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Abstract: The main purpose of this study is to provide a comparative analysis of several possible
approaches to applying data envelopment analysis (DEA) in the case where some decision making
units (DMUs) in the original sample have negative system outputs. In comparison to the traditional
model of Charnes, Cooper, and Rhodes (CCR) and the CCR model with a scale shift to measure
second-stage outputs, the range directional measure (RDM) model produces the most appropriate
results. In this paper, an approach is proposed for estimating returns to scale. The study applies
a two-stage DEA model with negative second-stage outputs to assess the public support for research,
development, and demonstration projects in the energy sector in 23 countries over the period from
2010 to 2018. The assessment of government performance depends on its contribution to the growth
of energy efficiency in the national economy and the reduction of its carbon intensity. Intermediate
outputs (patents in the energy sector) are included in the analysis as both outputs of the first stage
and inputs of the second stage. Taking the similarity between the calculations obtained without stage
separation and the system efficiency calculations from the two-stage model as a measure of model
adequacy, the RDM model shows the highest similarity scores.

Keywords: data envelopment analysis; two-stage models; negative outputs; range directional measure;
returns to scale; energy innovations; decardonization; energy efficiency; public funding

MSC: 91B74; 90B30; 90C05

1. Introduction

In recent years, there has been growing interest in network and multi-stage Data
Envelopment Analysis (DEA) models in the scientific literature [1–3]. Unlike conventional
models that deal with Decision Making Units (DMUs) as systems of the “black box” type,
in which only inputs and outputs are known, multi-stage and network models make it
possible to use a priori knowledge about the structure of the economic agent under study.
This allows one to consider the economic agent (DMU) as a system with several subsystems
connected to each other by various functional links. In the simplest case, a production facil-
ity can be considered as a system or process consisting of two subsystems/sub-processes
interconnected by so-called intermediate outputs: the outputs of the first stage, which are
also the inputs of the second stage. This approach is currently quite popular and is prac-
ticed for modeling the efficiency of banks [4–7], insurance companies [8–10], innovative
and high-tech enterprises [11–13], production and logistics chains [14–16], educational and
medical institutions [17–21], and many other types of economic units.
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A growing body of literature has been devoted to the modeling, using multi-stage DEA
models, the performance of various institutional systems on a macroeconomic scale, such
as national/regional innovation systems, or national/regional environmental management
systems [22–28]. Macroeconomic-scale systems, as a rule, have a complex structure, for
better understanding of which it is reasonable to decompose them into smaller subsystems.
A common feature of such models is the fact that the inputs of the first stage are consid-
ered to be government spending for achieving certain political goals, including financial
spending in the form of various subsidies, grants, or direct government funding. Stated
policy objectives are systemic outputs, while intermediate outputs may be some measure
of public spending performance, such as the number of innovation/environmental projects
completed, the number of intellectual property created, the number of activities carried
out, etc. Examples of political goals could be sustainable development, environmental
improvement, energy efficiency, income inequality reduction, etc. Most often, they are
measured in terms of the growth or decline of an indicator relative to some base period.

In real practical cases, the stated political goals may not be achieved, at least in the
time under study [29–31]. This is due not necessarily to the inefficiency of public spending,
but also to the presence of multidirectional processes in the macroeconomic system. For
example, the efforts of the state aimed at increasing the energy efficiency of the economy
can be nullified by a general decline in business activity and a fall in gross domestic product
(GDP). Funds aimed at improving the state of the environment may not bring positive
changes if the capacities of hazardous industries increase. From a mathematical perspective,
this means that DMU system outputs can take negative values.

Approaches to solving the problem of negative data in the DEA have been known
for a long time. For example, the paper of Portela, Thanassoulis, and Simpson is highly
cited in DEA literature as one of the first papers on the topic of dealing with negative data
in DEA [32]. Further, several approaches were proposed based on modified slack-based
measures [33–37], semi-oriented radial measures [38–40], and others [41,42].

However, the features of two-stage DEA models with systemic negative outputs (i.e.,
negative outputs only at the second stage) have not yet been sufficiently studied in the
literature. In particular, there has been little discussion on the question of what approaches
to use and how to calculate the return on scale, coefficients of technical efficiency, scale
efficiency for the first and second stages, and the entire DMU.

The aim of this paper is to compare several approaches to solving two-stage DEA
models with negative system outputs. We consider only additive efficiency aggregation in
two-stage models, since multiplicative types do not allow us to determine targets.

Constructions of economic functions in the paper (production functions, isoquants,
and so on) were made on the basis of methods proposed in the paper [43] using the software
FrontierVision, version 2.1 [44].

The remainder of this paper is structured as follows: Section 2 gives a brief literature
review on the topic of negative data in network DEA models. Section 3 provides a de-
scription of different approaches and presents our approach, followed by the case study in
Section 4. Section 5 concludes and proposes the direction for future research.

2. Literature Review

Among the first DEA models dealing with negative data, we should mention the
study by Scheel [45], where he suggests treating absolute values of negative outputs as
inputs and absolute values of negative inputs as outputs, and then the study of Portela
et al. [32], which proposes a range directional measure (RDM) approach. A few years later,
a modified slack-based measure was introduced by Sharp et al. [33] and a semi-oriented
radial measure (SORM) by Emrouznejad et al. [38]. Cheng et al. [41] proposed a modified
traditional radial DEA model where the original values of inputs and outputs were replaced
with absolute values as a basis for quantifying the share of improvements needed to reach
the frontier. Tohidi and Khodadadi [46] extended the RDM model for the evaluation of cost
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and allocative efficiencies in the presence of negative data. Later in the literature, these
models were extended and developed for the case of multi-stage and network DEA models.

For example, Lu et al. [47] introduce a two-stage dynamic DEA model for evaluating
the operating efficiency and profitability of credit unions associated with farmer’s associa-
tions in Taiwan. Capital expenses (X1), labor expenses (X2), and common elements (X3) are
taken as inputs at the first stage. They generate common loans (Z1), policy loans (Z2), and
non-interest income (Z3) to be used as intermediate outputs along with non-performing
loans (Z4) representing undesirable output. At the second stage, authors take the inter-
mediate outputs to produce the final income (Y), which obviously can be negative. The
authors compare numerical results obtained with RDM, proportional distance function
measure (PDFM), and SORM models and come to the conclusion that SORM is the best for
estimating the operating performance of credit unions.

Izadikhah and Saen [48] suggest a new DEA non-radial model for finding the efficiency
measure in the presence of negative data. In the proposed model, all inputs, intermediate
measures, and outputs are assumed to be negative or positive. The authors consider
a numerical example for the supply chain, which produces equipment for expendable
medical devices. In this example, one of the intermediate products (rate of increasing
partnership cost in green production plans) and two system outputs (rate of increasing
number of green products, rate of increasing revenue) can have negative values.

Kong et al. [49] modified the RDM two-stage DEA model to measure the efficiency
of DMUs in the presence of both negative data and undesirable outputs. They applied
the proposed model to the problem of evaluating Taiwanese bank efficiency at both the
operational and profitability stages. As inputs in the first stage (operational), they consider
operational expenses, loanable funds, and capital stock. The operational stage has one
final output (service fee) and three intermediate outputs (performing loans, investments,
and nonperforming loans). One intermediate output (nonperforming loans) is considered
undesirable. As system outputs, the model uses interest income and investment revenue,
where at least the second output can have negative values. Comparing the results of
the numerical example performed by two different models, the study obtained that the
operational efficiency scores calculated by two independent RDM models was higher
than that measured with the help of the proposed model, while the profitability efficiency
scores obtained by the RDM-type model were higher in comparison with two independent
RDM models.

The study by Tavana et al. [50] builds a new two-stage DEA model that can handle neg-
ative input, intermediate, and output variables. The authors have developed an extended
RDM model [32] to a two-stage RDM model and showed that it has some useful properties.
They also provided a simple example in order to demonstrate the ability of the proposed
model to evaluate the efficiency of two-stage processes in the presence of negative data. In
the next stage of research, they build a novel dynamic two-stage DEA model that allows
for negative input–intermediate–output data, as well as for both desirable and undesirable
carryovers (links between time moments). They obtained new dynamic model that has
been used for further extending the proposed two-stage RDM model. Also, it was shown
that proposed model can be applied for several management areas, for example, banking.

Kianfar et al. [51] propose multiobjective programming for two- and three-stage
DEA problems with negative data. They introduce two separate objective functions for
semi-negative and semi-positive inputs and outputs. The authors argue that, in cases
where DMUs have more than two stages, solving a multiobjective programming model is
necessary to calculate the overall efficiency. The strength of the proposed method is the
possibility to extend it for a case of a k-stage network in the presence of negative data.

Kao [52] proposes a generalized radial model that can be used in the presence of
negative data by applying a more general production possibility set that only requires
the aggregate input and aggregate output to be positive. These constraints helps to deal
with the unreasonable situation when inputs are consumed in the production process
while the outputs are being accumulated, or another unreasonable situation where the
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products are produced in the production process while the resources are being generated.
The model is valid for the assumptions of both constant and variable returns to scale, and
can be extended to network systems. This paper introduces the simplest extension of the
two-stage system. For the two-stage system under constant returns to scale, the system
efficiency obtained from the proposed model can also be decomposed into the product of
the two sub-system efficiencies.

Li et al. [53] divided the operational process of Internet banks into the value operation
stage (stage 1) and the value creation stage (stage 2). Next, they applied the two-stage
network DEA model, where net assets, R&D investment, and the number of employees
are inputs. Total deposits (including interbank deposits) are an intermediate output. Non-
interest income, net interest income, and non-performing loan ratio are system outputs. In
this model, non-interest income can have negative values. The authors apply the efficiency
coefficient method (or the extremum method) to positively standardize the 2018–2019 data
with the indicator data.

The paper of Babaie Asil et al. [54] introduces a two-stage bounded additive model to
evaluate the efficiency of airlines and uses fuel cost, maintenance expenses, labor expenses,
and fleet size as input values; available ton miles and available seat miles as intermediate
values; and revenue passenger mile, revenue ton mile and net income as output values.
In the real-life experiment, many companies have negative net income, which makes this
problem a two-stage DEA model with negative outputs. The authors propose a two-stage
model with constant returns to scale (CRS), and show that it deals with negative outputs
quite effectively.

Azadi et al. [55] developed a new network RDM model to measure the sustainability
and resilience of healthcare supply chains, which consist of suppliers of medical goods
and equipment and hospitals. The model can address different types of data, including
negative ones.

3. Materials and Methods
3.1. DEA Background

Consider a set of n observed DMUs (Xj, Yj), j = 1, . . . , n, where output vector
Yj = (y1j, . . . , yrj)

T ∈ Er is produced from input vector Xj = (x1j, . . . , xmj)
T ∈ Em. A pro-

duction possibility set (PPS) is determined on a set of axioms using the observed set of
production units. For the constant returns-to-scale model, PPS is written in the follow-
ing form:

T =

{
(X, Y)

∣∣∣∣ X ≥
n

∑
j=1

λjXj, Y ≤
n

∑
j=1

λjYj, λj ≥ 0, j = 1, . . . , n
}

(1)

Using the constraints of set (1), the output-oriented CRS model [56] for DMUo is
written as follows:

max η + ε

(
m

∑
k=1

s−k +
r

∑
i=1

s+i

)
n

∑
j=1

Xjλj + S− = Xo

n

∑
j=1

Yjλj − S+ = ηYo

S− ≥ 0, S+ ≥ 0,

λj ≥ 0, j = 1, . . . , n

(2)

where λj, j = 1, . . . , n are intensity variables; S− = (s−1 , . . . , s−m)T and S+ = (s+1 , . . . , s+r )T

are slack variables; the unrestricted variable η determines the radial expansion of the output
vector Yo; ε is a non-Archimedean infinitesimal constant, which prevents weights from
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being zero. Without using ε, problem (2) has to be solved in two stages [57]. The output
efficiency score for DMUo is obtained as 1/η∗, where η∗ is optimal for (2).

The variable returns-to-scale (VRS) model [58] can be obtained from model (2) by
restricting the sum of λ-variables equal to one.

3.2. Two-Stage Models with Negative Outputs

In the two-stage DEA model with a basic structure, it is assumed that each DMUj

in the first stage uses input Xj to produce intermediate product Zj = (z1j, . . . , zdj)
T ∈ Ed.

Then, Zj is considered input in the second stage to produce output Yj.
In the two-stage CRS model, the production possibility set T can be written as follows:

TCRS =

{
(X, Y, Z)

∣∣∣∣ n

∑
j=1

Xjλj ≤ X,
n

∑
j=1

Zjλj ≥ Z,
n

∑
j=1

Zjµj ≤ Z,

n

∑
j=1

Yµj ≥ Y, λj ≥ 0, µj ≥ 0, j = 1, . . . , n
}

(3)

According to the structure of set (3), we can write the following aggregated two-stage
output-oriented CRS model to measure the efficiency of DMUo:

max w1η1 + w2η2
n

∑
j=1

Xjλj ≤ Xo

n

∑
j=1

Zjλj ≥ η1Zo

n

∑
j=1

Zjµj ≤ Zo

n

∑
j=1

Yµj ≥ η2Yo

n

∑
j=1

Zjλj ≥
n

∑
j=1

Zjµj

λj ≥ 0, µj ≥ 0, j = 1, . . . , n

(4)

where weights w1 and w2 represent the preferences over the two stages and satisfy
w1 + w2 = 1; the last constraint represents the linkage between stages. Note that the
infinitesimal constant ε has been ignored in this model to make the expression simpler.

In model (4), the individual efficiencies of the first and second stages are deter-
mined as 1/η∗1 and 1/η∗2 , respectively. The overall system efficiency can be calculated as
1/(w1η∗1 + w2η∗2 ).

For the VRS case, the production possibility set T of the two-stage model has the
following form:

TVRS =

{
(X, Y, Z)

∣∣∣∣ n

∑
j=1

Xjλj ≤ X,
n

∑
j=1

Zjλj ≥ Z,
n

∑
j=1

Zjµj ≤ Z,
n

∑
j=1

Yµj ≥ Y,

n

∑
j=1

λj = 1,
n

∑
j=1

µj = 1, λj ≥ 0, µj ≥ 0, j = 1, . . . , n
}

. (5)
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Based on the corresponding PPS (5) output-oriented VRS model is written as:

max w1η1 + w2η2
n

∑
j=1

Xjλj ≤ Xo

n

∑
j=1

Zjλj ≥ η1Zo

n

∑
j=1

Zjµj ≤ Zo

n

∑
j=1

Yµj ≥ η2Yo

n

∑
j=1

Zjλj ≥
n

∑
j=1

Zjµj

n

∑
j=1

λj = 1,
n

∑
j=1

µj = 1,

λj ≥ 0, µj ≥ 0, j = 1, . . . , n

(6)

The advantage of model (6) over other network DEA formulations is that returns to
scale and frontier projection can be obtained with the help of conventional DEA methods.

It is known that the CRS model cannot handle data with negative inputs and outputs.
However, it can be applied if only negative outputs are present in the data and all inputs are
nonnegative. This can be illustrated in Figure 1. This figure represents a two-dimensional
cut of the frontier (output isoquant) for a three-dimensional one-input/two-output CRS
model that is constructed using only DMUs with positive outputs. Points A, B, and C are
efficient in this model. Unit D has one positive and one negative output. The efficiency
scores of this unit can be measured relative to their radial projection D1 onto the frontier as
OD1/OD. However, if all outputs of a DMU are negative, as for unit E, then the standard
CRS model becomes unbounded. For this reason, all coordinates of unit E should be
multiplied by−1 to obtain unit E2. After that, the efficiency score of unit E can be measured
relative to the radial projection of unit E2 as −OE2/OE1. This means that, for units with all
negative outputs, the efficiency score is negative.

In the presence of negative outputs in the VRS model, Kao [52] proposed restricting

total virtual input
m
∑

k=1
vkXkj and total virtual output

r
∑

i=1
uiYij to being nonnegative. This

leads to the following model:

min
m

∑
k=1

vkXko + u0

r

∑
i=1

uiYio = 1,

m

∑
k=1

vkXkj +
r

∑
i=1

uiYij + uo ≤ 0, j = 1, . . . , n,

m

∑
k=1

vkXkj ≥ 0, j = 1, . . . , n,

r

∑
i=1

uiYij ≥ 0, j = 1, . . . , n,

vk ≥ ε, k = 1, . . . , m,

ui ≥ ε, i = 1, . . . , r.

(7)
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This model is, in fact, the model with restricted multipliers. Figure 2 explains how
efficiency scores are measured in model (7). The frontier of the VRS model is depicted with
dashed lines. In model (7), the production possibility set expands in such a way that ray
CD1 is parallel to segment OE and ray AE1 is parallel to line OD.

O

A
B

C

D
D1

E1

E2

E

TCRS

y1

y2

Figure 1. Output efficiency measurement in the CRS model for DMUs with negative outputs.

O

A
B

C

D

D1

E1

E

F

TCRS

y1

y2

Figure 2. Output efficiency measurement in model (7).

Hence, efficient units in the VRS model may become inefficient in model (7). Further-
more, model (7) does not guarantee the efficiency estimation for all DMUs because, for
some units with negative outputs, it may become infeasible. For example, the darkened
area in Figure 2 indicates the region where the projection onto the frontier does not exist;
therefore, the model (7) for unit F becomes infeasible.

The traditional approach to dealing with negative data in VRS technology is to use
the translation invariance property of DEA models. Translation invariance means that the
shift of inputs and outputs by a scalar does not affect the efficiency scores. For example,
the input-oriented VRS model is translation invariant in the outputs. After transformation

ỹij = yij −min
k

yik, j = 1, . . . , n,

for all outputs i that contain negative values, all DMUs are located in a positive orthant
and the traditional VRS model can be applied.

However, using this approach, units with negative outputs may be assessed as efficient;
see Figure 3. In this figure, unit A has a negative output. Then, after the shift of output y, the
origin moves to point O1 and unit A is assessed as efficient. Such a situation is unacceptable
from a managerial point of view, since unit A outperforms unit E with positive outputs.
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O A

B

C

D

E

TVRS

O1

x

x

y

Figure 3. Unit A becomes efficient after the shift of output y.

Some non-radial DEA models (RAM, SBM, etc.) are translation invariant; hence, they
can handle negative values in data [35–37]. However, they suffer from the same weaknesses
as illustrated in Figure 3.

There exist DEA models with VRS technology that do not require a scale shift. The
most popular is the RDM model, which is successfully used for multi-stage DEA models
and, at the same time, is able to work with negative indicators.

Next, we describe how the RDM model operates under a two-stage DEA [50]. Intro-
duce two ideal points I1 and I2 for the first and second stages as follows:

I1 =
{

x̄1, . . . , x̄m, z̄1
1, . . . , z̄1

d

}
,

I2 =
{

z̄2
1, . . . , z̄2

d, ȳ1, . . . , ȳr

}
,

where
x̄i = xij, i = 1, . . . , m.

z̄1
q = zqj, q = 1, . . . , d,

z̄2
q = zqj, q = 1, . . . , d,

ȳk = ykj, k = 1, . . . , r.

Let (
RX

p , RZ1
p

)
=
(

RX
1p, . . . , RX

mp, RZ1
1p , . . . , RZ1

dp

)
,(

RZ2
p , RY

p

)
=
(

RZ2
1p , . . . , RZ2

dp RY
1p, . . . , RY

rp

)
,

be the directional vectors from DMUp to ideal points I1 and I2 in the first and second stages,
respectively. Components of these vectors are written as follows:

RX
ip = xip − x̄i, i = 1, . . . , m,

RZ1
qp = z̄1

q − zqp, q = 1, . . . , d,

RZ2
qp = z2

qp − z̄2
q, q = 1, . . . , d,

RY
kp = ȳk − ykp, k = 1, . . . , r.
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The RDM two-stage DEA model is written in the following form:

max w1θ1 + w2θ2
n

∑
j=1

xijλj ≤ xip − θ1RX
ip, i = 1, . . . , m,

n

∑
j=1

zqjλj ≥ zqp + θ1RZ1
qp , q = 1, . . . , d,

n

∑
j=1

λj = 1, λj ≥ 0, j = 1, . . . , n,

n

∑
j=1

zqjµj ≤ zqp − θ2RZ2
qp , q = 1, . . . , d,

n

∑
j=1

ykjµj ≥ ykp + θ2RY
kp, k = 1, . . . , r,

n

∑
j=1

µj = 1, µj ≥ 0, j = 1, . . . , n,

n

∑
j=1

zqjλj ≥
n

∑
j=1

zqjµj, q = 1, . . . , d,

(8)

where importance weights w1 and w2 show the preferences in the two stages and satisfy
w1 + w2 = 1. The first three constraints correspond to the first stage of technology; the
following set of constraints determine the second stage; while the last constraint links the
two stages.

Model (8) is invariant with respect to translations and units of measurement. The
efficiency scores in the first and second stages are acquired as ρ1 = 1− θ∗1 and ρ2 = 1− θ∗2 ,
where θ∗1 and θ∗1 are optimal variables in model (8). The total efficiency is calculated as
the weighted sum of the efficiency measures for each stage, and can be determined as
ρ = w1ρ1 + w2ρ2 = 1− (w1θ∗1 + w2θ∗2 ).

In DEA applications, calculating returns to scale (RTS) is highly important because it
helps DMUs measure the relationship between their inputs and outputs to analyze how
their investments are generating proper returns or to adjust production. Therefore, VRS
technology is generally more preferable than CRS.

3.3. Estimation of RTS in a Two-Stage Model with Negative Outputs

Although the RDM model is based on VRS technology, it cannot be used to measure
the returns to scale, since the projection of the DMU on the efficient frontier may have
negative values. Therefore, we propose the following approach to measure the returns to
scale in the presence of negative outputs.

Let J+ be a subset of production units with nonnegative inputs and outputs:

J+ =
{

j
∣∣ Xj ≥ 0, Yj ≥ 0, j = 1, . . . , n

}
. (9)

Define the production possibility set T+ on the basis of set J+ as follows:

T+ =

{
(X, Y)

∣∣∣∣ X ≥ ∑
j∈J+

Xjλj, Y ≤ ∑
j∈J+

Yjλj, ∑
j∈J+

λj = 1, λj ≥ 0, j ∈ J+
}

. (10)

For units from J+, returns to scale can be measured in technology T+ using conven-
tional methods [59,60].
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Define the set of units with negative outputs as J− = J \ J+. Next, for each DMUp,
p ∈ J−, we try to find the projection onto the efficient frontier by solving the following
output-oriented model:

max η + ε

(
m

∑
k=1

s−k +
r

∑
i=1

s+i

)
∑

j∈J+
Xjλj + S− = Xp,

∑
j∈J+

Yjλj − S+ = ηYp,

∑
j∈J+

λj = 1,

S− ≥ 0, S+ ≥ 0,

λj ≥ 0, j = 1, . . . , n.

(11)

If an optimal solution is found in (11), then returns to scale of DMUp is measured
at the projection point

(
Xp − S−∗, η∗Yp + S+∗) of set T+. If model (11) is infeasible for

DMUp, then we find the closest point Z̃p = (X̃p, Ỹp) of the set T+ by solving the following
optimization problem:

min ρ

‖w‖p ≤ ρ,(
Zp + w

)
∈ T+,

(12)

where Zp = (Xp, Yp). We consider two cases of the p-norm, where p = 1 and p = ∞. For
the first case, ‖w‖1 = ∑i|wi|, consider the following LP problem:

min
m+r

∑
k=1

wk

∑
j∈J+

Xjλj ≤ Xp + wx,

∑
j∈J+

Yjλj ≥ Yp − wy,

∑
j∈J+

λj = 1,

λj ≥ 0, j = 1, . . . , n,

wx ≥ 0, wy ≥ 0,

(13)

where wx = (w1, . . . , wm)T and wy = (wm+1, . . . , wm+r)T.

Proposition 1. Model (13) minimizes the distance with respect to the 1-norm between unit
(Xp, Yp) /∈ T+ and set T+.

Proof. To prove the equivalence of (12) and (13), we represent space Em+r as a sum
of orthants

Em+r = Em+r
1 ∪ · · · ∪Em+r

l ∪ · · · ∪Em+r
N , (14)

where

Em+r
l =

{
∑

i∈L+
l

αiei − ∑
k∈L−l

βkek

∣∣∣∣ αi ≥ 0, βk ≥ 0
}

.

Here, ei and ek are (m + r)-identity vectors with one in position i and k, respectively,
and j = 1, . . . , N. The index sets L+

l and L−l satisfy the conditions L+
l ∩ L−l = ∅, and

L+
l ∪ L−l = L = {1, . . . , m + r}. Let the first orthant Em+r

1 be Em+r
+ ; the numbering of the

rest is arbitrary.
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Allowing for (14), we can reduce problem (12) to the solution of a family of the
following problems Pl , j = 1, . . . , N:

min fl =
m+r

∑
k=1

wk

∑
j∈J+

xijλj ≤ xip + wi, i ∈ L+
l ∩ Ix,

∑
j∈J+

xijλj ≤ xip − wi, i ∈ L−l ∩ Ix,

∑
j∈J+

yijλj ≥ yip + wi, i ∈ L+
l ∩ Iy,

∑
j∈J+

yijλj ≥ yip − wi, i ∈ L−l ∩ Iy,

∑
j∈J+

λj = 1, λj ≥ 0, j = 1, . . . , n,

wi ≥ 0, i = 1, . . . , m + r,

(15)

where Ix = {1, . . . , m} and Iy = {m + 1, . . . , m + r}. Note that some of the problems Pl
may be unbounded.

Let f ∗l be the optimal objective value of the problem Pl . Then, the minimal value
f ∗ = minl∈L f ∗l yields the optimal value of the problem (12). Next, we will show that it is
sufficient to solve only the problem P1 to find f ∗.

The problem P1 from the family (15) is written as (13). Consider any other problem Pl
from the family (15) with a finite optimal objective value. The dual problem DPl can be
written as follows:

max gl =
r

∑
i=1

uiyip −
m

∑
i=1

vixip + u0

r

∑
i=1

uiyij −
m

∑
i=1

vixij + u0 ≤ 0, j ∈ J+,

0 ≤ vi ≤ 1, i ∈ L+
l ∩ Ix,

0 ≤ vi, i ∈ L−l ∩ Ix,

0 ≤ ui ≤ 1, i ∈ L−l ∩ Iy,

0 ≤ ui, i ∈ L+
l ∩ Iy.

(16)

For the problem DP1, the constraints on variables ui and vi are written as:

0 ≤ vi ≤ 1, i = 1, . . . , m,

0 ≤ ui ≤ 1, i = 1, . . . , r.

From the structure of (16), it follows that the feasible set of DPl includes the feasible set
of DP1. Therefore, the optimal objective values satisfy g∗1 ≤ g∗l . This implies that optimal
objective values of primal problems Pl obey f ∗1 ≤ f ∗l .

Since we took Pl arbitrary, f ∗1 = minl∈L f ∗l . This completes the proof.

The coordinates of the closest point according to the 1-norm are determined as
Z̃p = (Xp + wx∗, Yp − wy∗), where wx∗ and wy∗ are optimal in (13).

For the infinity norm, ‖w‖∞ = maxi|wi|, problem (12) can be written in the following
equivalent LP form:
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min ρ

∑
j∈J+

Xjλj ≤ Xp + ρdx
1 ,

∑
j∈J+

Yjλj ≥ Yp + ρdy
1,

∑
j∈J+

λj = 1,

λj ≥ 0, j = 1, . . . , n,

(17)

where dx
1 = (1, . . . , 1) ∈ Em, dy

1 = (−1, . . . ,−1) ∈ Er.

Proposition 2. Model (17) minimizes the distance with respect to the infinity norm between unit
(Xp, Yp) /∈ T+ and set T+.

Proof. Choose an arbitrary direction d2 = (dx
2 , dy

2) ∈ Em+r such that ‖d2‖∞ = 1 and
d2 6= d1. Consider the following linear program:

min ρ

∑
j∈J+

Xjλj ≤ Xp + ρdx
2 ,

∑
j∈J+

Yjλj ≥ Yp + ρdy
2,

∑
j∈J+

λj = 1,

λj ≥ 0, j = 1, . . . , n.

(18)

Problem (18) determines the minimal distance between point (Xp, Yp) and set T+

according to the infinity norm along the direction d2. Observe that the finite solution of
problem (18) exists for some direction d2, but not for any direction.

Take the direction d2 for which the finite solution of (18) exists. By construction, we
have ‖d1‖∞ = ‖d2‖∞ = 1.

Let ρ∗1 and ρ∗2 denote the objective values of Problems (17) and (18), respectively. Due
to the optimality of ρ∗1 and ρ∗2 , we obtain

Z1 = Zp + ρ∗1d1 ∈ T+,

Z2 = Zp + ρ∗2d2 ∈ T+.

Assume that ρ∗2 < ρ∗1 . Consider the vector d3 = d1− d2; according to the construction
of d1 and d2, vector d3 ≥ 0, and at least one component of d3 is strictly positive.

Taking into account the monotonicity of set T+, we obtain

Z3 = Z2 + ρ∗2(d1 − d2) = Zp + ρ∗2d1 ∈ T+.

Thus, the unit Z3 satisfies the constraints of Problem (18) and ρ∗2 < ρ∗1 , violating the
minimality of ρ∗1 in (17). From this, it follows that ρ∗1 ≤ ρ∗2 . This completes the proof.

The closest point Z̃p ∈ T+ is obtained as Z̃p = (Xp + ρ∗dx
1 , Yp − ρ∗dy

1), where ρ∗ is the
optimal objective value of (17).

Since point Z̃p ∈ T+, the returns to scale can be evaluated at the projection point(
X̃p − S−∗, η∗Ỹp + S+∗) obtained by solving (11).

This approach is illustrated in Figure 4.
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Figure 4. Calculation of returns to scale in the presence of negative outputs.

Units B, C, and D are from set J+, and returns to scale for them are measured using
well-known DEA methods. Next, for DMUs with negative outputs, we try to find an output
projection onto the efficient frontier of the set T+. For unit F from set J−, such a projection
exists; hence, the returns to scale are measured for F at the projection point F1. For unit A
from set J−, the output model (11) is infeasible, and then the nearest point A1 from set T+

is found with the help of (17). And after that, for point A1, the returns to scale can be
estimated at projection point B of the efficient frontier. At the efficient point of the frontier,
the returns to scale can be evaluated using conventional methods [59,60].

4. Results
4.1. Data and Variables

As a numerical example, we consider the problem of evaluating the efficiency of
government spending on decarbonization goals supporting research, development, and
demonstration (RD&D) projects in different fields of energy efficiency. This problem was
initially considered in the paper [61], where it was solved by the simplest method.

Statistical data show that public support for new energy technologies can reach a sig-
nificant share of GDP in many countries. For example, according to the International
Energy Agency (IEA) [62], government spending on energy efficiency and renewable en-
ergy technologies in Spain is around 0.5% of GDP, while in Finland it is almost 0.13% of GDP.
However, it is not always the case that public spending achieves the stated objectives and
actually leads to increased energy efficiency and reduced emissions. There is contradictory
evidence in the scientific literature. Some studies provide results that prove that public
spending on energy research, development and demonstration has played a significant role
in reducing environmental pollution and GHG emissions [31,63], while others claim that
changes in environmental efficiency due to public spending have been unsatisfactory in
most countries [29,64,65].

Our sample includes 23 countries—members of IEA, namely Australia, Austria, Bel-
gium, Brazil, Canada, Czech Republic, Denmark, Finland, France, Germany, Hungary,
Ireland, Italy, Japan, South Korea, Netherlands, Norway, Poland, Spain, Sweden, Switzer-
land, the UK, and the USA. This study considers the volumes of government spending on
RD&D as inputs. Patents are usually the main results of scientific research of an applied
nature, therefore the number of patents in the field of “clean” energy and the number
patents in the field of hydrocarbon energy received in each country are considered as
intermediate outputs. The shifts in the energy and carbon intensity of the national economy
over time are considered system outputs.

The data for government spending and patents was taken from IEA database [62].
Energy intensity and carbon intensity were obtained from the World Bank Databank [66,67].

Obviously, there is a time lag between investment in R&D and the production of
scientific results. Similarly, there is a time lag between obtaining a scientific result and
its implementation into practice. Therefore, in our study, we use the means for RD&D
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budgets (as share of GDP) for the period 2010–2012, the number of patents received in
2013–2015, and changes in carbon intensity and energy efficiency as the difference between
the means in 2010–2012 and the means in 2016–2018. According World Bank methodology,
energy efficiency is measured as GDP per unit of energy use (constant 2017 PPP $ per kg
of oil equivalent), and carbon intensity is measured as CO2 metric tons for unit of GDP
(calculated based on [67]). The number of patents is measured per 10,000 residents to
take into account differences in the size of the economies and populations of the countries
included in the sample.

Tables 1 and 2 present descriptive statistics for inputs, intermediate outputs, and
system outputs of the model.

Table 1. Descriptive statistics for inputs [68].

Statistics
Type of Technology

Fossil Fuel Renewable Energy and Energy Efficiency Others

Mean 0.007 0.041 0.022
Std Dev 0.013 0.074 0.029
Variance 0.001 0.005 0.001

Min 0.000 0.008 0.000
Max 0.060 0.357 0.144

Kurtosis 11.675 17.499 15.52
Asymmetry 3.256 4.058 3.706

Note: The data represents public spending on energy-related RD&D projects, % GDP, mean for 2010–2012.

Table 2. Descriptive statistics for intermediate and system outputs [68].

Statistics Patents on
Fossil Fuel

Patents on
Renewable
Energy and

Energy
Efficiency

Change in
Energy

Efficiency

Change in
Carbon

Intensity

Mean 0.896 4.967 0.252 0.041
Std Dev 1.155 4.764 1.120 0.053
Variance 4.871 15.720 5.445 0.207

Min 0.048 0.069 −0.057 −0.072
Max 4.919 15.789 5.388 0.135

Kurtosis 6.366 0.000 22.949 −0.383
Asymmetry 2.425 1.059 4.788 −0.187

Note: The number of energy-related patents is measured per 10,000 residents for 2013–2016; the change in
carbon intensity and energy intensity are measured as the differences between mean for 2010–2012 and mean for
2016–2018.

Table 2’s data shows that outputs for several countries in the data sample are negative.
This means that not all countries achieved the declared goals of increasing energy efficiency
and reducing emissions in their economies during 2010–2018. From a mathematical point
of view, working with negative outputs requires the use of special methods, which will be
discussed below.

4.2. Results and Discussion

The efficiency scores of the first and second stages, together with the overall efficiency
scores calculated by the CCR model, CCR with a shift in the scale of measurement of
negative system outputs (CCR+), and the RDM model, which are all presented in Table 3.

Returns to scale (decreasing, constant, or increasing) estimates in the first and second
stages are presented in Table 4. In the first stage, all inputs and outputs for all DMUs are
positive. Hence, the RTS is calculated at this stage with the help of traditional methods.
For the second stage, we used the approach proposed in Section 3.3. First, the set T+ is
constructed for DMUs with positive inputs and outputs, and RTS is estimated for all units
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from this set. In our dataset, nine DMUs (Australia, Brazil, Canada, Hungary, Ireland,
Japan, Norway, Poland, and South Korea) have negative outputs. Hence, for these units,
Model (11) is solved in order to obtain an efficient projection point where RTS can be
measured. For Canada, Ireland, Japan, Norway, and South Korea, such projections exist,
and the estimated RTS is marked in Table 4 using the symbol ’*’. For Australia, Brazil,
Hungary, and Poland, Model (11) is infeasible. Therefore, for such units, it is necessary to
determine the closest point from the set T+. Next, the RTS is determined for this point;
such DMUs are indicated in Table 4 by the symbol ’**’.

Table 3. Efficiency scores in CCR model, CCR model with a shift in outputs (CCR+), and RDM model.

Country
CCR Model CCR+ Model RDM Model

Stage 1 Stage 2 Overall Stage 1 Stage 2 Overall Stage 1 Stage 2 Overall

Australia 21.7% 85.3% 53.5% 21.7% 48.8% 35.3% 100.0% 97.6% 98.8%
Austria 77.9% 7.3% 42.6% 77.9% 8.4% 43.2% 97.2% 50.7% 74.0%
Belgium 61.2% 20.3% 40.8% 61.2% 22.4% 41.8% 99.3% 62.5% 80.9%
Brazil 32.8% 100.0% 66.4% 32.8% 100.0% 66.4% 100.0% 100.0% 100.0%
Canada 41.4% 9.2% 25.3% 41.4% 5.1% 23.3% 79.9% 66.3% 73.1%
Czech Republic 16.0% 100.0% 58.0% 16.0% 61.0% 38.5% 100.0% 100.0% 100.0%
Denmark 69.8% 13.9% 41.9% 69.8% 7.4% 38.6% 94.1% 77.2% 85.6%
Finland 86.1% 8.5% 47.3% 86.1% 3.1% 44.6% 100.0% 65.7% 82.8%
France 42.1% 17.4% 29.8% 42.1% 10.5% 26.3% 75.1% 66.6% 70.8%
Germany 100.0% 0.8% 50.4% 100.0% 6.0% 53.0% 100.0% 43.0% 71.5%
Hungary 100.0% 1.4% 50.7% 100.0% 26.3% 63.2% 100.0% 79.0% 89.5%
Ireland 44.3% 0.7% 22.5% 44.3% 19.1% 31.7% 100.0% 55.0% 77.5%
Italy 17.7% 100.0% 58.8% 17.7% 69.5% 43.6% 91.9% 100.0% 96.0%
Japan 100.0% 19.5% 59.8% 100.0% 15.9% 58.0% 100.0% 59.6% 79.8%
Netherlands 75.7% 48.1% 61.9% 75.7% 17.8% 46.8% 97.4% 100.0% 98.7%
Norway 100.0% 3.9% 51.9% 100.0% 3.3% 51.7% 100.0% 56.1% 78.0%
Poland 7.9% 2.2% 5.1% 7.9% 21.3% 14.6% 87.9% 81.2% 84.5%
South Korea 100.0% 0.3% 50.1% 100.0% 0.5% 50.2% 100.0% 32.5% 66.3%
Spain 1.0% 100.0% 50.5% 1.0% 100.0% 50.5% 50.9% 100.0% 75.5%
Sweden 100.0% 9.6% 54.8% 100.0% 9.4% 54.7% 100.0% 53.4% 76.7%
Switzerland 49.7% 42.1% 45.9% 49.7% 25.4% 37.6% 86.2% 100.0% 93.1%
UK 76.5% 33.6% 55.0% 76.5% 15.5% 46.0% 100.0% 90.0% 95.0%
USA 100.0% 6.4% 53.2% 100.0% 3.3% 51.6% 100.0% 53.2% 76.6%

As can be seen, the differences in the results between the models are quite significant.
For obvious reasons, only the first stage of the CCR model and the first stage of the CCR+
model show complete agreement between the results of the calculations; the differences
between these models only appear in the methods of calculating the efficiency score in the
second stage.

Let us consider how the efficiency scores change at the second stage for DMUs negative
outputs. From Table 3, one can see that, as a result of shifting the scale for output indicators,
the efficiency scores of some DMUs increase unnecessarily. For example, the efficiency
score of Hungary increased 18 times (from 1.4% to 26.3%). A similar situation is observed
for two other DMUs: for Ireland, the efficiency score increased from 0.7% to 19.1%, and
for Poland, from 2.2% to 21.3%. This is due to the fact that after the scale shift, the efficient
frontier changes significantly and, as a result, the DMUs are estimated relative to other
reference units.

To figure out the differences between the results of the models, let us look at two sets
of parameters: (a) the sum of squares of deviations of efficiency scores on each stage (SS1
and SS2, respectively), as well as the system efficiency scores (SStotal); and (b) Pearson’s
linear correlation coefficients between the first and second stage efficiency scores (r1 and r2,
respectively), as well as between the system efficiency scores (rtotal).

Let us use two sets of parameters to estimate the differences between the results of
the models: (a) the sum of squares of deviations of efficiency scores on each stage (SS1
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and SS2, respectively), as well as the system efficiency scores (SStotal); and (b) Pearson’s
linear correlation coefficients between the first and second stage efficiency scores (r1 and
r2, respectively), as well as between the system efficiency scores (rtotal). The first set of
estimates will allow us to measure the magnitude of the overall difference between the
models, while the second set of estimates will allow us to measure the differences between
the efficiency scores for each of the DMUs (countries). Calculated estimates are presented
in Table 5.

Table 4. Estimated RTS in stages 1 and 2.

Country
Returns to Scale

Stage 1 Stage 2

Australia IRS CRS **
Austria DRS DRS
Belgium IRS DRS
Brazil IRS CRS **
Canada IRS DRS *
Czech Republic IRS CRS
Denmark DRS DRS
Finland DRS DRS
France DRS DRS
Germany CRS DRS
Hungary CRS CRS **
Ireland IRS CRS *
Italy IRS CRS
Japan CRS DRS *
Netherlands IRS DRS
Norway CRS DRS *
Poland IRS CRS **
South Korea CRS CRS *
Spain DRS CRS
Sweden CRS DRS
Switzerland DRS DRS
UK IRS DRS
USA CRS DRS

*—RTS is calculated using Model (11), **—RTS is calculated using Model (17).

Table 5. Sums of squares of deviations and correlation of DMU efficiency scores results obtained by
comparing different models.

Models SS1 SS2 SStotal r1 r2 rtotal

CCR & CCR+ 0 68.23% 17.00% 1 0.9039 0.8163
CCR & RDM 427.35% 524.73% 355.17% 0.5575 0.8064 0.4143
CCR+ & RDM 427.35% 609.56% 416.48% 0.5570 0.7162 0.0896

As can be seen, the CCR+ and RDM models differ most in terms of the efficiency
scores obtained. The question of model selection is therefore of particular importance in
order to ensure that the results of the calculations make sense in practice, correspond to the
real picture, and adequately reflect the state of the national innovation systems in the field
of energy-efficient technology development.

In our view, the measure of the discrepancy between the calculations obtained without
subdividing into stages (in the situation where the DMU is modeled as a “black box” system)
and the calculations of the system efficiency score according to the two-stage model can
serve as a criterion for the adequacy of the model. Since the main point of considering the
two-stage model is to find sources of inefficiency, the resulting efficiency scores themselves
should be as close to each other as possible. We use this reasoning to figure out the efficiency
scores for the CCR, CCR+, and RDM models without taking into account the intermediate
outputs (number of patents), and compare them with the efficiency scores presented in
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Table 3. As in the previous case, the sums of squared deviations and correlation coefficients
between the results obtained by models of the same type are used for comparison. The
resulting estimates are shown in Table 6.

Table 6. Sums of squares of deviations and correlations of DMU efficiency scores obtained by
comparing black box and two-stage models.

Models SStotal rtotal

CCR 281.86% 0.4946
CCR+ 394.65% 0.2618
RDM 70.13% 0.2829

As we can see, according to the set of estimates of the difference between the results of
the models, the RDM model is the most preferable. First, it gives minimal differences in the
results of the efficiency assessment of the whole sample of DMUs. The RDM model is in
second place in terms of the difference between the efficiency estimates for each country.
In addition, only the RDM model allows for the determination of returns to scale for all
DMUs in the first and second stages (Table 4), which is also important for making correct
decisions regarding the improvement of the efficiency of national innovation systems in
the development and deployment of energy-efficient technologies.

Interpreting the results of all three models from a practical point of view, we can also
say that the efficiency scores calculated according to the RDM model are more meaningful
and better reflect the processes in the innovation systems of the countries in the sample.
The higher efficiency achieved in the first stage indicates the more productivity for cor-
responding countries in generating energy innovations and registering patents related
to renewable energy technologies. The nations with the best efficiency scores at the sec-
ond stage demonstrate an excellent utilization of energy technology patents in practical
applications, hence facilitating the rapid implementation of energy innovations aimed at
reducing the energy and carbon intensity of their economies. The low level of efficiency at
the second stage of the innovation process can be attributed to the ongoing predominance
of hydrocarbon energy within the economies of these nations. This is the case in Norway,
the only country where the number of fossil fuel patents exceeds the number of patents
for clean energy. Despite the considerable attention paid to clean energy innovation, these
technologies are still not widespread in the economic system, which is not yet allowing
the goals of decarbonizing and improving the energy efficiency of the economies of that
nations to be achieved.

On the other hand, the weak effect of a high number of patents on energy intensity
and carbon reduction in some countries can be linked to the accumulation of information
in emerging domains of technical progress that have yet to attain the level of industrial im-
plementation. According to the literature, this is the case in Japan and South Korea [69,70].

At the same time, for countries with low levels of patenting activity, the valuable
results can be achieved by introduction of organizational innovations in environmental
management (management strategies, environmental management systems, standards,
etc.), changes in consumer behavior, and the development of less energy-intensive sub-
sectors of the economy. In the context of Brazil, notable achievements include the effective
establishment of a national framework of energy efficiency requirements specifically resi-
dential buildings [71], along with advancements in load energy management and the wide
acceptance of these initiatives within society [72].

Regarding returns on scale, all DMUs show constant (39.1%) or decreasing returns
to scale (60.9%) in the second stage. Decreasing returns to scale may indicate excessive
patenting of energy technologies, i.e., patenting not for the purpose of direct technology de-
ployment, but for other purposes (e.g., using blocking patenting to circumvent competitors
in the market or reputational patenting to build a positive image). The situation is more
favorable in the first stage, where many DMUs have increasing (43.5%) or constant (30%)
returns to scale. Taken together, these results suggest that the main source of inefficiency
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in the government support system for innovative energy-efficient technologies lies in the
practical implementation of new developments.

5. Conclusions

The main purpose of this study is to provide a comparative analysis of several possible
approaches to applying the DEA methodology in the case where some DMUs in the original
sample have negative second-stage outputs. In comparison with the traditional CCR model
and the CCR model with a scale shift to measure second-stage outputs, the RDM model
produces the most logical results. If we take as a measure of model adequacy the similarity
between the calculations obtained without stage separation (i.e., in a situation where the
DMU is modeled as a “black box” system) and the system efficiency calculations from the
two-stage model, the RDM model shows the highest similarity scores. In addition, RDM is
the only possible model that allows the calculation of economies of scale at each stage of
a DMU with a complex structure.

From a theoretical point of view, these results help to reveal the advantages and
disadvantages of different DEA models in the specific case of the presence of negative
outputs in the last stage of the DMU with a complex structure. From a practical point of
view, the results of this study can help policy-makers in the design and implementation of
national energy efficiency and decarbonization strategies of national economies.

Nevertheless, it is worth noting that the models developed based on existing data are
still simplified, and can be improved in several directions. It should be noted that some of
demonstration projects can be placed in the implementation phase, i.e., it is more reasonable
to consider their budgets as supplementary inputs at the second phase. Although, the
share of budgets spent on demonstration projects is not available in the existed dataset,
it can be taken into account by introducing coefficient α ∈ [0, 1], which represents the
share of budgets spent in total spending. Coefficient α can be specified by an expert or
can be determined by solving an additional optimization problem. This case leads us
to the problem of shared inputs. The elimination of this main limitation of the model is
the subject of further research by the authors. Another interesting direction of the further
research is the extension of existed approaches dealing with negative data to other efficiency
measures [73,74].
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Abbreviations
The following abbreviations are used in this manuscript:

CRS constant returns-to-scale
DEA data envelopment analysis
DMU decision making unit
DRS decreasing returns-to-scale
GDP gross domestic product
GHG greenhouse gas
IEA International Energy Agency
IRS increasing returns-to-scale
LP linear programming
PDFM proportional distance function measure
RD&D research, development, and demonstration
RDM range directional measure
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21. İlgün, G.; Şahin, B. Investigation of factors affecting efficiency of primary healthcare in Turkey with two-stage data envelopment
analysis. Int. J. Healthc. Manag. 2022, 15, 45–51. [CrossRef]

22. Wu, J.; Zhou, Z.; Liang, L. Measuring the performance of Chinese regional innovation systems with two-stage DEA-based model.
Int. J. Sustain. Soc. 2010, 2, 85–99. [CrossRef]

23. Guan, J.; Chen, K. Modeling the relative efficiency of national innovation systems. Res. Policy 2012, 41, 102–115. [CrossRef]
24. Rudskaya, I.A.; Rodionov, D.G. Comprehensive evaluation of Russian regional innovation system performance using a two-stage

econometric model. Rev. Espac. 2018, 39, 40. Available online: https://www.revistaespacios.com/a18v39n04/a18v39n04p40.pdf
(accessed on 10 October 2023).

25. Avilés-Sacoto, S.V.; Cook, W.D.; Güemes-Castorena, D.; Zhu, J. Modelling Efficiency in Regional Innovation Systems: A Two-Stage
Data Envelopment Analysis Problem with Shared Outputs within Groups of Decision-Making Units. Eur. J. Oper. Res. 2020,
287, 572–582. [CrossRef]

26. Alnafrah, I. Efficiency evaluation of BRICS’s national innovation systems based on bias-corrected network data envelopment
analysis. J. Innov. Entrep. 2021, 10, 26. [CrossRef]

27. Rudskaya, I.; Kryzhko, D.; Shvediani, A.; Missler-Behr, M. Regional Open Innovation Systems in a Transition Economy: A
Two-Stage DEA Model to Estimate Effectiveness. J. Open Innov. Technol. Mark. Complex. 2022, 8, 41. [CrossRef]

28. Lin, T.Y.; Chiu, S.H.; Yang, H.L. Performance evaluation for regional innovation systems development in China based on the
two-stage SBM-DNDEA model. Socio-Econ. Plan. Sci. 2022, 80, 101148. [CrossRef]

29. Guzowska, M.K.; Kryk, B.; Michalak, D.; Szyja, P. R&D Spending in the Energy Sector and Achieving the Goal of Climate
Neutrality. Energies 2021, 14, 7875. [CrossRef]

30. Ratner, S.; Lychev, A.; Rozhnov, A.; Lobanov, I. Efficiency Evaluation of Regional Environmental Management Systems in Russia
Using Data Envelopment Analysis. Mathematics 2021, 9, 2210. [CrossRef]

31. Hailemariam, A.; Ivanovski, K.; Dzhumashev, R. Does R&D investment in renewable energy technologies reduce greenhouse gas
emissions? Appl. Energy 2022, 327, 120056. [CrossRef]

32. Portela, M.C.A.S.; Thanassoulis, E.; Simpson, G. Negative data in DEA: A directional distance approach applied to bank branches.
J. Oper. Res. Soc. 2004, 55, 1111–1121. [CrossRef]

33. Sharp, J.A.; Meng, W.; Liu, W. A modified slacks-based measure model for data envelopment analysis with ‘natural’ negative
outputs and inputs. J. Oper. Res. Soc. 2007, 58, 1672–1677. [CrossRef]

34. Kazemi Matin, R.; Azizi, R. A two-phase approach for setting targets in DEA with negative data. Appl. Math. Model. 2011,
35, 5794–5803. [CrossRef]

35. Lin, R.; Chen, Z. A directional distance based super-efficiency DEA model handling negative data. J. Oper. Res. Soc. 2017,
68, 1312–1322. [CrossRef]

36. Lin, R.; Yang, W.; Huang, H. A modified slacks-based super-efficiency measure in the presence of negative data. Comput. Ind.
Eng. 2019, 135, 39–52. [CrossRef]

37. Tone, K.; Chang, T.S.; Wu, C.H. Handling negative data in slacks-based measure data envelopment analysis models. Eur. J. Oper.
Res. 2020, 282, 926–935. [CrossRef]

38. Emrouznejad, A.; Anouze, A.L.; Thanassoulis, E. A semi-oriented radial measure for measuring the efficiency of decision making
units with negative data, using DEA. Eur. J. Oper. Res. 2010, 200, 297–304. [CrossRef]

39. Kazemi Matin, R.; Amin, G.R.; Emrouznejad, A. A modified Semi-Oriented Radial Measure for target setting with negative data.
Measurement 2014, 54, 152–158. [CrossRef]

40. Tavana, M.; Izadikhah, M.; Toloo, M.; Roostaee, R. A new non-radial directional distance model for data envelopment analysis
problems with negative and flexible measures. Omega 2021, 102, 102355. [CrossRef]

41. Cheng, G.; Zervopoulos, P.; Qian, Z. A variant of radial measure capable of dealing with negative inputs and outputs in data
envelopment analysis. Eur. J. Oper. Res. 2013, 225, 100–105. [CrossRef]

42. Toloo, M.; Zandi, A.; Emrouznejad, A. Evaluation efficiency of large-scale data set with negative data: An artificial neural network
approach. J. Supercomput. 2015, 71, 2397–2411. [CrossRef]

43. Afanasiev, A.P.; Krivonozhko, V.E.; Lychev, A.V.; Sukhoroslov, O.V. Constructions of Input and Output Isoquants in DEA Models
with Selective Convexity. Appl. Comput. Math. 2021, 21, 317–328. [CrossRef]

44. Afanasiev, A.P.; Krivonozhko, V.E.; Førsund, F.R.; Lychev, A.V. Multidimensional Visualization of Data Envelopment Analysis
Models. Data Envel. Anal. J. 2021, 5, 339–361. [CrossRef]

45. Scheel, H. Undesirable outputs in efficiency valuations. Eur. J. Oper. Res. 2001, 132, 400–410. [CrossRef]
46. Tohidi, G.; Khodadadi, M. Allocation models for DMUs with negative data. J. Ind. Eng. Int. 2013, 9, 16. [CrossRef]
47. Lu, Y.H.; Chen, P.C.; Hsiao, T.Y. Operational Efficiency in Credit Departments of Farmers’ Associations with Consideration

of Non-Performing Loans and Negative Values: Application of Dynamic Network DEA. Macrotheme Rev. 2014, 3, 150–164.
Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6980c05a9d728dfd8aa5fdd0633c3146bf321
c28 (accessed on 10 October 2023).

48. Izadikhah, M.; Farzipoor Saen, R. Evaluating sustainability of supply chains by two-stage range directional measure in the
presence of negative data. Transp. Res. Part D Transp. Environ. 2016, 49, 110–126. [CrossRef]

49. Kong, W.H.; Fu, T.T.; Yu, M.M. Evaluating Taiwanese Bank Efficiency Using the Two-Stage Range DEA Model. Int. J. Inf. Technol.
Decis. Mak. 2017, 16, 1043–1068. [CrossRef]

http://dx.doi.org/10.1080/20479700.2020.1836735
http://dx.doi.org/10.1504/IJSSOC.2010.030564
http://dx.doi.org/10.1016/j.respol.2011.07.001
https://www.revistaespacios.com/a18v39n04/a18v39n04p40.pdf
http://dx.doi.org/10.1016/j.ejor.2020.04.052
http://dx.doi.org/10.1186/s13731-021-00159-3
http://dx.doi.org/10.3390/joitmc8010041
http://dx.doi.org/10.1016/j.seps.2021.101148
http://dx.doi.org/10.3390/en14237875
http://dx.doi.org/10.3390/math9182210
http://dx.doi.org/10.1016/j.apenergy.2022.120056
http://dx.doi.org/10.1057/palgrave.jors.2601768
http://dx.doi.org/10.1057/palgrave.jors.2602318
http://dx.doi.org/10.1016/j.apm.2011.05.002
http://dx.doi.org/10.1057/s41274-016-0137-8
http://dx.doi.org/10.1016/j.cie.2019.05.030
http://dx.doi.org/10.1016/j.ejor.2019.09.055
http://dx.doi.org/10.1016/j.ejor.2009.01.001
http://dx.doi.org/10.1016/j.measurement.2014.04.018
http://dx.doi.org/10.1016/j.omega.2020.102355
http://dx.doi.org/10.1016/j.ejor.2012.09.031
http://dx.doi.org/10.1007/s11227-015-1387-y
http://dx.doi.org/10.30546/1683-6154.21.3.2022.317
http://dx.doi.org/10.1561/103.00000040
http://dx.doi.org/10.1016/S0377-2217(00)00160-0
http://dx.doi.org/10.1186/2251-712X-9-16
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6980c05a9d728dfd8aa5fdd0633c3146bf321c28
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6980c05a9d728dfd8aa5fdd0633c3146bf321c28
http://dx.doi.org/10.1016/j.trd.2016.09.003
http://dx.doi.org/10.1142/S0219622017500031


Mathematics 2023, 11, 4873 21 of 21

50. Tavana, M.; Izadikhah, M.; Di Caprio, D.; Farzipoor Saen, R. A new dynamic range directional measure for two-stage data
envelopment analysis models with negative data. Comput. Ind. Eng. 2018, 115, 427–448. [CrossRef]

51. Kianfar, K.; Ahadzadeh Namin, M.; Alam Tabriz, A.; Najafi, E.; Hosseinzadeh Lotfi, F. The NDEA–MOP Model in the Presence of
Negative Data Using Fuzzy Method. Sci. Iran. 2018, 25, 398–409. [CrossRef]

52. Kao, C. Measuring efficiency in a general production possibility set allowing for negative data. Eur. J. Oper. Res. 2020, 282, 980–988.
[CrossRef]

53. Li, M.; Zhu, N.; He, K.; Li, M. Operational Efficiency Evaluation of Chinese Internet Banks: Two-Stage Network DEA Approach.
Sustainability 2022, 14, 14165. [CrossRef]

54. Babaie Asil, H.; Kazemi matin, R.; Khounsiavash, M.; Moghaddas, Z. A Bounded Additive Model for Efficiency Evaluation in
Two-Stage Production Systems with Negative Data. Iran. J. Optim. 2022, 14, 15–25. Available online: https://ijo.rasht.iau.ir/
article_692203.html (accessed on 10 October 2023).

55. Azadi, M.; Moghaddas, Z.; Saen, R.F.; Gunasekaran, A.; Mangla, S.K.; Ishizaka, A. Using network data envelopment analysis to
assess the sustainability and resilience of healthcare supply chains in response to the COVID-19 pandemic. Ann. Oper. Res. 2023,
328, 107–150. [CrossRef]

56. Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444.
[CrossRef]

57. Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis. A Comprehensive Text with Models, Applications, References and
DEA-Solver Software, 2nd ed.; Springer Science and Business Media: New York, NY, USA, 2007. [CrossRef]

58. Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment
analysis. Manag. Sci. 1984, 30, 1078–1092. [CrossRef]

59. Førsund, F.R.; Hjalmarsson, L.; Krivonozhko, V.E.; Utkin, O.B. Calculation of scale elasticities in DEA models: Direct and indirect
approaches. J. Product. Anal. 2007, 28, 45–56. [CrossRef]

60. Krivonozhko, V.E.; Lychev, A.V.; Førsund, F.R. Measurement of returns to scale in radial DEA models. Comput. Math. Math. Phys.
2017, 57, 83–93. [CrossRef]

61. Ratner, S.; Gomonov, K.; Revinova, S. Public Funding for Energy Innovation and Decarbonization Goals: A Coherence Challenge.
Int. J. Energy Econ. Policy 2023, 13, 40–45. [CrossRef]

62. International Energy Agency. Energy Technology RD&D Budgets. Available online: https://www.iea.org/data-and-statistics/
data-product/energy-technology-rd-and-d-budget-database-2 (accessed on 10 October 2023).

63. Ulucak, R. Analyzing energy innovation-emissions nexus in China: A novel dynamic simulation method. Energy 2022, 244, 123010.
[CrossRef]

64. Caglar, A.E.; Ulug, M. The role of government spending on energy efficiency R&D budgets in the green transformation process:
Insight from the top-five countries. Environ. Sci. Pollut. Res. 2022, 29, 76472–76484. [CrossRef]

65. Ratner, S.; Chepurko, Y.; Drobyshecskaya, L.; Petrovskaya, A. Management of Energy Enterprises: Energy-efficiency Approach
in Solar Collectors Industry: The Case of Russia. Int. J. Energy Econ. Policy 2018, 8, 237–243. Available online: https:
//www.econjournals.com/index.php/ijeep/article/view/6740 (accessed on 10 October 2023).

66. The World Bank Group. Databank. GDP per Unit of Energy Use. Available online: https://data.worldbank.org/indicator/EG.
GDP.PUSE.KO.PP.KD?view=chart (accessed on 10 October 2023).

67. The World Bank Group. Databank. CO2 Emissions. Available online: https://data.worldbank.org/indicator/EN.ATM.CO2E.
KT?view=chart (accessed on 10 October 2023).

68. Ratner, S.V.; Lychev, A.V. Two-Stage DEA Model with Shared Inputs for Measuring Efficiency of the Governance in Energy
Transition. In Proceedings of the 2023 IEEE 17th International Conference on Application of Information and Communication
Technologies (AICT), Baku, Azerbaijan, 18–20 October 2023; pp. 1–5. [CrossRef]

69. Yuan, Y.; Yuan, X. Does the development of fuel cell electric vehicles be reviving or recessional? Based on the patent analysis.
Energy 2023, 272, 127104. [CrossRef]

70. Khan, U.; Yamamoto, T.; Sato, H. An insight into potential early adopters of hydrogen fuel-cell vehicles in Japan. Int. J. Hydrogen
Energy 2021, 46, 10589–10607. [CrossRef]

71. Fossati, M.; Scalco, V.A.; Linczuk, V.C.C.; Lamberts, R. Building energy efficiency: An overview of the Brazilian residential
labeling scheme. Renew. Sustain. Energy Rev. 2016, 65, 1216–1231. [CrossRef]

72. Zurn, H.H.; Tenfen, D.; Rolim, J.G.; Richter, A.; Hauer, I. Electrical energy demand efficiency efforts in Brazil, past, lessons
learned, present and future: A critical review. Renew. Sustain. Energy Rev. 2017, 67, 1081–1086. [CrossRef]

73. Nguyen, V.T.T.; Wang, C.n.; Yang, F.c.; Vo, T.M.N. Efficiency Evaluation of Cyber Security Based on EBM-DEA Model. Eurasia
Proc. Sci. Technol. Eng. Math. 2022, 17, 38–44. [CrossRef]

74. Wang, C.N.; Yang, F.C.; Vo, N.T.M.; Nguyen, V.T.T. Enhancing Lithium-Ion Battery Manufacturing Efficiency: A Comparative
Analysis Using DEA Malmquist and Epsilon-Based Measures. Batteries 2023, 9, 317. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.cie.2017.11.024
http://dx.doi.org/10.24200/sci.2017.4413
http://dx.doi.org/10.1016/j.ejor.2019.10.027
http://dx.doi.org/10.3390/su142114165
https://ijo.rasht.iau.ir/article_692203.html
https://ijo.rasht.iau.ir/article_692203.html
http://dx.doi.org/10.1007/s10479-022-05020-8
http://dx.doi.org/10.1016/0377-2217(78)90138-8
http://dx.doi.org/10.1007/978-0-387-45283-8
http://dx.doi.org/10.1287/mnsc.30.9.1078
http://dx.doi.org/10.1007/s11123-007-0047-5
http://dx.doi.org/10.1134/S0965542517010080
http://dx.doi.org/10.32479/ijeep.14329
https://www.iea.org/data-and-statistics/data-product/energy-technology-rd-and-d-budget-database-2
https://www.iea.org/data-and-statistics/data-product/energy-technology-rd-and-d-budget-database-2
http://dx.doi.org/10.1016/j.energy.2021.123010
http://dx.doi.org/10.1007/s11356-022-21133-w
https://www.econjournals.com/index.php/ijeep/article/view/6740
https://www.econjournals.com/index.php/ijeep/article/view/6740
https://data.worldbank.org/indicator/EG.GDP.PUSE.KO.PP.KD?view=chart
https://data.worldbank.org/indicator/EG.GDP.PUSE.KO.PP.KD?view=chart
https://data.worldbank.org/indicator/EN.ATM.CO2E.KT?view=chart
https://data.worldbank.org/indicator/EN.ATM.CO2E.KT?view=chart
http://dx.doi.org/10.1109/AICT59525.2023.10313203
http://dx.doi.org/10.1016/j.energy.2023.127104
http://dx.doi.org/10.1016/j.ijhydene.2020.12.173
http://dx.doi.org/10.1016/j.rser.2016.06.048
http://dx.doi.org/10.1016/j.rser.2016.09.037
http://dx.doi.org/10.55549/epstem.1175908
http://dx.doi.org/10.3390/batteries9060317

	Introduction
	Literature Review
	Materials and Methods 
	DEA Background
	Two-Stage Models with Negative Outputs
	Estimation of RTS in a Two-Stage Model with Negative Outputs

	Results
	Data and Variables
	Results and Discussion

	Conclusions
	References

