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Abstract: In the manufacturing industry, which is facing the 4th Industrial Revolution, various process
data are being collected from various sensors, and efforts are being made to construct more efficient
processes using these data. Many studies have demonstrated high accuracy in predicting defect rates
through image data collected during the process using two-dimensional (2D) convolutional neural
network (CNN) algorithms, which are effective in image analysis. However, in an environment where
numerous process data are recorded as numerical values, the application of 2D CNN algorithms
is limited. Thus, to perform defect prediction through the application of a 2D CNN algorithm
in a process wherein image data cannot be collected, this study attempted to develop a defect
prediction technique that can visualize the data collected in numerical form. The polyurethane
foam manufacturing process was selected as a case study to verify the proposed method, which
confirmed that the defect rate could be predicted with an average accuracy of 97.32%. Consequently,
highly accurate defect rate prediction and verification of the basis of judgment can be facilitated in
environments wherein image data cannot be collected, rendering the proposed technique applicable
to processes other than those in this case study.

Keywords: defect detection; defect prediction; manufacturing process; seat foaming process; deep
learning; convolutional neural network; image augmentation; artificial neural network
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1. Introduction

Recently, the “4th Industrial Revolution” has emerged as a major keyword for eco-
nomic growth and has had a great effect in various fields, including manufacturing. In
particular, the concept of Industry 4.0, which enables factories to become independent and
self-adaptive depending on input from data that are gathered, is known in manufacturing
as smart manufacturing. Smart factories are production systems wherein factory devices
and parts are connected and interact with each other by combining existing production
manufacturing technologies with technologies such as the Internet of things, big data, and
cloud computing. A key feature of smart manufacturing is to assess and extract relevant
information from collected data using deep learning [1–3].

Because deep learning can analyze raw data and automatically identify feature rep-
resentations of data across several levels of abstraction, it has attracted interest as a tool
in smart manufacturing. The application of deep learning is not limited to process fault
monitoring [4–6] or state estimation [7,8]; several studies have explored its potential for
various other manufacturing applications [9,10]. In deep learning, artificial neural net-
works (ANNs) and convolutional neural networks (CNNs) are widely acknowledged as
the leading technologies for pattern recognition from tabular and image data, respectively.
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Each layer of an ANN is made up of a collection of several perceptrons or neurons.
Because an ANN only processes inputs in a forward manner, it is often referred to as a
feedforward neural network. It can easily be used to process image, textual, and tabular
data. Such neural networks are among the simplest variants. They pass information in one
direction through various input nodes until sending it to an output node. The network may
or may not have hidden node layers, rendering their functions more interpretable. Several
studies have shown that ANNs can implicitly detect complex nonlinear relationships
between dependent and independent variables. However, proper feature selection is
crucial when applying an ANN. The features input into the model must be well designed
according to the problem at hand. A CNN comprises convolution, pooling, and fully
connected layers. A CNN is best used when millions of features need to be retrieved,
since the convolutional layer generates feature maps that capture an area of an image
that is then divided into rectangles and transmitted for nonlinear processing. The CNN
automatically aggregates these characteristics rather than measuring each one separately.
The fully connected layers use the extracted features to identify the input picture after
the pooling layer reduces the number of the collected features [11,12]. CNNs based on
auto-feature extraction have been used in various systems for fault detection, material
degradation, and other applications. Glaeser et al. developed a fault-detection algorithm
for industrial cold forging. Based on a CNN, the algorithm can detect faults with 99.02%
accuracy, and classify each fault with 92.66% accuracy [13]. Nakazawa and Kulkarni
proposed a CNN with a SoftMax activation function to classify 22 WM defect patterns [14].
Saqlain et al. proposed a deep learning-based CNN for automatic wafer defect identification
(CNN-WDI) in semiconductor manufacturing processes [15]. However, CNNs are better
suited for processing image data rather than tabular data. Accordingly, several studies
have utilized the conversion of tabular data into image data to leverage the advantages of
CNNs, such as automatic feature extraction. Numerous time–frequency analysis techniques,
including short-time Fourier transform (STFT), continuous wavelet transform (CWT), and
wavelet packet transform (WPT), were combined with CNNs to convert tabular time-
series data [16]. These techniques use deep learning techniques to extract discriminative
features from time–frequency representations rather than the time domain and convert
continuous time-series data to two-dimensional (2D) representations using time–frequency
analysis [17–21]. The second method involves the conversion of numbers into images for
noncontinuous time-series data. Sezer et al. [22] generated 15 × 15 pixel images using
15 technical indicators related to stock prices. A CNN was adopted as the classification
and prediction model to classify financial data as images and predict buy, sell, or hold
signals for stocks. They evaluated the performance of their proposed model on Dow
30 stocks. In addition, Lee et al. [23] converted tabular data, such as vehicle spare parts,
into 3D voxel images and applied them to a 3D CNN to perform demand forecasting for
spare parts. By comparing them with other methods, they concluded that the proposed
method exhibited good prediction performance. However, there has been no research
related to the application of CNNs using the dataset conversion of numbers into images for
manufacturing processes. In addition, many manufacturing process data are recorded as
noncontinuous time-series and tabular data types.

Consequently, the main contribution of this study is to detect defects in manufactured
products by applying data obtained from the seat foam manufacturing process to the CNN
algorithm. Since the data obtained from the manufacturing process are numerical data in
tabular form, they were normalized, converted to gray images, and applied to the CNN
algorithm. To solve the imbalanced data problem, data augmentation and hyperparameter
optimization were also performed. In order to confirm the excellence of the proposed
method, defect detection was performed by applying the features extracted from tabular
numerical data to the ANN algorithm and then comparing the results with the results
of the proposed method. Consequently, it was possible to develop a defect detection
model with an accuracy of 98.33%, and the results confirmed the effectiveness of the
proposed technique.
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2. Data Collection and ANN
2.1. Data Collection and Processing Method

The validity of this study was verified using a polyurethane foaming process for
automobile seats. The manufacturing equipment used for the foaming process is shown in
Figure 1. The study was conducted using data recorded during the actual foaming process.
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Figure 1. Configuration of foaming machine.

The foaming process involves the production of polyurethane foam constituting
automobile seat cushion foam or automobile interior parts by mixing and foaming polyol
and isocyanate. This process was performed within 1.11 s, and the mixing and foaming
processes occurred when each raw material was foamed rather than generating and foaming
a mixed solution. Therefore, information regarding the mixed raw materials is unknown.
Thus, the process data for each raw material were collected by attaching flow, pressure,
and temperature sensors to the part closest to the mixing head [24].

To measure the flow, pressure, and temperature of isocyanate and polyol, Kracht VC1
F4 PS, Keller PA-21Y, and PT 100 Ω type were used. In this study, the average value of the
data measured for 1.11 s, which is the one-time foaming time, was calculated and used. The
collected data were divided into two types: normal and defective. The classification was
based on ±3% of the mass reference value, which was the same as the quality requirement
of the finished-vehicle company. In the case of the mass of the produced polyurethane foam
being higher than the reference value, the density of the tissue inside the cushion was high,
resulting in poor ride comfort. However, if the mass of the produced polyurethane foam
was lower than the reference value, the density of the tissue inside the cushion decreased,
and the passenger’s body was not well supported.

The mass of the final polyurethane foam product is related to the flow rate, tempera-
ture, and pressure. However, because each factor exhibits a nonlinear relationship with
the others, this study considered these three factors; the labels are listed in Table 1. As
various process data were collected, the dimensions of each factor differed. Furthermore,
the algorithm being developed was not process-specific but general-purpose. To offset the
characteristics of each factor, a normalization process was performed using the equation
below, such that the maximum and minimum values of each factor were the same.

M =
C− (Cmin −Wn × D)

{(Cmax + Wn × D)− (Cmin −Wn × D)} (1)
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where M is a normalized value, C is the data to be normalized, Cmax and Cmin are the
maximum and minimum values of each factor, respectively, and D is the difference between
Cmax and Cmin. This equation allows a value between 0 and 1 to be derived based on the
maximum and minimum values for each factor. Here, normalization may be performed
in a narrower range than 0–1 by adjusting the Wn factor. Based on previous research that
has reported the possibility of deriving results with higher prediction performance and
reliability by avoiding the normalization range of 0–1, this study employed a Wn value
of 0.125 to limit the normalization range to a range from 0.1 to 0.9 [25]. The lower row in
Table 1 shows the results of the normalization in Equation (1).

Table 1. Collected foaming process data.

Isocyanate Polyol
Label

Flow Pressure Temperature Flow Pressure Temperature

Original
Dataset

42.6 92.2 24.4 133.3 109.1 26.4 Fine

42.1 93.4 24.4 133.3 109.7 26.3 Fine

41.7 105 24.4 134.4 109.6 26.3 Fine

42.1 100.9 24.8 135.4 109.6 26.3 Fine

42.1 94.9 24.3 133.3 108.7 26.4 Defect

41.2 90.7 24. 133.3 107.5 26.9 Defect

41.2 109.5 24.9 133.3 108.6 26.5 Defect

41.7 90 24.7 134.4 109.4 26.3 Defect

Normalized
Dataset

0.616667 0.537258 0.493846 0.741975 0.338596 0.841935 Fine

0.602778 0.55413 0.493846 0.741975 0.366667 0.835484 Fine

0.591667 0.717223 0.493846 0.796296 0.361988 0.835484 Fine

0.602778 0.659578 0.543077 0.845679 0.361988 0.835484 Fine

0.602778 057522 0.481538 0.741975 0.319883 0.841935 Defect

0.577778 0.516169 0.506154 0.796296 0.319883 0.848387 Defect

0.577778 0.780492 0.555385 0.741975 0.315205 0.848387 Defect

0.591667 0.506327 0.530769 0.796296 0.35632 0.835484 Defect

An overview of the data processing and defect detection methods is shown in Figure 2.
The numbers of fine and defective data are 8474 and 187, respectively. Some labeled data
are listed in Table 1. Tabular data were converted into image data. The tabular and image
datasets were augmented using the synthetic minority oversampling technique (SMOTE)
and cutout. Following preprocessing and augmentation, the tabular and image datasets
were passed through an ANN and CNN for defect detection.

2.2. ANN

When addressing data imbalance problems using seat foam manufacturing process
data, a challenge often arises in the case of an abundance of normal data, but a scarcity
of defective data. This imbalance can result in biased and inaccurate machine learning
models, particularly for minority labels. To address this issue, typically, oversampling
techniques are employed, particularly to augment existing defective data. There are various
methods for oversampling based on the nature of the data to be augmented. In this study,
SMOTE was applied to augment the numerical data in the tabular datasets, and a cutout
was utilized to augment the image data.



Mathematics 2023, 11, 4894 5 of 13

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 1. Configuration of foaming machine. 

 
Figure 2. A flowchart representing the proposed defect detection method. 

Table 1. Collected foaming process data. 

 
Isocyanate Polyol 

Label 
Flow Pressure 

Tempera-
ture Flow Pressure 

Tempera-
ture 

Original Da-
taset 

42.6 92.2 24.4 133.3 109.1 26.4 Fine 
42.1 93.4 24.4 133.3 109.7 26.3 Fine 
41.7 105 24.4 134.4 109.6 26.3 Fine 
42.1 100.9 24.8 135.4 109.6 26.3 Fine 
42.1 94.9 24.3 133.3 108.7 26.4 Defect 
41.2 90.7 24. 133.3 107.5 26.9 Defect 
41.2 109.5 24.9 133.3 108.6 26.5 Defect 
41.7 90 24.7 134.4 109.4 26.3 Defect 

Normalized 
Dataset 

0.616667 0.537258 0.493846 0.741975 0.338596 0.841935 Fine 
0.602778 0.55413 0.493846 0.741975 0.366667 0.835484 Fine 
0.591667 0.717223 0.493846 0.796296 0.361988 0.835484 Fine 
0.602778 0.659578 0.543077 0.845679 0.361988 0.835484 Fine 
0.602778 057522 0.481538 0.741975 0.319883 0.841935 Defect 
0.577778 0.516169 0.506154 0.796296 0.319883 0.848387 Defect 

Figure 2. A flowchart representing the proposed defect detection method.

The synthetic minority oversampling SMOTE is used to address the issue of class
imbalance in machine learning. Class imbalance occurs when certain classes in the dataset
have significantly fewer instances than others, causing the model to be biased towards the
majority class. SMOTE helps to mitigate this problem.

First, SMOTE begins by selecting data points from a minority class. Subsequently, it
identifies the k-nearest neighbors for each selected data point and generates new data points
by interpolating the selected data point and its neighbors. A random number between 0
and 1, denoted as λ, is chosen. The new data points are calculated as follows:

Synthetic Data = X + λ (Xnn − X) (2)

Finally, the newly generated data points are added to the existing dataset. In this
study, the values of k are chosen as 65, 98, and 130.

An ANN is a computational model inspired by biological neural networks in the
human brain. ANNs typically comprise three main types of layers: input, hidden, and
output. The input layer receives the initial data or features fed into the neural network.
The number of neurons in the input layer corresponds to the number of input features. The
neurons in the hidden layers perform computations on the input data. The network learns
and extracts features from the input data in these hidden layers. Consequently, the output
layer produces the final predictions or outputs of the neural network.

The ANN architecture in Figure 3 is simulated via Matlab 2022b on Windows 10. The
model parameters for each layer and activation functions are listed in Table 2. In this
process, the batch normalization layer and ReLU activation function were applied after
the previous fully connected layer. This process was repeated three times to analyze the
numerical data. Subsequently, to prevent overfitting, the model was passed through a
dropout layer, and the results of the fully connected layer were output to the classification
layer using the SoftMax activation function.
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Table 2. ANN model parameters.

Layer Feature Map Learnables Activation

Input Layer 6 -

Fully Connected Layer 100 Weight 100 × 6, Bias 100 × 1

Batch Normalization Layer 100 Offset 100 × 1, Scale 100 × 1 ReLU

Fully Connected Layer 50 Weight 50 × 100, Bias 50 × 1

Batch Normalization Layer 50 Offset 50 × 1, Scale 50 × 1 ReLU

Fully Connected Layer 10 Weight 10 × 50, Bias 10 × 1

Batch Normalization Layer 10 Offset 10 × 1, Scale 10 × 1 ReLU

Dropout Layer 10 -

Fully Connected Layer 2 Weight 2 × 10, Bias 2 × 1

Classification Layer 2 - SoftMax

3. Proposed CNN Architecture
3.1. Data Creation and Augmentation for CNN

The process of changing the data from a normalized table to images was applied to
a 2D CNN. In the image-creation phase, a 2 × 3 image was generated using six factors.
Each image was labeled as fine or defective. Because alternative ordering results occur
in diverse image forms, the order of the elements is crucial. To produce a coherent and
significant visual depiction, we grouped the factors and exhibited factors collectively or in
close proximity. Sample 2 × 3 images produced during image production are shown in
Figure 4. The process of converting the data into an image was performed such that the
normalized value could be composed of a grayscale value between 0 and 1. To specify a
value for grayscale, the following was used: 0 means black, 1 means white. The determined
gray color was then displayed in the generated image.
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While collecting actual process data, there may be an imbalance in the number of
normal and defective data points or a lack of collected data. Moreover, when learning is
performed using such a dataset, an overfitting problem can occur with a high validation
accuracy but low test accuracy. The simplest method to address this challenge involves
increasing the amount of data artificially before proceeding with learning. This method is
referred to as “data augmentation”, and there exist methods to change the basic character-
istics of an image, such as cropping a portion of the image, rotating the image, flipping the
image symmetrically in the horizontal or vertical direction, and injecting noise in the image.
Various studies have focused on methods for changing the geometrical features of an image,
such as mix-up, which mixes two images into one, and random erase, which masks a part
of the existing image with a random grayscale image [26]. The data augmentation method
used in this study was eliminated, and the existing image was masked by a randomly sized
white rectangle within the range of a minimum of 1 × 1 to a maximum of 112 × 112. When
masked at the maximum size, 1/4 of the total image was covered. Furthermore, the masked
position was randomly designated to prevent the problem of concentrated masking at a
specific position [27].

In contrast to other methods, the image augmentation method using a white rectangu-
lar cutout is suitable for this study, where the classification results may vary depending
on the grayscale values for each location in the image. Moreover, there is no change in or
movement of normalized values for each location because the scale of an image does not
change or the image is not augmented, such as in symmetric movement and rotation.

The augmentation results were used to generate the image shown in Figure 5. The
figure (a) presents the result of augmenting the fine data, and (b) presents the result of
augmenting the defect data. To solve the data shortage problem, the original image dataset
is increased by factors of 2, 5, and 10.
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3.2. Two-Dimensional CNN Model

Through this process, sensor data from industrial sites, where image data could not be
collected, were visualized and applied to the 2D CNN algorithm. The 2D CNN algorithm
is a deep neural network algorithm conceived based on the working principle of the optic
nerve in animals and is designed with a structure suitable for image data processing. A
2D CNN extracts the features of the data by reducing the size of the overall image and
increasing the image dimensions as the image is input to the feature extraction layer and
then passes through the sequentially constructed convolution and pooling layers. The
extracted features are finally entered into the fully connected layer, and a final judgment is
made. The algorithm used was based on CNN-WDI, which is a 2D CNN model proposed
by Saqlain et al., and the number of nodes in the fully connected layer was changed to make
it suitable for this study [15]. The structure of the 2D CNN model in Figure 6 is simulated
through Matlab on Windows 10. The parameters such as the output size and activation
function of each layer are listed in Table 3.

3.3. Optimization of Hyperparameters

CNNs contain several hyperparameters that must be carefully tuned to achieve an
optimal performance in various tasks. Certain key hyperparameters in CNNs include the
minibatch size, max epoch, learning rate, and dropout. The minibatch size is the number of
data samples used in one training iteration. This balances efficiency and accuracy, thereby
affecting the convergence speed. The max epoch signifies the maximum number of training
cycles through the dataset, which is crucial for model learning to avoid underfitting or
overfitting. The learning rate dictates the step size for updating the neural network weights
during training. This influences the convergence and model accuracy, which require careful
tuning. Dropout is a regularization method that prevents overfitting. It randomly drops
neurons, thereby enhancing model generalization. The dropout rate controls the fraction of
dropped neurons, which is crucial for robustness.

The selection of hyperparameter values significantly affects the performance of ma-
chine learning models. In this study, the grid search method, which is a systematic approach
for determining the best combination of hyperparameters by evaluating all possible com-
binations within a specified range for each hyperparameter, was used. The ranges of
the hyperparameters are listed in Table 4. Subsequently, a grid containing all possible
combinations of the specified hyperparameters was generated. For each combination in the
grid, the model was trained on the training data, and its performance was evaluated using
cross-validation techniques (such as k-fold cross-validation). This provided an unbiased
estimate of model performance for each set of hyperparameters. Thus, the combination of
hyperparameters resulted in the best performance based on the loss function. This combi-
nation represents the optimal set of hyperparameters for the proposed model. Once the
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optimal hyperparameters were determined, the final model was trained using these values
for the entire training dataset. The range of hyperparameters was determined through
experiments and theories and by randomly substituting values within the range [28]. To
reduce the computational time required for iterative operations during this process, the
size of the images was reduced to 25 × 25 × 3. Table 5 provides the optimized values of
the hyperparameters used in the optimization method. After the hyperparameters were
determined, the model was trained with image data of the original size (224 × 224 × 3).
The training time for the CNN model was approximately 4 h.
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Table 3. CNN model parameters.

Layer Activation Learnables Activation

Image Input Layer 224 × 224 × 3 -

Convolution Layer 224 × 224 × 16 Weight 3 × 3 × 3 × 16, Bias 1 × 1 × 16

Batch Normalization Layer 224 × 224 × 16 Offset 1 × 1 × 16, Scale 1 × 1 × 16 Sigmoid

Max Pooling Layer 112 × 112 × 16 -

Convolution Layer 112 × 112 × 16 Weight 3 × 3 × 16 × 16, Bias 1 × 1 × 16

Convolution Layer 112 × 112 × 32 Weight 3 × 3 × 16 × 32, Bias 1 × 1 × 32

Batch Normalization Layer 112 × 112 × 32 Offset 1 × 1 × 32, Scale 1 × 1 × 32 Sigmoid

Max Pooling Layer 56 × 56 × 32 -

Convolution Layer 56 × 56 × 32 Weight 3 × 3 × 32 × 32, Bias 1 × 1 × 32

Convolution Layer 56 × 56 × 64 Weight 3 × 3 × 32 × 64, Bias 1 × 1 × 64

Batch Normalization Layer 56 × 56 × 64 Offset 1 × 1 × 64, Scale 1 × 1 × 64 Sigmoid

Max Pooling Layer 28 × 28 × 64 -

Convolution Layer 28 × 28 × 64 Weight 3 × 3 × 64 × 64, Bias 1 × 1 × 64

Convolution Layer 28 × 28 × 128 Weight 3 × 3 × 64 × 128, Bias 1 × 1 × 128

Batch Normalization Layer 28 × 28 × 128 Offset 1 × 1 × 128, Scale 1 × 1 × 128 Sigmoid

Max Pooling Layer 14 × 14 × 128 -

Convolution Layer 14 × 14 × 128 Weight 3 × 3 × 128 × 128, Bias 1 × 1 × 128

Dropout 14 × 14 × 128 -

Fully Connected Layer 1 × 1 × 2 -

Classification Layer 1 × 1 × 2 - SoftMax

Table 4. Range of grid search and step.

Hyperparameter Range Step

Initial Learning Rate 0.001~0.01 0.05

Max Epoch 10~50 10

Minibatch Size 10~300 50

Dropout Rate 0~0.3 0.1

Table 5. Optimized values of the hyperparameters.

Algorithm Dataset
Optimization Hyperparameter

Minibatch Max Epoch Dropout Learning Rate

ANN

k-65 SMOTE 100 50 0 0.005

k-98 SMOTE 300 50 0 0.001

k-130 SMOTE 150 50 0 0.005

CNN

2× Augmentation 100 50 0.2 0.001

5× Augmentation 150 30 0.1 0.001

10× Augmentation 100 20 0.3 0.001

4. Results and Discussion

To derive the test results of the learned model, a confusion matrix was configured,
where Tp, Fp, Fn, and Tn represent the numbers of data points classified as true positive,
false positive, false negative, and true negative, respectively.
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It was evaluated using various performance measures, such as accuracy, precision,
recall, and F1 score [29]. The Accuracy of a classifier defines the frequency with which it
accurately predicts over the entire dataset, and is defined as follows:

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
(3)

Precision and Recall indicate that both performance measures are inversely proportional
to each other, and each has various classification-measuring qualities.

Precision =
Tp

Tp + Fp
(4)

Recall =
Tp

Tp + Fn
(5)

The F1 score calculates the harmonic mean of precision and recall and is defined as
follows: The F1 score is an interpretation of actual and predicted probabilities. If these
probabilities are close to each other, then the F1 score exhibits a higher result, and vice versa.

F1 score =
2× Precision× Recall

Precision + Recall
(6)

To evaluate the execution time of defect detection, we used the GPU Nvidia GeForce
RTX 3070 and CPU Intel i9 10,900, resulting in an execution time of 0.089 s. The performance
evaluation metrics are listed in Table 6. Applying the oversampled data to the ANN,
the dataset with the k value set to 130 exhibited the highest accuracy of 84.82% and a
fallout value of 0.2857. In the CNN utilizing cutout, the image data were augmented
tenfold, resulting in an accuracy of 97.32% and a fallout value of 0.0357. Consequently, a
performance comparison between an ANN applied to tabular data and a CNN utilizing
tabular data converted into image data revealed the superior predictive accuracy and
fallout values of the CNN.

Table 6. Performance evaluation index by dataset.

Algorithm Dataset
Performance Index

Accuracy Precision Recall F1 Score Fallout

ANN

k-65 SMOTE 0.8304 0.7606 0.9643 0.8540 0.3036

k-98 SMOTE 0.8393 0.7639 0.9821 0.8594 0.3036

k-130 SMOTE 0.8482 0.7746 0.9821 0.8661 0.2857

CNN

2× Augmentation 0.9554 0.9474 0.9643 0.9558 0.0526

5× Augmentation 0.9643 0.943 0.9643 0.9643 0.0357

10× Augmentation 0.9732 0.9649 0.9821 0.9735 0.0357

This confirmed that the tabular data applied to the ANN were effectively transformed
into grayscale images. Moreover, the spatial context information of these image files
formed an efficient array for extracting the features of the seat-forming process. Employing
convolution layers for feature extraction and max pooling layers for downsampling the
image allowed the spatial hierarchical structure of the image data to be learned well.
Consequently, the preservation of specific parts of the image and assistance in feature
extraction were evident. The CNN model used in this study repeated the structure of the
convolution layer–batch normalization–sigmoid–max pooling–convolution layer four times.
In addition, previous studies have reported that accuracy escalates with each repetition,
indicating effective feature extraction [30].
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5. Conclusions

This study discussed the effectiveness of using deep learning, specifically 2D CNN
algorithms, to predict defects in manufacturing processes with nonlinear characteristics.
The focus was on predicting defects in seat foaming manufacturing using both ANNs and
CNNs. To address data imbalances, oversampling techniques were employed, including
SMOTE for the ANN and cutout augmentation for the CNN. The CNN outperformed the
ANN in terms of prediction accuracy, particularly with the 10-fold augmented dataset
using cutout, achieving 97.32% accuracy and a fallout value of 0.0357. Moreover, the
importance of preprocessing techniques such as grayscale conversion for image data was
emphasized and it was concluded that a CNN, with its ability to extract spatial features
and repeated convolution layers, was more effective than an ANN in predicting defects
using transformed image data in manufacturing processes.

Regarding the reliability of prediction or process analysis, it is effective to predict
defects in processes with nonlinear characteristics using deep learning. In particular,
utilizing a 2D CNN algorithm with excellent classification performance is effective, and
data in image form are necessary to apply the 2D CNN algorithm. However, extracting
distinct features, particularly when mixing raw materials, is challenging, and the process
of injecting them into a mold is limited by the collection and analysis of image data. This
process requires the conversion of numerical data into images. In this study, the concept
of each factor’s range or unit was eliminated through the normalization of the numerical
data, thereby facilitating classification based on its location within the entire range. It is
believed that these normalization results can be converted into grayscale values to allow a
model to learn a range of converted grayscale values instead of specific numbers, thereby
enhancing the classification performance. As a part of future work, we aim to explore and
implement various methods to reduce the training time of the 2D CNN model. This will
include investigating the impact of optimizing the size of the image dataset, among other
potential strategies.
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