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Abstract: The Cholesky factorization of the moment matrix is considered for the Gauss hypergeomet-
ric discrete orthogonal polynomials. This family of discrete orthogonal polynomials has a weight

with first moment given by ρ0 = 2F1

[
a, b

c + 1
; η

]
. For the Gauss hypergeometric discrete orthogonal

polynomials, also known as generalized Hahn of type I, Laguerre–Freud equations are found, and
the differences with the equations found by Dominici and by Filipuk and Van Assche are provided.
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1. Introduction

Discrete orthogonal polynomials constitute a well-established and distinguished
branch of orthogonal polynomial theory. Various classical monographs have been dedicated
to this category of orthogonal polynomials. For instance, the classical case is thoroughly
examined in [1], and the Riemann–Hilbert problem has been employed to investigate
asymptotics and applications, as discussed in [2]. Authoritative discussions of the subject
can be found in [3–6].

Discrete orthogonal polynomials play a role in designing digital filters for signal
processing applications. They help in representing signals in a more compact and efficient
manner, facilitating analysis and manipulation. Discrete orthogonal polynomials are
employed in approximating functions. They provide a basis for representing functions in
terms of a series expansion, making it easier to approximate complex functions. Discrete
orthogonal polynomials are used in coding theory for designing error-correcting codes.
They help in constructing efficient encoding and decoding algorithms, improving the
reliability of data transmission in communication systems. Discrete orthogonal polynomials
are often involved in combinatorics, providing tools for solving combinatorial problems
and deriving combinatorial identities.

Semiclassical discrete orthogonal polynomials, characterized by the satisfaction of a
discrete Pearson equation by their weight functions, have received extensive attention in
the literature. A comprehensive overview of this topic, along with extensive references, can
be found in [7–10]. Furthermore, for certain specific weight types, such as the generalized
Charlier and Meixner weights, the corresponding Freud–Laguerre-type equations govern-
ing the coefficients of the three-term recurrence have been investigated. Notable works in
this area include [11–15].

In our work presented in [16], we harnessed the Cholesky factorization of the moment
matrix to delve into the realm of discrete orthogonal polynomials denoted as {Pn(x)}∞

n=0
on a homogeneous lattice. We directed our focus on semiclassical discrete orthogonal
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polynomials, defined by weight functions constrained by a discrete Pearson equation. This
constraint led to the moments being expressible in terms of generalized hypergeomet-
ric functions.

We introduced a banded semi-infinite matrix named the Laguerre–Freud structure
matrix Ψ, designed to model shifts by ±1 in the independent variable of the sequence of
orthogonal polynomials {Pn(x)}∞

n=0. Our study also unveiled that the contiguous relations
governing the generalized hypergeometric functions have corresponding symmetries
within the moment matrix. Furthermore, we established that the 3D Nijhoff–Capel discrete
Toda lattice [17,18] offers a description of the contiguous shifts pertaining to the squared
norms of the orthogonal polynomials.

In [19], we provided an interpretation for the contiguous transformations of general-
ized hypergeometric functions by invoking simple Christoffel and Geronimus transforma-
tions. Leveraging Geronimus–Uvarov perturbations, we derived determinantal expressions
for the shifted orthogonal polynomials. Additionally, our exploration extended to three
hypergeometric families and their associated Laguerre–Freud equations in [20].

In the research presented here, we extend and complete the investigations in [16,19,20],
adding a new weight not studied so far with the similar techniques adapted to this situation.
We delve into the realm of Gauss hypergeometric discrete orthogonal polynomials, which
are also known as generalized Hahn polynomials of type I, as discussed in [9,10]. Our pri-
mary focus is an in-depth analysis of the Laguerre–Freud structure matrix Ψ. By examining
its unique banded structure and its inherent compatibility with both the Toda equation
and the Jacobi matrix, we uncover a set of nonlinear equations that govern the coefficients
βn, γn in the three-term recursion relations for the orthogonal polynomial sequence.

These nonlinear recurrences for the recursion coefficients take the following form:

γn+1 = F1(n, γn, γn−1, . . . , βn, βn−1, . . . ),

βn+1 = F2(n, γn+1, γn, . . . , βn, βn−1, . . . ),

with F1 and F2 being specific functions. Notably, these relations, referred to as Laguerre–Freud
relations by Magnus [21] in reference to [22,23], have been explored in numerous papers for
cases like generalized Charlier, generalized Meixner, and Gauss hypergeometric, as documented
in [7,14].

A crucial insight that emerges is the role of the τ-function, defined as the Wronskian
of the Gauss hypergeometric functions. This τ-function proves to be a valuable solution
for each of these systems of nonlinear Laguerre–Freud equations governing the recursion
coefficients.

This paper’s structure is outlined as follows: In Section 2, we delve into the world of
Gauss hypergeometric discrete orthogonal polynomials, as initially introduced in [7,9]. We
present the pentadiagonal Laguerre–Freud structure matrix in Theorem 3. Additionally, we
delve into the Laguerre–Freud relations in Theorem 4, providing a comparative analysis
with Dominici’s findings in [7] and those of Filipuk & Van Assche in [14], as well as the
work presented in [24].

To round off this introduction, let us begin by summarizing the foundational concepts
of discrete orthogonal polynomials. Afterward, we will provide a brief overview of the
significant findings from our previous work in [16].

1.1. Basics on Orthogonal Polynomials

Given a linear functional ρz ∈ C∗[z], the corresponding moment matrix is

G = (Gn,m),

Gn,m = ρn+m,

ρn =
〈
ρz, zn〉, n, m ∈ N0 := {0, 1, 2, . . . },
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with ρn the n-th moment of the linear functional ρz. If the moment matrix is such that all its
truncations, which are Hankel matrices, Gi+1,j = Gi,j+1,

G[k] =

 G0,0 G0,k−1

Gk−1,0 Gk−1,k−1

 =



ρ0 ρ1 ρ2 ρk−1

ρ1 ρ2 ρk

ρ2

ρk−1 ρk ρ2k−2


are nonsingular; i.e., the Hankel determinants ∆k :=det G[k] do not cancel, ∆k ̸= 0, k ∈ N0.
If this is the case, we have monic polynomials.

Pn(z) = zn + p1
nzn−1 + · · ·+ pn

n, n ∈ N0, (1)

with p1
0 = 0, fulfilling the orthogonality relations〈

ρ, Pn(z)zk〉 = 0, k ∈ {0, . . . , n − 1},
〈
ρ, Pn(z)zn〉 = Hn ̸= 0,

and {Pn(z)}n∈N0 is a sequence of orthogonal polynomials, i.e.,
〈
ρ, Pn(z)Pm(z)

〉
= δn,m Hn

for n, m ∈ N0. The symmetric bilinear form ⟨F, G⟩ρ:=⟨ρ, FG⟩, is such that the moment
matrix is the Gram matrix of this bilinear form and ⟨Pn, Pm⟩ρ:=δn,mHn.

Introducing χ(z):=
(
1 z z2 )⊤ the moment matrix is G =

〈
ρ, χχ⊤〉, and χ is an

eigenvector of the shift matrix, Λχ = xχ, where

Λ :=



0 1 0

0 0 1

h

.

Hence, ΛG = GΛ⊤, and the moment matrix is a Hankel matrix.
As the moment matrix symmetric its Borel–Gauss factorization is a Cholesky factorization

G = S−1HS−⊤,

where S is a lower unitriangular matrix that can be written as

S =



1 0 0

S1,0 1 0

S2,0 S2,1 1


,

and H = diag(H0, H1, . . . ) is a diagonal matrix, with Hk ̸= 0, for k ∈ N0. The Cholesky
factorization does hold whenever the principal minors of the moment matrix; i.e., the
Hankel determinants ∆k, do not cancel.

The components Pn(z) of

P(z) := Sχ(z), (2)

are the monic orthogonal polynomials of the functional ρ.
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Proposition 1. We have the determinantal expressions

Hn =
∆n+1

∆n
, p1

n = − ∆̃n

∆n
,

with the Hankel determinants given by

∆n :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ0 ρn−2 ρn−1

ρn−2 ρn−1 ρ2n−3

ρn−1 ρ2n−3 ρ2n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣
, ∆̃n :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ0 ρn−2 ρn−1

ρn−2 ρn−1 ρ2n−3

ρn ρ2n−2 ρ2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We introduce the lower Hessenberg semi-infinite matrix

J = SΛS−1 (3)

that has the vector P(z) as eigenvector with eigenvalue z, JP(z) = zP(z). The Hankel
condition ΛG = GΛ⊤ and the Cholesky factorization gives

JH = (JH)⊤ = HJ⊤.

As the Hessenberg matrix JH is symmetric, the Jacobi matrix J is tridiagonal. The Ja-
cobi matrix J given in (3) reads

J =


β0 1 0

γ1 β1 1

0 γ2 β2

.

The eigenvalue equation JP = zP is a three term recursion relation zPn(z) = Pn+1(z) +
βnPn(z) + γnPn−1(z), that with the initial conditions P−1 = 0 and P0 = 1 completely
determines the sequence of orthogonal polynomials {Pn(z)}∞

n=0 in terms of the recursion
coefficients βn, γn. The recursion coefficients, in terms of the Hankel determinants, are
given by

βn = p1
n − p1

n+1 = − ∆̃n

∆n
+

∆̃n+1

∆n+1
, γn+1 =

Hn+1

Hn
=

∆n+1∆n−1

∆2
n

, n ∈ N0. (4)

For future use, we introduce the following diagonal matrices γ:=diag(γ1, γ2, . . . )
and β:=diag(β0, β1, . . . ) and J−:=Λ⊤γ and J+:=β + Λ, so that we have the splitting J =
Λ⊤γ + β + Λ = J− + J+. In general, given any semi-infinite matrix A, we will write
A = A− + A+, where A− is a strictly lower triangular matrix and A+ an upper triangular
matrix. Moreover, A0 will denote the diagonal part of A.

The lower Pascal matrix is defined by

B = (Bn,m), Bn,m :=


(

n
m

)
, n ≥ m,

0, n < m,

so that

χ(z + 1) = Bχ(z).
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Moreover,

B−1 = (B̃n,m), B̃n,m :=

(−1)n+m
(

n
m

)
, n ≥ m,

0, n < m,

and χ(z − 1) = B−1χ(z). The lower Pascal matrix and its inverse are explicitly given by

B =



1 0
1 1 0
1 2 1 0
1 3 3 1 0
1 4 6 4 1 0
1 5 10 10 5 1 0


,

B−1 =



1 0
−1 1 0

1 −2 1 0
−1 3 −3 1 0

1 −4 6 −4 1 0
−1 5 −10 10 −5 1 0


,

in terms of which we introduce the dressed Pascal matrices, Π:=SBS−1 and Π−1:=SB−1S−1,
which are connection matrices; i.e.,

P(z + 1) = ΠP(z), P(z − 1) = Π−1P(z). (5)

The lower Pascal matrix can be expressed in terms of its subdiagonal structure
as follows

B±1 = I ± Λ⊤D +
(
Λ⊤)2D[2] ±

(
Λ⊤)3D[3] + · · · ,

where D = diag(1, 2, 3, . . . ) and D[k] = 1
k diag

(
k(k), (k + 1)(k), (k + 2)(k) · · ·

)
, in terms of

the falling factorials x(k) = x(x − 1)(x − 2) · · · (x − k + 1). That is,

D[k]
n =

(n + k) · · · (n + 1)
k

, k ∈ N, n ∈ N0.

The lower unitriangular factor can be also written in terms of its subdiagonals S =

I +Λ⊤S[1]+
(
Λ⊤)2S[2]+ · · · with S[k] = diag

(
S[k]

0 , S[k]
1 , . . .

)
. From (2) is clear the following

connection between these subdiagonals entries and the coefficients of the orthogonal
polynomials given in (1)

S[k]
n = pk

n+k.

We will use the shift operators T± acting over the diagonal matrices as follows

T− diag(a0, a1, . . . ) := diag(a1, a2, . . . ), T+ diag(a0, a1, . . . ) := diag(0, a0, a1, . . . ).

These shift operators have the following important properties, for any diagonal matrix
A = diag(A0, A1, . . . )

ΛA = (T−A)Λ, AΛ = Λ(T+A), AΛ⊤ = Λ⊤(T−A), Λ⊤A = (T+A)Λ⊤.
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In terms of these shift operators, we find

2D[2] = (T−D)D, 3D[3] = (T2
−D)(T−D)D = 2(T−D[2])D = 2D[2](T2

−D).

Proposition 2. The inverse matrix S−1 of the matrix S expands as follows

S−1 = I + Λ⊤S[−1] +
(
Λ⊤)2S[−2] + · · · .

The subdiagonals S[−k] are given in terms of the subdiagonals of S. In particular,

S[−1] = −S[1],

S[−2] = −S[2] + (T−S[1])S[1],

S[−3] = −S[3] + (T−S[2])S[1] + (T2
−S[1])S[2] − (T2

−S[1])(T−S[1])S[1].

Remark 1. Corresponding expansions for the dressed Pascal matrices are

Π±1 = I + Λ⊤π[±1] + (Λ⊤)2π[±2] + · · ·

with π[±n] = diag(π[±n]
0 , π

[±n]
1 , . . . ).

Proposition 3 (The dressed Pascal matrix coefficients). We have

π
[±1]
n = ±(n + 1), π

[±2]
n =

(n + 2)(n + 1)
2

± p1
n+2(n + 1)∓ (n + 2)p1

n+1

=
(n + 2)(n + 1)

2
∓ (n + 1)βn+1 ∓ p1

n+1,
(6)

π
[±3]
n = ± (n + 3)(n + 2)(n + 1)

3
+

(n + 2)(n + 1)
2

p1
n+3 −

(n + 3)(n + 2)
2

p1
n+1

± (n + 1)p2
n+3 ∓ (n + 3)p2

n+2 ± (n + 3)p1
n+2 p1

n+1 ∓ (n + 2)p1
n+3 p1

n+1.

Moreover, the following relations are fulfill

π[1] + π[−1] = 0, π[2] + π[−2] = 2D[2], π[3] + π[−3] = 2((T2
−S[1])D[2] − (T−D[2])S[1]).

1.2. Discrete Orthogonal Polynomials and Pearson Equation

We are interested in measures with support on the homogeneous lattice N0 as follows
ρ = ∑∞

k=0 δ(z − k)w(k), with moments given by

ρn =
∞

∑
k=0

knw(k), (7)

and, in particular, with 0-th moment given by

ρ0 =
∞

∑
k=0

w(k). (8)

The weights we consider in this paper satisfy the following discrete Pearson equation

θ(k + 1)w(k + 1) = σ(k)w(k), k ∈ N0. (9)

Theorem 1 (Hypergeometric symmetries). Let the weight w be subject to a discrete Pearson
equation of the type (9), where the functions θ, σ are polynomials, with θ(0) = 0. Then,
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(i) The moment matrix fulfills

θ(Λ)G = Bσ(Λ)GB⊤.

(ii) The Jacobi matrix satisfies

Π−1Hθ(J⊤) = σ(J)HΠ⊤,

and the matrices Hθ(J⊤) and σ(J)H are symmetric.

If N + 1:=deg θ(z) and M:=deg σ(z), and zeros of these polynomials are {−bi + 1}N
i=1

and {−ai}M
i=1 we write θ(z) = z(z + b1 − 1) · · · (z + bN − 1) and σ(z) = η(z + a1) · · · (z +

aM). According to (8) the 0-th moment

ρ0 =
∞

∑
k=0

w(k) =
∞

∑
k=0

(a1)k · · · (aM)k
(b1 + 1)k · · · (bN + 1)k

ηk

k!
= FM N

[
a1 aM
b1 bN

; η

]
.

is the generalized hypergeometric function, where we are using the standard notation-
amc+amc+, see [25]. Then, according to (7), for n ∈ N, the corresponding higher moments
ρn = ∑∞

k=0 knw(k), are

ρn = ϑn
η ρ0 = ϑn

η

(
FM N

[
a1 aM
b1 bN

; η

])
, ϑη := η

∂

∂η
.

Given a function f (η), we consider the Wronskian of the covector

δ( f ) :=
[

f ϑ f ϑn f
]

given by

Wn( f ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ϑη f ϑ2
η f ϑn

η f

ϑη f ϑ2
η f ϑn+1

η f

ϑ2
η f

ϑn
η f ϑn+1

η f ϑ2n
η f

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We refer to this Wronskian as the δ-Wronskian of f . Then, we have that the Hankel
determinants ∆n = det G[n] determined by the truncations of the corresponding moment
matrix are δ-Wronskians of generalized hypergeometric functions,

∆n = τn, ∆̃n = ϑητn, (10)

where

τn := Wn

(
FM N

[
a1 aM
b1 bN

; η

])
.

Moreover, using Proposition 1 we get

Hn =
τn+1

τn
, p1

n = −ϑη log τn, n ∈ N0. (11)

The functions τk are the well known tau functions [17]. In terms of these τ-functions
we have

βn = ϑη log
τn+1

τn
, γn+1 =

τn+1τn−1

τ2
n

, n ∈ N0, (12)
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were we have used (4), (10) and (11).

Theorem 2 (Laguerre–Freud structure matrix). Let us assume that the weight w solves the
discrete Pearson Equation (9) with θ, σ polynomials such that θ(0) = 0, deg θ(z) = N + 1,
deg σ(z) = M. Then, the Laguerre–Freud structure matrix

Ψ := Π−1Hθ(J⊤) = σ(J)HΠ⊤ = Π−1θ(J)H = Hσ(J⊤)Π⊤ (13)

= θ(J + I)Π−1H = HΠ⊤σ(J⊤ − I),

has only N + M + 2 possibly nonzero diagonals (N + 1 superdiagonals and M subdiagonals)

Ψ = (Λ⊤)Mψ(−M) + · · ·+ Λ⊤ψ(−1) + ψ(0) + ψ(1)Λ + · · ·+ ψ(N+1)ΛN+1,

for some diagonal matrices ψ(k). In particular, the lowest subdiagonal and highest superdiagonal are
given by

(Λ⊤)Mψ(−M) = η(J−)M H, ψ(−M) = ηH
M−1

∏
k=0

Tk
−γ = η diag

(
H0

M

∏
k=1

γk, H1

M+1

∏
k=2

γk, . . .
)

,

ψ(N+1)ΛN+1 = H(J⊤− )
N+1, ψ(N+1) = H

N

∏
k=0

Tk
−γ = diag

(
H0

N+1

∏
k=1

γk, H1

N+2

∏
k=2

γk, . . .
)

.

The vector P(z) of orthogonal polynomials fulfill the following structure equations

θ(z)P(z − 1) = ΨH−1P(z), σ(z)P(z + 1) = Ψ⊤H−1P(z). (14)

The compatibility of the recursion relation, i.e., Eigenfunctions of the Jacobi matrix,
and the recursion matrix leads to some interesting equations:

Proposition 4. The following compatibility conditions for the Laguerre–Freud and Jacobi matri-
ces hold

[ΨH−1, J] = ΨH−1, [J, Ψ⊤H−1] = Ψ⊤H−1.

1.3. The Toda Flows

Let us define the strictly lower triangular matrix Φ := (ϑηS)S−1.

Proposition 5.

(i) The semi-infinite vector P fulfills

ϑη P = ΦP. (15)

(ii) The Sato–Wilson equations holds

−ΦH + ϑη H − HΦ⊤ = JH.

Consequently, Φ = −J− and n ∈ N0 we have ϑη log Hn = Jn,n.

Moreover,

Proposition 6 (Toda). The following equations hold

Φ = (ϑηS)S−1 = −Λ⊤γ, (ϑη H)H−1 = β.

In particular, for n, k − 1 ∈ N, we have
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ϑη p1
n = −γn, ϑη pk

n+k = −γn+k pk−1
n+k−1, ϑη log Hn = βn.

The functions qn:=log Hn, n ∈ N, satisfy the Toda equations

ϑ2
ηqn = eqn+1−qn − eqn−qn−1 .

For n ∈ N, we also have ϑη Pn(z) = −γnPn−1(z).

Proposition 7. The following Lax equation holds ϑη J = [J+, J]. The recursion coefficients satisfy
the following Toda system

ϑη βn = γn+1 − γn, (16a)

ϑη log γn = βn − βn−1, (16b)

for n ∈ N0 and β−1 = 0. Consequently, we get

ϑ2
η log γn = γn+1 − 2γn + γn−1.

For the compatibility of (5) and (15) we obtain ϑη(Π) = [Φ, Π]. In the general case the
dressed Pascal matrix Π is a lower unitriangular semi-infinite matrix that possibly has an
infinite number of subdiagonals. However, for the case when the weight w(z) = v(z)ηz

satisfies the Pearson Equation (9), with v independent of η, that is θ(k + 1)v(k + 1)η =
σ(k)v(k), the situation improves as we have the banded semi-infinite matrix Ψ that models
the shift in the z variable as in (14). From the previous discrete Pearson equation, we see
that σ(z) = ηκ(z) with κ, θ η-independent polynomials in z

θ(k + 1)v(k + 1) = ηκ(k)v(k).

Proposition 8. Let us assume a weight w satisfying the Pearson equation (9). Then, the Laguerre–
Freud structure matrix Ψ given in (13) satisfies

ϑη(η
−1Ψ⊤H−1) = [Φ, η−1Ψ⊤H−1], (17a)

ϑη(ΨH−1) = [Φ, ΨH−1]. (17b)

Relations (17a) and (17b) are gauge equivalent.

2. Gauss Hypergeometric Weights

The choice of σ(z) = η(z + a)(z + b) and θ(z) = z(z + c) results in the following
Pearson equation:

(k + 1)(k + 1 + c)w(k + 1) = η(k + a)(k + b)w(k)

with solutions proportional to: w(z) = (a)z(b)z
(c+1)z

ηz

z! . As documented in [7,9], this weight
function falls under the category of generalized Hahn weight of type I. The first moment is

given by ρ0 = 2F1

[
a, b

c + 1
; η

]
, which is expressed as the Gauss hypergeometric function.

For the specific case when η = 1, Hahn introduced these discrete orthogonal polynomials
in [26]. Notably, the standard “Hahn polynomials” commonly found in the literature have
parameters set as a = α + 1, b = −N, and c = −N − 1 − β, where N is a positive integer.

The Gauss hypergeometric series is convergent for |η| < 1 and divergent for |η| > 1.
For |η| = 1, η ̸= 1, the series is absolutely convergent whenever Re(c + 1 − a − b) > 0
and convergent and not absolutely convergent for −1 < Re(c + 1 − a − b) ≤ 0. Finally,
for Re(c + 1 − a − b) = −1, the series is convergent for Re(a + b) > Re ab and divergent
for Re(a + b) ≤ Re ab. See [27].
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Remark 2. By referring to previous comments and utilizing (12), we establish that in terms of the
following δ-Wronskian of the Gauss hypergeometric function

τn := Wn

(
2F1

[
a, b

c + 1
; η

])
,

we can derive explicit expressions for the recursion coefficients:

βn = ϑη log
τn+1

τn
, γn+1 =

τn+1τn−1

τ2
n

,

where n belongs to the set of non-negative integers, denoted as N0.

Theorem 3 (The Gauss hypergeometric Laguerre–Freud structure matrix). For a Gauss
hypergeometric weight; i.e., σ = η(z + a)(z + b) and θ = z(z + c), we find

p1
n+1 = (n + 2)βn+2 + βn+1 +

η − 1
η + 1

(
γn+3 + γn+2 + β2

n+2 +
(n + 2)(n + 1)

2

)
+

1
η + 1

(
ηab + (η(a + b)− c)βn+2 + (η(a + b) + c)(n + 2)

)
,

π
[2]
n =

1
1 + η

(
(n + 2)(n + 1)− ηab − (η(a + b)− c)βn+2 − (η(a + b) + c)(n + 2)

)
+

1 − η

1 + η
(γn+3 + γn+2 + β2

n+2)− (n + 2)(βn+2 + βn+1).

The Laguerre–Freud structure matrix is

Ψ =



η(γ1+(β0+a)(β0+b))H0 (β0+β1+c)H1 H2 0

η(β0+β1+a+b)H1
η(γ1 + γ2 + (β1 + a)(β1 + b)

+β0 + β1 + a + b)H1
(β1+β2+c−1)H2 H3

ηH2 η(β1+β2+a+b+1)H2
η(γ2 + γ3 + (β2 + a)(β2 + b)
+2(β1 + β2 + a + b) + π

[2]
0 )H2

(β2+β3+c−2)H3

0 ηH3 η(β2+β3+a+b+2)H3
η(γ3 + γ4 + (β3 + a)(β3 + b)
+3(β2 + β3 + a + b) + π

[2]
1 )H1


.

Proof. In this case, due to the properties of the polynomials σ and θ, the Freud–Laguerre
matrix exhibits a specific diagonal structure:

Ψ = (Λ⊤)2ψ(−2) + Λ⊤ψ(−1) + ψ(0) + ψ(1)Λ + ψ(2)Λ2.

This structure consists of two subdiagonals, two superdiagonals, and the main diagonal.
On one hand, starting with the equation Ψ = σ(J)HΠ⊤, we can derive the Laguerre–

Freud structure matrix as follows:

Ψ = ηΛ⊤γΛ⊤γH︸ ︷︷ ︸
second subdiagonal

+ η(Λ⊤γΛ⊤γHDΛ + Λ⊤γ(β + b)H + (β + a)Λ⊤γH)︸ ︷︷ ︸
first subdiagonal

+ η
(
Λ⊤γΛH + ΛΛ⊤γH + (β + a)(β + b)H + (Λ⊤γ(β + b) + (β + a)Λ⊤γ)HDΛ︸ ︷︷ ︸

main diagonal

+ Λ⊤γΛ⊤γHπ[2]Λ2)︸ ︷︷ ︸
main diagonal
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+ η
((

(β + a)(β + b) + Λ⊤γΛ + ΛΛ⊤γ
)

HDΛ + (β + a)ΛH + Λ(β + b)H︸ ︷︷ ︸
first superdiagonal

+Λ⊤(β + b)Hπ[2]Λ2 + (β + a)Λ⊤Hπ[2]Λ2 + Λ⊤γΛ⊤γHπ[3]Λ3
)

︸ ︷︷ ︸
first superdiagonal

+ η
(

Λ⊤γΛ⊤γHπ[4]Λ4 +
(
Λ⊤γ(β + b) + (β + a)Λ⊤γ

)
Hπ[3]Λ3︸ ︷︷ ︸

second superdiagonal

+
(
Λ⊤γΛ + ΛΛ⊤γ + (β + a)(β + b)

)
Hπ[2]Λ2 +

(
Λ(β + b) + (β + a)Λ

)
HDΛ + Λ2H

)
︸ ︷︷ ︸

second superdiagonal

.

(18)

On the other hand, by using the equation Ψ = Π−1Hθ(J⊤), we can deduce:

Ψ = H(Λ⊤)2 + Λ⊤DHΛ⊤(β + T−β + c) + (Λ⊤)2π[−2]H(γ + T+γ + β2 + cβ)︸ ︷︷ ︸
second subdiagonal

−(Λ⊤)3π[−3]H(β + T−β + c)γΛ + (Λ⊤)4π[−4]H(T−γ)γΛ2︸ ︷︷ ︸
second subdiagonal

+ HΛ⊤(β + T−β + c)− Λ⊤DH(γ + T+γ + β2 + cβ)︸ ︷︷ ︸
first subdiagonal

+ (Λ⊤)2π[−2]H(β + T−β + c)γΛ − (Λ⊤)3π[−3]H(T−γ)γΛ2︸ ︷︷ ︸
first subdiagonal

+ H(γ + T+γ + β2 + cβ)− Λ⊤DH(β + T−β + c)γΛ + (Λ⊤)2π[−2]H(T−γ)γΛ2︸ ︷︷ ︸
main diagonal

+ H(β + T−β + c)γΛ − Λ⊤DH(T−γ)γΛ2︸ ︷︷ ︸
first superdiagonal

+ H(T−γ)γΛ2︸ ︷︷ ︸
second superdiagonal

(19)

From (18), we can extract the first two subdiagonals of Ψ, which are as follows:

ψ(−2) = ηHγT−γ, ψ(−1) = ηγT+γT+H + γ(β + b)H + (T−β + a)γH,

From (19), we can determine the first two superdiagonals of Ψ, which are as follows:

ψ(1) = (β + T−β + c)γ − (T+D)(T+H)γT+γ, ψ(2) = H(T−γ)γ.

We can derive an expression for the main diagonal that is independent of π[+2] or π[−2]

by equating the terms associated with the main diagonal in the two previous expressions,
namely (18) and (19). This yields:

(η − 1)(T+γ + γ + β2) + β[η(a + b)− c] + ηab

+ (η + 1)(T+D)[T+β + β] + (T+D)[η(a + b) + c] = T2
+(π

[−2] − ηπ[2]).

Referring back to (6), which states that π
[±2]
n = (n+2)(n+1)

2 ∓ (n + 1)βn+1 ∓ p1
n+1,

and substituting this into the previous expression, we can eliminate p1
n+1. We can then

replace this result in the expression for π[2], ensuring that the main diagonal is no longer
dependent on it. Examining each term in the first equation and isolating p1

n+1, we obtain
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p1
n+1 = (n + 2)βn+2 + βn+1 +

η − 1
η + 1

(
γn+3 + γn+2 + β2

n+2 +
(n + 2)(n + 1)

2

)
+

1
η + 1

(
ηab + (η(a + b)− c)βn+2 + (η(a + b) + c)(n + 2)

)
,

and the diagonal matrix entries of π[2] are

π
[2]
n =

1
1 + η

(
(n + 2)(n + 1)− ηab − (η(a + b)− c)βn+2 − (η(a + b) + c)(n + 2)

)
+

1 − η

1 + η
(γn+3 + γn+2 + β2

n+2)− (n + 2)(βn+2 + βn+1).

Simplifying further, we obtain the Laguerre–Freud matrix as

Ψ = η(Λ⊤)2T2
−H + ηΛ⊤(a + b + T+D + β + T−β

)
T−H

+ η
(
T+γ + γ + (β + a)(β + b) + T+(D)(a + b + T+β + β) + T2

+π[2])
)

H

+ (c − T+D + β + T−β)T−HΛ + T2
−HΛ2.

Now, let’s investigate the compatibility condition [ΨH−1, J] = ΨH−1.

Theorem 4 (Laguerre–Freud equations for Gauss hypergeometric). The Gauss hypergeometric
recursion coefficients satisfy the following Laguerre–Freud relations

(η2 − 1)
(
(βn+1 + βn)γn+1 − (βn−1 + βn)γn

)
+ η

(
βn(2βn + a + b + c) + 2(γn+1 + γn) + n(a + b − c + n − 1) + ab

)
+ (η + 1)

((
η(a + b)− c − (η + 1)n

)
(γn+1 − γn) + (η + 1)γn

)
= 0,

(20a)

(η + 1)((n − 1)βn + (n + 1)βn+1) + (η − 1)(γn+2 − γn + β2
n+1 − β2

n + n)
+ (η(a + b)− c)(βn+1 − βn) + η(a + b) + c = 0.

(20b)

Proof. We analyze the compatibility [ΨH−1, J] = ΨH−1 by diagonals. In both sides of the
equation, we find matrices whose only non-zero diagonals are the main diagonal, the first
and second subdiagonals, and the first and second superdiagonals. Equating the non-zero
diagonals of both matrices, two identities for the second superdiagonal and subdiagonal
are obtained. From the remaining diagonals, we obtain the two Laguerre–Freud equations
(we obtain the same equality from the first subdiagonal and from the first superdiagonal).
Firstly, by simplifying, we obtain that

ΨH−1 = η(Λ⊤)2(T−γ)γ + ηΛ⊤γ(T+(D) + (β + b) + T−(β + a))

+
η

η + 1
(
2(T+γ + γ + β2) + (a + b + c)β + ab + T+D(a + b − c) + T+DT2

+D
)

+ (β + T−β + c − T+(D))Λ + Λ2.

From the main diagonal, clearing, we obtain

(1 − η)βn−1γn + (η − 1)βn+1γn+1 + βn(
η

η + 1
(2βn + a + b + c) + (η − 1)(γn+1 − γn))

+ (
η

η + 1
(2(γn+1 + γn)− nc + n(a + b + n − 1) + ab)− (η + 1)(n(γn − γn+1)− γn)

+ (η(a + b)− c)(γn+1 − γn)) = 0
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and we get Equation (20a).
We obtain the following expressions from the first superdiagonal and the first subdiagonal:

((η + 1)(βn + βn+1 + n(βn+1 − βn)) + (η − 1)(γn+2 − γn + β2
n+1 − β2

n + n)

+ c(1 + βn − βn+1) + η(a + b)(1 + βn+1 − βn) = 0

which results in Equation (20b).

We now proceed with the compatibility condition [ΨH−1, J−] = ϑη(ΨH−1). Recall
that J−:=Λ⊤γ and ϑη = η d

dη . As we will see, we do not obtain any further equations
beyond those already obtained in Theorem 4.

Proposition 9. The recursion coefficients for the Gauss hypergeometric discrete orthogonal polyno-
mials satisfy the following Laguerre–Freud relations:

ϑη(βn + βn+1 + c − n) = γn+2 − γn, (21a)

ϑη

( η

η + 1
(2(γn+1 + γn + β2

n) + c(βn − n) + n(n − 1) + (a + b)(βn + n) + ab)
)
=

γn+1(βn + βn+1 + c − n)− γn(βn−1 + βn + c − (n − 1)),

(21b)

ϑη(ηγn+1(n + a + b + βn + βn+1)) =
η

η + 1
γn+1(2(γn+2 − γn + β2

n+1 − β2
n) + (a + b + c)(βn+1 − βn) + 2n + (a + b − c))

(21c)

ϑη(ηγn+1γn+2) = ηγn+1γn+2(βn+2 − βn + 1). (21d)

Proof. From the diagonals of [ΨH−1, J−] = ϑη(ΨH−1) we get

(i) From the first superdiagonal we obtain (21a)
(ii) From the main diagonal cleaning up we get (21b).
(iii) From the first subdiagonal we get, symplifying (21c).
(iv) Finally, from the second subdiagonal we get (21d).

Remark 3. We observe that (21a) follow from the Toda Equations (16a), and (21d) follow from
Toda Equation (16b). Moreover, the two remaining equations (from the main diagonal and the first
subdiagonal) coincide with those presented in Theorem 4.

Remark 4. Dominici in [7] (Theorem 4) found the following Laguerre–Freud equations

(1 − η)∇(γn+1 + γn) = ηvn∇(βn + n)− un∇(βn − n),

∆∇(un − ηvn)γn = un∇(βn − n) +∇(γn+1 + γn),

with un:=βn + βn+1 − n + c + 1 and vn:=βn + βn−1 + n − 1 + a + b. Therefore, the first one
is of type γn+1 = F1(n, γn, γn−1, βn, βn−1), of length two, and the second of the form βn+1 =
F2(n, γn+1, γn, γn−1, βn, βn−1, βn−2), is of length three. .

Remark 5. Filipuk and Van Assche in [14] (Equations (3.6) and (3.9)) introduce new non local
variables (xn, yn),

βn = xn +
n + (n + a + b)η − c − 1

1 − η
,

1 − η

η
γn = yn +

n−1

∑
k=0

xk +
n(n + a + b − c − 2)

1 − η
.

Then, in [14] (Theorem 3.1) Equations (3.13) and (3.14) for (xn, yn) are found, of length 0
and 1 respectively, in the new variables. Recall that these new variables are non-local and involve all
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the previous recursion coefficients. In this respect, the meaning of length is not so clear. The nice
feature in this case is that [14] (Equations (3.13) and (3.14)) are discrete Painlevé equations that,
combined with the Toda equations, lead to a differential system for the new variables xn and yn that,
after suitable transformation, can be reduced to Painlevé VI σ-equation. Recently, it has been shown
in [24] that this system is equivalent to dP(D(1)

4 /D(1)
4 ), known as the difference Painlevé V.

3. Conclusions and Outlook

In their studies of integrable systems and orthogonal polynomials, Adler and van
Moerbeke have thoroughly used the Gauss–Borel factorization of the moment matrix
(see [28–30]). This strategy has been extended and applied by us in different contexts,
such as CMV orthogonal polynomials, matrix orthogonal polynomials, multiple orthog-
onal polynomials, and multivariate orthogonal polynomials (see [31–33]). For a general
overview, see [34].

Recently, we extended those ideas to the discrete world (see [16]). In particular, we
applied that approach to the study of the consequences of the Pearson equation on the
moment matrix and Jacobi matrices. For that description, a new banded matrix is required,
the Laguerre–Freud structure matrix, which encodes the Laguerre–Freud relations for the
recurrence coefficients. We have also found that the contiguous relations fulfilled by gener-
alized hypergeometric functions, which determine the moments of the weight, describe
a discrete Toda hierarchy known as the Nijhoff–Capel equation (see [18]). In [19], we
study the role of Christoffel and Geronimus transformations in the description of the men-
tioned contiguous relations, as well as the use of Geronimus–Christoffel transformations to
characterize the shifts in the spectral independent variable of the orthogonal polynomials.

In this paper, we delve deeper into that program and further explore the discrete
semiclassical cases. We find Laguerre–Freud relations for the recursion coefficients of
Gauss hypergeometric discrete orthogonal polynomials. We observe that a solution of
the Laguerre–Freud-type nonlinear equations for the recursion coefficients is provided by
the τ-function, which is defined as a Wronskian of the Gauss hypergeometric functions,
respectively. Notice that in [20], we presented a study similar to the one in this paper for
the hypergeometric cases 1F2, 2F2 and 3F2.

For the future, we will extend these techniques to multiple discrete orthogonal poly-
nomials [35] and their relations with the transformations presented in [36], as well as
quadrilateral lattices [37,38].
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