
Citation: Forghani-elahabad, M.;

Alsalami, O.M. Using a Node–Child

Matrix to Address the Quickest Path

Problem in Multistate Flow Networks

under Transmission Cost Constraints.

Mathematics 2023, 11, 4889. https://

doi.org/10.3390/math11244889

Academic Editor: Michele Bellingeri

Received: 9 November 2023

Revised: 1 December 2023

Accepted: 4 December 2023

Published: 6 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Using a Node–Child Matrix to Address the Quickest Path
Problem in Multistate Flow Networks under Transmission
Cost Constraints
Majid Forghani-elahabad 1,* and Omar Mutab Alsalami 2

1 Center of Mathematics, Computing, and Cognition, Federal University of ABC,
Santo André 09210-580, SP, Brazil

2 Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099,
Taif 21944, Saudi Arabia; o.alsalami@tu.edu.sa

* Correspondence: m.forghani@ufabc.edu.br; Tel.: +55-(11)-4996-8332

Abstract: The quickest path problem in multistate flow networks, which is also known as the quickest
path reliability problem (QPRP), aims at calculating the probability of successfully sending a mini-
mum of d flow units/data/commodity from a source node to a destination node via one minimal
path (MP) within a specified time frame of T units. Several exact and approximative algorithms have
been proposed in the literature to address this problem. Most of the exact algorithms in the literature
need prior knowledge of all of the network’s minimal paths (MPs), which is considered a weak point.
In addition to the time, the budget is always limited in real-world systems, making it an essential
consideration in the analysis of systems’ performance. Hence, this study considers the QPRP under
cost constraints and provides an efficient approach based on a node–child matrix to address the prob-
lem without knowing the MPs. We show the correctness of the algorithm, compute the complexity
results, illustrate it through a benchmark example, and describe our extensive experimental results
on one thousand randomly generated test problems and well-established benchmarks to showcase
its practical superiority over the available algorithms in the literature.

Keywords: quickest path reliability problem; network reliability; multistate flow networks; minimal
paths; algorithms

MSC: 68R01

1. Introduction

The quickest path problem involves identifying a path from a source node, 1, to a
destination node, n, within a network. This path is used to efficiently transmit a specific
flow quantity, d, from node one to node n while minimizing the transmission time [1,2].
In this problem, each network arc is characterized by two key attributes: a lead time value
and a capacity value. The significance of this optimization problem is well recognized by re-
searchers due to its applicability across a broad spectrum of flow network scenarios [1–13].
This problem initially emerged when discovering the fastest route for convoy-type traffic
within flow-rate-constrained networks [1]. Subsequently, it found application in com-
munication networks, where nodes represent transmitters/receivers and arcs symbolize
communication channels [2].

While deterministic (non-stochastic) flow networks have undeniably been instrumen-
tal in understanding and optimizing various systems, the practical reality is that many
real-world systems exhibit dynamic characteristics, necessitating the adoption of a more
nuanced approach. Multistate (stochastic) flow networks (MFNs) have gained prominence
as a result of their ability to model complex systems in which fluctuations, failures, main-
tenance, and other dynamic factors play a significant role [14–20]. Within an MFN, arcs

Mathematics 2023, 11, 4889. https://doi.org/10.3390/math11244889 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11244889
https://doi.org/10.3390/math11244889
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1691-7633
https://orcid.org/0000-0001-7530-6264
https://doi.org/10.3390/math11244889
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11244889?type=check_update&version=1


Mathematics 2023, 11, 4889 2 of 15

and nodes can exist in various potential states that are influenced by traffic conditions,
maintenance activities, failures, or other underlying causes. Consequently, the network
itself assumes multiple states, each reflecting the dynamic nature of the system. Numerous
performance metrics have been introduced in the literature to evaluate the effectiveness of
an MFN, with particular emphasis on network reliability, which stands out as a primary
indicator. Network reliability is commonly defined as the system’s capacity to fulfill a
predefined function within specified conditions and within a known time frame [21]. A
well-known reliability indicator is the two-terminal reliability of an MFN. It is the probabil-
ity of transmitting at least a given demand for d units of flow/data/commodity from node
one (source) to node n (destination). Numerous exact and approximative algorithms have
been proposed in the literature to compute this indicator [8,10,15,20,22–34].

Due to the inherent random variability in arc capacities within MFNs, the transmission
time likewise exhibits stochastic behavior. In light of this uncertainty, the classical quickest
path problem has evolved into a more comprehensive challenge known as the quickest
path reliability problem (QPRP) within the context of MFNs [4,5,24,35–38]. The primary
objective of the QPRP is to ascertain the probability of successfully transmitting a minimum
of d units of flow from source node one to the destination node n via a single path, all
while adhering to a stipulated time constraint of T units. This extension of the problem
accounts for the dynamic and unpredictable nature of network conditions, making it
particularly relevant in scenarios where both speed and reliability are paramount, such as
in telecommunications, transportation, and various other domains [4,24,35,39,40].

Lin [35] introduced an algorithm that required all of the MPs as input. It determines
the minimum capacity required for each MP to meet the time constraints for transmitting d
flow units. Subsequently, by systematically evaluating each MP, the algorithm derives the
solutions to the problem. Yeh et al. [39] harnessed the kth shortest path approach to devise
an algorithm for addressing the problem. In subsequent work [40], they further refined and
enhanced their algorithm. The QPRP was expanded to encompass scenarios involving two
disjoint MPs in [37,41], as well as situations with multiple disjoint MPs in [37]. In a different
approach, the researchers in [42] considered both time and budget constraints, and they
utilized these constraints to efficiently reduce the computational complexity. Their extensive
numerical analysis underscored the effectiveness of the proposed algorithm. Furthermore,
the researchers in [5] recognized the computational limitations of the algorithm presented
in [35]—mainly, when the network configuration involved over thirty relevant MPs. To
address this challenge, they introduced an unbiased Monte Carlo estimator as an alternative
to exact evaluation, offering a more scalable solution for large-scale scenarios. In a recent
development that was detailed in [4], the authors addressed integrating budget constraints
into the QPRP. They introduced an innovative approach that capitalized on budget and time
constraints to streamline the process by eliminating redundant MPs before the execution of
the algorithm. The authors then conducted extensive numerical experiments to underscore
the enhanced performance of their approach when compared to existing methods in the
literature. However, their algorithm still needs all of the MPs as input.

Recognizing the inherent computational challenge of determining all MPs, which is
an NP−hard problem [43–46], this study introduces an efficient approach designed to
address the QPRP under cost constraints without prior knowledge of MPs. Based on a
node–child matrix, our proposed algorithm offers a novel methodology for solving the
problem. To underscore its efficiency, we provide complexity analyses and present a wealth
of experimental results, thus establishing the algorithm’s superior performance compared
to existing methods in the literature.

The subsequent sections of this paper are structured as follows. Section 2 introduces the
necessary notations, nomenclature, and assumptions. Section 3 presents some preliminary
information about the problem. We propose the algorithm in Section 4. The complexity
results, and an illustrative example are given in Section 5. In Section 6, we provide several
numerical results on benchmarks and randomly generated test problems. Finally, Section 7
summarizes the work’s conclusions.



Mathematics 2023, 11, 4889 3 of 15

2. Notations, Nomenclature, and Assumptions

G G(N, A, M, L, C) represents a Multistate Flow Network (MFN), with N =
{1, 2, · · · , n} as the node-set, where n signifies the total number of nodes. The
collection of arcs is represented as A = {a1, a2, · · · , am}, where m corresponds
to the number of arcs.
The MFN is further characterized by: (1) M = (M1, · · · , Mm), a maximum
capacity vector, where Mi signifies the max-capacity of arc ai for 1 ≤ i ≤ m.
(2) L = (l1, · · · , lm), a lead time vector, with each li representing the lead time
of arc ai for 1 ≤ i ≤ m. (3) C = (c1, · · · , cm), a cost vector in which ci designates
the transmission cost of arc ai for transmitting each unit of flow, for i = 1, · · · , m.
Moreover, nodes 1 and n are considered respectively the source and destination
nodes.
To illustrate, Figure 1 depicts an MFN defined by nodes’ set of N = {1, · · · , 5}
and arcs’ set of A = {a1, · · · , a9}. As an example, the network has lead time,
maximum capacity, and cost vectors respectively as follows: L = (3, 1, 2, 3, 4,
3, 2, 3), M = (4, 2, 5, 4, 3, 3, 4, 5), and C = (2, 3, 4, 3, 2, 3, 2, 1). Consequently,
for instance, the values within these vectors indicate that at most four units
of flow can be transmitted concurrently at any time through a1, a4, or a7 due
to M1 = M4 = M7 = 4. Likewise, for example, l8 = 3 denotes that passing
up to M8 = 5 units of flow through a8 lasts three units of time. Furthermore,
c2 = 3 signifies that transmitting any flow unit on a2 incurs a cost of three
currency units.

X X = (x1, x2, · · · , xm) represents the current system state vector (SSV). Here,
0 ≤ xi ≤ Mi is an integer value, indicating the current capacity of arc ai for
1 ≤ i ≤ m. For instance, X = (3, 2, 3, 4, 3, 3, 3, 5) can be considered as a SSV for
Figure 1.

Ii shows the number of arcs incoming into node i for i = 1, 2, · · · , n. We call this
number the in-degree of the respective node. It is noted that I1 = 0 because all
flows originate from source node one, and no flow goes to the source node.
For instance, we have I1 = 0, I2 = I3 = I5 = 3, and I4 = 4 in the network
depicted in Figure 1.

Oi represents the count of outgoing arcs from node i, where 1 ≤ i ≤ n. We call this
the out-degree of the respective node. It is noted that On = 0 because all flows
go to the destination node, and no flow goes out of this node.
For instance, we have O1 = O4 = 3, O2 = O3 = 2, and O5 = 0 in the network
depicted in Figure 1.

Pj is the jth minimal path (MP) for j = 1, · · · , h. So, h is the number of MPs in
the network. As an example, P1 = {a1, a4, a5, a8} represents an MP for the
illustrated network in Figure 1.

KPj(X) KPj(X) = min{xi|ai ∈ Pj} is the capacity of Pj under SSV X for j = 1, 2, · · · , h.
For instance, in Figure 1, the capacity of P1 = {a1, a4, a5, a8} with X = (3, 2, 3, 4,
3, 3, 3, 5) is equal to KP1(X) = min{3, 4, 3, 5} =3.

LPj LPj = ∑i: ai∈Pj
li is the lead time of the MP Pj for j =1, 2, · · · , h. For instance,

considering L = (3, 1, 2, 3, 4, 3, 2, 3), we have LP1 = l1 + l4 + l5 + l8 =13 for
P1 = {a1, a4, a5, a8}.

CPj CPj = ∑i: ai∈Pj
ci is the transmission cost to send one unit of flow through Pj

for j =1, 2, · · · , h. For instance, considering C = (2, 3, 4, 3, 2, 3, 2, 1), we have
CP1 = c1 + c4 + c5 + c8 =8 for P1 = {a1, a4, a5, a8}.

d a non-negative integer number that shows the demand value—the flow required
to be transmitted from node 1 to node n.

b, T b and T are the budget and time limits, respectively.



Mathematics 2023, 11, 4889 4 of 15

Rd,T,b is the network’s reliability, which is the probability of the successful transmis-
sion of at least d units of flow within T units of time through a single MP while
incurring a cost of no more than b currency units.

Figure 1. A benchmark network example with eight arcs and five nodes.

2.1. Nomenclature

• A vector, say X = (x1, x2, · · · , xm), is considered smaller than or equal to another
vector, say Y = (y1, y2, · · · , ym), denoted as X ≤ Y, if xi ≤ yi holds for all 1 ≤ i ≤ m.
If, in addition to X ≤ Y, there exists at least one j such that xj < yj, we express it as
X < Y. For instance, if we take X = (4, 2, 1), Y = (3, 1, 1), and Z = (2, 2, 2), we can
observe that Y < X, Z ≮ X, X ≮ Z, Y ≮ Z, and Z ≮ Y.

• We define a vector X ∈ Ψ as a minimal vector when there is no other Y ∈ Ψ such that
Y < X. For example, every vector in the set {(4, 3, 1), (2, 1, 3), (3, 4, 1), (1, 2, 2)} is a
minimal vector. It is worth noting that a vector does not need to be less than or equal
to all other vectors in the set to be considered minimal.

• Noting that a path is a collection of adjacent arcs enabling data transmission from
node one to node n, we say (minimal) path P1 is a subset of (minimal) path P2, denoted
by P1 ⊂ P2 when P2 encompasses all the arcs present in path P1.

2.2. Assumptions

We consider the following assumptions, which are common in the literature [4,24,35,36],
throughout this work.

1. The capacity of each arc ai ∈ A is a random integer ranging from 0 to Mi for
i = 1, 2, · · · , m, and it follows a predefined probability distribution function.
It is important to emphasize that Mi is a known integer value that represents the
maximum capacity of arc ai.

2. The arcs’ capacities are statistically independent.
3. The network adheres to the flow conservation law, which means that no other node

generates or accumulates flow apart from the source and destination nodes.
4. All of the required flow is sent through a solitary path from node one to node n.
5. Every node is deterministic, that is, perfectly reliable.

It is worth highlighting that in cases where an unreliable node exists within the
network, it can be represented as a pair of reliable nodes connected by an arc [47]. As
a result, the final assumption does not impose any artificial constraints on the problem.
Furthermore, it is essential to highlight that the algorithm presented in this manuscript
is applicable to both directed and undirected MFNs. Although the benchmark examples
depict all arcs as undirected for simplicity and to avoid ambiguity in the representation
of the examples, it is crucial to clarify that the arcs originating from the source node and
terminating at the destination node are inherently directed.

3. Background

We have two constraints in the problem—the budget and the time constraints—and
we are looking to calculate the probability of successfully transmitting at least d units of
flow from node one to node n such that the constraints are satisfied. One notes that the cost
for transmitting d units of flow through a minimal path (MP) Pj under system state vector
(SSV) X is equal to

g(d, Pj) = d× CPj, (1)



Mathematics 2023, 11, 4889 5 of 15

provided that KPj(X) > 0. In fact, as we are considering the time parameter, as long
as the capacity of the MP is nonzero, its amount does not play a role in computing the
transmission cost. However, the capacity of an MP directly affects the transmission time.

To illustrate this, consider the network in Figure 1 with the current SSV X = (3, 2,
3, 4, 3, 3, 3, 5) and lead time vector L = (3, 1, 2, 3, 4, 3, 2, 3). Consider a scenario in
which we aim to transmit a flow of d = 7 units from node one to node n through path
P1 = {a1, a4, a5, a8}. Observing that KP1(X) = min{3, 4, 3, 5} = 3 ≥ 1, this is feasible, and
the transmission cost is calculated as g(7, P1) = 7× CP1 = 21. Additionally, we find that
LP1 = l1 + l4 + l5 + l8 =13. Since KP1(X) =3, the transmitted flow is limited to three units
of flow at a time, and since LP1 =13, no flow can arrive at node n during the first 13 time
units. Following this initial period, the flow is steadily pumped through with three units at
a time until the entire d = 7 units of flow have successfully traversed path P1. Consequently,
it takes a total of 13 + d7/3e=16 time units to transmit d = 7 flow units from node one to
the destination node n via P1. Generally, the required time to transmit d flow units from the
node one to the node n through MP Pj under SSV, X, provided that KPj(X) > 0, equates to

f (d, X, Pj) = LPj + d
d

KPj(X)
e, (2)

where dxe is the smallest integer number that is not less than x. It is noted that if KPj(X) = 0,
it is impossible to transmit any flow through Pj, and one can define f (d, X, Pj) = ∞ for
such a case.

To compute the reliability, one needs to find all of the SSVs under which d units of
flow can be sent through the network within the time T and budget b. The following
result from [4] shows that it is sufficient to determine at least the minimal vectors with this
property and not all of them.

Lemma 1 ([4]). Suppose X and Y represent two SSVs for the network G. If X ≤ Y, then for any
MP Pj with KPj(X) > 0, we have f (d, X, Pj) ≥ f (d, Y, Pj).

We now define the following function to simultaneously take care of the time and
budget limits.

F(d, X, b) = min{ f (d, X, Pj) | KPj(X) > 0 & g(d, Pj) ≤ b, j = 1, 2, · · · , h} (3)

This way, F(d, X, b) ≤ T signifies that one can transmit at least d units of flow from node
one to node n through some MP in the network while adhering to the time and budget
constraints. To elaborate, assuming that Ψd,T,b = {0 ≤ X ≤ M | F(d, X, b) ≤ T}, it is
evident that Rd,T,b= Pr{X | X ∈ Ψd,T,b}. Moving forward, let

Ψmin
d,T,b = {X1, X2, · · · , Xσ}

represent the collection of minimal vectors within Ψd,T,b, and we define Er = {X|X ≥ Xr}
for r = 1, 2, · · · , σ. By forming the sets B1 = E1, B2 = E2 − E1, · · · and Bσ = Eσ −∪σ−1

r=1 Er,
it becomes apparent that ∪σ

r=1Er = ∪σ
r=1Br. As a result, the computation of reliability,

which is denoted as Rd,T,b, can be determined using the sum of disjoint products [48–50] as
follows.

R(d,T,b) = Pr(∪σ
r=1Br) =

σ

∑
r=1

Pr(Br), (4)

where Pr(Br) = ∑X∈Br Pr(X) and Pr(X) = ∏m
i=1 Pr(xi). Therefore, the essential task is to

determine the set Ψmin
d,T,b = {X1, X2, · · · , Xσ}.

Definition 1. A system state vector X is called a (d, T, b)-MP candidate if there exists an MP Pj
such that KPj(X) > 0, g(d, Pj) ≤ b, and f (d, X, Pj) ≤ T.

Proposition 1. The set Ψd,T,b = {0 ≤ X ≤ M | F(d, X, b) ≤ T} is the set of all
of the (d, T, b)-MP candidates.



Mathematics 2023, 11, 4889 6 of 15

Definition 2. A system state vector X is a (d, T, b)-MP if and only if it is a (d, T, b)-MP candidate
and no Y < X is a (d, T, b)-MP candidate.

Proposition 2. The set Ψmin
d,T,b is equal to the set of all the (real) (d, T, b)-MPs.

In the next section, we provide an efficient algorithm for searching for all of the
(d, T, b)-MPs.

4. The NCM-Based Algorithm

As all the flow must pass through a single MP, and no MP is a subset of another MP,
it is possible to determine the minimum required capacity for each MP to facilitate the
transmission of d flow units within T time units. Let Pj be a designated MP with CPj ≤ b/d.
Now, if one creates an SSV, X, by setting the capacity of all the arcs within Pj to an arbitrary
positive value αj and the capacity of all other arcs to zero, several observations can be made:
(1) The capacity of Pj under X is αj, that is, KPj(X) = αj. (2) The vector X is the minimal
SSV under which the capacity of Pj equals αj. (3) The capacity of all other MPs under X is
zero, as each of them contains at least one arc not belonging to Pj.

Hence, one needs to determine the value αj for Pj in such a way that d flow units
can be sent via it within T time units. From Equation (2), one sees that the required time
to transmit d flow units through Pj under an arbitrary SSV, X, equates to LPj + d d

KPj(X)
e.

Assume that KPj(X) = αj > 0. As d and αj are positive numbers, then d d
αj
e ≥ 1, and

thus LPj should be less than T. Now, for the MP, Pj, that satisfies CPj ≤ b/d and LPj < T,
we have

LPj + d
d
αj
e ≤ T → d d

αj
e ≤ T − LPj → αj ≥ d

d
T − LPj

e. (5)

As a result, αj = d d
T−LPj

e represents the minimum required capacity for Pj to enable the

transmission of d flow units via this MP within a time span of T units. If αj ≤ KPj(M), it is
possible to create the corresponding SSV, X, described above, which is the corresponding
(d, T, b)-MP to Pj. Otherwise, it is impossible to have such a (d, T, b)-MP.

This forms the fundamental concept behind several algorithms presented in the litera-
ture, which rely on having access to all of the MPs and inspecting each one individually
to assess the feasibility of conducting the necessary transmission [4,35]. Nonetheless, the
primary drawback of such algorithms lies in their dependence on the complete set of MPs.
It is noteworthy that determining all of the MPs is intrinsically an NP-hard problem, as
established in [43–46,51]. Here, we use the idea of the node–child matrix utilized in [52] to
propose an efficient algorithm that does not need any MPs in advance.

The node–child matrix of an MFN is structured as an n× q matrix, where q represents
the maximum out-degree of all of the nodes within the network, and it is determined as
q = max{Oi | i = 1, 2, · · · , n− 1}. In this matrix, each row corresponds to a specific node
in the network and indicates its child nodes. For instance, the following is the node–child
matrix related to the network depicted in Figure 1.

B =


2 3 4
4 5 0
4 5 0
2 3 5
0 0 0


It is noted that the out-degrees of different nodes in the network may not be uniform.

Consequently, when the out-degree of a specific node is less than the maximum out-
degree q, we add “0” to the node–child matrix. For instance, in Figure 1, where we have
q = O1 = O4 = 3, we assign “0” in the last column of the respective rows for nodes 2 and 3
as O2 = O3 = 2. Additionally, the last row in the node–child matrix always consists of zeros:
On = 0. With this matrix in hand, a backtracking procedure can be employed to identify all



Mathematics 2023, 11, 4889 7 of 15

of the MPs [52]. We utilize this approach to discover all of the (d, T, b)-MPs. We enhance
the procedure by including two conditions for checking the lead time and transmission
cost of the in-progress MPs. When either the lead time equals T or the transmission cost
exceeds b, we terminate the construction and move on to construct the next MP. It is worth
noting that as the path is built and new arcs are added, the lead time and transmission
cost of the in-progress path increase incrementally. Therefore, the algorithm continuously
evaluates these two conditions after incorporating each new arc into the path. Significantly,
once the lead time matches T or the transmission cost surpasses b for the in-progress path,
the algorithm discontinues checking paths leading from that point to the destination node
and instead reverts to building other paths.

It is also noted that in the algorithm below, P is a vector that shows the ordered
nodes in the under-construction MP, and Lt and cap are, respectively, its lead time and
transmission cost.

The proposed NCM-based algorithm
Input: G(N, A, M, L, C) (the network), d (the demand level), b (the available budget), and
T (the time limit).
Output: The set Θ of all (d, T, b)-MPs.

Step 0. Let f = (1, · · · , 1)1×n, P = (1), i = s = 1, Lt = 0, cap = ∞, and Θ = {}.
Step 1. Calculate the NCM, B.
Step 2. If B(s, f (s)) ∈ P, then let f (s) = f (s) + 1 and repeat this step. Otherwise, let

t = B(s, f (s)).
Step 3. If t 6= 0, then go to Step 7.
Step 4. If s = 1, then stop. Otherwise, if s = n, then go to Step 5; otherwise, go to

Step 6.
Step 5. Calculate the corresponding SSV with P and add it to Θ. If i = 2, then stop.

Otherwise, let

f (P(i− 1)) = 1,

c = c− C(P(i− 1), P(i))− C(P(i− 2), P(i− 1)),

lt = lt− L(P(i− 1), P(i))− L(P(i− 2), P(i− 1)),

remove the last two components from P, let s = P(end) and i = i− 2, and update cap. Go
to Step 2.

Step 6. Let

f (s) = 1,

c = c− C(P(i− 1), P(i)), and

lt = lt− L(P(i− 1), P(i)).

Remove the last component from P, and let s = P(i− 1) and i = i− 1. Update cap and go
to Step 2.

Step 7. If lt + L(s, t) < T, then let η = d d
T−lt−L(s,t) e. If lt ≥ T − L(s, t), (c + C(s, t))×

d > b, or η > min{cap, M(s, t)}, then let f (s) = f (s) + 1; otherwise, let c = c + C(s, t),
lt = lt + L(s, t), f (s) = f (s) + 1, i = i + 1, P(i) = t, s = t, and cap = min{cap, M(s, t)}.
Go to Step 2.

It is noted that the last two nodes of the MP P are removed in Step 5 of the algorithm,
and accordingly, the cap is updated as follows. After removing these nodes, if P includes
only node one, then we have cap = ∞. Otherwise, cap is equal to the minimum capacity
of the arcs in P. For a better understanding of the proposed algorithm, its flowchart is
provided in Figure 2.



Mathematics 2023, 11, 4889 8 of 15

Figure 2. The flowchart of the proposed algorithm.

As our proposed algorithm is based on a node–child matrix when constructing new
MPs and correctly checks the lead time and budget constraints after adding an arc to the
in-progress path, it is seen that the algorithm correctly calculates all of the (d, T, b)-MPs in
a given MFN. Moreover, we know that the number of (d, T, b)-MPs in an MFN equals the
number of its MPs. Hence, as the proposed algorithm utilizes a backtracking approach to
search for the solutions by constructing the MPs, the algorithm generates no duplicates.
Therefore, we have the following theorem.

Theorem 1. The proposed algorithm above calculates all of the (d, T, b)-MPs with no duplicates.

5. The Complexity Results and an Illustrative Example
5.1. The Complexity Results

To compute the time complexity of the proposed algorithm, we recall that n and m are
the numbers of nodes and arcs in the network, respectively. Moreover, as the considered
network is assumed to be connected, we have O(n) ≤ O(m) ≤ O(n2). Step 0 includes some
simple considerations and is of the order of O(1). To determine the node–child matrix,
one needs to check all of the outgoing arcs from each node, which takes at most O(n) for
each node and, hence, O(n2) in total. Thus, the time complexity of Step 2 is O(n2). Steps 3
and 4 are of the order of O(1). The SSV corresponding with the obtained MP is an m−tuple
vector; hence, its calculation in Step 5 is at most of the order of O(m). Updating cap in
Step 5 may require one to find the minimum of i− 1 numbers, and as i is bounded by n,
the time complexity of calculating cap is at most O(n). The other calculations in Step 5
are simple and of the order of O(1). Therefore, the time complexity of Step 5 is O(m),
reminding one that O(n) ≤ O(m). The update of cap in Step 6 is of the order of O(n) in the
worst case, and the other calculations in this step are of the order of O(1). Hence, Step 6 is
of the order of O(n). Step 7 includes some simple calculations and is of the order of O(1).

One notes that Step 5 is run when we have a new solution to save, and one of Steps 6
or 7 is run during the verification of each new node to determine a new solution. On
the other hand, an MP has at most n nodes. Hence, the time complexity of Steps 2 to 7
for each MP is at most O(n2), reminding one that O(m) ≤ O(n2). As a result, recalling
that h is the number of MPs in the network, the time complexity of Steps 2 to 7 is at most
O(hn2). As Steps 0 and 1 are run parallel to other steps, the time complexity of the proposed
NCM-based algorithm is O(hn2), and the following theorem is at hand.

Theorem 2. The proposed node–child-matrix-based algorithm’s time complexity for addressing the
quickest path reliability problem under budget constraint is O(hn2).



Mathematics 2023, 11, 4889 9 of 15

It is noted that the number of solutions to this problem is far less than the number of
MPs in practice, and accordingly, the time complexity of the proposed algorithm in practice
is far less than the computed one in the worst case.

5.2. An Illustrative Example

Consider the flow network provided in Figure 3 as the communication infrastructure
for a smart grid. In this network, each communication line comprises multiple dedicated
fiber cables. These cables are exclusive to their respective lines, are susceptible to failures,
and possess distinct transmission capacities. Additionally, each cable requires a specific
duration for data transmission and incurs a corresponding cost. Consequently, based on
the type and quantity of available fiber cables, each arc in the network exhibits a probability
distribution for the capacity, lead time, and transmission cost, as detailed in Table 1. The
objective is for the administrator to ascertain the likelihood of successfully transmitting a
data volume of d = 7 units from node one to node seven within a time frame of T = 8 time
units and a budget of b = 213 currency units using this network. We employ the proposed
NCM-based algorithm to achieve this objective.

Figure 3. A benchmark example of a communication infrastructure for a smart grid with 12 arcs and
seven nodes.

Table 1. The arc data for Figure 3.

Arcs Lead Time Cost Capacities/Probabilities
0 1 2 3 4 5

a1 1 8 0.01 0.04 0.05 0.9 0 0
a2 4 8 0.01 0.02 0.03 0.94 0 0
a3 2 9 0.01 0.09 0.1 0.8 0 0
a4 3 8 0.01 0.04 0.1 0.85 0 0
a5 2 7 0.01 0.02 0.02 0.02 0.03 0.9
a6 4 8 0.01 0.02 0.05 0.1 0.82 0
a7 2 6 0.01 0.05 0.1 0.1 0.74 0
a8 3 6 0.01 0.01 0.05 0.02 0.01 0.9
a9 1 7 0.01 0.02 0.02 0.95 0 0
a10 1 8 0.01 0.02 0.04 0.02 0.06 0.85
a11 1 4 0.01 0.03 0.03 0.03 0.05 0.85
a12 3 3 0.01 0.05 0.05 0.05 0.84 0

Solution: There are n = 7 nodes and m = 12 arcs in the given network. We have M = (3, 3,
3, 3, 5, 4, 4, 5, 3, 5, 5, 4), L = (1, 4, 2, 3, 2, 4, 2, 3, 1, 1, 1, 3), and C = (8, 8, 9, 8, 7, 8, 6, 6, 7, 8, 4,
3) according to Table 1, and T = 8, b = 213, and d = 7 are given.
Step 0. We let f = (1, 1, 1, 1, 1, 1, 1), P = (1), i = s = 1, Lt = 0, cap = ∞, R = 0,
and Θ = {}.



Mathematics 2023, 11, 4889 10 of 15

Step 1. The NC matrix is equal to

B =



2 3 4 0
5 7 0 0
4 5 6 0
3 6 0 0
2 3 6 7
3 4 5 7
0 0 0 0


Step 2. B(1, f (1)) = 2 /∈ P, so we let t = 2.
Step 3. t 6= 0, hence we proceed to Step 7.
Step 7. Lt + L(1, 2) = 1 < 8, so η = d 7

8−1e = 1. As Lt < 8 − 1, 7 × 8 < 213, and
η = 1 ≤ 3 = min{∞, M(1, 2)}, we let c = 8, Lt = 1, f (1) = 2, i = 2, P = (1, 2), s = 2, and
cap = 3, and we go to Step 2.
Step 2. B(2, f (2)) = 5 /∈ P, so we let t = 5.
Step 3. t 6= 0, hence we proceed to Step 7.
Step 7. Lt + L(2, 5) = 4 < 8, so η = d 7

8−4e = 2. As Lt < 8 − 3, 7 × 16 < 213, and
η = 2 ≤ 3 = min{3, M(2, 5)}, we let c = 16, Lt = 4, f (2) = 2, i = 3, P = (1, 2, 5), s = 5,
and cap = 3, and we go to Step 2.
Step 2. B(5, f (5)) = 2 ∈ P, so we let f (5) = 1 + 1 = 2 and repeat this step.
Step 2. B(5, f (5)) = 3 /∈ P, so we let t = 3.
Step 3. t 6= 0, hence we proceed to Step 7.
Step 7. Lt + L(5, 3) = 6 < 8, so η = d 7

8−6e = 4. As η = 4 > 3 = min{3, M(5, 3)}, we let
f (5) = 3 and go to Step 2.
Step 2. B(5, f (5)) = 6 /∈ P, so we let t = 6.
Step 3. t 6= 0, hence we proceed to Step 7.

...
The final set of solutions is obtained: { (3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 3, 0), (2, 0, 0, 0, 2, 0, 0, 0, 0, 0,
0, 0), (0, 0, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0)}.

Notably, 368,640 potential state vectors exist for this modestly sized network. Conse-
quently, directly validating all of these vectors is an exceedingly time-consuming endeavor.
Furthermore, the presence of 25 MPs in this network underscores the inefficiency of algo-
rithms that utilize all MPs as input and systematically check them individually to identify
solutions. The next section discusses our proposed algorithm’s efficiency in more detail.

6. Experimental Results

Recently, the authors of [4] demonstrated the superiority of their proposed algorithm
over other exact algorithms in the literature by evaluating the complexity results and
conducting numerous numerical experiments. In light of this, we compare their algorithm
with ours to showcase the practical effectiveness of our approach in contrast to the existing
literature. Both algorithms were implemented in the MATLAB programming environment
and compared on the Arpanet topology—a rather large benchmark with 20 nodes, 32 arcs,
and 1610 MPs (depicted in Figure 4). Additionally, we employed one thousand randomly
generated large-sized test problems for a comprehensive assessment of the algorithmic
efficiency. The computations were carried out on a computer with an Intel(R) Core(TM)
i5-12500 Duo CPU clocked at 3.00 GHz and 32.0 GB of RAM.

The capacities, lead times, and transmission costs of the arcs in both cases—Arpanet
and the randomly generated test problems—were assigned random integer values within
the intervals [5, 20], [3, 10], and [5, 15], respectively. It is essential to note that with suffi-
ciently large time and budget limits, any SSV can be a solution, rendering the algorithms
redundant. To ensure meaningful constraints, we defined a specific time limit T = LP and
budget limit b = d× CP for each test problem, where LP and CP are the arithmetic means
of the paths’ lead times and paths’ costs, respectively.



Mathematics 2023, 11, 4889 11 of 15

Figure 4. The Arpanet topology with 32 arcs and 20 nodes taken from [53].

For the Arpanet topology, we compared the algorithms in ten cases by assigning
the demand d = α × dKPe, where α = 16, 17, · · · , 25, KP is the arithmetic mean of the
paths’ capacities, and dxe is the smallest integer number that is not less than x. It is noted
that our tests showed very few solutions or no solutions for larger demand values in this
benchmark example. It is also noted that for every case, the arcs’ capacities, lead times, and
transmission costs were randomly generated, as explained above. That is, we compared the
algorithms on this benchmark for ten different scenarios. Table 2 presents the final results,
with the columns detailing the demand level, the number of solutions, the runtime of our
proposed algorithm, the runtime of the algorithm proposed in [4], and the time ratio t2/t1.
The last column in the table illustrates that our proposed algorithm outperformed the other
algorithm by solving all cases at least 3.5 times faster, with some instances exceeding eight
times faster and averaging over five times faster. These outcomes unequivocally highlight
the superiority of our algorithm in comparison to the alternative in this benchmark network
example.

Table 2. The final results on the Arpanet benchmark depicted in Figure 4 with 1610 MPs.

d Ns t1 t2 t2/t1

96 283 0.0015 0.0054 3.5430
102 270 0.0012 0.0052 4.4396
108 254 0.0012 0.0051 4.3694
114 224 0.0011 0.0053 4.9603
120 204 0.0010 0.0050 5.1865
126 192 0.0009 0.0051 5.7419
132 177 0.0009 0.0050 5.6753
138 167 0.0009 0.0050 5.6062
144 147 0.0008 0.0072 8.5036
150 137 0.0011 0.0050 4.4366

Geo. Mean 0.0011 0.0053 5.2463

For a more meaningful comparative analysis of the algorithms, we leveraged a dataset
comprising one thousand randomly generated test problems. To construct this dataset,
we varied the number of nodes, denoted as n, across the range of 31 to 40. For each
value of n, we generated 100 distinct random networks, totaling 1000 test problems. To
maintain a balanced distribution that avoided overly dense networks with an abundance
of MPs or extremely sparse networks with few MPs, we used the limits utilized in [4] for
the number of arcs in each random network. Subsequently, the number of arcs in each
randomly generated network was assigned random integer values within the interval
[3× (dn/2e − 1), 2× (dn/2e+ 10)]. The specifics of the arcs, including the data values,
as well as the time and budget constraints, were randomly determined by following a
methodology similar to that applied to the Arpanet network. Additionally, in each test
problem, the demand level was established as the arithmetic mean of the capacities of
the MPs.



Mathematics 2023, 11, 4889 12 of 15

In this way, we created ten sets of randomly generated networks, each comprising
one hundred test problems. Table 3 illustrates the average data for each set. The table
columns present the number of nodes, the average number of MPs, the average number
of solutions, the average runtime of our proposed algorithm, the average runtime of the
algorithm proposed in [4], and the average time ratio of the runtimes. The last column
in this table also shows that our proposed algorithm solved the random test problems an
average of six times faster than the other algorithm and, notably, indicates the superiority
of our proposed algorithm.

Table 3. The average data on the ten sets of randomly generated test problems.

n Np Ns t1 t2 t2/t1

31 30,369 12,356 1.314 8.577 6.528
32 25,518 10,487 0.911 5.285 5.802
33 35,999 14,713 1.756 10.996 6.263
34 22,646 9425 0.795 4.476 5.631
35 45,378 18,715 2.953 18.958 6.420
36 33,208 13,773 1.710 10.398 6.080
37 63,354 26,457 6.498 43.972 6.767
38 39,762 16,763 2.428 14.160 5.832
39 80,121 33,274 8.966 60.483 6.746
40 49,725 20,963 4.249 26.568 6.252

Furthermore, for a meaningful comparison across the set of Np = 1000 test problems,
we assessed the runtimes of both algorithms by creating a performance profile following
the framework established by Dolan and Moré [54]. This performance profile assessed
the ratio of computation times for these algorithms concerning the best time achieved by
the algorithm. In essence, let ti,1 and ti,2 denote the computation times for our proposed
algorithm and the one proposed in [4], respectively, for i = 1, 2, · · · , 1000. The performance
ratios are then determined as ri,j =

ti,j
min ti,j : j=1,2 , where j = 1, 2 [54]. The performance of

each algorithm is characterized by Prj(τ) = 1
Np

SIZE{i| ri,j ≤ τ} for j = 1, 2. Here, the
SIZE represents the number of problems for which the respective algorithm achieves a
performance ratio within a factor τ ∈ R of the best possible ratio. Consequently, Prj(τ)
quantifies the probability that an algorithm’s performance ratio ri,j falls within the factor τ.
According to this profile, one algorithm is deemed superior to another when its performance
chart surpasses that of the other [54].

Figure 5 provides the resulting performance profiles for both algorithms. This figure
clearly shows that our proposed algorithm solved almost all of the test problems faster than
the other algorithm. One also can see that almost 90% of the test problems were solved by
our proposed algorithm almost four times faster. Moreover, it shows that our algorithm
solved some of the test problems more than nine times faster than the other algorithm. In
line with the previous experimental results, Figure 5 unequivocally highlights the efficiency
of our proposed algorithm compared to the other one. It is noted that in the cases with
an infinite time and budget, that is, with no limits, there was one solution corresponding
to each MP in the network, and thus, our proposed algorithm was not superior to the
algorithms available in the literature in such a case.



Mathematics 2023, 11, 4889 13 of 15

Figure 5. The Dolan and Moré performance profiles for both algorithms based on CPU running times.

7. Conclusions

Typical algorithms proposed in the literature to tackle the quickest path problem in
multistate flow networks (MFNs) often encompass three fundamental stages: (1) identifying
all of the minimal paths (MPs) of the network, (2) scrutinizing each MP to ascertain if it
meets the necessary conditions for validity, and (3) computing the corresponding system
state vectors associated with these validated MPs. It is worth noting, however, that the
initial step of determining all MPs of an MFN belongs to the family of NP-hard problems.
Moreover, as the number of MPs increases exponentially with the network size, the second
stage turns out to be very time-consuming for large MFNs. To address this complexity and
consider the cost constraints that are crucial for real-world systems, this study proposed an
improved approach that capitalized on the network’s node–child matrix structure to resolve
the problem without the prerequisite of acquiring MPs beforehand. We demonstrated
the algorithm’s correctness, computed its time complexity, and substantiated it with a
benchmark example. Moreover, several numerical results on known benchmarks and
randomly generated test problems were provided to show the efficiency of our proposed
algorithm in comparison with those existing in the literature. For future work, one can use
task and data parallelism to enhance the practicality of the algorithm. One also can develop
an extension of our proposed algorithm for cases with two or more disjoint MPs.

Author Contributions: Conceptualization, M.F.-e.; methodology, M.F.-e.; software, M.F.-e.; validation,
M.F.-e. and O.M.A.; formal analysis, M.F.-e. and O.M.A.; investigation, M.F.-e.; resources, M.F.-e.
and O.M.A.; data curation, M.F.-e.; writing—original draft preparation, M.F.-e.; supervision, M.F.-e.;
funding acquisition, M.F.-e. and O.M.A. All authors have read and agreed to the published version of
the manuscript.

Funding: The authors would like to acknowledge the Deanship of Scientific Research at Taif Univer-
sity for funding this work.

Data Availability Statement: Data sharing does not apply to this article, as no new data were
collected or studied in this study.

Acknowledgments: The authors would like to express their sincere appreciation to the anonymous
reviewers for their valuable comments, which have enhanced the quality of the final manuscript. The
first author also thanks CNPq (grant 306940/2020-5).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or
in the decision to publish the results.



Mathematics 2023, 11, 4889 14 of 15

Abbreviations
The following abbreviations are used in this manuscript:

MFN Multistate flow network
SSV System state vector
QPRP Quickest path reliability problem
MP Minimal path

References
1. Moore, M.H. On the fastest route for convoy-type traffic in flowrate-constrained networks. Transp. Sci. 1976, 10, 113–124.

[CrossRef]
2. Chen, Y.L.; Chin, Y.H. The quickest path problem. Comput. Oper. Res. 1990, 17, 153–161. [CrossRef]
3. Nagy, B.; Khassawneh, B. On the Number of Shortest Weighted Paths in a Triangular Grid. Mathematics 2020, 8, 118. [CrossRef]
4. Forghani-elahabad, M.; Yeh, W.C. An improved algorithm for reliability evaluation of flow networks. Reliab. Eng. Syst. Saf. 2022,

221, 108371. [CrossRef]
5. El Khadiri, M.; Yeh, W.C. An efficient alternative to the exact evaluation of the quickest path flow network reliability problem.

Comput. Oper. Res. 2016, 76, 22–32. [CrossRef]
6. Sedeño-Noda, A.; González-Barrera, J.D. Fast and fine quickest path algorithm. Eur. J. Oper. Res. 2014, 238, 596–606. [CrossRef]
7. Bai, G.; Xu, B.; Chen, X.; Zhang, Y.A.; Tao, J. Searching for d-MPs for all level d in multistate two-terminal networks without

duplicates. IEEE Trans. Reliab. 2020, 70, 319–330. [CrossRef]
8. Niu, Y.F.; He, C.; Fu, D.Q. Reliability assessment of a multi-state distribution network under cost and spoilage considerations.

Ann. Oper. Res. 2021, 309, 189–208. [CrossRef]
9. Liu, H.; Song, G.; Liu, T.; Guo, B. Multitask Emergency Logistics Planning under Multimodal Transportation. Mathematics 2022,

10, 3624. [CrossRef]
10. Jia, H.; Peng, R.; Yang, L.; Wu, T.; Liu, D.; Li, Y. Reliability evaluation of demand-based warm standby systems with capacity

storage. Reliab. Eng. Syst. Saf. 2022, 218, 108132. [CrossRef]
11. Calvete, H.I.; del Pozo, L.; Iranzo, J.A. Algorithms for the quickest path problem and the reliable quickest path problem. Comput.

Manag. Sci. 2012, 9, 255–272. [CrossRef]
12. Nguyen, T.P.; Lin, Y.K. Assess reliability of a tourism transport network considering limited-budget and late arrivals. Proc. Inst.

Mech. Eng. Part J. Risk Reliab. 2022, 236, 828–840. [CrossRef]
13. Huang, D.H. A network reliability algorithm for a stochastic flow network with non-conservation flow. Reliab. Eng. Syst. Saf.

2023, 240, 109584. [CrossRef]
14. Niu, Y.F.; Gao, Z.Y.; Lam, W.H. Evaluating the reliability of a stochastic distribution network in terms of minimal cuts. Transp.

Res. Part Logist. Transp. Rev. 2017, 100, 75–97. [CrossRef]
15. Niu, Y.F.; Wei, J.H.; Xu, X.Z. Computing the Reliability of a Multistate Flow Network with Flow Loss Effect. IEEE Trans. Reliab.

2023, 72, 1432–1441. [CrossRef]
16. Jiménez, D.; Barrera, J.; Cancela, H. Communication network reliability under geographically correlated failures using probabilis-

tic seismic hazard analysis. IEEE Access 2023, 11, 31341–31354. [CrossRef]
17. Zhao, J.; Liang, M.; Tian, R.; Zhang, Z.; Cao, X. Reliability Optimization of Hybrid Systems Driven by Constraint Importance

Measure Considering Different Cost Functions. Mathematics 2023, 11, 4283. [CrossRef]
18. Niu, Y.F.; Gao, Z.Y.; Lam, W.H. A new efficient algorithm for finding all d-minimal cuts in multi-state networks. Reliab. Eng. Syst.

Saf. 2017, 166, 151–163. [CrossRef]
19. Lin, S.; Jia, L.; Zhang, H.; Zhang, P. Reliability of high-speed electric multiple units in terms of the expanded multi-state flow

network. Reliab. Eng. Syst. Saf. 2022, 225, 108608. [CrossRef]
20. Huang, D.H.; Huang, C.F.; Lin, Y.K. A novel minimal cut-based algorithm to find all minimal capacity vectors for multi-state flow

networks. Eur. J. Oper. Res. 2020, 282, 1107–1114. [CrossRef]
21. Shier, D.R. Network Reliability and Algebraic Structures; Clarendon Press: Oxford, UK, 1991.
22. Yeh, W.C. An improved sum-of-disjoint-products technique for the symbolic network reliability analysis with known minimal

paths. Reliab. Eng. Syst. Saf. 2007, 92, 260–268. [CrossRef]
23. Yeh, W.C. A fast algorithm for searching all multi-state minimal cuts. IEEE Trans. Reliab. 2008, 57, 581–588.
24. Forghani-Elahabad, M. 3 The Disjoint Minimal Paths Reliability Problem. In Operations Research; CRC Press: Boca Raton, FL,

USA, 2022; pp. 35–66.
25. Niu, Y.F.; Xu, X.Z. A new solution algorithm for the multistate minimal cut problem. IEEE Trans. Reliab. 2019, 69, 1064–1076.

[CrossRef]
26. Jane, C.C.; Laih, Y.W. A practical algorithm for computing multi-state two-terminal reliability. IEEE Trans. Reliab. 2008, 57, 295–302.

[CrossRef]
27. Chang, P.C. Simulation approaches for multi-state network reliability estimation: Practical applications. Simul. Model. Pract.

Theory 2022, 115, 102457. [CrossRef]

http://doi.org/10.1287/trsc.10.2.113
http://dx.doi.org/10.1016/0305-0548(90)90039-A
http://dx.doi.org/10.3390/math8010118
http://dx.doi.org/10.1016/j.ress.2022.108371
http://dx.doi.org/10.1016/j.cor.2016.06.010
http://dx.doi.org/10.1016/j.ejor.2014.04.028
http://dx.doi.org/10.1109/TR.2020.3004971
http://dx.doi.org/10.1007/s10479-021-04322-7
http://dx.doi.org/10.3390/math10193624
http://dx.doi.org/10.1016/j.ress.2021.108132
http://dx.doi.org/10.1007/s10287-012-0138-2
http://dx.doi.org/10.1177/1748006X211037137
http://dx.doi.org/10.1016/j.ress.2023.109584
http://dx.doi.org/10.1016/j.tre.2017.01.008
http://dx.doi.org/10.1109/TR.2023.3244955
http://dx.doi.org/10.1109/ACCESS.2023.3255794
http://dx.doi.org/10.3390/math11204283
http://dx.doi.org/10.1016/j.ress.2017.05.032
http://dx.doi.org/10.1016/j.ress.2022.108608
http://dx.doi.org/10.1016/j.ejor.2019.10.030
http://dx.doi.org/10.1016/j.ress.2005.12.006
http://dx.doi.org/10.1109/TR.2019.2935630
http://dx.doi.org/10.1109/TR.2008.920792
http://dx.doi.org/10.1016/j.simpat.2021.102457


Mathematics 2023, 11, 4889 15 of 15

28. Kozyra, P.M. The usefulness of (d, b)-MCs and (d, b)-MPs in network reliability evaluation under delivery or maintenance cost
constraints. Reliab. Eng. Syst. Saf. 2023, 234, 109175. [CrossRef]

29. Forghani-elahabad, M.; Francesquini, E. Usage of task and data parallelism for finding the lower boundary vectors in a
stochastic-flow network. Reliab. Eng. Syst. Saf. 2023, 238, 109417. [CrossRef]

30. Kozyra, P.M. An Innovative and Very Efficient Algorithm for Searching All Multistate Minimal Cuts Without Duplicates. IEEE
Trans. Reliab. 2021, 71, 390–403. [CrossRef]

31. Huang, D.H.; Huang, C.F.; Lin, Y.K. Reliability Evaluation for a Stochastic Flow Network Based on Upper and Lower Boundary
Vectors. Mathematics 2019, 7, 1115. [CrossRef]

32. Xin-li, L.J.n.S.; Zhen, L. Dynamic Bounding Algorithm for Approximating Multi-state Network Reliability Based on Arc State
Enumeration. Comput. Sci. 2012, 39, 8.

33. Liu, T.; Bai, G.; Tao, J.; Zhang, Y.A.; Fang, Y. An improved bounding algorithm for approximating multistate network reliability
based on state-space decomposition method. Reliab. Eng. Syst. Saf. 2021, 210, 107500. [CrossRef]

34. Nguyen, T.P.; Lin, Y.K.; Chiu, Y.H. Investigate exact reliability under limited time and space of a multistate online food delivery
network. Expert Syst. Appl. 2023, 213, 118894. [CrossRef]

35. Lin, Y.K. Extend the quickest path problem to the system reliability evaluation for a stochastic-flow network. Comput. Oper. Res.
2003, 30, 567–575. [CrossRef]

36. Yeh, W.C.; Chang, W.W.; Chiu, C.W. A simple method for the multi-state quickest path flow network reliability problem. In
Proceedings of the 2009 8th International Conference on Reliability, Maintainability and Safety, Chengdu, China, 20–24 July 2009;
pp. 108–110.

37. Forghani-elahabad, M.; Mahdavi-Amiri, N. A New Algorithm for Generating All Minimal Vectors for the q SMPs Reliability
Problem With Time and Budget Constraints. IEEE Trans. Reliab. 2015, 65, 828–842. [CrossRef]

38. El Khadiri, M.; Yeh, W.C.; Cancela, H. An efficient factoring algorithm for the quickest path multi-state flow network reliability
problem. Comput. Ind. Eng. 2023, 179, 109221. [CrossRef]

39. Yeh, W.C. A simple universal generating function method to search for all minimal paths in networks. IEEE Trans. Syst.
Man-Cybern.-Part Syst. Humans 2009, 39, 1247–1254.

40. Yeh, W.C. A fast algorithm for quickest path reliability evaluations in multi-state flow networks. IEEE Trans. Reliab. 2015,
64, 1175–1184. [CrossRef]

41. Lin, Y.K. Spare routing reliability for a stochastic flow network through two minimal paths under budget constraint. IEEE Trans.
Reliab. 2010, 59, 2–10.

42. Forghani-elahabad, M.; Mahdavi-Amiri, N. An efficient algorithm for the multi-state two separate minimal paths reliability
problem with budget constraint. Reliab. Eng. Syst. Saf. 2015, 142, 472–481. [CrossRef]

43. Yeh, W.C. Search for all d-mincuts of a limited-flow network. Comput. Oper. Res. 2002, 29, 1843–1858. [CrossRef]
44. Kobayashi, K.; Yamamoto, H. A new algorithm in enumerating all minimal paths in a sparse network. Reliab. Eng. Syst. Saf. 1999,

65, 11–15. [CrossRef]
45. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Hardness; W. H. Freeman: New York, NY,

USA, 1979.
46. Ball, M.O. Computational complexity of network reliability analysis: An overview. IEEE Trans. Reliab. 1986, 35, 230–239. [CrossRef]
47. Forghani-elahabad, M.; Mahdavi-Amiri, N. An improved algorithm for finding all upper boundary points in a stochastic-flow

network. Appl. Math. Model. 2016, 40, 3221–3229. [CrossRef]
48. Balan, A.O.; Traldi, L. Preprocessing minpaths for sum of disjoint products. IEEE Trans. Reliab. 2003, 52, 289–295. [CrossRef]
49. Alkaff, A.; Qomarudin, M.N.; Bilfaqih, Y. Network reliability analysis: Matrix-exponential approach. Reliab. Eng. Syst. Saf. 2021,

212, 107591. [CrossRef]
50. Zuo, M.J.; Tian, Z.; Huang, H.Z. An efficient method for reliability evaluation of multistate networks given all minimal path

vectors. IIE Trans. 2007, 39, 811–817. [CrossRef]
51. Bai, G.; Tian, Z.; Zuo, M.J. An improved algorithm for finding all minimal paths in a network. Reliab. Eng. Syst. Saf. 2016,

150, 1–10. [CrossRef]
52. Fathabadi, H.S.; Soltanifar, M.; Ebrahimnejad, A.; Nasseri, S. Determining all minimal paths of a network. Aust. J. Basic Appl. Sci.

2009, 3, 3771–3777.
53. Forghani-elahabad, M.; Bonani, L.H. An improved algorithm for RWA problem on sparse multifiber wavelength routed optical

networks. Opt. Switch. Netw. 2017, 25, 63–70. [CrossRef]
54. Dolan, E.D.; Moré, J.J. Benchmarking optimization software with performance profiles. Math. Program. 2002, 91, 201–213.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ress.2023.109175
http://dx.doi.org/10.1016/j.ress.2023.109417
http://dx.doi.org/10.1109/TR.2021.3075577
http://dx.doi.org/10.3390/math7111115
http://dx.doi.org/10.1016/j.ress.2021.107500
http://dx.doi.org/10.1016/j.eswa.2022.118894
http://dx.doi.org/10.1016/S0305-0548(02)00025-4
http://dx.doi.org/10.1109/TR.2015.2499961
http://dx.doi.org/10.1016/j.cie.2023.109221
http://dx.doi.org/10.1109/TR.2015.2452580
http://dx.doi.org/10.1016/j.ress.2015.06.012
http://dx.doi.org/10.1016/S0305-0548(01)00062-4
http://dx.doi.org/10.1016/S0951-8320(98)00076-3
http://dx.doi.org/10.1109/TR.1986.4335422
http://dx.doi.org/10.1016/j.apm.2015.10.004
http://dx.doi.org/10.1109/TR.2003.816403
http://dx.doi.org/10.1016/j.ress.2021.107591
http://dx.doi.org/10.1080/07408170601013653
http://dx.doi.org/10.1016/j.ress.2016.01.011
http://dx.doi.org/10.1016/j.osn.2017.03.001
http://dx.doi.org/10.1007/s101070100263

	Introduction
	Notations, Nomenclature, and Assumptions
	Nomenclature
	Assumptions

	Background
	The NCM-Based Algorithm
	The Complexity Results and an Illustrative Example
	The Complexity Results
	An Illustrative Example

	Experimental Results
	Conclusions
	References

