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Abstract: Mediation analysis plays an increasingly crucial role in identifying potential causal path-
ways between exposures and outcomes. However, there is currently a lack of developed mediation
approaches for high-dimensional survival data, particularly when considering additive hazard
models. The present study introduces two novel approaches for identifying statistically significant
mediators in high-dimensional additive hazard models, including the multiple testing-based mediator
selection method and knockoff filter procedure. The simulation results demonstrate the outstanding
performance of these two proposed methods. Finally, we employ the proposed methodology to
analyze the Cancer Genome Atlas (TCGA) cohort in order to identify DNA methylation markers that
mediate the association between smoking and survival time among lung cancer patients.
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1. Introduction

The concept of mediation analysis was initially introduced in the field of social psy-
chology [1]. Subsequently, this methodology has been extended to various disciplines,
establishing itself as a valuable and widely adopted tool in the social sciences [2,3], epige-
nomics [4,5], and biomedical sciences [6,7]. In the field of biomedical sciences, mediation
analysis plays a pivotal role by quantifying the intermediate effects of mediators on the
causal pathway from treatment to outcome. The advancement of data collection technol-
ogy has led to a significant emphasis on the analysis and processing of high-dimensional
mediators. For example, Ref. [8] used a joint significance test for mediation effects in
high-dimensional epigenetic studies. Ref. [9] studied sparse principal component-based
high-dimensional mediation analysis. Ref. [10] proposed a high-dimensional mediation
analysis model with latent variables. Refs. [11,12] studied the mediation effects in high-
dimensional and compositional microbiome data. The two review papers by [13,14] provide
further insights into high-dimensional mediation analysis.

As the field of mediation analysis continues to advance, its scope has expanded be-
yond continuous and binary outcomes [15,16] to encompass time-to-event outcomes [17,18],
which find significant applications in genetics and biomedical sciences that frequently en-
counter censored survival data. The availability of high-dimensional mediation analysis
methods for time-to-event outcome data remains limited. For example, Ref. [19] introduced
a novel approach for high-dimensional mediation analysis in Cox’s model, which incorpo-
rates sure independent screening and minimax concave penalty techniques to select relevant
variables. Ref. [20] proposed a novel approach to accurately control the false discovery
rate (FDR) in high-dimensional Cox mediation regression, enabling the identification of
potential mediators. Ref. [21] proposed a high-dimensional mediation analysis procedure in
the Cox model that utilized propensity scores to adjust for potential confounders. Ref. [22]
introduced a novel approach that incorporates the aggregation of multiple knockoffs into
the Cox model for analyzing survival outcomes with high-dimensional mediators. The
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current literature on high-dimensional mediation analysis of additive hazard models for
survival data is limited, with the exception of [23]. This kind of high-dimensional topic
also has potential applications in other fields [24–28]. The present study introduces two
novel approaches for identifying statistically significant mediators in high-dimensional
additive hazard models: a multiple testing-based mediator selection method and a knockoff
filter procedure.

The remaining sections of the paper are structured as follows. In Section 2, we present
the additive hazard model and its corresponding notation. In Section 3, we propose
a three-step approach for mediator selection based on multiple testing. In Section 4, we
introduce a knockoff filter procedure designed for high-dimensional mediators. In Section 5,
we evaluate the performance of our proposed method through numerical simulations.
In Section 6, we apply the proposed method in the context of the TCGA project. The paper
concludes with a discussion in Section 7, offering some final remarks.

2. Model and Notations

With the rapid advancement of information technology, certain conventional media-
tion analysis methods fail to meet the demands of practical analysis, particularly when deal-
ing with high-dimensional survival data. Nevertheless, time-to-event data are prevalent in
genomics and bioinformatics research. Consequently, this study presents an introduction
to high-dimensional mediation analysis using the additive hazards model for survival data.
Let T̃i = min(Ti, Ci) represent the observed failure time, where Ti is the survival time of
the ith individual, and Ci denotes the censoring time, i = 1, ..., n. Denote δi = I(Ti 6 Ci)
as the failure indicator, where I(·) is the indicator function. We consider the following
high-dimensional survival mediation model with the additive hazards model:

Mk = ck + αkX + ζ′kZ + ek, k = 1, · · · , p, (1)

λ(t|X, M, Z) = λ0(t) + γX + β1M1 + · · ·+ βp Mp + η′Z, (2)

where λ0(t) is the baseline hazard function, X is an exposure, Z = (Z1, · · · , Zq)′ is a
vector of confounding variables, and M = (M1, · · · , Mp)′ is a vector of p-dimensional
mediators with p � n; γ is the “direct effect" of X on the hazard of T, after adjusting
for all mediators and covariates. α = (α1, · · · , αp)′ is a vector of parameters relating
the exposure to p mediating variables, and β = (β1, · · · , βp)′ is a vector of parameters
relating the mediators to T adjusting for the exposure and covariates. ζk’s and η are the
parameters of covariates. In addition, ck’s are the intercept terms; ek’s are error terms.
By [29], the “indirect effect” along the path X → Mk → T is αkβk for k = 1, · · · , p.
Let S0 = {k : αkβk 6= 0, k = 1, · · · , p} be the index set of significant mediators.

For convenience, we define the counting process and risk process as Ni(t) = I(T̃i ≤
t, δi = 1) and Yi(t) = I(T̃i ≥ t), respectively. Let θ = (γ, β′, η′)′ and Qi =

(
Xi, M′i, Z′i

)′,
where i = 1, · · · , n. According to [30], the corresponding pseudo-likelihood score function
of the additive hazards model is

U(θ) =
n

∑
i=1

∫ τ

0

{
Qi − Q̄(t)

}{
dNi(t)−Yi(t)θ′Qidt

}
, (3)

where Q̄(t) = ∑n
j=1 Yj(t)Qj/ ∑n

j=1 Yj(t) and τ is the length of study. We can write the score
function as

U(θ) = h− V ′θ, (4)

where

h =
1
n

n

∑
i=1

∫ τ

0

{
Qi − Q̄(t)

}
dNi(t),



Mathematics 2023, 11, 4891 3 of 11

V =
1
n

n

∑
i=1

∫ τ

0
Yi(t)

{
Qi − Q̄(t)

}⊗2 dt,

and a⊗2 = aa′. Based on (4), the loss function of the additive hazards model has the
following form:

L(θ) =
1
2

θ′Vθ− h′θ. (5)

3. Multiple Testing-Based Mediator Selection

In this section, we are interested in selecting significant mediators in models (1) and (2)
with p� n. Our proposed new approach for achieving this objective involves a three-step
multiple testing-based mediator selection method (Figure 1):

output significant mediators             

Step 1: SIS
( initial screening to obtain a subset of size d = 2[n/ log(n)] )

Step 2A: SCAD
( variable selection for those survived meditors after Step 1 )

Step 2B: P-values calculation
( derive the p-values for all mediators )

Step 3: HDMT
( perform multiple testing for p mediators  )

Raw Data: 
p-dimensional mediators

Figure 1. The workflow of multiple testing-based mediator selection procedure.

Step 1. (Mediator screening). First, all mediators are standardized with mean zero and
variance one. For k = 1, · · · , p, we perform a series of marginal mediation models:

Mk = ck + αkX + ζ′kZ + ek, (6)

λ(t|X, Mk, Z) = λ0(t) + γX + βk Mk + η′Z. (7)

Using the idea of sure independence screening [31], we can identify a subset S1 = {k : Mk
is among the top d = 2[n/ log(n)] mediators with the largest min(|α̂k|, |β̂k|), k = 1, · · · , p},
where α̂k and β̂k are the estimates based on the marginal models (6) and (7), respectively.

Step 2A. (SCAD-based variable selection). Using the mediators Mk’s that survived from
Step 1, we further minimize the following penalized loss function:
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Q(θS1) = L(θS1) + ∑
j∈S1

pλ(
∣∣β j
∣∣), (8)

where θS1 = (γ, β′S1
, η′)′, and βS1 denotes the subvector of β with index belonging to

S1; pλ(·) is the Smoothly Clipped Absolute Deviation Fan and Li [32], and its derivative
function is

p
′
λ(|β|) = λI(|β| ≤ λ) +

(aλ− |β|)+
a− 1

I(|β| > λ),

where a > 2 is the adjustable parameter, and λ > 0 is the regularization. Based on [32], we
set a = 3.7 in practical applications. Meanwhile, the parameter λ is determined by five-fold
cross-validation. The subset S2 can be obtained as {k : β̂k 6= 0, k ∈ S1}, which is based on
the SCAD-penalized estimates β̂k’s.

Step 2B. (p-value calculation). When the number of mediators p exceeds the sample
size n, it becomes challenging to obtain the p-values for βk’s. To address this issue, we
propose a method for computing the p-values that is similar to [33]. Let

λ(t|X, MS2 , Z) = λ0(t) + γX + βS2MS2 + η′Z, if j ∈ S2; (9)

λ(t|X, MS2∪{j}, Z) = λ0(t) + γX + βS2∪{j}MS2∪{j} + η′Z, if j /∈ S2. (10)

The estimates β̂ j’s and their standard errors σ̂β j ’s for j ∈ S2 can be obtained using

Equation (9). For j /∈ S2, the estimates β̂ j’s and their standard errors σ̂β j ’s are derived from
Equation (10). The p-values for β j’s can be computed accordingly:

Pβ j = 2
{

1−Φ
(
|β̂ j|/σ̂β j

)}
, j = 1, · · · , p, (11)

where Φ(·) is the cumulative distribution function of N(0, 1).
Step 3. (Multiple testing). We consider the following multiple testing problem:

H0k : αkβk = 0 vs. HAk : αkβk 6= 0, k = 1, · · · , p. (12)

The above null hypothesis can be equivalently decomposed into three disjoint
null hypotheses:

H00,k : αk = 0 and βk = 0,

H01,k : αk = 0 and βk 6= 0,

H10,k : αk 6= 0 and βk = 0.

For k = 1, · · · , p, let

Pmax,k = max(Pαk , Pβk ), (13)

where Pβk is given in (11), Pαk = 2
{

1−Φ
(
|α̂k|/σ̂αk

)}
, α̂k is the ordinary least square estimator

and its standard error is σ̂αk . For t ∈ [0, 1], we define V00(t) = #
{

Pmax,k 6 t|H00
}

, V01(t) =
#
{

Pmax,k 6 t|H01
}

, V10(t) = #
{

Pmax,k 6 t|H10
}

, V11(t) = #
{

Pmax,k 6 t|H11
}

, and R(t) =
V00(t) + V01(t) + V10(t) + V11(t), where V01(t), V10(t), V00(t) denote the number of false
positives in terms of the three different hypotheses. Then we can define the FDR as

FDR(t) = E
[

V00(t) + V01(t) + V10(t)
R(t) ∨ 1

]
. (14)

Denote π00, π01, and π10 as the proportions of the three disjoint null hypotheses
H00,k,H01,k and H10,k, respectively. By [34], the FDR(t) can be expressed as

F̂DR(t) =
π̂01t + π̂10t + π̂00t2

max{R(t), 1}/p
.

Based on [34], we define a threshold for controlling the FDR:

t̂δ = sup
{

t : F̂DR(t) ≤ δ
}

. (15)
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where δ is the significance level, π̂00, π̂01, π̂10 and t̂δ can be obtained from the R package
HDMT (version 1.0.5). The index set of selected mediators is given as

ŜHDMT =
{

k : Pmax,k ≤ t̂δ, k = 1, · · · , p
}

,

where Pmax,k and t̂δ are given in (13) and (15), respectively.

4. Knockoff Filter for High-Dimensional Mediators

In this section, we introduce a novel knockoff filter for the additive hazards model
with high-dimensional mediators in models (1) and (2). The details of our method are
presented as follows:

Step 1. (Mediator screening). First, we use the BH-based initial screening method to
reduce the dimension of mediators. To be specific, we calculate the p-value of the effect (αk)
along the path X → Mk as

Pαk = 2
{

1−Φ
(
|α̂k|/σ̂αk

)}
, (16)

where Φ(·) is the cumulative distribution function of N(0, 1), α̂k is the estimate of the
ordinary least square (OLS) based on (1), and σ̂αk is the estimated standard error. Given δ0,
the BH-procedure is applied to perform the initial screening such that

d = max
{

k : P(k) ≤
kδ0

p

}
, k = 1, · · · , p, (17)

where P(k)’s are the order statistics of p-values given in (16). Denote S1 = {k: Mk’s are the d
mediators with P(1) ≤ · · · ≤ P(d)}, and the corresponding mediators are denoted by MS1 .

Step 2. (Perform knockoffs). The knockoff filter, introduced by [35,36], presents a novel
variable selection procedure. Its core concept involves constructing a set of knockoff
variables that are uncorrelated with the response but possess similar structures to the
original covariates. We define {M̃[b]

S1
}B

b=1 as the knockoffs of MS1 , where MS1 is an n-by-d

mediator matrix and M̃[b]
S1

is the bth knockoff of MS1 . The knockoffs {M̃[b]
S1
}B

b=1 possess the
following two properties, as stated in [36]:

(I) For any subset S ⊆ S1 and b ∈ {1, ..., B} ,

(MS1 , M̃[b]
S1
)swap (S)

d
= (MS1 , M̃[b]

S1
).

The expression “ d
=" denotes having the same distribution, while “swap (S)" rep-

resents the operation of swapping elements in set S. The notation (MS1 , M̃[b]
S1
)swap (S)

is obtained by interchanging the kth columns of MS1 and M̃[b]
S1

, where k ∈ S. As an

example, if S1 = {1, 2, 3} and S = {2, 3} , then (M1, M2, M3, M̃[b]
1 , M̃[b]

2 , M̃[b]
3 )swap (S) =

(M1, M̃[b]
2 , M̃[b]

3 , M̃[b]
1 , M2, M3).

(II) The random variables M̃[b]
S1

and T are mutually independent given MS1 for any
b ∈ {1, ..., B} , where T represents the vector of failure times. For practical application,
{M̃[b]

S1
}B

b=1 can be generated by the R package knockoff (version 0.3.6).

Step 3. (Mediator selection). Using MS1 and the bth knockoff M̃[b]
S1

, together with X and

Z, we refit an additive hazards model, denoting β
[b]
j as the coefficient corresponding to the

jth mediator Mj, and φ
[b]
j as the coefficient corresponding to the knockoff M̃[b]

j . Then, we
consider minimizing the bth loss function with Lasso penalty, i.e.,

Q(θb) = L(θb) + λ ∑
j∈S1

( |β[b]
j |+ |φ

[b]
j | ), b = 1, ..., B, (18)



Mathematics 2023, 11, 4891 6 of 11

where θb is the vector of regression coefficients in the refitted additive hazards model, and
L(θb) is similarly given as that of (5). In accordance with [22], we proceed to construct the
matrix τ = (τ

[b]
j )B×d, where each entry is carefully determined by

τ
[b]
j = |β̂[b]

j | − |φ̂
[b]
j |, b = 1, ..., B, j ∈ S1, (19)

β̂
[b]
j and φ̂

[b]
j are the Lasso estimates derived from (18). Following [37], the value of B is set

to 25 in the practical application.
The property (II) suggests that |φ̂[b]

j | should be very small. Consequently, when the

jth mediator Mj exhibits significance, τ
[b]
j tends to be a relatively large positive value;

whereas for non-significant mediators, τ
[b]
j tends to hover around a small range centered

at 0. The statistic π = (π
[b]
j )B×d is obtained in a similar manner as described in [22], with

its entries being calculated as

π
[b]
j =

 #
{

k∈S1 :τ[b]k ≤−τ
[b]
j

}
d , τ

[b]
j > 0;

1, τ
[b]
j ≤ 0.

(20)

The small value of π
[b]
j is worth noting as it indicates a strong mediation signal.

This is because when the jth mediator is significant, τ
[b]
j tends to be a relatively large

positive value. Consequently, among those mediators Mk screened by S1, it is rare for the
corresponding τ

[b]
k , k ∈ S1, to be smaller than −τ

[b]
j .

According to [38], the statistics {π[b]
j }

B
b=1 are aggregated to generate the indicators π̄j’s

as follows:

π̄j = min

1,
Qη

({
π
[b]
j : b ∈ {1, ..., B}

})
η

, j ∈ S1, (21)

where η is the pre-specified quantile parameter, and Qη(·) indicates the η-quantile
function. Based on the procedure for [37], we use η = 0.3 in practice. Next, we apply the
BH method to determine the thresholds t̂δ with FDR control at

t̂δ = max
{

k : π̄(k) ≤
kδ

d

}
, k = 1, ..., d, (22)

where π̄(k), k = 1, ..., d is the order statistic of π̄j, j ∈ S1. The estimated index set of active
mediators is given as

ŜKF =
{

j ∈ S1 : π̄j ≤ π̄(t̂δ)

}
. (23)

For the mediator screened by Step 1, we can conclude that this mediator Mj is signifi-
cant if its statistic π̄j is smaller than the specified value π̄(t̂δ)

. The overall workflow of this
procedure is illustrated in Figure 2 as a concise summary.
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Figure 2. The workflow of knockoff-based mediator selection procedure.

5. Simulation Studies

In this section, we conduct some simulations under two different types of scenar-
ios (binary and continuous exposure) to evaluate the performance of our two proposed
approaches, where the ones mentioned in the previous Sections 2 and 3 are denoted as
‘HDMT’ and ‘Knockoff’, respectively. We also compare with the one in paper [23], denoted
as ‘Cui’. Similar to [22], we choose δ0 = 0.2 for ‘Knockoff’ in the simulations.

First, we generate failure times T1, · · · , Tn from the additive hazards model with
λ(t|X, M, Z) = λ0(t) + γX + β1M1 + · · ·+ βp Mp + η′Z, where λ0(t) = 1, γ = 0.3, and
η = (0.5, 0.5)

′
; the mediators are generated from linear models Mk = ck + αkX +

ζ′kZ + ek , where ζk = (0.3, 0.3)
′
, the intercept term ck is generated by the uniform

distribution U(0, 0.2) and the random error term ek is generated from N(0, 1). We set
α = (0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.2, 0.2, 0, · · · , 0)

′
and β = (1, 1, 1, 1, 1, 1, 0, 0, 0.2, 0.2, 0, · · · , 0)

′
,

where the dimension of mediators is p = 10,000. That is, the first six mediators
{Mk}6

k=1 are significant. Moreover, we consider two different scenarios for the
exposure X and covariate Z:

Case 1 (binary exposure): The exposure X follows from B(1, 0.6), and the covariate
Z = (Z1, Z2)

′
, where Z1 and Z2 are independently generated from B(1, 0.3) and

U(0, 1), respectively.
Case 2 (continuous exposure): The exposure X follows from N(0, 2), and the covariate

Z = (Z1, Z2)
′
, where both Z1 and Z2 are independently generated from N(0, 2).

The censoring time follows a uniform distribution U(0, c0), where c0 is adjusted to
achieve an average censoring rate of approximately 20% (c0 = 1) and 50% (c0 = 0.2), respec-
tively. The sample size is chosen as n = 300, 500, and 800, respectively. All simulation results
are based on 500 repetitions. We compare the two proposed methods with Cui’s method,
we set the pre-specified FDR level δ as 0.05 in (22). Let S0 be the set of significant mediators,
that is, S0 = {1, 2, · · · , 6}, and let Ŝ be the estimated index set of significant mediators.
To evaluate the performance of mediator selection, we use the following five indicators:
the model size (MS) |Ŝ|; the rate that the correct model is selected (CMR) with I(Ŝ = S0);

the false discovery proportion (FDP) with FDP = |Ŝ\S0|
|Ŝ| ; the true positive rate (TPR) with

TPR = |Ŝ∩S0|
|S0|

.
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The performance of the three methods for mediator selection is demonstrated with
the simulation results presented in Tables 1 and 2. The results with binary exposure are
presented in Table 1, indicating that Knockoff exhibits higher TPR and lower FDP, while
Cui’s method demonstrates a significantly more conservative approach. The results clearly
demonstrate that Knockoff’s TPR and CMR consistently outperform Cui’s method, while
the MS is also more aligned with the simulation setup’s model size. Although FDP slightly
exceeds Cui’s method, all values remain below 0.05. However, it should be noted that Cui’s
approach exhibits excessive conservatism by prioritizing a consistently low FDP at the
expense of other indicators. The results with continuous exposure are presented in Table 2,
revealing the superiority of the HDMT method over Cui’s method across three indicators:
MS, CMR, and TPR. The TPR of HDMT consistently outperforms Cui’s method, particularly
at a censoring rate of 20%, where the TPR remains above 0.875 regardless of the sample size.
Additionally, HDMT’s CMR and MS indicators demonstrate strong performance across
most scenarios. It is worth noting that the performance of the Knockoff method on the
FDP indicator is suboptimal in cases of continuous exposure, and similar conclusions have
been drawn in [22]. Therefore, we propose the following recommendations for practical
applications: if the exposure variable X is continuous, it may be more appropriate to
consider using the HDMT method; whereas if X is binary, then the Knockoff method can
be considered.

Table 1. The results about mediator selection with binary exposure.

CR = 20% CR = 50%
Sample Size

Cui HDMT Knockoff Cui HDMT Knockoff

n = 300

MS 3.05 4.42 5.902 1.276 2.018 4.638
CMR 0.032 0.078 0.524 0 0.008 0.202
FDP 0.032 0.083 0.039 0.035 0.066 0.034
TPR 0.481 0.637 0.937 0.193 0.286 0.739

n = 500

MS 5.162 6.276 6.222 3.042 4.088 5.866
CMR 0.362 0.396 0.71 0.044 0.106 0.536
FDP 0.028 0.092 0.039 0.039 0.075 0.041
TPR 0.83 0.923 0.989 0.479 0.603 0.93

n = 800

MS 6.044 6.59 6.238 4.9 5.852 6.252
CMR 0.728 0.594 0.786 0.25 0.314 0.736
FDP 0.027 0.077 0.033 0.019 0.075 0.039
TPR 0.975 0.996 1 0.796 0.883 0.993

Table 2. The results about mediator selection with continuous exposure.

CR = 20% CR = 50%
Sample Size

Cui HDMT Knockoff Cui HDMT Knockoff

n = 300

MS 3.47 5.744 7.184 1.012 2.304 5.872
CMR 0.066 0.454 0.18 0 0.032 0.118
FDP 0.025 0.063 0.168 0.019 0.042 0.133
TPR 0.554 0.875 0.978 0.159 0.338 0.833

n = 500

MS 5.292 6.376 7.78 1.962 4.666 6.87
CMR 0.362 0.69 0.098 0.002 0.232 0.152
FDP 0.025 0.053 0.216 0.013 0.059 0.164
TPR 0.855 0.994 0.998 0.317 0.702 0.941

n = 800

MS 5.974 6.362 7.976 3.482 6.174 7.382
CMR 0.784 0.73 0.09 0.064 0.522 0.15
FDP 0.017 0.048 0.232 0.015 0.068 0.182
TPR 0.976 0.999 0.999 0.567 0.942 0.989
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6. Application

The incidence and mortality rates of lung cancer are rapidly increasing, making it the
most formidable menace to human health. The findings of numerous studies indicate that
individuals who engage in long-term heavy smoking are at a higher risk of developing lung
cancer compared to non-smokers. Furthermore, research has demonstrated a correlation
between smoking and DNA methylation [39]. The identification of DNA methylation
CpG sites that mediate the association between smoking and lung cancer holds significant
practical implications. The proposed methods are applied to analyze the TCGA lung cancer
cohort, which can be freely accessed at https://xenabrowser.net/datapages/.

In our analysis, we specifically focus on the clinical presentation and epigenetic
information of a cohort comprising 754 patients, whose ages span from 33 to 90 years.
The survival endpoint is defined as the duration from initial diagnosis to either death or the
last follow-up, with a median survival time of 658 days. This also encompasses censoring,
indicating that 305 patients experienced mortality during the follow-up period, resulting
in a censoring rate of 59%. The Infinium HumanMethylation450 BeadChip array analysis
identified a total of 365,306 potential mediators in the form of DNA methylation CpG
sites. The exposure is the smoking status (smoker = 1; non-smoker = 0), and the survival
time is the outcome variable. The analysis also incorporates four covariates, namely age
at initial diagnosis, gender (Male = 1; Female = 0), tumor stage (Stage I = 1; Stage II = 2;
Stage III = 3; Stage IV = 4), and radiotherapy (Yes = 1; No = 0). The objective of our study is
to ascertain the mediating methylation markers that link smoking and survival in patients
with lung cancer.

The Knockoff method is adopted due to the binary nature of the exposure. The
conclusions drawn from simulations suggest a threshold of δ0 = 3× 10−4 in the initial stage
of the screening process. By applying this approach to identify DNA methylation CpG sites,
we successfully obtain two CpG sites (cg21926276, cg24200525) with significant mediation
effects, as presented in Table 3. From this, we can see that the mediating effect of cg21926276,
α̂k β̂k, is greater than 0, suggesting that smoking through this methylation CpG site increases
the probability of mortality. The aforementioned conclusion can be further substantiated
by previous empirical research. [40] showed that the gene H19 (cg21926276 locate) is
associated with lung cancer and tumor growth. For cg24200525, its mediation effect α̂k β̂k
is less than 0, which is consistent with previous studies [19,22]. The analysis led to the
identification of two specific methylation sites (smoking→ cg21926276→ survival time,
smoking→ cg24200525→ survival time) that serve as significant mediators among the
numerous potential methylation sites. The Cui method was also employed for the analysis
of this lung cancer dataset. However, this approach proved ineffective in identifying any
of the significant mediators. Hence, the proposed method we have presented is of greater
practical value, thus making it more suitable for real-world applications.

Table 3. The summary of significant mediating CpGs with Knockoff method.

CpGs Chromosome Gene α̂k(se) β̂k(se) Pmax,k

cg21926276 Chr11 H19 −0.0584(0.0106) −0.0007(0.0002) 0.0016
cg24200525 Chr22 SBF1 −0.0241(0.0044) 0.0019(0.0005) 0.0005

7. Conclusions

In this paper, we have introduced two innovative approaches for identifying sta-
tistically significant mediators in high-dimensional additive hazard models, including a
mediator selection method based on multiple testing and the implementation of a knockoff
filter procedure. The simulation results demonstrated the exceptional performance of
these two proposed methods. Due to the binary nature of the exposure, we applied the
Knockoff methodology to analyze the Cancer Genome Atlas (TCGA) cohort to identify two
DNA methylation markers (cg21926276, cg24200525) that mediate the association between
smoking and survival time among lung cancer patients. Finally, we proposed the following
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recommendations for practical applications: if the exposure variable X is continuous, it
may be more appropriate to consider using the HDMT method; whereas if X is binary, then
the Knockoff method can be considered.
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