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Abstract: In the paper, we consider a generalization of the classical assignment problem, which is
called the constrained assignment problem with bounds and penalties (CA-BP). Specifically, given a
set of machines and a set of independent jobs, each machine has a lower and upper bound on the
number of jobs that can be executed, and each job must be either executed on some machine with
a given processing time or rejected with a penalty that we must pay for. No job can be executed
on more than one machine. We aim to find an assignment scheme for these jobs that satisfies the
constraints mentioned above. The objective is to minimize the total processing time of executed
jobs as well as the penalties from rejected jobs. The CA-BP is related to some practical applications
such as edge computing, which involves selecting tasks and processing them on the edge servers of
an internet network. As a result, a motivation of this study is to improve the efficiency of internet
networks by limiting the lower bound of the number of objects processed by each edge server.
Our main contribution is modifying the previous network flow algorithms to satisfy the lower
capacity constraints, for which we design two exact combinatorial algorithms to solve the CA-BP.
Our methodologies and results bring novel perspectives into other research areas related to the
assignment problem.

Keywords: cloud–edge collaborative; constrained assignment; bounds; penalties; combinatorial
algorithms

MSC: 05C21; 05C90; 90B35

1. Introduction

To address the substantial increase in mobile data traffic, edge computing, which refers
to selecting tasks and processing them on the edge servers of the internet network [1],
has emerged as a compelling solution to enhance computing performance. This approach
involves the deployment of cloud computing services at the edges of the network, offering
the potential for significant improvements [2]. Edge computing can effectively overcome
the deficiencies of core network congestion and high latency that are commonly observed
in conventional cloud computing systems.

The Cloud–Edge Collaborative Computing Framework (CECCF) [2] is a computing frame-
work where the first step performs edge computing and the second transfers the remaining
tasks to the cloud computing center for further processing. In most cases in the CECCF, the
edge servers can be seen as machines. The objective of task offloading in the CECCF entails
the strategic selection of specific tasks for execution by edge servers and delegating the
remaining tasks to be processed by cloud computing centers, so as to minimize the total
cost of processing tasks on the edge servers plus the cost of processing the remaining tasks
in the cloud computing center.
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1.1. Model Description

In order to use the internet network edges more efficiently, it is usually expected that
the number of objects served by any edge server will exceed a certain number. Inspired by
this thinking, we model the task offloading problem driven by the CECCF as a constrained
assignment problem with bounds and penalties (CA-BP). Treating the cost of processing any
task on the cloud computing center in the above context as a penalty, the CA-BP is modeled
as follows. The input of the CA-BP consists of a set M = {M1, M2, . . . , Mm} of m machines
(edge servers) with two integer functions l, u : M → Z+, and a set J = {J1, J2, . . . , Jn} of
n jobs (computation tasks) with a function p : J → Z+

0 . It is necessary for each machine
Mi ∈ M to receive at least li and at most ui jobs from J to execute. Each job Jj ∈ J
must be either executed on some machine Mi ∈ M with its processing time cij or rejected
(executed by the cloud computing center) and given a penalty (computing cost) pj that
we must pay for. No job in J can be executed on more than one machine. We aim to find
an assignment scheme of these n jobs that satisfies the aforementioned constraints. The
objective is to minimize the total processing time of executed jobs as well as the penalties
from rejected jobs.

1.2. Literature Review

The assignment problem (AP) is one of the well-known combinatorial optimization
problems, which has many wide applications in real life [3]. This assignment problem was
first raised in 1952 by Votaw and Orden [4]. Subsequently, Kuhn [5] in 1955 presented the
Hungarian method to solve the assignment problem and examined the actual solutions of
the assignment problem and its variations. In the past six decades, the assignment problem
has been deeply studied in the literature [6–9].

According to the difference in the numbers of jobs and machines, assignment problems
can be generally divided into two categories, namely one-to-one assignment problems
(OTO-APs) and one-to-many assignment problems (OTM-APs) [3]. The OTO-AP is de-
scribed as follows. Given a factory that has n machines and an order to process n jobs,
each machine must receive exactly one job, and each job is only executed on one machine
with its given processing time. An assignment scheme to minimize the total processing
time is thus needed. Another kind of assignment problem is the OTM-AP. In this problem,
the number of jobs and the number of machines are no longer equal, and a machine can
execute multiple jobs.

The OTO-AP is mathematically related to the weighted bipartite matching problem
in graph theory [3], and many efficient algorithms [3,5,10] have been presented to solve
this problem, among which the most famous is the Hungarian method proposed in [5].
The OTM-AP can be viewed as a scheduling problem [11], which has been solved by the
shortest processing time first (SPT) algorithm [12]. Moreover, by applying the circular flow
method, the OTM-AP can be solved in polynomial time [10,13]. In addition, a variation of
the OTM-AP is to minimize the maximum processing time of the machines. This problem
and other related problems have been considered extensively in the literature [14–17].

With continuous research on the assignment problem, researchers have found that
when the processing times of some jobs are very long, no matter which machines the jobs
are assigned to for processing, it will cause the objective function value to become very
large. As was surveyed by Shabtay et al. [18], in many cases, processing all jobs may not be
a good strategy. A strategy which leads to penalties for rejecting some jobs would still have
an acceptable total benefit; i.e., this scheme for n jobs would be better.

Based on the aforementioned idea, Bartal et al. [19] in 2000 first proposed the parallel
machines scheduling problem with rejection, which is modeled as follows. Given a set
M = {M1, . . . , Mm} of m parallel (identical) machines and a set J = {J1, . . . , Jn} of n jobs,
each job Jj has a processing time cj > 0 and a penalty pj ≥ 0. The model is tasked with
assigning these n jobs to m machines for execution, and the objective is to minimize the
maximum processing time of machines as well as the penalties from rejected jobs. Bartal
et al. [19] designed an online algorithm with the best-possible competitive ratio
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the online version and presented a polynomial time approximation scheme (PTAS) for the
offline version. Following this pioneering work, scheduling problems with rejection have
been studied extensively in the literature [20–25].

1.3. Main Contributions

The main contributions of this paper are as follows: (1) We are the first to attempt to
model the task offloading problem in cloud–edge collaborative computing as the CA-BP,
and based on our modeling method, many related task-offloading problems in cloud–edge
collaborative computing can be solved. (2) Using a strategy that satisfies the lower capac-
ity constraints first, we modify several previous network flow algorithms to match the
capacity constraint with the upper and lower bounds. (3) Using the modified network flow
algorithms in (2), we design two exact combinatorial algorithms to solve the CA-BP.

The remainder of this paper is organized as follows. In Section 2, we present some
terminologies and fundamental lemmas to ensure the correctness of our algorithms. In
Section 3, we design two exact combinatorial algorithms to solve the CA-BP. In Section 4,
we present our conclusion and further directions.

2. Terminologies and Fundamental Lemmas

In this section, we provide some terminologies, notations, and fundamental lemmas
in order to verify the algorithms used for solving the CA-BP.

For convenience, we denote I = (J, M; l, u; c, p) as an instance of the CA-BP, where
M = {M1, M2, . . . , Mm} is a set of m machines and J = {J1, J2, . . . , Jn} is a set of n jobs.
Each machine Mi ∈ M must execute at least li and at most ui jobs from J, and each job
Jj ∈ J must be either executed on some machine Mi ∈ M within its processing time cij
or rejected with a penalty pj that we must pay for. No job can be executed on more than
one machine.

For an arc set A and an element e, we use the notation e ∈ A to denote that the element
e belongs to the set A. Given a network (directed graph) N with a source s and a sink t, we
restate some definitions and problems in [26]. Note that from now on the network refers to
the directed graph, unlike the “network” in the Abstract and Introduction.

Definition 1. Given a network N = (V, A; u; s, t) with a source s, a sink t, and a capacity function
u : A→ Z+, we define an (s, t)-flow f (in N) to be a function f : A→ R+

0 satisfying the following
three conditions:

(1) The capacity constraint: for each arc e ∈ A, we have 0 ≤ f (e) ≤ u(e), where f (e) is called
the flow value of this arc e;

(2) The flow conservation: for each vertex v ∈ V\{s, t}, we have ∑e∈δ+(v) f (e) = ∑e∈δ−(v) f (e),
where δ+(v) = {(v, x) | (v, x) ∈ A} and δ−(v) = {(y, v) | (y, v) ∈ A};

(3) For the source s, we have v( f ) = ∑e∈δ+(s) f (e)−∑e∈δ−(s) f (e) ≥ 0.

We call v( f ) the value of an (s, t)-flow f . In addition, for any (s, t)-flow f in a network
N = (V, A; u, b; s, t), where b : A→ R+ is a unit cost function, we define the cost of flow f
as b( f ) = ∑e∈A b(e) f (e). Furthermore, if the value f (e) is an integer for each e ∈ A, this
(s, t)-flow f is called an integer (s, t)-flow in N.

Problem 1 (the maximum flow problem). Given a network N = (V, A; u; s, t) with a capacity
function u : A→ R+, the maximum flow problem is to find an (s, t)-flow f in N. The objective is
to maximize the value v( f ) = ∑e∈δ+(s) f (e)−∑e∈δ−(s) f (e) among all (s, t)-flows in N.

Problem 2 (the minimum-cost flow problem). Given a network N = (V, A; u; b; s, t) and a
positive integer k, where u : A→ R+ is a capacity function and b : A→ R+ is a unit cost function,
the minimum-cost flow problem is to find an (s, t)-flow f with value v( f ) = k; the objective is to
minimize the cost b( f ) = ∑e∈A b(e) f (e) among all (s, t)-flows with value k in N.
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3. Constrained Assignment Problem with Bounds and Penalties

In this section, we consider the constrained assignment problem with bounds and
penalties (CA-BP). The objective is to minimize the total processing times of executed jobs
as well as the penalties from rejected jobs. Without loss of generality, we assume that n ≥ m;
otherwise, there is no feasible solution to the CA-BP.

Given an instance I = (J, M; l, u; c, p) of the CA-BP, we use variables {xij | i =
1, 2, . . . , m and j = 1, 2, . . . , n} simply as a scheme {xij}mn, to represent an execution
of n jobs on m machines, where a variable xij = 1 indicates the job Jj to be executed on that
machine Mi, and otherwise, xij = 0 for any i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , n}. Then,
we may obtain the linear integer programming (IP) to determine the CA-BP as follows:

(IP) min z = ∑m
i=1 ∑n

j=1 cijxij + ∑n
j=1 pj(1−∑m

i=1 xij)

s.t.



m

∑
i=1

xij ≤ 1 for j = 1, 2, . . . , n

li ≤
n

∑
j=1

xij ≤ ui for i = 1, 2, . . . , m

xij ∈ {0, 1} for i = 1, 2, . . . , m and j = 1, 2, . . . , n,

(1)

where the first constraint indicates that each job is assigned on at most one machine to be
executed; i.e., no job can be executed on more than one machine. The second constraint
indicates that each machine Mi must execute at least li and at most ui jobs from J.

In order to optimally solve the CA-BP, and equivalently the linear integer program-
ming (IP), we intend to transfer the CA-BP to the minimum-cost flow problem on a special
network constructed in the following, where the flow value of each arc in such a problem
must be between a lower bound and an upper bound. Figure 1 roughly illustrates the
process of this transformation.

Figure 1. Construction of a network N = (V, A; l, u; b; s, t).

Given an instance I = (J, M; l, u; c, p) of the CA-BP, we can construct a network
N = (V, A; l, u; b; s, t) in the following ways. Denote V = J ∪ J1 ∪ J2 ∪M ∪ {s, t}, where
s and t are two special vertices; J1 = {J1

1 , J1
2 , . . . , J1

n} and J2 = {J2
1 , J2

2 , . . . , J2
n} are two

sets of vertices copied from the set J = {J1, J2, . . . , Jn}, respectively; and A = A1 ∪
A2 ∪ A3 ∪ A4 ∪ A5 ∪ A6, where A1 = {(s, Jj) | Jj ∈ J}, A2 = {(Jj, J1

j ) | j = 1, 2 . . . , n},
A3 = {(Jj, J2

j ) | j = 1, 2 . . . , n}, A4 = {(J1
j , Mi) | J1

j ∈ J1, Mi ∈ M}, A5 = {(J2
j , t) | J2

j ∈ J2},
A6 = {(Mi, t) |Mi ∈ M}. We may define lower and upper capacities and unit costs on these
arcs as follows. For each arc e ∈ A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5, let the lower capacity l(e) = 0 and
the upper capacity u(e) = 1. For each arc (Mi, t) ∈ A6, let l(Mi, t) = li and u(Mi, t) = ui.
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At the same time, let the unit cost b(J1
j , Mi) = cij for each arc (J1

j , Mi) ∈ A4, the unit cost

b(J2
j , t) = pj for each arc (J2

j , t) ∈ A5, and b(e) = 0 for each arc e ∈ A1 ∪ A2 ∪ A3 ∪ A6. In
addition, if there exists an (s, t)-flow f : A→ R+

0 in this network N = (V, A; l, u; b; s, t), to
satisfy l(e) ≤ f (e) ≤ u(e) for each arc e ∈ A, we call this flow f a bounded (s, t)-flow in N.

Using the aforementioned construction, we obtain the following key lemma.

Lemma 1. Given an instance I = (J, M; l, u; c, p) of the CA-BP, we can construct a network
N = (V, A; l, u; b; s, t) as mentioned above, such that there is a feasible solution with cost z on the
instance I if and only if there is an integer-bounded (s, t)-flow f of value v( f ) = n in N, where the
cost is b( f ) = z.

Proof. (Necessity) Suppose that there is a feasible scheme {xij}mn with cost z for the linear
integer programming (IP). We construct an integer (s, t)-flow f in N as follows. For every
xij in {xij}mn, if xij = 1, let f (s, Jj) = 1, f (Jj, J1

j ) = 1, f (J1
j , Mi) = 1, f (Jj, J2

j ) = 0, and

f (J2
j , t) = 0; otherwise, let f (s, Jj) = 1, f (Jj, J1

j ) = 0, f (J1
j , Mi) = 0, f (Jj, J2

j ) = 1, and

f (J2
j , t) = 1. For each Mi ∈ M, let f (Mi, t) = ∑j∈J xij, which implies that li ≤ f (Mi, t) =

∑j∈J xij ≤ ui. Using this construction, we easily obtain that f is an integer-bounded
(s, t)-flow of value n in N, where the cost is b( f ) = z.

(Sufficiency) Suppose that there exists an integer-bounded (s, t)-flow f with value n
and cost b( f ) in N. It is easy to see that f (s, Jj) = 1 for each arc (s, Jj) ∈ A1, implying that
f (Jj, J1

j ) + f (Jj, J2
j ) = 1, and f (e) ∈ {0, 1} for each arc e ∈ A\A6. We construct a scheme

{xij}mn for the linear integer programming (IP) as follows. For each arc (J1
j , Mi) ∈ A4, if

f (J1
j , Mi) = 1, denote xij = 1; otherwise, denote xij = 0. Using this construction, for each

Mi ∈ M, we have ∑n
j=1 xij = f (Mi, t), implying that li ≤ ∑n

j=1 xij ≤ ui. This easily shows
that the scheme {xij}mn is a feasible solution to the linear integer programming (IP), i.e., a
feasible solution for the CA-BP, where the cost is z = b( f ).

This completes the proof of the lemma.

Using Lemma 1, we easily obtain the following.

Corollary 1. The CA-BP has an optimal solution with cost z if and only if there exists a minimum-
cost integer-bounded (s, t)-flow f of value n in N (mentioned above), where the cost b( f ) = z.

In order to find the minimum-cost integer-bounded (s, t)-flow in N, we need the
following definitions.

Definition 2 (The residual network). Suppose that f is a bounded (s, t)-flow with value k in the
network N = (V, A; l, u; b; s, t). The residual network N f = (V, A f ; u f ; s, t) of N, with respect
to f , is constructed in the following way: (1) At the beginning, let A f = ∅. (2) For each arc
(x, y) ∈ A, we add two residual arcs (x, y) and (y, x) to A f , where the residual capacities are
u f (x, y) = u(x, y)− f (x, y) and u f (y, x) = f (x, y)− l(x, y). (3) Then, we delete arcs in A f
whose residual capacities are 0.

Definition 3 (The incremental network). Suppose that f is a bounded (s, t)-flow with value k
in the network N = (V, A; l, u; b; s, t). The incremental network N′f = (V, A′f ; u′f ; b′f ; s, t) of N,
with respect to f , is constructed in the following way: (1) At the beginning, let A′f = ∅. (2) For
each arc (x, y) ∈ A, we add two incremental arcs (x, y) and (y, x) to A′f , where the incremental
capacities u′f (x, y) = u(x, y)− f (x, y), u′f (y, x) = f (x, y)− l(x, y) and the unit incremental
costs b′f (x, y) = b(x, y), b′f (y, x) = −b(x, y). (3) Then, we delete all arcs in A′f whose incremental
capacities are 0.
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Similarly, to solve the minimum-cost flow problem, we obtain a result for the bounded
flow as follows. The method of proof is similar to Theorem 12.1 in [10]; we present its proof
in detail for completeness.

Lemma 2. Let f be an integer-bounded (s, t)-flow with value n in the network N = (V, A; l, u; b; s, t)
mentioned above. Then, f is a minimum-cost integer-bounded (s, t)-flow with value n if and only if
the incremental network N′f = (V, A′f ; u′f ; b′f ; s, t) has no negative directed cycle with respect to
the incremental cost function b′f (·).

Proof. (Necessity) Suppose, to the contrary, that there is a directed cycle C with a negative
cost in the incremental network N′f = (V, A′f ; u′f ; b′f ; s, t). We can augment the current
flow f along C by some value θ ∈ Z+ to obtain a new flow f ′ with value n. According
to the construction of the incremental network, the augment process does not violate the
lower and upper bound constraints, so f ′ is an integer-bounded (s, t)-flow with value n.
Since the cost of C is negative, we have b( f ′) < b( f ), which contradicts the fact that f is a
minimum-cost integer-bounded (s, t)-flow.

(Sufficiency) Assume that every directed cycle C in the incremental network N′f has

a non-negative cost. For each arc (y, z) ∈ A and (z, y) ∈ A′f , we define χC ∈ R|A| by
the following:

χC(y, z) :=


1 if C passes through (y, z)

− 1 if C passes through (z, y)

0 if C passes through neither (y, z) nor (z, y)

Let f ′ be another feasible integer-bounded (s, t)-flow. Then, f̃ , f ′ − f is a feasible
circular flow, and we have

f̃ =
|A|

∑
q=1

ξqχCq ,

where C1, . . . , C|A| are directed cycles in the incremental network N′f , and ξ1, . . . , ξ|A| > 0.

That is, the flow f̃ can be decomposed into flows on some circles. Therefore,

b( f ′)− b( f ) = b( f ′ − f ) =
|A|

∑
q=1

ξqb(Cq) ≥ 0.

Since every directed cycle Cq has a non-negative total cost b(Cq), we have b( f ′) ≥ b( f ).
This completes the proof of the lemma.

According to the aforementioned results, we can use the following strategies to find a
minimum-cost integer-bounded (s, t)-flow with value n in the network N = (V, A; l, u; b; s, t):

(1) Firstly, we determine an integer (s, t)-flow with value ∑n
i=1 li in N to satisfy the lower

bounds of arc capacities.
(2) Secondly, we augment the flow obtained in (1) to a minimum-cost integer-bounded

(s, t)-flow with value n in the network N = (V, A; l, u; b; s, t).

To solve stage (1), we construct another network N1 = (V′, A′; u1, b; s, t) from the
network N = (V, A; l, u; b; s, t), where V′ = V\J2, A′ = A1 ∪ A2 ∪ A4 ∪ A6, and the
capacity is u1(Mi, t) = li for each (Mi, t) ∈ A6 and u1(e) = 1 for each e ∈ A1 ∪ A2 ∪ A4.
This process is shown in Figure 2. In this network N1 = (V′, A′; u1, b; s, t), we can use
the Edmonds–Karp algorithm [27] in polynomial time to find an integer (s, t)-flow with
value ∑n

i=1 li.
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Figure 2. Construction of a network N1 = (V′, A′; u1, b; s, t).

Using Lemma 2 and the two aforementioned stages, we design a combinatorial algo-
rithm, denoted by ACA−BP1 (Algorithm 1), to solve the CA-BP.

Algorithm 1: ACA−BP1

Input: An instance I = (J, M; l, u; c, p) of the CA-BP.
Output: A scheme {xij}mn of the linear integer programming (IP) with respect to I, or

“no solution”.
Begin
Step 1. If (∑m

i=1 li > n), then
Output “no solution”, and STOP.

Step 2. For the given instance I = (J, M; l, u; c, p) of the CA-BP, as mentioned above,
first construct a network N = (V, A; l, u; b; s, t), and then construct another
network N1 = (V′, A′; u1, b; s, t).

Step 3. Use the Edmonds–Karp algorithm [27] in the network N1 = (V′, A′; u1, b; s, t) to
produce an integer (s, t)-flow f1 with value v( f1) = ∑m

i=1 li.
Step 4. From the (s, t)-flow f1 in N1, construct an integer (s, t)-flow f with value

v( f ) = ∑m
i=1 li in N as follows: (1) For each arc e ∈ A1 ∪ A2 ∪ A4 ∪ A6 (= A′), let

f (e) = f1(e). (2) For each arc e ∈ A3 ∪ A5 (= A\A′), let f (e) = 0.
Step 5. While (v( f ) < n) perform the following:

5.1 For the current integer (s, t)-flow f in N, construct the corresponding
residual network N f = (V, A f ; u f ; s, t) by Definition 2;

5.2 Find a directed path Pst with the least arcs on the residual network
N f = (V, A f ; u f ; s, t), and augment the current integer-bounded (s, t)-flow f
along Pst by the minimum augmentation capacity.

Step 6. For the current integer-bounded (s, t)-flow f with value n in N, construct the
corresponding incremental network N′f = (V, A′f ; u′f ; b′f ; s, t) by Definition 3.
Apply the minimum mean cycle algorithm [28] to produce a minimum mean
cycle C in N′f with respect to function b′f (·).

Step 7. If (b′f (C) < 0), then
Along this minimum mean cycle C, augment this integer-bounded

(s, t)-flow f to a new integer-bounded (s, t)-flow f by the minimum
augmentation capacity, and go to Step 6.

Step 8. From the (s, t)-flow f , construct a scheme {xij}mn as follows: for each
i = 1, 2, . . . , m and j = 1, 2, . . . , n, if f (J1

j , Mi) = 1, choose xij = 1; otherwise,
xij = 0.

Step 9. Output this scheme {xij}mn.
End

Using the algorithm ACA−BP1 , we obtain the following result.
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Theorem 1. The algorithm ACA−BP1 is an optimal algorithm to solve the CA-BP, and it runs in
time O(m3n5 log(m + n)), where m and n are the numbers of machines and jobs, respectively.

Proof. By Lemma 2, it is easy to see that the algorithm ACA−BP1 can optimally solve the
CA-BP. In the first stage (Steps 1–5) of the algorithm ACA−BP1 , we can use the Edmonds–
Karp algorithm [27] to find an integer (s, t)-flow with value n in time O(m2n3), where m
and n are the numbers of machines and jobs, respectively. Furthermore, in the second stage
(Steps 6–7) of the algorithm ACA−BP1 , we can use the minimum mean cycle algorithm [28]
to find a minimum-cost (s, t)-flow with value n in time O(m3n5 log(m + n)). To sum up,
the total running time of the algorithm ACA−BP1 is O(m3n5 log(m + n)).

This completes the proof of the theorem.

To facilitate the understanding of the algorithm ACA−BP1 , we give the following small
example E : m = 2, n = 4. The penalty costs are p1 = 3, p2 = 2, p3 = 2, and p4 = 1,
respectively. The processing time for each job is given in Table 1, and the upper and lower
bound constraints for each machine are given in Table 2. Now, we consider the processes of
applying algorithm ACA−BP1 to this example.

Table 1. Processing time for example E .

J1 J2 J3 J3

M1 3 1 1 2
M2 1 2 1 3

Table 2. Upper and lower bound constraints for example E .

i 1 2

li 1 0
ui 3 2

Applying Steps 1–4 of the algorithm ACA−BP1 , an integer (s, t)-flow f with value
v( f ) = 1 in N can be found as follows: (a) f (s, J2) = f (J2, J1

2 ) = f (J1
2 , M1) = f (M1, t) = 1;

(b) f (e) = 0 for each remaining arc e ∈ N. Then, Steps 5–7 augment the current integer
(s, t)-flow f , and a new integer-bounded (s, t)-flow f with value v( f ) = 4 in N is produced
as follows: (1) f (s, J1) = f (J1, J1

1 ) = f (J1
1 , M2) = f (M2, t) = 1; (2) f (s, J2) = f (J2, J1

2 ) =
f (J1

2 , M1) = 1; (3) f (s, J3) = f (J3, J1
3 ) = f (J1

3 , M1) = 1; (4) f (s, J4) = f (J4, J2
4 ) = f (J2

4 , t) =
1; (5) f (M1, t) = 2; (6) f (e) = 0 for each remaining arc e ∈ N. According to the flow f , a
scheme {xij}23 with the optimal value z = 4 is found, where the optimal scheme {xij}23 is
to reject job J4 and to execute job J1 on machine M2 and jobs J2 and J3 on machine M1.

On the other hand, by further analyzing the construction of N, we hope to reduce
the complexity of the algorithm ACA−BP1 to solve the CA-BP. Therefore, according to
the other algorithms for solving the minimum-cost flow problem, we intend to design
another algorithm to resolve the CA-BP. Using similar arguments as in [26], we obtain the
following result.

Lemma 3. Let f be a minimum-cost bounded (s, t)-flow with value k (< n) in the network
N = (V, A; l, u; b; s, t) as mentioned above, where f (Mi, t) ≥ li for each (Mi, t) ∈ A6. Let Pst be
the shortest directed s–t path in N′f with respect to the cost function b′f (·),and f ∗ be an (s, t)-flow
obtained when augmenting f along Pst by at most the minimum augmentation capacity θ on Pst,
that is,

f ′ij =

{
θ if (yi, yj) ∈ A(Pst)

0 if (yi, yj) /∈ A(Pst)

Then, f ∗ = f + f ′ is a minimum-cost bounded (s, t)-flow with value k + θ.
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Proof. It is easy to see that f ∗ = f + f ′ is a feasible bounded (s, t)-flow with value k + θ in
N. Considering the incremental network N′f+ f ′ , the reverse of arc e must be in Pst for any
arc e ∈ A′f+ f ′\A′f .

Suppose, on the contrary, that f ∗ , f + f ′ is not a minimum-cost bounded (s, t)-
flow. As we know from Lemma 2, there must be a negative cycle C in N′f ∗ . Since f is the
minimum-cost bounded (s, t)-flow with value k in the network N, we obtain that C must
contain some arcs (yi1 , yj1), (yi2 , yj2), · · · , (yil∗ , yjl∗ ) in A′f+ f ′\A′f , corresponding to arcs
(yj1 , yi1), (yj2 , yi2), · · · , (yjl∗ , yil∗ ) in Pst, where we denote the set of these 2l∗ arcs as Ā. Let
N̄ denote a network (which may have multiple arcs) formed by combining the vertices and
arcs in Pst and negative cycle C. Obviously, in N̄, there is one more arc leaving the vertex s
than entering it, there is one more arc entering t than leaving it, and the numbers of leaving
arcs and entering arcs of any other vertex are equal.

Let N∗ = N̄ − Ā, and update Ñ by removing the isolated vertices in N∗. Then, Ñ is
the union of an s–t path and some cycles, denoted by

Ñ = P∗st + C1 + · · ·+ Ck̄,

where P∗st is an s–t path in N′f , C1, · · · , Ck̄ are the cycles in N′f , and b′f (Ci) ≥ 0 holds for each
i = 1, 2, . . . , k̄. Since b′f (Ñ) = b′f (N∗), b′f (Ā) = 0, b′f (N̄) = b′f (Pst) + b′f (C), and b′f (C) < 0,
we have

b′f (P∗st) = b′f (N̄)−
k̄

∑
i=1

b′f (Ci)

= b′f (N∗)−
k̄

∑
i=1

b′f (Ci)

= b′f (Pst) + b′f (C)− b′f (Ā)−
k̄

∑
i=1

b′f (Ci)

≤ b′f (Pst),

contradicting the choice of Pst. Hence, f ∗ , f + f ′ is the minimum-cost bounded (s, t)-flow
with value k + θ in the network N.

This completes the proof of the lemma.

Using Lemma 3, we design a combinatorial algorithm, denoted byACA−BP2 (Algorithm 2),
to resolve the CA-BP.

Algorithm 2: ACA−BP2

Input: An instance I = (J, M; l, u; c, p) of the CA-BP.
Output: A scheme {xij}mn of the linear integer programming IP with respect to I, or “no

solution”.
Begin
Step 1. If ( ∑m

i=1 li > n ) then
Output “no solution”, and STOP.

Step 2. For the given instance I = (J, M; l, u; c, p) of the CA-BP, as mentioned above,
first construct a network N = (V, A; l, u; b; s, t), and then construct another
network N1 = (V′, A′; u1, b; s, t).

Step 3. Use the successive shortest path algorithm [10,29] in the network
N1 = (V′, A′; u1, b; s, t) to produce a minimum-cost integer (s, t)-flow f1 with
value v( f1) = ∑m

i=1 li.
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Algorithm 2: Cont.

Step 4. From the (s, t)-flow f1 in N1, construct an integer-bounded (s, t)-flow f with
value ∑m

i=1 li in N as follows: (1) For each arc e ∈ A1 ∪ A2 ∪ A4 ∪ A6, let
f (e) = f1(e). (2) For each arc e ∈ A3 ∪ A5, let f (e) = 0.

Step 5. While (v( f ) < n), perform the following:
5.1 For the current integer-bounded (s, t)-flow f in N, construct the

corresponding incremental network N′f = (V, A′f ; u′f ; b′f ; s, t) by Definition 3.
5.2 Find a shortest directed path Pst with respect to b′f (·) on the incremental

network N′f = (V, A′f ; u′f ; b′f ; s, t), and augment the current integer-bounded
(s, t)-flow f along Pst by the minimum augmentation capacity.

Step 6. For the integer (s, t)-flow f in N = (V, A; l, u; b; s, t), construct a scheme {xij}mn

as follows: for each i = 1, 2, . . . , m and j = 1, 2, . . . , n, if f (J1
j , Mi) = 1, we choose

xij = 1; otherwise, xij = 0.
Step 7. Output this scheme {xij}mn.
End

Using algorithm ACA−BP2 , we obtain the following result.

Theorem 2. The algorithm ACA−BP2 can optimally solve the CA-BP, and it runs in time O(n3),
where n is the number of jobs.

Proof. Using the successive shortest path algorithm [10,29], the first stage (Steps 1–4)
of algorithm ACA−BP2 produces a minimum-cost integer (s, t)-flow f1 in the network
N1 = (V′, A′; u1, b; s, t), which can be transformed into a minimum-cost bounded (s, t)-
flow with value ∑m

i=1 li in N. In subsequent steps, Lemma 3 guarantees the optimality of
the algorithm ACA−BP2 .

The complexity of the algorithm ACA−BP2 can be determined as follows: (1) Using
the successive shortest path algorithm, Steps 1–4 need time O(n3) to find a minimum-cost
(s, t)-flow with value ∑i∈M li, where n is the number of jobs. (2) Similarly, the other steps
need at most time O(n3). Hence, the algorithm ACA−BP2 needs a total time O(n3).

This completes the proof of the theorem.

As an illustration of the algorithm ACA−BP2 , we also apply the algorithm ACA−BP2 to
the example E mentioned above: a four-job example to be scheduled on two machines. Ap-
plying Steps 1–4 of the algorithmACA−BP2 , a minimum-cost integer (s, t)-flow f1 with value
v( f1) = ∑2

i=1 li = 1 in N can be found as follows: (1) f (s, J3) = f (J3, J1
3 ) = f (J1

3 , M1) =
f (M1, t) = 1; (2) f (e) = 0 for each remaining arc e ∈ N. Then, executing Step 5 to augment
the current minimum-cost integer (s, t)-flow f along Pst, a new integer-bounded (s, t)-flow
f in N is produced. According to the flow f , a scheme {xij}23 is found by the algorithm
ACA−BP2 , where the scheme {xij}23 is to reject job J4 and execute job J1 on machine M2 and
jobs J2 and J3 on machine M1. It is easy to verify that the optimal value is v( f ) = 4, and
{xij}23 is an optimal scheme.

4. Conclusions and Further Research

In this paper, we consider the constrained assignment problem with bounds and
penalties (CA-BP), and we obtain the following results:

(1) We design a combinatorial algorithm to optimally solve the CA-BP, and it runs in
polynomial time O(m3n5 log(m + n)).

(2) By considering the construction of auxiliary networks, we design another combinato-
rial algorithm to optimally solve the CA-BP, and it runs in polynomial time O(n3).

Intuitively, the algorithm ACA−BP2 is obviously better, and its time complexity is
lower than that of the algorithm ACA−BP1 . However, in some cases in actual operation, the
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algorithm ACA−BP1 can perform better; for example, in some instances, the networks N
and N1 satisfy the conditions that (1) the number of augmenting flow is lower, implying
that Steps 3–5 of algorithm ACA−BP1 can be executed in time O(mn), and (2) for each
flow f , the corresponding incremental network N′f has fewer negatively directed cycles,

so the algorithm ACA−BP1 can be executed in time O(mn2), which is slightly better than
the algorithm ACA−BP2 . This means that although the time complexity of the algorithm
ACA−BP2 is lower, in some special cases, the algorithm ACA−BP2 can perform better.

In addition, we introduce several interesting future research topics. First, a further
challenge is to reduce the complexity of these two combinatorial algorithms for the CA-
BP. Second, it would be interesting to investigate the online version of this model, or its
offline versions, with other objectives. Third, it would be interesting to study a more
general setting of processing time, i.e., our model with learning effects or deterioration
effects [30–32]. Finally, it would also be an interesting direction to consider our problem
with release dates and submodular rejection penalties [33], which is defined as follows.

Given a set M = {M1, M2, . . . , Mm} of m machines (edge servers) with two integer
functions l, u : M → Z+, and a set J = {J1, J2, . . . , Jn} of n jobs (computation tasks), each
job Jj ∈ J has a processing time cij and a release time rj, where the job can be processed at
or after its release time. For the penalty submodular function π(·) : 2J → R≥0, without
loss of generality, we assume that π(∅) = 0. The constrained assignment problem with
release times and submodular penalties aims to find a partition (A, R) of J, where A is the
set of jobs that are processed on machines and R(= J \ A) is the set of rejected jobs. The
objective is to minimize the total processing time of executed jobs as well as the rejection
penalty π(R).
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