
Citation: Li, R.; Zhu, L.; Li, C.; Wu, F.;

Xu, D. BNS: A Detection System to

Find Nodes in the Bitcoin Network.

Mathematics 2023, 11, 4885. https://

doi.org/10.3390/math11244885

Academic Editor: Daniel-Ioan Curiac

Received: 21 November 2023

Revised: 30 November 2023

Accepted: 4 December 2023

Published: 6 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

BNS: A Detection System to Find Nodes in the Bitcoin Network
Ruiguang Li 1,2,*, Liehuang Zhu 1, Chao Li 2, Fudong Wu 3,* and Dawei Xu 1

1 School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
liehuangz@bit.edu.cn (L.Z.); xudawei@bit.edu.cn (D.X.)

2 National Computer Network Emergency Response Technical Team/Coordination Center,
Beijing 100029, China; lc@cert.org.cn

3 School of Cyberspace Science and Technology, Beihang University, Beijing 100191, China
* Correspondence: lrg@cert.org.cn (R.L.); wufudong@buaa.edu.cn (F.W.)

Abstract: Bitcoin was launched over a decade ago and has made an increasing impact on the world’s
financial order, which has attracted the attention of researchers all over the world. The Bitcoin system
runs on a dynamic P2P network, containing tens of thousands of nodes, including reachable nodes
and unreachable nodes. In this article, a detection system, BNS (Bitcoin Network Sniffer), which could
collect as many Bitcoin nodes as possible is proposed. For reachable nodes, the authors designed an
algorithm, BRF (Bitcoin Reachable-Nodes Finding), based on node activity evaluation which reduces
the nodes to be detected and greatly shortens the detection time. For unreachable nodes, the authors
trained a decision tree model, BUF (Bitcoin Unreachable-Nodes Finding), to identify unreachable
nodes based on attribute features from a large number of node addresses. Experiments showed that
BNS discovered an average of 1093 more reachable nodes (6.4%) and 662 more unreachable nodes
(2.3%) than the well-known website “Bitnodes” per day. It showed better performance in total nodes
and efficiency. Based on the experimental results, the authors analyzed the real network size, node
“churn”, and geographical distribution.

Keywords: Bitcoin; reachable nodes; unreachable nodes; node activity; decision tree model
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1. Introduction

Bitcoin was first proposed by Satoshi Nakamoto in 2008 and has been working steadily
for over a decade. To date, it is the most successful cryptocurrency in the world, with
the highest value and greatest influence. With the outbreak of COVID-19 in 2019, much
currency flooded into the Bitcoin market and raised Bitcoin’s price, which attracted more
research interest in Bitcoin. The price of Bitcoin has become a topic of concern in academia
and industry. Suhwan et al. [1] adopted several deep learning methods and Zi et al. [2]
used Twitter comments to predict Bitcoin price. Researchers around the world have studied
Bitcoin from different perspectives.

The Bitcoin system can be divided into the transaction layer and the network layer.
Most previous studies focused on the transaction layer but less on the network layer. The
Bitcoin Network has the characteristics of decentralization and anonymity. Decentralization
means there is no central organization or trust center in the network. Participants gain trust
through message interaction. Anonymity means Bitcoin users’ accounts and addresses are
encrypted to ensure privacy and security. All the transactions are stored in the blockchain
in order of time and broadcast to all participants. Nodes in the Bitcoin Network record all
blockchain data. The decentralization and anonymity of Bitcoin complicates supervision
because the transactions are anonymous and difficult to track. Therefore, thorough studies
of the Bitcoin Network are worthwhile.

The Bitcoin Network consists of tens of thousands of nodes all over the world. These
nodes autonomously discover neighbors and complete connection establishment, forming a
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dynamic but robust P2P network. Due to the propagation delay in the wide area network, it
is difficult to collect total nodes completely. A large amount of research has been conducted
on detecting reachable nodes [3–6], and “Bitnodes” is the most authoritative third-party
website for this purpose. In addition, detecting unreachable nodes is a major challenge due
to the numerous security facilities such as firewalls existing in the network.

In this paper, the authors first introduce the structure of the Bitcoin Network and some
related work then explain the basic knowledge of addresses category, node attributes, and
activity evaluation parameters. Next, the authors propose two algorithms in detail: BRF, to
find reachable nodes, and BUF, to identify unreachable nodes. To evaluate the performance
of BRF and BUF, a detection system, BNS, was developed, and experiments were carried
out from 30 April to 14 May 2023. Based on the experimental results, the characteristics of
the Bitcoin Network were thoroughly studied. The main contributions of this article are
as follows:

(1) The authors designed an algorithm, BRF, based on node activity evaluation, which
greatly reduced the nodes to be detected and improved detection efficiency.

(2) Using node attribute features, the authors trained a decision tree model, BUF, to
identify unreachable nodes from a large number of node addresses.

(3) The authors developed a detection system, BNS; carried out experiments; and ana-
lyzed the real network size, node “churn”, and geographical distribution.

2. Bitcoin Network

The Bitcoin Network is a typical P2P network which has no centralized organization,
and the topology is dynamically changed. Each node works independently according to the
agreed protocols, shaking hands, broadcasting addresses, verifying transactions, packaging
blocks, and competing mining. The Bitcoin Network is composed of both reachable
nodes and unreachable nodes, as shown in Figure 1. Solid lines represent bidirectional
connections, while dashed lines represent unidirectional connections from unreachable
nodes to reachable nodes.

Unreachable Nodes

Invisible Part

Visible Part

Reachable Nodes

Figure 1. The structure of the Bitcoin Network.

The reachable nodes receive connection requests from external peers and provide
public services to the network, forming the visible part of the Bitcoin Network. Most
reachable nodes are full nodes, storing the complete transaction ledger and constituting
the backbone of the Bitcoin Network. In the early days, academic research on the Bitcoin
Network primarily focused on the detection of reachable nodes [5,7,8]. As research on the
Bitcoin Network progressed, it became apparent that the reachable nodes are only a part of
the network, and there is also a significant portion of network nodes that cannot be directly
connected but still actively participate in network operations. These nodes are referred to
as “unreachable nodes”.
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The unreachable nodes do not accept incoming connection requests from external
peers and do not provide public services to the network, forming the invisible part of the
Bitcoin Network. The unreachable nodes are usually deployed behind NAT or firewalls and
cannot be discovered through active probing methods. Because unreachable nodes play a
crucial role in block storage, message forwarding, and competitive mining, it is necessary
to understand the number and attributes of these nodes. We know that the number of
unreachable nodes is more than that of the reachable nodes by far, and they hold significant
value for research on transaction tracing and user identification.

3. Related Work

In the previous work, Bitcoin researchers focused on reachable nodes. Joan et al. [6]
measured the Bitcoin Network from November 2013 to January 2014, collected 872,000 nodes
using Bitcoin-Sniffer, and analyzed node attributes such as geographic distribution, node
stability, and network transmission delay. Fadhil et al. [8] measured the Bitcoin Network
over one week and collected 313,676 nodes and 6430 stable online nodes. Sehyun Park
et al. [5] measured the Bitcoin nodes in 2018 and carried out comparative research. They
collected nearly 1 million nodes in 37 days and compared the result with previous works.
Eisenbarth et al. [4] conducted a comprehensive study on the Bitcoin Network using a
crawler program similar to Bitnodes to detect the Bitcoin Network in 2020 and analyzed
node activity, node churn, software versions, and security. Ruiguang et al. [3] measured
the Bitcoin network, analyzed reachable node attributes, and proposed a method to infer
the topology.

Researchers in previous studies typically obtained seeds of the Bitcoin network, set
up connections to these seeds, then sent GETADDR messages to them. Some seeds would
accept connection requests and return ADDR messages. From ADDR messages, researchers
could obtain many node addresses and try to connect them one-by-one. By continuously
repeating this process, researchers could gradually accumulate node addresses and discover
reachable nodes in them. Due to the large number of Bitcoin nodes, scanning all addresses
would take a very long time, so the detection efficiency was very low.

As for unreachable nodes, because observers cannot establish a direct connection with
them, the previous methods mainly relied on passive collection of network-propagated
messages. Biryukov et al. [9] conducted a de-anonymization study and found a large
number of nodes that could not be connected in the network. Neudecker et al. [10] identified
two main categories of roles for unreachable nodes: standard clients in NAT or miners in
mining pools. Wang et al. [11] measured the unreachable nodes in Bitcoin and developed
a detection tool called bcclient. They deployed 102 probe nodes worldwide to collect
connection requests and discovered 189,000 active IPv4 nodes within a week. Assuming
each unreachable node maintains 3.5 outgoing connections, they estimated that the number
of unreachable nodes within a 6 h interval is about 155,000. Grundmann et al. [12,13]
conducted studies on unreachable nodes in Bitcoin and proposed a passive announcement
listening (PAL) method. They extracted unreachable nodes by receiving broadcast addresses
in the network, recording data from 2016 to 2020. They stated that there were approximately
31,000 active unreachable nodes per day at the end of 2020. Stouten [14] conducted probing
of the Bitcoin Network in passive mode and discovered 86,741 unreachable nodes in a span
of 6 days in May 2020.

However, the limitations of existing methods for finding unreachable nodes are as
follows: (1) Low coverage rate. Due to the clustering characteristics of the Bitcoin Network,
the range of the probes is usually limited, making it difficult to collect total unreachable
nodes. (2) Low collection efficiency. Due to the passive wait for messages, existing methods
usually take several weeks or months to obtain satisfactory results. (3) Lack of validation
methods. Nodes that cannot be connected are not necessarily unreachable nodes. Reachable
nodes may appear as “unreachable” due to network delay or the maximum connections
threshold being reached. Offline nodes appear “unreachable”, but they are never active in
the network. There is a considerable lack of effective validation methods.
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4. Problem Statement
4.1. Node Address Category

Bitcoin node addresses can be classified into five categories: reachable nodes, churn
reachable nodes, unreachable nodes, offline nodes, and fake nodes, as shown in Figure 2.

All Bitcoin

Nodes

Reachable Nodes

Churn Reachable Nodes

O�ine Nodes

Unreachable Nodes

Fake Nodes

R

U

R’

O

F

A

Figure 2. Bitcoin node address categories.

Set R represents reachable node addresses, which corresponds to the currently online
reachable nodes that the detecting system can establish connections to.

Set R′ represents churn reachable node addresses, which corresponds to currently
“unreachable” reachable nodes that temporarily show an “unreachable” state due to network
latency or maximum connection limits.

Set U represents unreachable node addresses, which corresponds to online unreachable
nodes that do not accept external connection requests. Here, we do not distinguish whether
the unreachable nodes are in “churn” state because an unreachable node can never be
actively connected.

Set O represents offline node addresses, which corresponds to nodes that have gone
offline either due to IP address changes or physical device shutdowns. Due to the lack
of a regular cleaning mechanism for offline nodes in the Bitcoin Network, these offline
node addresses are stored in the addrman of network nodes for a long time with an
older timestamp.

Set F represents fake node addresses, which are not real Bitcoin nodes but are injected
into the network by attackers. We have discovered some abnormal node addresses in our
experiments that have obvious arrangement patterns, indicating that they are likely fake
node addresses injected into the network by attackers.

Classifying Bitcoin node addresses into categories will help us better detect and study
online reachable nodes and unreachable nodes.

4.2. Node Attributes

During the interaction with Bitcoin nodes, the detection system obtained a large
number of node attributes, shown in Table 1. On the one hand, the returned ADDR
messages showed node information such as the service type (Service), port number (Port),
and timestamp (Time). On the other hand, the detection system recorded many working
parameters such as total records of one target IP (IP_Count), the time of sending the
GETADDR message (Send_Time), the time of receiving the the returned ADDR message
(Receive_Time), the byte length of the ADDR message (ADDR_Length), and the returned
times of different ADDR messages (ADDR_Num).

Bitcoin nodes can be classified into five categories. Different categories of nodes will
reflect different statistical characteristics of attributes due to different service capabilities,
different connection quality, and different software versions. Nodes in different categories
have different statistical features in their attributes, making it possible to apply machine
learning methods to classify them automatically.
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Table 1. Node attributes.

Node Attributes Meaning

Service Service type number
Port Port number
Time The timestamp of node address
IP_Count Total records of one target IP
Send_Time Time of sending the GETADDR message
Receive_Time Time of receiving the returned ADDR message
ADDR_Length The byte length of the ADDR message
ADDR_Num Returned times of different ADDR messages

4.3. Node Activity Parameters

We can simply judge whether a node address belongs to an online node by evaluating
its activity. The node activity can be evaluated by some parameters. In this article, we
propose an evaluating model based on information entropy, which includes parameters
such as Ci (IP_Count), Si (Service), Pi (Port), Ti (Time) and Di (Receive_Time-Send_Time),
where “i” stands for node i. The definitions of attributes are shown in Table 1. These
parameters have a close relationship with node activity.

(1) Ci represents the total number of i-th node address records collected by the detection
system. The more influential a node in a Bitcoin Network, the wider its node address
spreads in the network. Therefore, when the detection system requests inventory node
addresses from remote nodes, active node addresses will be counted more frequently.

(2) Si represents the service type value of the i-th node. Different Si values correspond to
different combinations of service identifiers, including NODE_WORK, NODE_WITNESS,
NODE_NETWORK_LIMITED, NODE_BLOOM, NODE_COMPACT_FILTERS, etc.
Among them, NODE_WORK identifies whether this node has stored a complete copy of
the blockchain (this node is a full node). Full nodes are more likely to be active nodes.

(3) Ti represents the freshness of the i-th node. The fresh node often indicates a high level
of activity.

(4) Pi represents the port number of the i-th node. Most Bitcoin nodes open the 8333 port
to receive connections. A node with an 8333 port opening indicates a high level of
activity.

(5) Di represents the delay of sending the GETADDR message and receiving the ADDR
message. The smaller the delay, the stronger the service capability or good connection
quality of the node. The larger the delay, the weaker the service capability or poor
connection quality.

By evaluating node activity, we can select active nodes to detect, which will greatly
reduce the number of nodes in the queue and enhance the detection efficiency greatly.

5. Methodology

As for node detection, reachable nodes and unreachable nodes are very different, so we
propose two different methods: BRF (Bitcoin Reachable-Nodes Finding) to find reachable
nodes and BUF (Bitcoin Unreachable-Nodes Finding) to identify unreachable nodes.

5.1. Detecting Reachable Nodes

To solve the problem of a long scanning cycle and low detection efficiency in the
detection of reachable Bitcoin nodes, the authors propose a reachable node detection
algorithm, BRF, based on evaluating node activity, which could reduce the number of nodes
to be detected from millions to thousands and improve the detection efficiency greatly.

The previous method to find reachable nodes tried to connect to node addresses
one-by-one. In Figure 2, the offline addresses (set O) usually account for a very large
proportion. The traditional detection system would take a very long time to traverse all
addresses. However, it is unnecessary to try every node. If we can choose online nodes (or
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suspected online nodes) in advance, the detection range will be greatly reduced, and the
efficiency will be improved. Here, we applied an evaluating method based on information
entropy. We selected some basic parameters and calculated the information entropy of each
parameter. Then, we obtained a comprehensive score of every node address. Finally, we set
a threshold and only detected the node whose scores exceeded the threshold.

5.1.1. Parameter Normalization

To use the entropy method to calculate node activity one-by-one, it is necessary to
normalize the parameters firstly. These parameters include: Ci, Si, Pi, Ti, and Di. In the
following formulas, uppercase letters represent the normalized evaluation values, and
lowercase letters represent the variable values. Suppose node set N has n nodes, and j is
any node.

(1) Ci represents the total number of node i’s addresses collected by the detection system.
The normalization formula for Ci is:

Ci = log ci/ log max
1≤j≤n

cj (1)

(2) Si represents the service type of node i. If node i is a full node, the Si value can only
be 1037, 1033, 1101, 1, 3, or 5. Therefore, the normalized formula for Si is:

Si =

{
1 si ∈ 1033, 1037, 1101, 1, 3, 5
0 si /∈ 1033, 1037, 1101, 1, 3, 5

(2)

(3) Ti represents the difference between the timestamp and the current time. The normal-
ized calculation formula for Ti is:

Ti = 1− log ti/ log max
1≤j≤n

tj (3)

(4) Pi represents the port number of the node i. A node with an 8333 port opening will be
more likely an active node. The normalized formula for Pi is:

Pi =

{
1 pi = 8333
0 pi 6= 8333

(4)

(5) Di represents the delay between sending a GETADDR message and receiving the
ADDR message. This delay reflects the service capability of the target node. The
normalized formula for Di is:

Di = 1− log di/ log max
1≤j≤n

dj (5)

5.1.2. Node Activity Evaluation

Next, we calculated the comprehensive score of node i to evaluate its activity. Here,
we use a method based on information entropy.

Suppose node set N has n nodes, where i stands for any node and j stands for any
evaluation parameter. The variables of evaluation parameters are: ci, si, ti, pi, and di. We
obtained the normalized evaluation parameters for node i: Ci, Si, Pi, Ti, and Di, as described
in the previous section. Then, we calculated the weight of each parameter j.

wj =
1− ej

n−∑n
j=1 ej

(6)
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In (6), ej stands for the entropy of parameter j, and wj stands for the weight of parame-
ter j. We could calculate the weights of different parameters on set N: wc, ws, wt, wp, and
wd. Finally, we calculated the comprehensive score of node i:

Scorei = wc×Ci + ws×Si + wt×Ti + wp×Pi + wd×Di (7)

We carried out numerous experiments to obtain the threshold score for an active node.
We found that if a node’s comprehensive score exceeds 0.1, it is highly likely to be an
active node. So, we sent the nodes whose comprehensive score was greater than 0.1 to the
detection queue. The process of calculating Scorei is shown in Algorithm 1:

Algorithm 1: Node activity evaluation
Input: Suppose N is a node set, and i is any node in N. The evaluation parameters

of node i are: ci, si, ti, pi, and di. The node activity threshold is σ.
Output: Detecting node queue, Q

1 for i ∈ N do
2 Normalize evaluation parameters according to (1), (2), (3), (4), and (5) and

obtain Ci, Si, Pi, Ti, and Di;
3 Calculate the weight of each parameter according to (6), and obtain the

weights ωc, ωs, ωp, ωt, and ωd;
4 Calculate the comprehensive score of node i according to (7) and obtain Scorei;
5 if Scorei > σ then
6 input i to Q;
7 end
8 end

Output: Q

The next detection process was not significantly different from the previous method.
However, BRF filtered the results and reduced the target nodes greatly, and the detection
efficiency was improved dramatically.

5.2. Identifying Unreachable Nodes

In order to solve the problem of being unable to actively detect unreachable nodes in
the Bitcoin Network and the lack of effective verification methods, the authors propose
a model, BUF, for identifying unreachable nodes based on attribute features. It extracts
attributes such as node service type, port number, and total number of records to build
feature vectors. It constructs a decision tree model through training on a large number of
inventory node addresses to automatically classify and identify real unreachable nodes.

5.2.1. Dataset and Feature Extraction

The selection of samples has a significant impact on the classification performance. In
this study, the dataset D consisted of positive and negative samples, randomly chosen from
the node address database, with a total of 20,000 records. Positive samples: The detection
system recorded all received broadcast ADDR messages on a day and extracted all node
addresses from them. After removing all reachable nodes, the real online unreachable node
addresses were left. Then, 10,000 records were randomly selected from them as positive
examples. Negative samples: The detection system recorded all node addresses that failed
to connect on the same day. After removing the known reachable and unreachable node
addresses, offline nodes and fake nodes addresses were left. Then, 10,000 records were
randomly selected from them as negative examples. After mixing the positive and negative
samples 1:1 arbitrarily, 14,000 records were selected as training data DT , and the remaining
6000 records were selected as validation data DV .

We have introduced many node attributes (see Table 1) and explained different sta-
tistical features according to node categories. Based on these attributes, we could extract
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some features to train a machine learning model and automatically classify node addresses
into different categories. The selected features are shown in Table 2.

Table 2. Feature extraction.

Notation Features

fS Service
fP Port
fT Now-Time
fC IP_Count
fD Receive_Time-Send_Time
fL ADDR_Length
fN ADDR_Num

In this study, we applied the Gini index criterion to choose optimal features. It is most
commonly used in machine learning. Suppose feature “a” has “V” possible values a1, a2,
. . . , aV . If “a” is used to partition the sample set D, “V”branches will be generated. The
“v”th branch contains all the samples in D with attribute “av”, denoted as Dv. So, the Gini
index obtained by using attribute “a” can be calculated as:

Gini(D, a) =
V

∑
v=1

|DV |
|D| Gini(DV) (8)

By calculating the Gini index of every feature, we selected those with higher Gini
index as the optimal features. The Gini index reflects the probability of data inconsistency.
The larger the Gini index, the greater the uncertainty and disorder in the data.

5.2.2. Classification Model

This article proposes a model, BUF (Bitcoin Unreachable-Nodes Finding), which could
extract typical features from sample node attributes, train a machine learning model, and
automatically classify unreachable nodes from a large number of collected node addresses.
The structure and data processing of BUF are shown in Figure 3.

Choose

Samples
IP Database

Output
Extrac�ng 

Features

ML Model

FS FP FT FC FD FL FN

F1

…

Fn

Feature 

Vectors

Bayes

SVM

Desision Tree

Radom Forest

Training DT

Verifying 

DV

Posi�ve

Samples

Neg�ve

Samples

Input

BUF Structure

Evalua�on

Model 

Tuning

DT /DV

Figure 3. BUF Structure.

The most commonly used machine learning classifiers include the naive Bayes, support
vector machine (SVM), random forest, and decision tree models, etc. The authors applied
these classifiers at default parameters to evaluate the classification performance. Several
experiments were carried out in the PyCharm environment, and the precision, recall, and
F1 of these models were compared. The comparison of different models is shown in Table 3.
The decision tree model attained the best classification performance at default parameters.
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Table 3. Comparison of different models (default parameters).

Classification Model Precision Recall F1

Naive Bayes 0.701 0.336 0.501
SVM 0.852 0.899 0.844

Random forest 0.861 0.987 0.864
Decision tree 0.889 0.945 0.884

In this application scenario, the sample features were small in number, clear in mean-
ing, and had a certain correlation. Each feature measurement value had a great impact
on the classification result. So, the decision tree model was more applicable. Here, the
theoretical analysis was consistent with the preliminary experimental results.

5.2.3. Decision Tree Construction and Optimization

Next, we began to construct the decision tree for Bitcoin node address classification.
Starting from the root, the program calculated the optimal feature (see Table 2) to split the
samples according to the GiNi criterion (8). On the next layer, the program performed the
same operation, continuously splitting the tree until reaching the leaf nodes. This process
was completed automatically using PyCharm.

To achieve an implementable classification performance, the decision tree must be
pruned and optimized. We adjusted the depth of decision tree to observe the changes in
precision. When the depth of the tree increased from 1 to 20 layers, the precision changed
gradually. As shown in Figure 4, the optimal precision is achieved when the tree depth
is 5. Next, we pruned the decision tree when tree depth was 5 layers. We adjusted the
minimum sample number of leaf nodes to limit the growth of tree. When the minimum
sample number of leaf nodes ranged from 5 to 100, the precision changed gradually. When
the minimum sample number of leaf nodes reached 30, the model had the best precision.
Subsequently, overfitting occurred, and the precision began to decline.
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Figure 4. Decision tree optimization.

Finally, we chose a decision tree with a depth of 5 layers and a minimum sample
number of 30 leaf nodes. The model had a classification precision of 97.61%, a recall rate of
96.43%, and an F1 score of 0.9757.

6. Experiments

We developed a detection system, BNS (Bitcoin Network Sniffer), and carried out
experiments to detect reachable and unreachable nodes in the Bitcoin Network from 30
April to 14 May 2023.

6.1. Bitcoin Network Sniffer

The BNS system is divided into five main parts: the main thread, node detecting
module, IP database module, real-time analysis module, and data processing module. The
system structure is shown in Figure 5.
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Figure 5. BNS structure.

The main thread is the core of BNS, responsible for system control, socket driving,
multi-thread application, and database management, etc. The node detection module
reads the node IP address and port number from the node queue, establishes multi-thread
connections with the target nodes, and completes message interaction in independent
pipelines. The IP database module is responsible for storing the Bitcoin node addresses
collected by the detection system. Each node address record includes basic information
such as IP address, port number, service type, timestamp, as well as working parameters
such as the total number of records, the time to send the GetADDR message, the time to
receive the ADDR message, the length of the ADDR message packet, and the returned
times of different ADDR messages. The real-time analysis module is mainly responsible for
processing returned messages, including calculating node activity, node attributes, and so
on. The data processing module receives the formatted information and performs feature
extraction, link inference, and communication with other third-party tools.

6.2. Detection Experiment

We carried out the detection experiment with BNS from 30 April 14 May 2023 and
recorded the total found reachable nodes and unreachable nodes. Furthermore, the time
cost of the daily experiment was recorded.

During the experimental period, BNS found an average of 18,284 reachable nodes and
identified 29,339 unreachable nodes per day, with an average time cost of 1 h and 23 min,
as shown in Table 4.

Table 4. Detection experiment.

Num Date Reachable
Nodes

Unreachable
Nodes Time Cost

1 April 30th 17,609 29,049 1 h 21 min
2 May 1st 18,446 28,498 1 h 42 min
3 May 2nd 18,466 29,154 1 h 38 min
4 May 3rd 18,339 29,869 1 h 29 min
5 May 4th 18,446 29,407 1 h 51 min
6 May 5th 18,440 29,736 1 h 3 min
7 May 6th 18,680 29,418 1 h 31 min
8 May 7th 18,357 29,648 1 h 42 min
9 May 8th 18,092 29,796 1 h 29 min
10 May 9th 18,143 29,197 1 h 4 min
11 May 10th 18,416 30,081 1 h 27 min
12 May 11th 18,491 29,271 1 h 4 min
13 May 12th 18,323 29,197 1 h 5 min
14 May 13th 17,965 29,048 1 h 25 min
15 May 14th 18,052 28,720 58 min

Average 18,284 29,339 1 h 23 min

“Bitnodes” is currently an authoritative third-party website in the field of Bitcoin
measurement. The authors compared the experimental results with Bitnodes’ real-time
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data, as shown in Figure 6. The blue curve represents the daily change nodes of Bitnodes,
while the red curve represents the daily change nodes of BNS. During the experimental
period, BNS daily found more reachable and unreachable nodes than Bitnodes, showing
the superiority of the algorithm.
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Figure 6. Comparison of experiment results with Bitnodes.

In terms of detection efficiency, BNS also had more advantages. Table 5 shows the
daily found nodes and time cost. According to the description of the Bitnodes website, it
scans for reachable nodes every 2 h and collects unreachable node information every 4 h.
Our BNS completed one whole network scanning in an average of 1 h 23 min, and found
more nodes than Bitnodes.

Table 5. Comparison of detection efficiency.

Reachable Nodes Unreachable Nodes Time Cost

Bitnodes 17,191 28,677 4 h
BNS 18,284 29,339 1 h 23 min

7. Discussion
7.1. Bitcoin Network Size

In the previous work, Bitcoin researchers determined the number of reachable nodes.
However, unreachable nodes cannot be actively detected, and the exact number of unreach-
able nodes is not known. Therefore, it is difficult to estimate the whole network size of the
Bitcoin system.

Previous work [11,12,14] carried out passive collection of unreachable nodes, but
the total number of unreachable nodes still unclear. The Bitcoin Network often reflects
clustering characteristics; that is, nodes present a certain degree of aggregation. Broadcast
node addresses propagate rapidly within a cluster of nodes but are slow and limited outside
the cluster. Passive collection cannot obtain all unreachable nodes; thus, the estimation of
the Bitcoin Network size is not accurate.

In this study, the authors collected the inventory addresses of reachable nodes and used
a decision tree model to automatically identify unreachable nodes from them. Reachable
nodes are usually important nodes in a node cluster, storing all node addresses broadcasting
in this cluster. Our method collected the inventory addresses of reachable nodes all over
the world and obtained more node addresses than previous work.

We present the number of reachable nodes, unreachable nodes, and total nodes
of the Bitcoin Network in Table 6. The total nodes in the Bitcoin Network is about
45,000–50,000 currently, and the ratio of reachable nodes to unreachable nodes is about
1:1.6. Compared to Bitnodes, our method, BUF, showed an advantage in the total number
of discovered nodes.
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Table 6. Size of the Bitcoin Network.

Tools Reachable Nodes Unreachable Nodes Total Nodes

Bitnodes 17,191 28,677 45,868
BNS 18,284 29,339 47,623

7.2. Churn of Nodes

The Bitcoin Network is a dynamic P2P network. The vast majority (97%) of Bitcoin
nodes exhibit intermittent network connectivity (churn) [7] due to network latency or other
reasons. The authors analyzed the “churn” phenomenon in the Bitcoin Network.

We analyzed all nodes from 30 April (Day 1) to 14 May (Day 15). From Day 1 to Day 15,
the total number of reachable nodes fluctuated around 18,000, with a total of 9878 nodes
consistently online within 15 days, as shown in the left of Figure 7. The total number
of unreachable nodes fluctuated around 27,000, with a total of 10,942 nodes consistently
online, as shown in the right of Figure 7. In the figure, the blue curve represents the daily
change in the total number of nodes, while the red curve represents the daily stable number
of nodes.

4-3
0 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-1

0
5-1

1
5-1

2
5-1

3
5-1

4
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000
Stable Reachable Nodes

Re
ac

ha
bl

e N
od

e

Date

 Reachable Node
 Stable Node

4-3
0 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-1

0
5-1

1
5-1

2
5-1

3
5-1

4
0

5000

10000

15000

20000

25000

30000

35000
Stable Unreachable Nodes

U
nr

ea
ch

ab
le

 N
od

es

Date

 Unreachable Nodes
 Stable Nodes

Figure 7. Stable reachable and unreachable nodes.

Furthermore, the authors analyzed the daily change proportion of nodes. Similarly,
the daily discovered nodes from Day 1 to Day 15 were used to calculate the daily change
proportion of nodes. The daily variation ratio of reachable and unreachable nodes is
shown in Figure 8 (the left shows reachable nodes and the right unreachable nodes). The
curve represents the change in the number of daily nodes, and the bar chart represents the
proportion of changes in daily nodes compared to the previous day, with red representing
a decrease and blue representing an increase.
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Figure 8. Stable reachable and unreachable nodes.

7.3. Geographic Distribution

We searched for the longitude and latitude information of node IP addresses through
the search engine Zoomeye and calculated their distribution proportions on various con-
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tinents worldwide, as shown in Table 7. As can be seen from the table, Bitcoin nodes are
most distributed in Europe, America, and Asia, accounting for over 98% of the global
total nodes.

Table 7. Geographic distribution of bitcoin nodes.

Regions Reachable Nodes Unreachable Node

Europe 58.07% 50.21%
America 30.91% 29.91%

Asia 9.43% 18.18%
Oceania 1.36% 1.16%
Africa 0.22% 0.54%
Total 100% 100%

An interesting phenomenon is that the reachable nodes in Asia accounted for 9% of the
total reachable nodes, while the unreachable nodes in Asia accounted for 18% of the total.
This may be due to the large population in Asia and the large number of Bitcoin clients.

8. Conclusions and Future Works

In this article, the authors discussed how to collect as many Bitcoin nodes as possible.
To address the problem of long scanning cycles and low detection efficiency in the detection
of reachable Bitcoin nodes, the authors proposed an algorithm, BRF, which can reduce the
number of nodes to be detected from millions to thousands and improve the detection
efficiency greatly. To solve the problem of being unable to actively detect unreachable nodes
in the Bitcoin Network, the authors proposed a model, BUF, for identifying unreachable
nodes based on attribute features. Applying BRF and BUF, a detection system, BNS, was
developed and used to measure the Bitcoin Network in 2023. Experiments showed that
BNS discovered an average of 1093 more reachable nodes (6.4%) and an average of 662
more unreachable nodes (2.3%) than “Bitnodes” per day. The time cost was reduced from 4
h to 1 h 23 min.

The experimental results further demonstrated the characteristics of the Bitcoin Net-
work. Using days as the time window, the number of online Bitcoin nodes for one day was
about 45,000–50,000 in the year of 2023, and the ratio of reachable nodes to unreachable
nodes was about 1:1.6. Every day, 1% to 9% of online nodes showed a state of churn. Over
98% of online Bitcoin nodes are located in Europe, America, or Asia.

In the future, more experiments will be carried out using BNS. The authors plan to
conduct a long-term observation of the Bitcoin Network. Because the actual size of the
Bitcoin Network cannot be theoretically analyzed, the results of BNS will be compared with
other third-party monitoring platforms. Bitcoin remains the most widely used cryptocur-
rency in the world, with the highest value and the greatest influence. There is a significant
demand for monitoring and studying Bitcoin in academia and in industry. Detecting
and mastering all Bitcoin nodes will be helpful for address anonymization analysis and
user transaction traceability.
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