the intent and slot results for improving the model performance.

Instead of classifying intent and slots separately, in the hierarchical architecture,
the model treats one task as the super-task of the other and the output of the super-task
effect as the sub-task when classifying or predicting. In this case, intent classification is the
super-task of slot filling, and we wish to improve the slot-filling scores for those samples
with the correct intent prediction. Although the overall slot-filling scores may decline, this
method could improve the exact match accuracy.

Mathematics 2023, 11, 4895 4 of 22

Similar to the hierarchical architecture, the bidirectional architecture also uses the
results of intent classification as part of the input for predicting the slot labels. Meanwhile,
the outputs of the slot classifier are utilized for updating the probabilities of intent labels.

We present several ways of utilizing the outputs, including updating the hidden fea-
tures before applying the classifiers and computing attention-based transition probabilities
to update the initial intent and slot logits. The related works are further described in
Section 2. More details on the architecture can be found in Section 3.

For each structure, we tuned the models to search for the best results. In Section 4, we dis-
cuss how the hyper-parameters affected the results and analyze all the model performances.

1.3. Our Contributions

The contributions of this study are as follows:

1. We designed hierarchical and bidirectional architectures based on the relevance of
intent and slots to improve the model performance.

2. We presented two ways of utilizing the outputs, including updating the hidden
features before applying classifiers and computing attention-based transition proba-
bilities to update the initial intent and slot logits.

3. We tuned the models for the best results, discussed how the hyper-parameters affected
the results, and analyzed all the models’ performances.

2. Related Works

With the development of virtual assistants in recent decades, more and more people
are benefiting from this technology. Although every device has a multi-language system,
the supporting languages are only a small part of the world’s 7000+ languages [12]. Some
researchers have advised exploring the unique characteristics of low-resource languages
(LRLs). The authors of [13] provided 19 languages in the Research on English and Foreign
Language Exploitation (REFLEX-LCTL) program as the beginner course for research on less
commonly taught languages. Numerous language packages for multilingual resources have
been released over the past ten years, like the Low Resource Languages for Emergent Inci-
dents (LORELEI) program with more than 30 languages [14] and the FLORES-101 program
consisting of 101 languages [15]. And, research on low-resource and multilingual areas has
also seen some improvements. For example, Ref. [16] introduced a degradation test for
establishing baselines for low-resource, low-data environments; Ref. [17] provided a neural
machine translation (NMT) benchmark between English and five African LRL pair; and
Ref. [18] summarized previous groundbreaking achievements in resolving LRL problems.

For the task of NLU, ATIS with Hindi and Turkish [6] is one of the first datasets to ex-
tend NLU tasks from a single language to multiple languages (three), and MultiATIS++ [4]
increased this number to nine. But nine is not enough for the multilingual area, so we used
the MASSIVE [3] dataset, which provided 51 languages for slot filling, intent classification,
and virtual assistant evaluation tasks. Additionally, the two ways of setting up training
models verified the performance in situations with enough samples (on the full training
set) and involving low-resource environments (zero-shot).

Meanwhile, language models like mBERT [19], RoBERTa [20], XLM [21], XLM-R [10],
mBART [22], MARGE [23], and MT5 [11] were pre-trained using a multilingual corpus to sup-
port the low-resource languages and induce a dramatic improvement in understanding them.

These pre-trained models are trained for general mask filling and usually serve as
encoders used to search for hidden features in the hidden space. We still need to develop
fine-tuned classifiers for these tasks. According to how a model learns the hidden states
for intent classification and slot-filling tasks, either separately or jointly, a model can be
defined as an independent model or a joint model. We focus on the joint model in this
paper. The baseline is the result obtained using the XLM-R model based on JointBERT [24].

Although the encoder learned the hidden features for intent classification and slot fill-
ing jointly, the classifiers for the two tasks are independent. The authors of [25] mentioned
a joint detection method for exploring the intent results to improve the slot-filling perfor-

Mathematics 2023, 11, 4895 5 of 22

mance. The authors of [26] proposed a framework wherein the dialogue state tracking
operated on a set of candidate values for each slot in the dialogue domain. The candidate
values were generated via language comprehension slot annotations, dialogue acts, and the
dialogue state. In [27], a routing-by-agreement schema based on the capsule neural network
was introduced to synergize the slot-filling performance using the inferred intent repre-
sentation. The authors of [28] presented a hierarchical multi-task structure for sequentially
detecting dialogue acts, user intent, and slots. The representations of the last task are a part
of the input for the next one. Following such ideas, we introduced two models based on a
hierarchical architecture to explore the relationship between intent and slot labels.

In [29], the slot results were a part of the input for the intent classifier, in which the
intent error declined with the assistance of slot logits. The authors of [30] introduced a
bidirectional joint architecture, updating hidden features with the intent predictions for
slot-filling tasks and using the same operation for intent classification. We modified the
bidirectional structure in three ways to allow it to run faster and reduce the parameters.

3. Methodology

To achieve our goal, we chose the pre-trained XLM-R [10] Model for extracting the
contextual, bidirectional hidden features of the utterances. Then, the hidden features were
fed to the classifiers for the intent classification and slot-filling tasks.

We present several architectures for the classifiers in Section 3.2, attempting to increase
the extra match accuracy and narrowing the gaps between intent accuracy and slot scores.

3.1. Pre-Trained Model

The XLM-R model based on the Transformer model [31] followed the XLM ap-
proach [21] as closely as possible and used a masked language modeling (MLM) objective.
XML-R was trained in 100 languages, and the related ‘xlm-roberta-base’ tokenizer was
pre-trained on 2.5TB of filtered CommonCrawl data containing 100 languages, with over
25,000 words in the vocabulary.

The samples in MASSIVE were a series of user utterances with annotations created
by localizing the Spoken Language Understanding Resource Package (SLURP) dataset [8].
We applied the tokenizer for mapping the words in the utterance to a well-pre-trained
vocabulary and returned the word ID as the output.

When mapping the words in the sentence to a sequence of word IDs, the tokenizer
also adds (CLS) and (SEP) tokens to the beginning and end of a sentence because our tasks
are centered on classification. Let us suppose that the sequence length of the utterance is l;
then, the token ID length L = l + 2 will be fed to the model.

The tokenizer maps nature words to its vocabulary ID, but the model still needs a
way in which to convert such IDs to low-dimension word embeddings. The WordPiece
embeddings [32] are a series of dense real-valued vectors representing the features of
each word.

The vocabulary size is 250,002, which is a large number since the model needs to
deal with 51 languages, but the hidden size of the embedding layer is not as large as the
vocabulary size. We know people use different words to express similar meanings, but how
does the model recognize different word IDs showing similar meanings in the way human
beings would? One solution is to let the embedding layer output similar word features.
So, the other role of the embedding layer in accomplishing the tasks using the MASSIVE
dataset is to determine the word IDs that have the same meaning in different languages
and output similar features for them.

The pre-trained model provides a pre-trained embedding layer for word feature
representation and similar-word detection. When we used the full dataset for training,
the backward procedure was used to update the weights of the embedding layer to achieve
better performance.

On the other hand, the weights of the embedding layer were frozen in the zero-
shot situation. A well-pre-trained embedding layer will output similar word features for

Mathematics 2023, 11, 4895 6 of 22

synonyms, even in different languages. If the embedding weights were updated while
training on the en-US set alone, the embedding layer might not have output similar features
for synonyms.

We can set the hidden size of the embedding layer to Hem = 768. According to the
token ID length L, the input shape of the embedding layer is [L, 1], and the output shape
will be [L, Hem] after applying the embedding layer.

The encoder layer computes the contextual, bidirectional hidden features of the Word-
Piece embeddings from the embedding layer. The hidden features are fed to the classifiers
for intent classification and slot-filling tasks.

The pre-trained model stacks 12 layers, with 12 attention heads and an Hec = 768
hidden data size [10]. The stack layer consists of a Muti-head attention module, an inter-
mediate module, and a layer output module. The Muti-head module uses a self-attention
class with 12 attention heads and a hidden size of Hec to compute the contextual features.
A dense, linear layer with input and output sizes of Hec; a dropout layer with probabilities
of 0.0; and a layer normalizer with a layer norm eps of 1× 10−5 were applied sequentially
after the self-attention class was established. The components of the intermedia module
are a dense layer and a GELU activation function. The layer output module connects the
two slack layers to normalize the output features from the intermediate module and adjust
them so that they are the input for the next slack layer. The module includes a dense layer,
a dropout layer, and layer normalization with the same configuration as the Muti-head
attention module.

The input of the encoder layer is a sequence of word features with the following shape:
[L, Hem]. Suppose that the encoder is simple and easy to handle; we set the output shape of
every slack layer to [L, Hec], so the final stack layer outputs the hidden features with the
following shape: [L, Hec].

3.2. Classification Layer

Essentially, the classification layer for the tasks involves two separate classifiers,
and each classifier outputs the possibilities of the labels. For the baseline [3], the classifi-
cation layer based on JointBERT [24], the sequential connotation of the intent classifier is
the max-pooling layer, a dropout layer with a dropout rate of Pf f = 0.45, a linear layer
with Dc = 2048 dimensions, the GELU active function, another dropout layer with the
same dropout rate, and a final linear layer with DIP = 60 dimensions (the number of intent
labels). The difference regarding the slot classifier is that the max-pooling layer is not used,
and the dimensions of the final linear layer are DSP = 56 (the number of slot labels) instead.
In the zero-shot case, the feed-forward dropout rate Pf f was set to 0.25, and the number of
linear dimensions Dc was 8192.

The intent label is unique for each sentence, so the output shape of the intent classier
should be [DIP, 1]. In consideration of the output shape, adding a max-pooling layer in the
intent classifier could reduce the number of input feature dimensions Hec to 1. On the other
hand, the slot-filling task computes the slot possibility of each word with an output shape
[L, DSP], which is why the pooling reduction is not necessary for the slot-filling layer.

Because the characteristic of the filling of the slot labels is associated with the intent
labels, we modified the classifiers in two ways, introducing a hierarchical classification
layer and a bidirectional classification layer in Sections 3.2.1 and 3.2.2.

3.2.1. Hierarchical Classifiers

When given an intent label, the probabilities for some slot labels in a sentence would
be pretty high, and some might be very low. For instance, if the utterance intention is “trans-
port_taxi”, slots labels like “transport_agency”, “currency_name”, “date”, “place_name”,
and “transport_descriptor” would more likely be filled with some words in the sen-
tence, while filling “player_setting”, “music_album”, “music_descriptor”, and “audio-
book_author” is almost impossible.

Mathematics 2023, 11, 4895 7 of 22

Generally, detecting the intent of an utterance is much easier than filling all the slots
correctly. This situation gave us the idea that intent probabilities could be used to compute
the likelihood of slot labels. Based on this idea, we present the classification layer with a
hierarchical architecture in this section.

As shown in Figures 1 and 2 show, the hidden features from the encoder with the shape
[L, Hec] were fed to the intent classifier, denoted by [l1, l2, · · · , lHec], in which li ∈ RL. Max
pooling reduces the shape of the hidden features to [Hec, 1] by maintaining the maximum
in each li. Let the output of max pooling be In f ∈ RHec ; thus, we have each element In fi in
In f :

In fi = max(li) (1)

By feeding the max-pooling output to the other layers, the classifier can compute the
intent probabilities PIP ∈ RDIP by applying other dropout and linear layers. The output
PIP of the final linear layer is provided by the following equation:

PIP = dropout(In f) ·WT
I + bI (2)

The final linear layer of the intent classifier condenses the features to DIP heads, and the
dimensions of the dropout layer output are correspond to Dc. Therefore, droupout(In f) ∈
RDc represents the output of the last dropout layer, WI ∈ RDIP×Dc denotes the weights of
the linear layer, and bI ∈ RDIP denotes the biases. Here, we have the output of the intent
classifiers PIP with a shape of [1, DIP].

In the next step, PIP will update the hidden features before applying slot clarification.
There are more than two ways to update the hidden features, but we explored two in
this paper:

(1) The first is concatenation, as shown in Figure 1. The intent logits will concatenate
with the output from the encoder, the simplest method of updating;

(2) The second is attention-based computation, updating the initial slot logits via comput-
ing the intent and slot attention probabilities, which is another effective and smooth
way of updating the hidden features. The architecture is shown in Figure 2.

Figure 1. The architecture of the model with a hierarchical concatenation classification layer.

Mathematics 2023, 11, 4895 8 of 22

Figure 2. The architecture of the model with a hierarchical attention-based classification layer.

Hier-concatenation: We have the output of the encoder layer, the hidden features
H ∈ RL×H , the output of the intent classifier, and the intent logits PIP ∈ RDIP , but the
shapes of the two matrices are not yet matched for concatenation. Let H = (h1, h2, · · · , hL)
denote the hidden features, while hl represents a feature vector for each word.

As the basic idea behind the relationship between intent and slots, intent logits will
affect every word’s slot-filling task. Next, we expand PIP to a sequence of expanded features
with a length of L:

P̂IP = (p̂1, p̂2, · · · , p̂L) (3)

where p̂l = PIP, for l = 1, 2, · · · , L.
Now, H ∈ RL×Hec and P̂IP ∈ RL×DIP can be concatenated as a new sequence of hidden

features, leading to Formula (4), which will serve as the input of the slot classifier:

Hcat = H ⊕ P̂IP (4)

where Hcat ∈ RL×(Hec+DIP).
The output of the first linear layer in the slot classifier is as follows:

SL1 = dropout(Hcat) ·WT
S1 + bS1 (5)

Before the linear layer is applied, a dropout layer randomly sets some values to 0 with
the possibility Pf f and scales others by the vector of 1

1−p f f
. The shape of the dropout output

is the same as Hcat, and we use Dc to represent the output dimension of the linear layer;
thus, WT

S1 ∈ RL×Dc×(Hec+DIP) and bS1 ∈ RL×Dc . So, the output of the first linear layer of the
slot classifier is SL1 ∈ RL×Dc .

We set the DSP head for the final layer; thus, the slot classifier finally outputs a matrix
PSP ∈ RL×DSP for the prediction and loss computation.

Hier-attention-based computation: Updating the slot logits by computing the attention-
based scores requires more operations than pure concatenation. We established a sequential
network to compute the likelihood of the slot labels in given intent logits. The sequence of
the network is as follows:

• A dropout layer: dropout probability = Pf f ;
• A linear layer: input dimensions = DIP and output dimensions = DC;

Mathematics 2023, 11, 4895 9 of 22

• An activation function: GELU;
• A dropout layer: dropout probability = Pf f ;
• A linear layer: input dimensions = DC and output dimensions = DSP;
• A layer normalization procedure: eps = 1× 10−5.

Let the function Transit denote the computations in the network above, to which the
broadcasted intent logits P̂IP (as Equation (3)) are fed; thus, we have

PI2S = Transit(P̂IP) (6)

Here, P̂IP ∈ RL×DIP is the same shape as in the concatenation. Since the output
dimension of the last linear is DSP, we have PI2S ∈ RL×DSP , which is the same size as
the initial slot logits PSP. In the next step, compute the dot-product of PI2S and PSP, scale
it by a factor of 1√

DSP
; then, apply the softmax function to obtain attention probabilities

Patte ∈ RL×L:

Patte = so f tmax(
PSP · PT

I2S√
DSP

) (7)

There are two popular ways of using attention probabilities: additive attention [33] and
dot-product (multiplicative) attention. We used dot-product attention in this case because
it is faster and more space-efficient in practice [31]. Thus, we attained the contextual
likelihood of slot labels PSC:

PSC = Patte · PSP (8)

Furthermore, we wished to update the slot logits smoothly, applying the so f tmax
function to PSC. Finally, the new slot logits P∗SP is provided by the following equation:

P∗SP = PSP + so f tmax(PSC) (9)

3.2.2. Bidirectional Classifiers

Not only will the intent labels affect the filling slots, but the slot results could revise
the wrong intent of the utterance if the model has correctly predicted all the slots. A bidirec-
tional classification layer will use both intent and slot logits to update the hidden features.

From intent logits to slot logits, the way in which to update the hidden features is the
same as that used for hierarchical classifiers. In the other direction, let the slot logits update
the intent features after the max-pooling layer; we can use bi-concatenation (Figure 3) and
bi-attention-based computation structures (Figure 4) to achieve this goal. But, we need to
slightly modify the algorithm.

Bi-concatenation: The second dimension of the slot probabilities PSP is L, and that of
intent features In fi is 1, thereby obstructing the possibility of direct concatenation in order
to construct new intent features. We introduce two ways of extracting the information in
PSP before concatenating it with In fi:

(1) Apply the max pooling layer to slot probabilities PSP;
(2) Apply the LSTM layer and input PSP as a sequence of word slot probability vec-

tors with time steps, and the output of the final LSTM time step will consist of all
slot information.

Max pooling: The shape of slot probabilities PSP is [L, DSP], and the shape of intent
features In f is [Hec, 1]. The max pooling layer will reduce matrix PSP to a vector PSPV .
Usually, when we utilize the slot results to update intent features, all the values in PSP will
concatenate to In f via reshaping into a vector with a shape of [L× DSP, 1] [30]. But, we
know that the lengths of the sentence L are different in practice; thus, the uncertain L leads
to an indeterminate shape of PSPV and the new intent feature In fnew. This uncertainty
makes the initialization network difficult to work with when training or evaluating the data.

Mathematics 2023, 11, 4895 10 of 22

Figure 3. The architecture of the model with a bidirectional concatenation classification layer.

One solution to solving the uncertainty problem is placing a sequence of zeros after
a sentence to guarantee that all the sentences have the same length L and that L is the
maximum sequence length. With the help of the attention mask, the model can ignore
irrelevant information in the prediction phase. But this solution requires a large amount of
memory from the GPU and a long time for computation.

We used a max pooling layer to zip the sequence of slot logits in a vector with a shape of
[DSP, 1]. We present PSP in the column vector as PSP = (pSP1 , pSP2 , · · · , pSPDSP

), pSPi ∈ RL,
for i = 1, 2, · · · , DSP, so the new vector PSPV = (pSPV1 , pSPV2 , · · · , pSPVDSP

), pSPVi ∈ R,
for i = 1, 2, · · · , DSP was given as follows:

pSPVi = max(pSPi) (10)

In the next step, PSPV is concatenated with In f , we have new intent features In fnew ∈
RHec+DSP , and In fnew will be used to update the intent logits.

The mechanism of max pooling consists of retaining the max value of each slot label
regardless of the position and the frequency. If the sentence contains a slot label, this slot
logit would be higher than the labels not contained. High logits will have more impactful
effects on updating intent logits.

LSTM: The LSTM network is a variant of an RNN, where the output from the last
time step is input into the next time step. By setting input, forget, cell, and output gates,
the LSTM network can retain long-term memories from the beginning of the sequence.
Thus, the final time step output of the LSTM can be regarded as a summary of the whole
utterance and yields the probability distribution p∗LSP of the slot labels.

Let the LSTM function consist of all the gate computations; the result of the LSTM
function is the output of an LSTM cell. When we input PSP = p1SP, p2SP, · · · , pLSP row by
row in sequence, we obtain

p∗iSP = LSTM(piSP, p∗(i−1)SP) (11)

The final output of the LSTM network is

p∗LSP = LSTM(pLSP, p∗(L−1)SP) (12)

Mathematics 2023, 11, 4895 11 of 22

In fnew, in this case, is yielded by the following equation:

In fnew = In f ⊕ p∗LSP (13)

To date, we have In fnew ∈ RHec+DSP to compute new intent logits. Other neural
networks similar to the intent classifier were applied for this objective. The neural networks
were stacked in sequence as follows:

• A dropout layer—dropout probability = Pf f ;
• A linear layer—input dimensions = (Hec + DSP); output dimensions = DC;
• An activation function—GELU;
• A dropout layer—dropout probability = Pf f ;
• A linear layer—input dimensions = DC; output dimensions = DIP.

Bi-attention-based computation: As Figure 4 shows, firstly, the model computes the
initial intent logits PIP and slot logits PSP using the classifiers. Secondly, PIP is used to
compute the contextual slot probabilities, as in the hier-attention architecture, and update
PSP to obtain new slot logits P∗SP ∈ (R)L×DSP .

Figure 4. The architecture of the model with a bidirectional attention-based classification layer.

We need to reduce the matrix P∗SP to a vector P∗SPV (like in Equation (10)) with a shape
of DSP for the slot for intent attention-based computation. Here, we let the max logit value
denote the likelihood of the slot label being filled in the sentence, regardless of the position
and quantity of the slot label, like the max pooling step in bi-concatenation.

Then, P∗SPV is input into the transition function Transit to compute the transition
probabilities for slots transitioning into intent:

PS2I = Transit(P∗SPV) (14)

Let the dimensions of the linear layer adjust to the data size; we set the input dimen-
sions of the first linear layer to DSP, and the output dimensions of the final linear layer
are DIP.

Mathematics 2023, 11, 4895 12 of 22

Finally, by summing the initial intent logits PIP and the contextual likelihood of the
slot-to-intent transition labels PIC, we attain new intent logits P∗IP:

P∗IP = PIP + so f tmax(PIC) (15)

where

PIC = so f tmax(
PIP · PT

S2I√
DIP

) · PIP (16)

3.3. Evaluation

When FitzGerald et al. posted the benchmark of the MASSIVE dataset, they also
provided the evaluation equations in their paper [3], and we followed their algorithm in
our experiment. If the number of correct samples in intent prediction in NIC and the number
of samples are both correct in intent prediction, and all the slot-filling is NEM, the number
of total samples is N, for intent accuracy (ACCIT) and the exact match accuracy (ACCEM),
they were computed by the equation:

ACCIT =
NIC
N

(17)

ACCEM =
NEM

N
(18)

As for the slot-filling F1 score, we compute the micro-average for all the samples.
First, we need to know the total precision and recall, let TP be the quantity of true positive
samples in all the label categories, FP for the false positives, and FN for the false negatives,
and we have:

precision =
TP

FP + TP
(19)

recall =
TP

TP + FN
(20)

So the F1-score for the slot-filling is:

ScoreSF =
2 ∗ precision · recall

precision + recall
(21)

Assuming a normal distribution for all samples, the standard deviation of intent
accuracy STDIT , slot F1 scores STDSF, and exact match accuracy STDEM were given by:

STDIT =

√
ACCIT ∗ (1− ACCIT)

N
(22)

STDSF =

√
ScoreSF ∗ (1− ScoreSF)

N
(23)

STDEM =

√
ACCEM ∗ (1− ACCEM)

N
(24)

4. Experiments

We trained the model on the MASSIVE dataset in two ways. One involved training it
on the full training dataset, and the other was zero-shot, training with the en-US set only,
validating using all locales, and testing using all languages but en-US. We used different
hyper-parameters in the two ways of training.

Based on the characteristics of the architectures in Section 3, the same configuration
may not fit all the architectures. It is also necessary to tune the hyper-parameters to see the
best results of the models.

Mathematics 2023, 11, 4895 13 of 22

4.1. Settings

In this section, we introduce the hyper-parameters we used in the pre-trained model,
the details of the configurations for two training approaches, and the architectures. In most
cases, tuning the model to find the proper hyper-parameters was an efficient way of
attaining good results.

4.1.1. Encoder Configuration

There are several hyper-parameters for the encoder part, following the choice made in
FitzGerald’s paper [3]; the configurations for the full training set and the zero-shot set are
provided in Table 2. The encoder settings for the two situations are similar, except for the
attention dropout probabilities (attention_probs_dropout_prob) and freeze_layers.

Table 2. The chosen encoder hyper-parameter for training on (a) the full training set; and (b) the
zero-shot set.

(a) Full Training Set (b) Zero-Shot

attention_probs_dropout_prob 0.0 0.35
bos_token_id 0 0
eos_token_id 2 2
hidden_act gelu gelu
hidden_size 768 768

initializer_range 0.02 0.02
intermediate_size 3072 3072
layer_norm_eps 1× 10−5 1× 10−5

max_position_embeddings 514 514
num_attention_heads 12 12
num_hidden_layers 12 12

output_past true true
pad_token_id 1 1

type_vocab_size 1 1
vocab_size 250,002 250,002

use_crf false false

freeze_layers - xlmr.embeddings.
word_embeddings.weight

The attention dropout probability for the full training set was 0, and it was 0.35 for
the zero-shot set. This means one kept all the hidden features in every attention layer,
and the other randomly dropped some hidden features for the purposes of regularization
and preventing the co-adaptation of neurons. As we know, if the size of the training set is
small and the training times increase, the model may suffer from overfitting. So, when our
model was trained on the zero-shot set, we set dropout probabilities for the attention layer
in the encoder network.

Freezing the weights of the embedding layer was carried out to retain the initial word
embedding output from the pre-trained XLM-R model and let the synonyms in different
languages maintain similar word embedding features. If the embedding weights were
updated in training, then only the weights related to English would be changed, while other
languages would not update at the same time. So, we froze the weights of the embedding
layer, and then the encoder layer was allowed to deal with the synonyms in different
languages that were never included in the zero-shot set.

4.1.2. Classification Layer Configuration

The hyper-parameters for the classification layer are more diverse than those of the
encoder since we presented two architectures for the classification layer, and each architec-
ture has at least two versions. We added three additional parameters to fit the modification
for the architectures: head_slot_pooling, update_way, and layer_norm_eps. The parameter
head_slot_pooling was only used in the bi-concatenation architecture to distinguish the

Mathematics 2023, 11, 4895 14 of 22

slot-pooling methods in the classifier. layer_norm_eps was a necessary parameter for the
LayerNorm layer in the attention-based computation. To keep matters easy and simple, we
chose the same value 1× 10−5 as that selected for the encoder layer. There are two ways
to update the slot logits and intent logits, so we set the parameter update_way to spec-
ify the updating method, while the string “cat” denotes concatenation, and “att” means
attention-based computation. The details can be observed in Table 3.

Table 3. Classification layer settings.

Hier-Architecture Bi-Architecture
Concat Attention Max Concat LSTM Concat Attention

slot_loss_coef 4.0 4.0 4.0 4.0 4.0
hidde_layer_for_class 11 11 11 11 11
head_num_layers 1 1 1 1 1
head_layer_dim 2048 2048 2048 2048 2048
head_activation elu gelu elu elu gelu

hidden_dropout_prob 0.45 0.45 0.45 0.45 0.45
head_intent_pooling max max max max max
head_slot_pooling - - max LSTM -

layer_norm_eps - 1× 10−5 - - 1× 10−5

update_way cat att cat cat att

a. Chosen parameters for classification layer training on the full training set.

slot_loss_coef 2.0 2.0 2.0 2.0 2.0
hidde_layer_for_class 10 10 10 10 10
head_num_layers 2 2 2 2 2
head_layer_dim 8192 8192 8192 8192 8192
head_activation gelu gelu gelu gelu gelu

hidden_dropout_prob 0.25 0.25 0.25 0.25 0.25
head_intent_pooling max max max max max
head_slot_pooling - - max LSTM -

layer_norm_eps - 1× 10−5 - - 1× 10−5

update_way cat att cat cat att

b. Chosen parameters for classification layer training on zero-shot set.

This model needs to accomplish two tasks simultaneously. When we designed the
loss function for the combining tasks, to keep matters simple and clear, we computed
the cross-entropy loss for each task in parallel and summed the intent-detecting loss and
slot-filling loss with a coefficient as the overall loss for the model.

The loss is
Loss = mean(LossI) + csc ·mean(Losss) (25)

where LossI and LossS are expressed as follows:

LossI = CrossEntropy(PIP, TI) (26)

LossS = CrossEntropy(PSP, TS) (27)

TI and TS in (26) and (27) denote the target labels of intent and slots, so Loss is the
summation of the averaged intent loss LossI and the product of the coefficient slot_loss_coef
times the averaged slot loss LossS. A larger slot_loss_coef means that LossS will de-
cline faster than LossI when the optimizer minimizes the overall loss (Loss). Moreover,
slot_loss_coef measures the dynamic balance of the intent accuracy and slot-filling scores,
so the larger the value of slot_loss_coef, the larger the effect of LossS, and the slot-filling
scores might be higher to some extent (intuitively).

By setting different values for slot_loss_coef in the full training and zero-shot sets, we
expected the model to attain the best performance in exact match accuracy, and we set the
searching space to [0.5, 1.0, 2.0, 4.0, 8.0, 16.0]. Regarding the size of the training samples,

Mathematics 2023, 11, 4895 15 of 22

the slot_loss_coef in the full training set is 4.0, and this value is 2.0 in the zero-shot set.
In the full training case, the large number of samples for every language allowed the model
to learn the hidden features sufficiently. Meanwhile, in the zero-shot setup, only the en-US
training set was insufficient for the other 50 languages, causing the slot-filling task to be
much harder than intent classification. Hence, the slot_loss_coef in zero-shot is smaller
than that in full training.

The output of the encoder consists of four matrices, namely attentions, sequence_
output, pooled_output, and hidden_states; thus, the parameter hidde_layer_for_class
was utilized to configure which matrices we needed to feed to the classifier. Setting
hidde_layer_for_class = 11 in the full-training case, we chose the sequence_output matrix
for the classification when trained on the full dataset. On the other hand, zero-shot can
select a required part in the hidden_states matrix by setting it to 10.

Due to the characteristics of the zero-shot setup, we set more layers and dimensions for
the classifiers to learn more features from such a small number of training samples. Thus,
we set head_num_layers = 2 and head_layers_dim = 8192 in zero-shot from the searching
spaces [1, 2, 3, 4] and [512, 1024, 2048, 3072, 4096, 8192, 16,384], while these values are 1 and
2048 in full training with searching spaces of [1, 2, 3, 4] and [512, 1024, 2048, 3072, 4096].

The other parameter settings are hidden_dropout_prob and head_activation. Their
choices depend on their performance when training in the hyper-parameter search space
[0.0:0.5] with a step of 0.05 and [gelu, elu, tanh, reLU].

4.1.3. Training Settings

We tuned the model using a single Nvidia V100 GPU with 32 G of memory, and the
training time was less than 36 h. We built the hyper-parameter-searching space following
the Tree of Parzen Estimators algorithm and the asynchronous successive halving algorithm
(ASHA) [34] and trialed the performance of each model. The searching space and the
choices for training parameters are shown in Table 4.

Table 4. The training settings for training on (a) full training set and (b) zero-shot.

(a) Full Training Set (b) Zero-Shot

eval_strategy [steps, epoch] [steps, epoch]
choice, steps choice, epoch

eval_steps [500, 1000, 2000, 4000] -choice, 1000

learning_rate [1× 10−7, 0.0001, 1× 10−7] [1× 10−7, 0.0001, 1× 10−7]
qloguniform, 7× 10−6 qloguniform, 4.7× 10−6

lr_scheduler_type [linear, constant_with_warmup] [linear, constant_with_warmup]
choice, constant_with_warmup choice, constant_with_warmup

warmup_steps [0, 10,000, 1000] [0, 1000, 100]
quniform, 5000 quniform, 500

train_batch_size [32, 64, 128] [32, 64, 128]
choice, 128 choice, 128

eval_batch_size [32, 64, 128] [32, 64, 128]
choice, 128 choice, 128

num_train_epochs [20, 100, 10] [20, 200, 10]
quniform, 50 quniform, 150

Our hierarchical and bidirectional classification layers update the possibilities of intent
and slots smoothly, especially in the full training case. The learning_rate was lower than
the reference value in the origin baseline [3], and the evaluation frequency was also higher
(every 1000 steps, executed by setting evaluation_strategy = steps and eval_step = 1000).
For the zero-shot setup, the learning_rate is the same as the reference, but the frequency was
increased by setting the evaluation_strategy = epoch since there are 90 steps in one epoch.

Because of the small learning rate we used, the model needs more epochs to reach the
global minimum, which is the best exact match accuracy in this case. We set 50 epochs for
the full training set and 150 for zero-shot. Generally, the more samples trained in one step,
the better the performance, but the limited GPU memory size only allowed for a maximum

Mathematics 2023, 11, 4895 16 of 22

batch size of 128, so we used this size in our model. The warmup_steps value was set to
5000 in the full training for a similar reason, for this number covered all the samples in one
epoch (4880 steps). We retained 500 warm-up steps in the zero-shot case since it covered
more than five epochs, which is large enough for a warm-up.

4.2. Results

We ran all the models several times and recorded the best performance by selecting the
best average exact match accuracy evaluation in all locales. Because of the different settings
we chose in the experiment, we also reran the baseline for better comparison. In order to
make the results clear and comparable, we counted the number of languages in different
percentage ranges, as shown in Figures 5 and 6. The summary results for intent accuracy,
micro-averaged slot F1 score, and exact match accuracy in the best locales, worst locales,
and averaged locales are given in Tables 5 and 6.

Figure 5. The counted number of languages in the percentage ranges for full-training.

In Figure 5, for the full training test, the green line (xmlr-hier-att) shows a significant
increase in the high percentage part in slot-filling and exact-matching tasks; meanwhile,
this model slightly raised the number of languages with a high intent accuracy. Overall,
the model shows fewer languages in the low-accuracy part in the intent-detecting and
exact-matching sections.

The situation in the zero-shot test was quite different (Figure 6): all the lines were
close to each other, especially for intent accuracy. We can see a bit of a difference in the slot
F1 scores: the quantity of languages with low scores is lower or the same as the baseline,
and they also have a better performance in the high-score part. As for the exact match
accuracy, our models did well in the low-accuracy part, as the number of languages is
obviously smaller than the baseline, while the results for the high-accuracy part were not
as good as we expected.

Mathematics 2023, 11, 4895 17 of 22

Figure 6. The counted number of languages in the percentage range for zero-shot.

Table 5. The results for training on the full training dataset, including the locale-averaged and the best
and worst locale results for intent accuracy, micro-averaged slot F1 score, and exact match accuracy.

Model Avg Intent Acc (%) Avg Slot F1 (%) Avg Exact Match Acc (%)

xlmr(baseline) 85.19 ± 0.09 84.30 ± 0.10 75.38 ± 0.11
xlmr-hier-concat 85.51 ± 0.09 85.04 ± 0.09 75.54 ± 0.11

xlmr-hier-att 85.48 ± 0.09 85.04 ± 0.09 76.39 ± 0.11
xlmr-bi-max 85.40 ± 0.09 84.42 ± 0.10 75.70 ± 0.11
xlmr-bi-lstm 85.48 ± 0.09 84.47 ± 0.10 75.81 ± 0.11
xlmr-bi-att 85.46 ± 0.09 83.89 ± 0.10 75.41 ± 0.11

a. The locale-averaged results

Model High Intent Acc (%) High Slot F1 (%) High Exact Match Acc (%)

xlmr(baseline) 88.70 ± 0.58 89.56 ± 0.59 79.96 ± 0.73
en-US th-TH en-US

xlmr-hier-concat 88.47 ± 0.58 89.38 ± 0.59 80.26 ± 0.73
en-US th-TH en-US

xlmr-hier-att 88.10 ± 0.59 89.97 ± 0.58 80.03 ± 0.73
en-US th-TH en-US

xlmr-bi-max 89.90 ± 0.58 89.16 ± 0.60 80.33 ± 0.73
en-US th-TH en-US

xlmr-bi-lstm 88.84 ± 0.58 89.53 ± 0.59 80.26 ± 0.73
en-US th-TH en-US

xlmr-bi-att 88.70 ± 0.58 89.12 ± 0.60 80.50 ± 0.73
sv-SE th-TH sv-SE

b. The best locale results

Model Low Intent Acc (%) Low Slot F1 (%) Low Exact Match Acc (%)

xlmr(baseline) 76.56 ± 0.59 79.38 ± 0.61 69.20 ± 0.85
km-KH ja-JP km-KH

xlmr-hier-concat 78.14 ± 0.76 78.99 ± 0.77 70.38 ± 0.84
km-KH ja-JP ja-JP

xlmr-hier-att 77.77 ± 0.76 81.07 ± 0.74 71.12 ± 0.83
km-KH ja-JP km-KH

xlmr-bi-max 77.44 ± 0.77 79.71 ± 0.76 69.84 ± 0.84
km-KH ja-JP km-KH

xlmr-bi-lstm 78.08 ± 0.76 79.92 ± 0.76 70.51 ± 0.84
km-KH ja-JP km-KH

xlmr-bi-att 77.00 ± 0.77 79.46 ± 0.76 69.47 ± 0.84
km-KH ja-JP km-KH

c. The worst locale results

Mathematics 2023, 11, 4895 18 of 22

Table 6. The results for training on the zero-shot, including the locale-averaged and the best and
worst locale results for intent accuracy, micro-averaged slot F1 score, and exact match accuracy.

Model Avg Intent Acc (%) Avg Slot F1 (%) Avg Exact Match Acc (%)

xlmr(baseline) 70.80 ± 0.12 64.82 ± 0.13 53.43 ± 0.13
xlmr-hier-concat 70.50 ± 0. 12 65.63 ± 0.13 53.91 ± 0.13

xlmr-hier-att 70.69 ± 0.12 64.84 ± 0.13 53.34 ± 0.13
xlmr-bi-max 70.83 ± 0.12 65.58 ± 0.13 53.62 ± 0.13
xlmr-bi-lstm 70.86 ± 0.12 65.57 ± 0.13 53.59 ± 0.13
xlmr-bi-att 70.83 ± 0.12 65.24 ± 0.13 53.42 ± 0.13

a. The locale-averaged results

Model High Intent Acc (%) High Slot F1 (%) High Exact Match Acc (%)

xlmr(baseline) 85.27 ± 0.65 80.01 ± 0.75 72.09 ± 0.82
sv-SE sv-SE sv-SE

xlmr-hier-concat 84.77 ± 0.66 79.34 ± 0.77 71.22 ± 0.83
sv-SE sv-SE sv-SE

xlmr-hier-att 85.10 ± 0.65 80.05 ± 0.75 71.86 ± 0.82
sv-SE sv-SE sv-SE

xlmr-bi-max 84.33 ± 0.59 79.52 ± 0.63 70.75 ± 0.73
sv-SE sv-SE sv-SES

xlmr-bi-lstm 84.06 ± 0.67 79.48 ± 0.76 70.58 ± 0.84
esv-SE sv-SE sv-SE

xlmr-bi-att 84.2 ± 0.67 79.62 ± 0.76 70.88 ± 0.83
sv-SE sv-SE sv-SE

b. The best locale results

Model Low Intent Acc (%) Low Slot F1 (%) Low Exact Match Acc (%)

xlmr(baseline) 44.42 ± 0.91 33.04 ± 0.89 21.89 ± 0.76
ja-JP ja-JP ja-JP

xlmr-hier-concat 42.84 ± 0.91 36.90 ± 0.91 22.83 ± 0.77
ja-JP ja-JP ja-JP

xlmr-hier-att 43.04 ± 0.91 33.68 ± 0.89 21.22 ± 0.75
ja-JP ja-JP ja-JP

xlmr-bi-max 45.02 ± 0.67 33.29 ± 0.76 22.02 ± 0.83
ja-JP ja-JP ja-JP

xlmr-bi-lstm 44.86 ± 0.91 34.57 ± 0.90 22.09 ± 0.76
ja-JP ja-JP ja-JP

xlmr-bi-att 47.24 ± 0.92 34.86 ± 0.9 24.11 ± 0.78
ja-JP ja-JP ja-JP

c. The worst locale results

As shown in Table 5, all the models improved the locale-averaged exact match accu-
racy when trained on the full dataset. The hierarchical architecture with attention-based
computation (xlmr-hier-att) reached the top by increasing the exact match accuracy from
75.38 (baseline) to 76.39. The averaged intent accuracy and slot F1 scores for the xlmr-hier-
att model are also better than the baseline, namely 0.29 and 0.74 units higher.

Regarding the best-performing locales, we can see that the best exact match accuracy
was 80.50, corresponding to the bidirectional architecture with attention-based computation
(xlmr-bi-att), while it improved the least in the averaged locales. But all the performances
in Table 5b show similar points, so we can infer that all the models we presented in this
paper did improve the performance for those top locales.

According to Table 5c, the improvement for the worst-performing locales was similar
to that for the averaged locales. Compared to the baseline, the xlmr-hier-att architecture
had a 1.21 increase in intent accuracy in km-KH, a 1.63 increase in slot score in ja-JP, and a
1.92 increase in extra match accuracy in km-KH, yielding the best results for all the models.

Mathematics 2023, 11, 4895 19 of 22

The gaps between the best and worst locales for all the measurements were smaller in
most of our models, except for the slot scores in the hierarchical concatenation model (xlmr-
hier-concat) and the exact match accuracy in the bidirectional attention-based computation
model (xlmr-bi-att). The xlmr-hier-att model had the lowest difference for three measure-
ments: 10.33 for intent accuracy, 8.9 for slot scores, and 8.91 for exact match accuracy.

5. Discussion

Comparing the two kinds of methods, namely the attention-based computation mod-
els and the concatenation models, we can observe that the hierarchical architecture worked
better in the attention-based models, while the concatenation models had a better perfor-
mance using the bidirectional architecture. When extracting the information from the slot
logits, LSTM networks are more efficient than max pooling because of the higher averaged
locale accuracies and scores.

The situation was different in the zero-shot case. The two models with attention-based
computation performed worse than those using the concatenation method, especially with
regard to the averaged exact match accuracy, which was even worse than the baseline.
Furthermore, the hierarchical concatenation model (xmlr-hier-concat) showed better results
than the bidirectional model, while the bidirectional attention-based model attained the
best accuracies in the averaged results and the worst locale.

The best locale-averaged exact match accuracy was 53.91 when the xlmr-hier-concat
model was trained on the zero-shot setup; this value was 0.48 higher than the baseline.
This model performed well in improving the slot score in the worst locale, increasing it
from 33.04 to 36.90. The xlmr-hier-concat model utilized the intent logits to bias the hidden
states from the encoder, and this method showed a good performance in updating the slot
probabilities in zero-shot training.

Although the result for the xlmr-bi-att model is worse than the baseline in the averaged
and best locales, it showed a significant improvement in the worst locales. The intent
accuracy grew by 2.82 points, the slot score rose from 33.04 to 34.86, and the exact match
accuracy increased by 2.22 points. The number of languages in the low slot score part is
also the smallest in all models.

Considering the other goal of reducing the difference between the best locales and
the worst locales, all the models accomplished the task except for the xlmr-hier-att model.
The xlmr-bi-att model had a minimum gap of 48.39, which is 1.81% smaller than the baseline.
Hence, we can say that the xlmr-bi-att model is the best model for zero-shot training.

Overall, the xlmr-hier-att model performed the best for training on the full dataset but
was the worst in zero-shot. Xlmr-hier-concat is the best model for the zero-shot setup but
was not very good for full training. Some models improved the performance for both full
training and zero-shot, like xlmr-bi-max model and xlmr-bi-lstm model, although these
improvements were not as remarkable as the others. The xlmr-bi-att model may not be fit
for our tasks since it only showed a slight increase in the full training case.

6. Conclusions

In this paper, we introduced five models with two architectures based on the backbone
of the XLM-R encoder. The hierarchical architecture with concatenation (xlmr-hier-concat)
concatenated the intent logits and the hidden features from the encoder output, which is
the input of the slot classifier. The bidirectional architecture with concatenation updated
the inputs of the slot and intent classifiers in a similar way. According to the method of
extracting the slot logits information, we had two versions of a bidirectional concatenation
architecture: the max pooling version (xlmr-bi-max) and the LSTM version (xlmr-bi-LSTM).

The attention-based models computed the initial intent logits and slot logits first
and improved the performance by summing the attention-based contextual probabilities
and initial logits. The hierarchical architecture (xlmr-hier-att) only updated the slot logits
according to the initial intent logits, while the bidirectional architecture also updated the
intent logits according to the new slot logits.

Mathematics 2023, 11, 4895 20 of 22

All models improved the three evaluation measurements in most languages when
trained on the full dataset, and the best model increased the intent accuracy, micro-averaged
slot F1 score, and exact match accuracy in all testing samples by 0.29, 0.74, and 1.01.

The concatenation updating method worked better than the attention-based method
in the zero-shot setup case. This method accomplished our tasks by improving the locale-
averaged exact match accuracy from 53.43 to 53.91 in the xlmr-hier-concat model.

We exported the relationship between the intent labels and the slot labels, and the re-
sults of all models proved that strengthening the relevance between labels in our algorithm
could increase the accuracy of intent and slot classification, especially when we combined
the two tasks together and tried to correctly predict intent and slots for every utterance.

The models still have room for improvement. For example, filtering the logits before
the computation may be useful since incorrect predictions are also a part of the input in our
algorithms. Applying more sophisticated techniques when updating the logits could be
another way of improving performance.

Intent classification and slot filling are small parts of natural language understanding,
the tasks are the simulation of the part of communication between humans and machines,
and we hope that the improvement in dealing with the two tasks together could let the
machine understand human’s words better.

Author Contributions: Conceptualization, software, and writing—review and editing, X.J.; method-
ology and writing—original draft, W.H.; supervision, project administration, and funding acquisition,
Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (Grant No.
62262059) and the Natural Science Foundation of Guangxi Province (Grant No. 2021JJA170178); the
Science and Technology Development Fund of Macau (0004/2020/A1, 0070/2020/AMJ); and the
Guangdong Provincial Key R&D Programme: 2019B010148001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: https://github.com/alexa/massive (accessed on 25 October 2023).

Acknowledgments: The authors would like to thank the anonymous reviewers for their contributions
to this paper.

Conflicts of Interest: Author Yanyan Liang was employed by the CEI High-Tech Research Institute
Co., Ltd. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Wang, Y.-Y.; Deng, L.; Acero, A. Spoken language understanding. IEEE Signal Process. Mag. 2005, 22, 16–31. [CrossRef]
2. Young, S.J. Talking to machines (statistically speaking). In Proceedings of the INTERSPEECH, Denver, Colorado, USA, 16–20

September 2002.
3. FitzGerald, J.; Hench, C.; Peris, C.; Mackie, S.; Rottmann, K.; Sanchez, A.; Nash, A.; Liam Urbach, V.K.; Singh, R.; Ranganath, S.;

et al. Massive: A 1m-example multilingual natural language understanding dataset with 51 typologically-diverse languages.
arXiv 2022, arXiv:2204.08582.

4. Xu, W.; Haider, B.; Mansour, S. End-to-end slot alignment and recognition for cross-lingual nlu. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, 16–20 November 2020; pp. 5052–5063.
Available online: https://aclanthology.org/2020.emnlp-main.410/ (accessed on 25 October 2023).

5. Li, H.; Arora, A.; Chen, S.; Gupta, A.; Gupta, S.; Mehdad, Y. Mtop: A comprehensive multilingual task-oriented semantic parsing
benchmark. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics:
Main Volume, Online, 19–23 April 2021; pp. 2950–2962. [CrossRef]

6. Upadhyay, S.; Faruqui, M.; Tur, G.; Dilek, H.-T.; Heck, L. (Almost) zero-shot cross-lingual spoken language understanding.
In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB,
Canada, 15–20 April 2018; pp. 6034–6038. [CrossRef]

https://github.com/alexa/massive
http://doi.org/10.1109/MSP.2005.1511821
https://aclanthology.org/2020.emnlp-main.410/
http://dx.doi.org/10.18653/v1/2021.eacl-main.257
http://dx.doi.org/10.1109/ICASSP.2018.8461905

Mathematics 2023, 11, 4895 21 of 22

7. Schuster, S.; Gupta, S.; Shah, R.; Lewis, M. Cross-lingual transfer learning for multilingual task oriented dialog. In Human
Language Technologies, Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics,
Minneapolis, MN, USA, 2–7 June 2019; Long and Short Papers; Association for Computational Linguistics: Toronto, ON, Canada,
2019; Volume 1, pp. 3795–3805. [CrossRef]

8. Bastianelli, E.; Vanzo, A.; Swietojanski, P.; Rieser, V. Slurp: A spoken language understanding resource package. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, 16–20 November 2020;
pp. 7252–7262. [CrossRef]

9. Liu, X.; Eshghi, A.; Swietojanski, P.; Rieser, V. Benchmarking natural language understanding services for building conversational
agents. arXiv 2019, arXiv:1903.05566.

10. Conneau, A.; Khandelwal, K.; Chaudhary, N.G.V.; Wenzek, G.; Guzmán, F.; Grave, E.; Ott, M.; Zettlemoyer, L.; Stoyanov, V.
Unsupervised cross-lingual representation learning at scale. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, Online, 5–10 July 2020; pp. 8440–8451. [CrossRef]

11. Xue, L.; Constant, N.; Roberts, A.; Kale, M.; Al-Rfou, R.; Siddhant, A.; Barua, A.; Raffel, C. mt5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Online, 6–11 June 2021; pp. 483–498. [CrossRef]

12. Simons, G. Ethnologue: Languages of the World; SIL International: Dallas, TX, USA, 2022. Available online: https://www.ethnologue.
com/ (accessed on 25 October 2023).

13. Simpson, H.; Cieri, C.; Maeda, K.; Baker, K.; Onyshkevych, B. Human language technology resources for less commonly taught
languages: Lessons learned toward creation of basic language resources. In Proceedings of the Collaboration: Interoperability
between People in the Creation of Language Resources for Less-Resourced Languages, Marrakech, Morocco, 27 May 2008; p. 7.

14. Strassel S.; Tracey, J. Lorelei language packs: Data, tools, and resources for technology development in low resource languages.
In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), Portoroz, Slovenia,
23–28 May 2016; pp. 3273–3280. Available online: https://aclanthology.org/L16-1521 (accessed on 25 October 2023).

15. Goyal, N.; Gao, C.; Chaudhary, V.; Chen, P.; Wenzek, G.; Ju, D.; Krishnan, S.; Ranzato, M.; Guzman, F.; Fan, A. The flores-101
evaluation benchmark for low-resource and multilingual machine translation. arXiv 2021, arXiv:2106.03193.

16. Cruz, J.C.B.; Cheng, C. Establishing baselines for text classification in low-resource languages. arXiv 2020, arXiv:2005.02068.
17. Lakew, S.M.; Negri, M.; Turchi, M. Low resource neural machine translation: A benchmark for five african languages. arXiv 2020,

arXiv:2003.14402.
18. Magueresse, A.; Carles, V.; Heetderks, E. Low-resource languages: A review of past work and future challenges. arXiv 2020,

arXiv:2006.07264.
19. Devlin, J. Multiligual Bert. 2018. Available online: https://github.com/google-research/bert/blob/master/multilingual.md

(accessed on 25 October 2023).
20. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly

optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.
21. Lample, G.; Conneau, A. Cross-lingual language model pretraining. arXiv 2019, arXiv:1901.07291.
22. Liu, Y.; Gu, J.; Goyal, N.; Li, X.; Edunov, S.; Ghazvininejad, M.; Lewis, M.; Zettlemoyer, L. Multilingual denoising pre-training for

neural machine translation. arXiv 2020, arXiv:2001.08210.
23. Lewis, M.; Ghazvininejad, M.; Ghosh, G.; Aghajanyan, A.; Wang, S.; Zettlemoyer, L. Pre-training via paraphrasing. arXiv 2021,

arXiv:2006.15020.
24. Chen, Q.; Zhuo, Z.; Wang, W. Bert for joint intent classification and slot filling. arXiv 2019, arXiv:1902.10909.
25. Guo, D.; Tur, G.; Tau Yih, W.; Zweig, G. Joint semantic utterance classification and slot filling with recursive neural net-

works. In Proceedings of the 2014 IEEE Spoken Language Technology Workshop, SLT 2014, South Lake Tahoe, CA, USA,
7–10 December 2014; pp. 554–559.

26. Rastogi, A.; Gupta, R.; HakkaniTur, D. Multi-task learning for joint language understanding and dialogue state tracking. In
Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue, Melbourne, VIC, Australia, July 2018; pp. 376–384.
Available online: http://aclweb.org/anthology/W18-5045 (accessed on 25 October 2023).

27. Zhang, C.; Li, Y.; Du, N.; Fan, W.; Yu, P. Joint Slot Filling and Intent Detection via Capsule Neural Networks. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; Association for
Computational Linguistics: Toronto, ONT, Canada, 2019; pp. 5259–5267. Available online: https://aclanthology.org/P19-1519
(accessed on 25 October 2023).

28. Vanzo, A.; Bastianelli, E.; Lemon, O. Hierarchical multi-task natural language understanding for cross-domain conversational ai:
Hermit nlu. arXiv 2019, arXiv:1910.00912.

29. Liu, B.; Lane, I. Attention-based recurrent neural network models for joint intent detection and slot filling. arXiv 2016,
arXiv:1609.01454.

30. Han, S.C.; Long, S.; Li, H.; Weld, H.; Poon, J. Bi-directional joint neural networks for intent classification and slot filling. arXiv
2022, arXiv:2202.13079.

31. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.
arXiv 2017, arXiv:1706.03762.

http://dx.doi.org/10.18653/v1/N19-1380
http://dx.doi.org/10.18653/v1/2020.emnlp-main.588
http://dx.doi.org/10.18653/v1/2020.acl-main.747
http://dx.doi.org/10.18653/v1/2021.naacl-main.41
https://www.ethnologue.com/
https://www.ethnologue.com/
https://aclanthology.org/L16-1521
https://github.com/google-research/bert/blob/master/multilingual.md
http://aclweb.org/anthology/W18-5045
https://aclanthology.org/P19-1519

Mathematics 2023, 11, 4895 22 of 22

32. Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s
neural machine translation system: Bridging the gap between human and machine translation. arXiv 2016, arXiv:1609.08144.

33. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
34. Li, L.; Jamieson, K.; Rostamizadeh, A.; Gonina, E.; Hardt, M.; Recht, B.; Talwalkar, A. Massively parallel hyperparameter tuning.

arXiv 2018, arXiv:1810.05934.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Dataset
	Motivation
	Our Contributions

	Related Works
	Methodology
	Pre-Trained Model
	Classification Layer
	Hierarchical Classifiers
	Bidirectional Classifiers

	Evaluation

	Experiments
	Settings
	Encoder Configuration
	Classification Layer Configuration
	Training Settings

	Results

	Discussion
	Conclusions
	References

