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Abstract: Distracted behavior detection is an important task in computer-assisted driving. Although
deep learning has made significant progress in this area, it is still difficult to meet the requirements of
the real-time analysis and processing of massive data by relying solely on local computing power. To
overcome these problems, this paper proposes a driving distraction detection method based on cloud–
fog computing architecture, which introduces scalable modules and a model-driven optimization
based on greedy pruning. Specifically, the proposed method makes full use of cloud–fog computing
to process complex driving scene data, solves the problem of local computing resource limitations,
and achieves the goal of detecting distracted driving behavior in real time. In terms of feature
extraction, scalable modules are used to adapt to different levels of feature extraction to effectively
capture the diversity of driving behaviors. Additionally, in order to improve the performance of the
model, a model-driven optimization method based on greedy pruning is introduced to optimize
the model structure to obtain a lighter and more efficient model. Through verification experiments
on multiple driving scene datasets such as LDDB and Statefarm, the effectiveness of the proposed
driving distraction detection method is proved.

Keywords: driving distraction behavior detection; cloud–fog computing architecture; service
computing; scalable networks; lightweighting

MSC: 68T07

1. Introduction

Driving detection as a key task in Intelligent Transportation Systems (ITS) plays an
indispensable role in the field of traffic safety. Among them, driver distraction detection [1,2]
aims to analyze and identify driver behaviors to improve traffic safety and prevent traffic
accidents. Due to the advantages and improvements of target detection algorithms based on
deep learning in terms of feature learning capabilities, adaptability, and multi-modal data
processing capabilities, they [3,4] are widely used in assisted driving, traffic monitoring and
other fields, providing strong support for the realization of intelligence and automation.

Early driving detection algorithms relied on traditional computer vision technology
and machine learning methods, usually using hand-designed feature extractors [5] to classify
and identify driver behaviors, which to a certain extent limited the universal application
capabilities and adaptability of the algorithm. With the development of deep learning,
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especially the widespread application of convolutional neural networks (CNN), driving
detection algorithms based on deep learning gradually replace traditional methods. Due
to the widespread application of vehicle-mounted edge devices with limited computing
resources, the demand for real-time edge computing in driving detection scenarios is very
urgent. However, traditional deep convolutional neural networks, such as VGG [6] and
ResNet [7], have a large number of parameters and calculations, which makes them difficult
to deploy on resource-constrained edge devices, especially for terminals with weak com-
puting capabilities such as mobile devices. From this, the subfield of lightweight networks
was born, which focuses more on the trade-off between speed and accuracy, making the
networks lightweight and small enough to be deployed on in-vehicle edge terminal devices.
The two most famous lightweight networks mobilenet [8] and shufflenet [9] are examples.

Traditional convolutional neural networks tend to process fixed-size input images and
may not perform well on target objects or scenes of different sizes and scales. Recently,
more and more research has been conducted by using scalable structures [10,11], in order
to maintain excellent detection performance on driving behavior images and be able to
adapt to feature extraction at different scales. This is especially important for handling
different scenarios and adapting to different levels of features.

Sufficient and effective driving scene data are prerequisites for using deep learning
models to detect driver distraction behavior. With the popularization and development of
Internet of Things (IoT) technology, more and more IoT devices such as sensors, cameras,
and on-board computing are widely used in the automotive field, providing massive data
sources for driving detection. Additionally, local devices have limited computing power
and insufficient storage capacity, making it difficult to process these massive data quickly
and accurately. Thus, cloud computing technology was introduced to solve this problem.

Cloud computing [12,13] as a new technology provides computing resources, storage
and services through the network. It has powerful parallel processing capabilities and can
efficiently process massive data in the cloud. Through device–cloud collaboration, that is,
making full use of the efficient parallel data processing capabilities of cloud computing and
the real-time computing capabilities of local terminals, massive data calculation tasks in the
driving detection can be transferred to the cloud for processing, and real-time calculations
and decisions can be performed on local terminals to achieve a more efficient and stable
driving detection.

Edge computing technology refers to the methods of data processing, storage and
computation in close proximity to the data source, and its main purpose is to improve the
real-time and efficiency of data processing. By deploying lightweight networks and related
detection algorithms on edge-end devices such as in-vehicle devices, driving behavior
data can be processed instantly at the place where the data are generated, which reduces
data transmission latency and improves the real-time performance. This design not only
reduces the burden of cloud computing, but also adapts well to the complex and changing
driving environment.

Cloud–fog computing architecture as a distributed computing architecture combines
cloud computing and fog computing. It aims to push computing, storage and data process-
ing capabilities to the edge of the network to meet the demand for real-time, low-latency,
edge computing in the context of the rapid growth of large-scale data and IoT devices. A
large amount of data generated from cameras, sensors and other monitoring devices at the
end-user layer is initially processed at the edge device to extract key information about
the driver’s behaviors. This information is sent to the fog computing layer, constituting
a complex data stream. At the fog computing layer, the data are processed in a real-time,
continuous manner during transmission by employing streaming processing techniques.
Device–cloud collaboration is an important part of the cloud–fog computing architecture.
By coordinating the computing capabilities of cloud and edge devices, more efficient
and real-time computing data processing and applications can be achieved. In practice,
the cloud–fog computing architecture is formed by combining edge computing with cloud
computing. The cloud–fog computing architecture establishes a close collaboration between



Mathematics 2023, 11, 4862 3 of 21

the edge-end devices and the high-performance computing resources in the cloud, realizing
instant data transmission, real-time processing and distributed computing.

Service computing as a computing paradigm aims to meet the changing needs of
users by providing computing resources and capabilities as scalable and flexible services.
This emphasizes migrating computing from traditional local devices and applications to
cloud computing platforms to achieve a more efficient, scalable and manageable computing
environment. Service computing can play a key role in distracted driving detection based
on cloud computing architecture. Inspired by research related to data complexity, the need
for a deeper understanding and application of new data processing and analysis methods
can be realized when processing and analyzing large-scale, complex data sets. Through
service computing, driving data and monitoring equipment can be connected to the cloud
to collect and analyze driver biometric data and driving behavior data in real time. These
data can be processed in a service deployed in the cloud that leverages advanced deep
learning algorithms to identify signs of distracted driving, such as taking your eyes off
the road or taking your hands off the steering wheel. Once distracted driving is detected,
the system can quickly issue a warning to remind the driver to refocus, thus improving
road safety. In addition, service computing can support the storage, sharing and analysis of
data, thereby continuously improving the performance and accuracy of distracted driving
detection systems and providing drivers with a safer road experience.

This paper proposes a distracted behavior detection method based on cloud comput-
ing architecture, aiming to achieve a full utilization of multimodal data in driving scenarios
and ensure the accurate real-time detection of distracted driving behavior. The proposed
method contains scalable modules and a model-driven optimization strategy based on
greedy pruning, which makes full use of cloud computing to process complex driving
scene data and solves the problem of local computational resource limitation. For feature
extraction, scalable modules are used to accommodate different levels of feature extraction
to effectively capture the diversity of driving behaviors. In addition, to improve model
performance, a model-driven optimization method based on greedy pruning is introduced
to optimize the model structure and obtain a lighter and more efficient model. Through
validation experiments on multiple driving scenario datasets such as LDDB and State-
farm, the effectiveness of the proposed distracting behavior detection method is verified.
The main contributions of this paper are given as follows.

1. This paper uses the advantages of cloud computing architecture in big data processing
and edge computing deployment to propose a driver distraction behavior detection
method that supports cloud and fog computing. By training deep learning models
in a cloud computing environment, and then deploying the trained models to edge
devices with limited computing resources, the model is updated and optimized
on edge devices through a two-level optimization path of data-driven and model-
driven devices.

2. The Progressive Scalable Detection Network (PSDNet) is introduced, which fuses a
multi-branch scalable perceptual backbone network and a lightweight progressive
feature pyramid, aiming to decouple the training time and inference time of the
model by employing structural reparameterization and simultaneously quantizing
the scalable network to improve detection accuracy and efficiency.

3. A model-driven approach based on the performance-aware approximation integrating
a sequential greedy channel pruning algorithm and a performance-aware prediction
criterion is proposed. Experimental results show that the proposed model-driven ap-
proach can reduce FLOPs and parameters by more than 30% with small performance
degradation and achieve 1.2× to 2.0× speedups on cloud and edge mobile platforms.

The remaining sections of this paper are organized as follows. Section 2 reviews related
work on object detection methods and cloud computing. Section 3 discusses the proposed
and progressively scalable detection network based on cloud computing architecture.
Section 4 presents the experimental dataset, evaluation indicators and experimental results
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for the driver’s abnormal behavior detection tasks during driving. Section 5 concludes this
paper and proposes future research directions.

2. Related Work
2.1. Driving Distraction Detection

In recent years, CNNs have become a popular choice for many computer vision
tasks, especially in challenging tasks such as target detection. Currently, single-stage object
detectors such as YOLOv5 have become the first choice for driving detection scenarios with
high real-time requirements due to their excellent balance between speed and accuracy.

Recently, various lightweight network technologies have demonstrated superior per-
formance and real-time computing capabilities in various computer vision tasks, including
driving detection. Deploying a model with a large number of parameters and a bloated
structure on an edge computing device often causes local real-time computing on the edge
device to face problems of insufficient computing power and memory limitations. In order
to solve the above problems and enable the model to perform real-time calculations on edge
devices, the model can be enabled to perform real-time calculations through pruning [14,15],
quantization [16,17] and other techniques to make the network more lightweight. For ex-
ample, Mingxing Tan et al. [18] proposed an automated Mobile Neural Network Architecture
Search method (MNAS) to achieve a model that balances accuracy and latency. Furthermore,
Chen [19] proposed a new partial convolution (PConv) that can extract spatial features more
efficiently by simultaneously reducing redundant computation and memory access.

In addition, scalable networks [20] have the advantage of adapting to different sce-
narios and characteristics, and can flexibly adjust the structure and parameters to achieve
efficient computing and better performance. For example, Inception [21] is a deep con-
volutional neural network proposed by the Google team. Its main feature is the use of
multi-scale convolution kernels and multiple parallel convolution layer branches, which
effectively improves the expression ability and computational efficiency of the model.
NASFPN [22] uses a neural architecture search algorithm to automatically search for the
optimal connection structure. Diverse Branch Block [23] enriches the feature space of con-
volutional blocks with a multi-branch structure. A feature pyramid network proposed by
Guoyu Yang et al. [24] supports the direct interaction of non-adjacent layers to avoid large
semantic gaps between non-adjacent layers during the feature fusion process. Therefore,
this paper proposes a scalable network model specifically designed for driving distraction
behavior detection.

2.2. Cloud Computing in Driving Distraction Detection

The challenges in the field of driving behavior detection have increased with the
continuous innovation of driving behavior detection techniques and the dramatic increase
in driving behavior data. To cope with these challenges, researchers have gradually recog-
nized the limitations of traditional computing resources that cannot meet the demand of
processing large-scale driving behavior data. Against this background, cloud–fog comput-
ing architecture has become a highly sought-after solution. Cloud fog computing not only
combines high-performance computing resources in the cloud with edge-side computing
devices, but also provides powerful data storage and processing capabilities.

In the past few years, the application of deep learning technology in driving behavior
detection has gained widespread attention and recognition. Deep learning models are able
to automatically learn complex driving behavior patterns for the efficient data analysis
and anomaly detection. However, with the increasing data size, the processing power of
a single computing device can hardly meet the demand for the real-time processing of
large-scale data. Therefore, integrating deep learning technology into cloud–fog computing
through end-cloud collaboration has become a research hotspot.

Under the cloud computing architecture, the driving distraction detection algorithm
can perform complex data analysis and feature extraction with the help of high-performance
computing resources in the cloud. At the same time, edge-side devices can also collect



Mathematics 2023, 11, 4862 5 of 21

driving behavior data in real time and transmit the data to the cloud for further processing.
This distributed computing model greatly improves the processing efficiency and real-time
performance of driving behavior data. Moreover, in the cloud, researchers can use big
data technology to dig deeper into the driving behavior data and discover the hidden
laws and patterns, providing more insights for the improvement of driving distraction
detection algorithms.

Overall, the integration of deep learning technology and cloud computing architecture
brings unprecedented opportunities to the field of driving distraction detection. It not
only improves the efficiency of data processing, but also provides more possibilities for
learning and analyzing driving behavior patterns. This fusion of innovations will propel
driving distraction detection technology to new heights, injecting a strong impetus for the
development of intelligent driving systems.

Yan et al. [25] built a traffic cloud measurement collaboration platform to realize the
collaboration and unification of various business resources and data on both sides of the
vehicle cloud. Xun et al. [26] proposed a driving behavior assessment scheme based on
vehicle edge cloud architecture. Inspired by edge collaboration, Khan et al. [27] proposed an
automated framework based on embedded systems, edge computing and cloud computing
modules for monitoring the driver behavior.

3. The Proposed Method
3.1. Progressive Scalable Detection Networks

This section provides an in-depth explanation of the design of the Progressive Scalable
Detection Network, which covers the overall architecture, the multi-branch scalable sensing
backbone, and the lightweight progressive feature pyramid. The overall architecture section
highlights the overall framework and emphasizes the synergy among the components.
The presentation of the multi-branch scalable perceptual backbone explains how this
design enables efficient perception and cooperative work when dealing with multimodal
data. The section on lightweight progressive feature pyramids highlights the flexibility of
extracting features at different levels.

3.1.1. Overall Architecture

The overall architecture of the proposed PSDNet is shown in Figure 1. It consists
of three parts, the backbone structure, the neck and the head. The backbone network is
responsible for extracting features from the input image and is used to capture the low-
and mid-level features of the image. The neck network further processes and integrates the
features extracted by the backbone network to obtain higher-level semantic features. The
head network performs the final prediction task of object detection.

Figure 1. The Overall Architecture of The Proposed Progressive Scalable Detection Network.
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The proposed new network architecture design mainly consists of a multi-branch
scalable sensing backbone network and lightweight asymptotic fusion blocks. The multi-
branch scalable sensing backbone network aims to decouple the model structure at the
training and inference by employing structural reparameterization. The model is a complex
multi-branch structure during training to improve performance, while the multi-branch
structure is equivalently fused into a simple one-way structure during inference. Even with
a simple one-way structure, the multi-branch structure still has the high performance gained
from training, thereby reducing inference time loss. A scale-aware enhancement (SAE)
module is connected to the final output top-level feature map to expand the perceptual
field while fusing multi-scale features.

According to the idea of asymptotic architecture design, the lightweight asymptotic
feature pyramid starts from the fusion of adjacent low-level features and gradually in-
corporates high- and low-level features into the fusion process to avoid large semantic
gaps between non-adjacent layers. It also introduces lightweight offset convolutions in the
feature fusion stage, aiming to achieve lower memory footprint and higher speed while
maintaining the same output as the original convolutions.

3.1.2. Multi-Branch Scalable Sensing Backbone

The multi-branch scalable sensing backbone mainly consists of two parts, the multi-
branch scaling module and the scale-aware module, as shown in Figure 2. The structure
of the multi-branch scaling module during training contains four branches with different
combinations of convolution and pooling operations, and has convolution branches of
different scales, so that different sizes of sensory fields can be obtained. Therefore, it can
enhance the representation ability of a single convolutional layer by combining multiple
branches at different scales, thereby generating a richer feature space. In addition, the non-
linear capability of the batch normalization (BN) layer during training also benefits the
performance of the multi-branch scaling module, so that each individual branch is followed
by a BN layer.

Figure 2. Four Transformation Paradigms of The Multi-branch Scaling Module.

The convolution operation is also essentially a linear operation, so in some cases
convolution has some linear properties. (1) Additivity means that in the case of two convo-
lution kernels with the same shape, the convolution result satisfies additivity, as shown in
Equation (2).

Input �W1 + Input �W2 = Input � (W1 + W2) (1)

where W1 and W2 denote two independent convolution operations, respectively. (2) Homo-
geneity is shown in Equation (2)
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Input � (pW1) = p( Input �W1). (2)

The transformations of the multi-branch scaling module are operated based on the
above two basic attributes. After the model training is completed, the parameters of the
trained multi-branch structure are first calculated as a linear combination of the corre-
sponding single-path structure parameters, then set into the deployment model, and finally
retained and used only in the deployment model.

Four different branch transformations are summarized as shown in Figure 2 to imple-
ment a multi-branch scaling module through BN layers, deep cascading, average pooling
and convolution sequences.

Conversion 1—Conv-BN Fusion: In CNNs, convolutional layers and BN layers usually
appear in pairs, with the BN layer performing channel-by-channel regularization and linear
scale deflation. Let j be the channel index, µj, σj be the cumulative channel-by-channel
mean and standard deviation, respectively, and γj, β j be the learned scale factor and
bias term, respectively. The chi-square property of convolution allows incorporating BN
operations into the previously mentioned conv for inference. In practice, it only needs
to construct a convolution kernel F′ and bias b′, and assigns the converted values of the
parameters of the original BN sequence to them.

Conversion 2—Sequence Convolutional Fusion: A sequence of 1 × 1 conv-BN-k× k
conv can be merged into a k× k conv. Assume that the kernel shapes of 1 × 1 and k× k
convolution layers are D×C× 1× 1 and E×D×K×K, respectively, where D refers to any
value. First, the two BN layers are fused inside the two convolutional layers, resulting in

F′j,:,: ←
γj

σj
Fj,:,:, (3)

where Fj,,,: denotes a slice in the 3D tensor F, j denotes the index of the slice, which denotes
the j-th channel in the tensor F, F′j,;,: denotes the corresponding slice in the updated tensor

F, in which
γj
σj

denotes the scaling of the slice, and γj and σj are scalars and used to scale
the slice Fj,,,:

b′ ← −
µjγj

σj
+ β j, (4)

F(1) ∈ RD×C×1×1, b(1) ∈ RD, F(2) ∈ RE×D×K×K, b(2) ∈ RE. (5)

where F(1) is a four-dimensional tensor representing the weights of the first convolutional
layer, which has D output channels and C input channels, b(1) is a vector with D elements
representing the bias terms of the first convolutional layer, F(2) is a four-dimensional tensor
representing the weights of the second convolutional layer, which has E output channels,
D input channels, and a convolution kernel size of K × K, b is a vector with E elements
representing the bias terms of the first convolutional layer, and b(2) is a vector with E
elements representing the bias terms of the second convolutional layer.

The outputs are

O′ =
(

I ⊗ F(1) + REP
(

b(1)
))
⊗ F(2) + REP

(
b(2)

)
. (6)

As expected, this is expressed in terms of the kernel and bias of a single convolution. Let F′

and b′ satisfy the following equation.

O′ = I ⊗ F′ + REP
(
b′
)
. (7)

Applying the additivity of convolution, the following equation is obtained.

O′ = I ⊗ F(1) ⊗ F(2) + REP
(

b(1)
)
⊗ F(2) + REP

(
b(2)

)
. (8)
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Conversion 3—Average Pooling Layer Conversion: The average pooling layer operates
by sliding the feature map through a sliding window and averaging the elements within
the window. Unlike a convolutional layer, a pooling layer is specific to the individual input
channels, whereas a convolutional layer sums the results of all input channels. The average
pooling layer can be equivalent to a fixed-weight convolutional layer. Assuming that the
average pooling layer window size is 3× 3, the 3× 3 convolutional layer weight can be set
to 1/9.

Conversion 4—Multi-scale convolutional fusion: A Kh × Kw convolution can be
converted into a K× K convolution by zero padding.

Since the above multi-branch complex structure brings different receptive fields, and dif-
ferent sizes of receptive fields mean different abilities to capture long-range dependencies,
the SAE scale-aware enhancement module is accessed after the top-level features of the
backbone network, which makes full use of the receptive fields in feature maps by using
dilated convolutions. As shown in the backbone of the overall architecture in Figure 1,
the SAE module uses three dilated convolution branches with different rates to capture
multi-scale information and dependencies of different ranges, while adding residual con-
nections to prevent gradient explosion and vanishing during training. All branches have
shared weights, and the only difference is their unique sensory fields.

3.1.3. Lightweight Asymptotic Feature Pyramid Network

As shown in the Neck part of the overall architecture in Figure 1, different levels of
low-, middle-, and top-level features are extracted in the bottom-up feature extraction
process of the backbone network. For feature fusion, low-level features are first fed into
the feature pyramid network, and then high-level features are gradually added. If feature
fusion is performed directly, the fusion effect of non-adjacent level features will be poor,
because the semantic gap between non-adjacent level features is larger than the semantic
gap between adjacent level features, especially the bottom and top features. Therefore,
an asymptotic architecture is adopted to first fuse two adjacent low-level features, and then
gradually incorporates mid-level features and top-level features into the fusion process. In
the process of multi-level feature fusion, ASF is used to assign different spatial weights to
features at different levels, which enhances the importance of key levels and alleviates the
impact of conflicting information on different targets.

Based on the design idea of lightweight networks, the quantization and shift-based
convolution layer variant is introduced to the feature fusion module simultaneously. Lower
memory usage and higher computational speed can be easily achieved by decomposing
the traditional convolution kernel into two parts: the variable quantization kernel (VQK)
and distribution shift. During the implementation process, only integer values are stored
in the VQK while maintaining the same output as the original convolution by applying
kernel- and channel-based distribution shifts.

3.2. Deployment Strategies Based on Cloud–Fog Computing Architecture

The proposed driver distraction detection method is developed based on a cloud–fog
computing architecture. As shown in Figure 3, the cloud–fog computing architecture consists
of three layers, the end-user layer, the fog computing layer, and the cloud computing layer.

First, the end-user layer as the bottom layer includes various cameras, sensors and
other devices used to monitor driving behavior and collect driving information in real
time. These devices continuously generate large amounts of data, such as driver posture,
expressions, gestures, vehicle status, road conditions, etc. The collected data are used
as input for driver behavior detection. Service computing can support multi-party data
sharing and collaboration, which is particularly important in the field of driving detection.
Data from different vehicles, drivers and roads can be collected, aggregated and analyzed
to improve the effectiveness of the driving detection system.
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Figure 3. Driving Distraction Detection and Deployment Architecture Diagram Based on Cloud–
fog Computing.

As the middle layer, the fog computing layer mainly performs edge computing and is
used to perform part of the computional processing locally. Edge computing devices are
deployed at the fog computing layer to perform the real-time data processing locally. These
devices are responsible for basic data filtering, initial feature extraction, and immediate
response to data. This helps to reduce the dependence on cloud resources and improve
the real-time performance of the system. When driver distraction behavior information
is detected, the information is transmitted to the fog computing layer. The edge devices
in the fog computing layer are responsible for the real-time calculation and processing
of these data. However, due to the limited computing power and memory resources of
edge devices, they are unable to complete complex computing tasks. Therefore, the fog
computing layer requires device–cloud collaboration to transfer the model training tasks to
the cloud computing layer.

As the top layer, the cloud computing layer has large-scale computing resources and
storage capabilities. Therefore, data can be processed in the cloud as a continuous stream
by employing streaming processing techniques. When the edge device cannot meet the
computing demand, the fog computing layer transfers the training tasks to the data center
of the cloud computing layer. At the cloud computing layer, new massive amounts of data
are preprocessed and used to train deep learning models. Additionally, the data processing
center also needs to have strong computing power to process the data in real time and make
timely decisions. The proposed solution considers the integration of cloud computing into
existing in-vehicle systems.After training, the optimized model will be deployed on the
terminal of the edge computing platform to achieve a real-time detection and response of
edge devices. Using service computing, a real-time monitoring system can be deployed in
the cloud to continuously monitor the driver’s biometrics and driving behavior. Once the
system detects signs of possible distracted driving, such as eyes closed for too long or the
vehicle veering off the road, the system can issue an alert or reminder to prompt the driver
to take action.

In the whole architecture, the bottom layer is the sensor data processing module,
the middle layer is the feature extraction and selection module, and the top layer is the
decision and response module. Each module is designed to operate independently and com-
municate with each other through flexible interfaces, thus making the whole system scalable.
In order to improve the performance and adaptability of the system to cope with complex
and changeable driver distraction behavior detection tasks, two optimization paths, data-
driven and model-driven, are introduced. As shown in the right part of Figure 4, new data
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are transmitted from the data layer to the fog computing layer and cloud computing layer
along the data-driven optimization path, continuously updating the deep learning model.
In the data center of the cloud computing layer, these new data are used to further train
and optimize the model to improve the accuracy and performance of the model.

Figure 4. Ten categories of driving behaviors in the Statefarm dataset.

Driver behavior and environmental information is constantly changing, and new data
may contain previously unobserved situations and patterns. By uploading new data to the
cloud computing layer for training, the model can be continuously updated and optimized
to adapt to new data, and the data-driven path ensures that the model always adapts to
new data. Model updates ensure driver distraction detection systems remain accurate and
efficient in changing real-world driving scenarios.

The model-driven optimization path is based on a greedy pruning algorithm with an
performance-aware approximation, further reducing the model’s computational load and
parameters by intelligently adjusting the model structure, thereby achieving acceleration
on cloud and edge mobile platforms with less performance degradation. The main goal of
this optimization path is to maintain efficient computing and responsiveness using limited
edge device resources. Edge devices have limited computing power and memory resources
and cannot support complex deep learning models. Through the greedy pruning algorithm,
the optimized model can run quickly on edge devices while maintaining a high detection
accuracy. The system utilizes elastic compute resources from cloud service providers to
ensure that the system automatically scales compute capacity in the face of fluctuations in
real-time data. Therefore, this automated elastic computing strategy can provide sufficient
resources when needed and effectively reduce computing resource usage when the load is
light. In this way, the system can perform real-time driver distraction detection on edge
devices, reducing the reliance on cloud computing, lowering latency and network burden,
while improving the overall performance and efficiency of the system.

With cloud computing infrastructure, driving distraction detection systems can be
more easily scaled to accommodate different regions and sizes. In addition, the system’s
algorithms and models can be updated in the cloud to continuously improve detection
accuracy and efficiency.

Algorithm 1 illustrates the detailed process of updating and optimization using the
proposed model-driven path in cloud computing. The algorithm is divided into the fol-
lowing steps: (1) Pruning layer selection: First, according to the reduction of FLOPs of
each layer under different pruning rates, the pruning layers are sorted to select the layer
that contributes more to model compression as a candidate pruning layer. (2) Sensitivity
calculation: For each candidate pruning layer, the sensitivity of each channel is calculated
to identify the tasks that are most sensitive to model performance. The sensitivity value
indicates how much the channel affects model performance. (3) Task compression and
update: In each pruning layer, the most sensitive task that has the greatest impact on model
performance is selected based on the sensitivity value. The impact of pruning on the model
is controllable by gradually compressing tasks. The compression ratio is updated based on
the model calculation amount and the number of parameters after pruning to balance model
compression and performance requirements. (4) Compression strategy and fine-tuning
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optimization: Select some layers that contribute the most to compression after pruning,
and retain those layers that have a greater impact on the model performance to achieve the
best balance between model compression and performance. Reset the model and fine-tune
the pruned model to restore model performance and maintain high detection accuracy.

Algorithm 1 The proposed framework.

Input: The pretrained model M0, dataset D, reserved ratio Γ of FLOPs or parameters,
performance drop threshold α, initial drop threshold d1, masking ratio γ of filters, and
filtering ratio P of pruning layers.

Output: The compressed model Mp satisfying the compression requirements Γ.
1: initialize p← 1, Mp ← M0;
2: while p > Γ do
3: reorder the pruning layer sequence according to the FLOPs reduction at a certain

pruning ratio of each single layer← lF;
4: compute λ;
5: for i, l in enumerate(lF) do
6: for j = 1 : Ki) do
7: compute Sj

i ;
8: mask γ filters with lowest value in Sl and find the most sensitive task tl ;
9: prune filters with lowest value in Sl until the relative performance drop of Task

tl oversteps di;
10: Rl ← ratio of pruned filters layer l;
11: Mp ← ratio of pruned filters layer l;
12: di+1 ← λdi;
13: sort the compression contribution C of each layer at the ratio of R = {R1, . . . , RL}

and select top P layers as the pruning layer set← Ln;
14: reset model Mp ← M0;
15: end for
16: end for
17: for l in LF do
18: if l in Lp then
19: prune filters of Mp in Sl with the ratio of Rl → Mp;
20: end if
21: end for
22: M0 ← fine-tuned Mp;
23: update p;
24: end while
25: return Mp

The channel importance sd score measures the contribution of each output channel to
the performance of the model and is calculated based on the Euclidean norm (L2 norm)
of each channel in the pruned weight matrix F(1). The higher channel’s importance score
means the greater channel’s impact on model performance.

sd =

∥∥∥F(1)[:, ; , ; , d]
∥∥∥

2√
D

. (9)

where F(1)[:, :, :, d] denotes the subset of the weight matrix F(1) corresponding to the d-th
output channel after pruning. Here, ‖ · ‖2 represents the L2 norm (Euclidean norm), and D
is the total number of output channels.

Performance evaluation criteria
(

P
(

L(0), L(1)
))

are employed to assess the model’s
performance both before and after the pruning process. This criterion is derived from the
multi-task loss function of the model prior to pruning

(
L(0)

)
and post-pruning

(
L(1)

)
. A
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value closer to 1 indicates that the performance after pruning closely resembles that before
pruning, suggesting a minimal performance loss.

P
(

L(0), L(1)
)
=

L(0)

L(1)
(10)

where
(

L(0)
)

is the multitask loss of the original model and
(

L(1)
)

is the multi-task loss
of the pruning model. The use of these indicators helps to achieve a balance between
performance and model compression during pruning.

Algorithm input parameters include M0: the pre-trained model; D: the dataset used
to train and evaluate the model; τ: the reserved FLOPs or parameter ratios used to control
the degree of compression; α: the performance degradation threshold used to control the
performance loss of compression; di: the initial performance degradation threshold used
to guide the pruning process; γ: the filter masking ratio used to determine the filter that
needs to be pruned; and P: the filtering ratio of the pruning layer, specifying which layer
needs to be pruned. The output of the algorithm is a model that has been compressed to
meet the compression requirements.

Algorithm 1 describes the model-driven optimization process based on greedy prun-
ing on cloud computing architecture. First, during the initialization phase, variables p and
M0 are set to their initial values. Then, in each iteration, the order of the pruned layers
is rearranged based on the FLOP reduction of each individual layer at a specific pruning
rate. This ranking reflects the relative importance of each layer in the model computation.
Subsequently, the parameter p is calculated to guide the subsequent pruning process. Next,
for each index i and layer l in the set of pruned layers lF, conduct the following operations
in a loop: iteratively calculate parameters in the range from 1 to Ki to determine the convolu-
tion kernel for pruning. Then, find the mask with the lowest value in the convolution kernel
and identify the most sensitive task. The pruning operation continues until the relative
performance of the task drops beyond a preset threshold. Next, the pruning rate in pruning
layer l is calculated and the parameters are updated. Then, the pruned layers are ordered
by applying ratio = R1, . . . , RL to the compression contribution C of each layer, and the top
layer is selected as the set of pruned layers. After the set of pruning layers is determined,
the model is reset and prepared for fine-tuning operations. Finally, for each layer l in the
pruned layer, set lF, and check whether it is in the pruned layer set lp. If so, the layer’s filter
is pruned using the specified ratio. Task sensitivity is introduced at each pruning step. It
uses the post pruning structure of the model from the previous step and a vector of the
multitask loss stated from the previous step after pruning. This vector contains information
about each term in the loss function, allowing the compression process of the current
layer to be implemented on a task-sensitivity-aware basis, which thereby maintains control
over the model performance. Then, perform fine-tuning operations to optimize the model
performance. Finally, after a series of iterations and pruning operations, a compression
model that meets the set compression ratio and performance requirements is returned. The
algorithm obtains an approximation of the optimization objective by analyzing the problem
to achieve an effective channel pruning without introducing a regular penalty term.

4. Experiments
4.1. Datasets

To demonstrate the effectiveness of Progressive Scalable Network (PSDNet) and cloud
computing architecture, experiments were conducted on the non-public Lilong Distracted
Driving Behavior (LDDB) dataset and a public competition dataset (Statefarm [28]). The ob-
tained results are compared with those on ResNet-50 [7], DenseNet-40 [29], ShuffleNet-
v2 [9], MobileNet-V2 [8] and MobileNet-V3 [30]. Various module ablation studies on
PSDNet are reported to elucidate the impact of various design decisions.

The LDDB dataset was created through a series of road experiments. The dataset
contains 14,808 videos collected from infrared cameras, covering 6 driving behaviors of
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2468 participants, namely talking on the phone (c0), safe driving (c1), sleepy driving (c2),
smoking (c3), turning head (c4) and yawning (c5). The videos were manually annotated at
five frames per second, resulting in a total of 287,808 images. For LDDB dataset, 70%, 10%
and 20% of such dataset are considered as training, validation and testing data.

As shown in Figure 4, the StateFarm dataset contains ten categories, namely safe
driving (c0), texting—right (c1), talking on the phone—right (c2), texting—left (c3), talking
on the phone—left (c4), operating the radio (c5), drinking (c6), reaching behind (c7), doing
hair and makeup (c8) and talking to the passenger(s) (c9). The specified 22,424 images
and 67,272 images processed with offline data augmentation (i.e., Gaussian blur, Gaussian
noise, and CutMix [31]) were used for training. Since the 79,726 images officially provided
for testing were not labeled, approximately 1000 images in each category of images used
for network performance evaluation were labeled in this study.

4.2. Experiment Details

Loss function: The loss function of the proposed driving distraction detection method
employs multiple components to perform object detection and bounding box regression
tasks. Among them, the object detection loss uses cross-entropy loss, which is used to
measure the difference between the predicted target category and the actual category,
expressed as:

Lcls = −
N

∑
i=1

C

∑
c=1

yi,c log(ŷi,c) + (1− yi,c) log(1− ŷi,c), (11)

where N is the number of bounding boxes, C is the number of categories, y is the actual
category label, and ŷ is the category confidence predicted by the network. Additionally,
the mean square error loss is used to measure the error between the predicted and actual
positions of the bounding box, expressed as:

Lbox =
N

∑
i=1

∑
k∈{x,y,w,h}

(yi,k − ŷi,k)
2, (12)

where y is the actual bounding box position and ŷ is the bounding box position predicted
by the network. Finally, the total loss function consists of the object detection loss and the
bounding box regression loss, which is obtained by weighted summation:

Ltotal = Lcls + λLbox, (13)

where λ is a hyperparameter used to balance the two loss terms. By optimizing this loss
function, efficient and accurate driving distraction detection tasks can be achieved.

Evaluation indicators: In order to evaluate the quality of the detection results, this pa-
per uses commonly used evaluation indicators such as mAP@0.5, mAP@0.5:0.95, calculation
amount, number of parameters, FPS, etc.

mAP@0.5: This is the mean average precision (mAP) value when IoU threshold is 0.5.
It measures the model’s detection accuracy at a 0.5 IoU threshold.

mAP@0.5:0.95: This is the mean average precision (mAP) value within the IoU thresh-
old range of 0.5 to 0.95. It combines detection accuracy at different IoU thresholds to more
comprehensively evaluate the performance of the model.

Calculation amount: This refers to the computing resources required for model in-
ference or training, usually measured in FLOPs (Floating Point Operations) or GFLOPs
(Gigafloating Point Operations).

Parameters: This is the total number of parameters to be learned in the model, includ-
ing weights and biases. The number of parameters is usually in units of millions (Million,
M) or billions (Billion, B).

Frames Per Second (FPS): This refers to the number of image frames processed by
the model per second during the inference phase, also known as the inference speed or
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processing speed. A higher FPS means the model is more computationally efficient in
real-time applications.

Experimental environment: In order to simulate the cloud environment and verify the
proposed driving behavior image processing method, this paper uses the cloud computing
strategy to conduct experiments. High-performance private cloud servers with multiple
GPUs are adopted. These servers are equipped with NVIDIA TITAN RTX and NVIDIA
GeForce RTX 4090, respectively. The model was built, trained, and tested using the Pytorch
framework. NVIDIA Jetson TX2 components are used as edge computing fog nodes to ver-
ify the effectiveness of the proposed architecture. NVIDIA Jetson TX2 is a high-performance
embedded computing module launched by NVIDIA. It uses a Pascal architecture GPU,
equipped with a 64-bit ARM Cortex-A57 central processor and a dual-core Denver 2.0
processor, and 8GB LPDDR4 memory.

Hyperparameter settings: The hyperparameters used are given as follows. The opti-
mizer used was the stochastic gradient descent; To balance the training speed and model
performance, 50 epochs were chosen for training to ensure that the model learns with
enough iterations on the dataset; the batch size was set to 32; a linear decay learning rate
scheduling strategy was implemented with an initial learning rate of 0.01 and a recurrent
learning rate of the same value; the momentum and weight decay values were set to 0.937
and 0.0005, respectively. In addition, for the activation function of the proposed model, the
SiLU (Sigmoid Linear Unit) activation function was used, which is a nonlinear activation
function with good performance and convergence speed.

Dataset preprocessing: Data expansion includes random rotation with 0.5 probability,
random resize cropping and horizontal flipping, and random erasure with 0.2 probability.
Dropout rate (0.2) and label smoothing (0.1) were used to avoid overfitting.

Visualization techniques: GradCAM [32], GradCAM++ [33] and XGradCAM [34] were
used, all of which are heatmap visualization techniques for visualizing the decision-making
process of deep learning models. They generate heatmaps showing the most influential
regions in the input image for model-specific predictions.

Among them, GradCAM is a technology for visualizing key areas in the decision-
making process of deep learning models. It does this by using the gradient of the object
category score with respect to the feature map of the last convolutional layer of the network.
The gradient shows how sensitive the output is to changes in the feature map. By combining
gradients with feature maps, GradCAM generates a heatmap showing the regions in the
input image that contribute most to the final prediction.

GradCAM++ is an extension of the original GradCAM method. It is designed to
improve the positioning accuracy of heatmaps generated by GradCAM. GradCAM++ solves
this problem by taking into account both positive and negative gradients when calculating
importance scores. This additional consideration helps to obtain clearer and more focused
heatmaps, thereby improving the localization of important regions in the input image.

XGradCAM extends GradCAM by combining gradient information from multiple
network layers to achieve more comprehensive image understanding. The gradients of
different layers capture different features of the image, and by combining these gradients,
XGradCAM generates richer, more detailed heatmaps. These technologies play an important
role in deep learning model interpretation, helping researchers and practitioners understand
the decision-making basis of the model, enhancing the interpretability of the model and pro-
viding support for the model debugging and optimization. They are also widely used for
visual analysis, plausibility building and a deeper understanding of model behavior.

4.3. Comparative Experiments

To verify the performance of the proposed progressively scalable network for driving
distraction detection, this paper compared it with several excellent convolutional networks,
including ResNet-50 and DenseNet-40 based on traditional networks, ShuffleNet-V2 based
on lightweight networks and two different-scale versions of MobileNetV3, GhostNet
and FasterNet. To qualitatively analyze the experimental results, all experiments were
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performed on a unified benchmark and evaluated using consistent metrics. The evaluation
results of these different methods are shown in Table 1. The best performance values are
highlighted in bold.

Table 1. Evaluation Indicators for LDDB Dataset Comparison Experiments.

Models mAP Param (M) GFLOPs Latency (PC) Latency (TX2)

ResNet-50 [7] 0.935 19.35 18.58 15.2 ± 1.2 118.5 ± 2.2
ShuffleNet-V2 [29] 0.914 4.02 0.64 8.0 ± 0.9 47.1 ± 6.1
MobileNetV3-Large [30] 0.929 4.23 0.30 5.6 ± 0.7 38.4 ± 7.9
MobileNetV3-Small [30] 0.901 2.21 0.09 4.7 ± 0.8 33.5 ± 7.3
OLCMNet [35] 0.959 2.78 0.68 4.7 ± 0.5 32.8 ± 4.6
GhostNet [36] 0.948 4.75 7.6 9.3 ± 1.1 -
FasterNet [19] 0.946 5.55 11.2 13.5 ± 0.2 -
PSDNet 0.964 1.33 3.2 9.9 ± 0.5 52.5 ± 6.2

Figure 5 shows the corresponding results for a more accurate comparison. Figure 5a–c
depicts the performance of various detection methods in terms of accuracy, weight and
speed. In each case, the best performing method is marked with an asterisk on the corre-
sponding column. The proposed scalable network PSDNet shows an excellent performance
in terms of detection accuracy on the LDDB dataset, with an average accuracy of 96.4%.
Furthermore, the number of parameters and computational complexity of this model
are comparable to other lightweight networks with 1.33 M parameters and 3.2 GFLOPS
computation.

Figure 5. Indicator Comparison of LDDB Dataset Experiments.

As shown in the results in Table 1 and Figure 5, this method has a superior performance
compared with other methods. On the LDDB benchmark, the method achieves a higher
accuracy than a range of traditional lightweight networks, while model weights and times
remain at the level of lightweight networks. This detection method shows a good balance
between speed and accuracy. The method performs well across all categories of distracted
driving behavior, showing significant improvements in detection accuracy and model
optimization calculations.

Figure 6 shows the use of three different visualization techniques, GradCAMPlusPlus,
GradCAM and XGradCAM, on the LDDB dataset to understand the decision-making
process of the deep learning model in the image classification task, and to visually reveal
the image regions on which the model is predicted for different categories.

First, GradCAM is applied, which analyzes gradient information to locate the most
influential regions in the image. In this case, to identify phone calling behavior, the Grad-
CAM heatmap clearly shows the important areas related to the mobile phone area, which
provides key visual clues.

Then GradCAMPlusPlus as an extended technique is used, which takes into account
both positive and negative values of gradients, resulting in more refined heatmaps. When
identifying head-turning behavior, GradCAMPlusPlus highlights areas related to the di-
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rection of head rotation, resulting in a more accurate representation of the model’s focus
of attention.

Figure 6. Heatmap Visualization Results on LDDB Dataset for Comparative Testing.

Not only that, XGradCAM further enhances interpretation capabilities. It combines
gradient information from multiple network layers to capture visual features at different
abstraction levels. To detect yawning behavior, XGradCAM heatmaps highlight regions
related to oral morphology, revealing how the model makes decisions through multiple
levels of feature extraction. By explicitly displaying the image areas of interest to the model,
the model’s interpretability is improved while also providing a powerful tool for the driving
behavior analysis to ensure road safety and driving behavior monitoring.

Table 2 shows the comparison of the proposed PSDNet network with other networks
on the StateFarm dataset. The optimal values have been presented in bold, where the
MAP column is labeled with the highest accuracy. Notably, we have further emphasized
the minimum number of parameters and computations, which highlights the degree of
lightness of the model. Additionally, we have bolded the lowest latency, which is a direct
reflection of the high speed of the network when it comes to actual inference. These bolded
values not only highlight the model’s superior performance in terms of accuracy, but
also its outstanding properties in terms of lightweight and efficient reasoning. The results
show that the proposed PSDNet exhibits the same advantages in terms of accuracy and
computational complexity on the StateFarm dataset, and has an excellent detection speed
on both cloud platforms and edge devices. The corresponding indicators of accuracy, model
parameters with computation and detection speed are shown in Figure 7.

When exploring and understanding distracted driving behavior, an interpretable per-
spective is critical to gain insight into the basis of model decisions. As shown in Figure 8,
by applying three visualization techniques, GradCAMPlusPlus, GradCAM and XGrad-
CAM, we can highlight the interpretability of different distracted behaviors (e.g., safe
driving, texting, talking on the phone, etc.) on the State Farm Driving Distraction Behav-
ior Dataset.

Table 2. Evaluation Indicators for Statefarm Dataset Comparison Experiments.

Models mAP Param (M) GFLOPs Latency (PC) Latency (TX2)

ResNet-50 [7] 0.895 19.35 18.58 15.2 ± 1.2 118.5 ± 2.2
ShuffleNet-V2 [29] 0.836 4.02 0.64 8.0 ± 0.9 47.1 ± 6.1
MobileNetV3-Large [30] 0.848 4.23 0.30 5.6 ± 0.7 38.4 ± 7.9
MobileNetV3-Small [30] 0.793 2.21 0.09 4.7 ± 0.8 33.5 ± 7.3
OLCMNet [35] 0.895 2.78 0.68 4.7 ± 0.5 32.8 ± 4.6
GhostNet [36] 0.847 4.75 7.6 9.3 ± 1.1 -
FasterNet [19] 0.899 5.55 11.2 13.5 ± 0.2 -
PSDNet 0.917 1.33 3.2 9.9 ± 0.5 52.5 ± 6.2
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Figure 7. Indicator Comparison of Statefarm Dataset Experiments.

Figure 8. Heatmap Visualization Results on Statefarm Dataset for Comparative Testing.

First, GradCAM is applied, which allows the key features of each distracting behavior
to be presented from a model perspective. For example, when the model identifies safe
driving behaviors, GradCAM heatmaps highlight areas associated with normal driving
operations, such as vehicle consoles, hand movements, facial features, and more. This visu-
alization approach allows for a better understanding of how the model links these specific
visual features to safe driving behavior.

Furthermore, using GradCAMPlusPlus, the approach is able to achieve more nuanced
interpretability. By taking into account both positive and negative values of the gradient,
GradCAMPlusPlus generates more accurate and detailed heatmaps. For example, when
analyzing texting behavior, a GradCAMPlusPlus heatmap might highlight areas associated
with hand and mobile phone interactions, revealing key details that the model focuses on
during classification.

Finally, with XGradCAM, we are able to obtain more comprehensive informationfrom
features at multiple levels of abstraction. By combining gradients from multiple network
layers, XGradCAM heatmaps highlight areas associated with features at different levels.
For example, for the behavior of talking on the phone, an XGradCAM heatmap might
highlight mouth areas associated with talking and areas associated with the vehicle console,
providing a more comprehensive visual interpretation.

4.4. Ablation Study

To further verify the effectiveness of each component of the proposed method mod-
ule, such as the multi-branch scalable sensing backbone, lightweight asymptotic feature
pyramid and model-driven optimization based on a greedy pruning algorithm, an ablation
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study is performed on the LDDB dataset. This study aims to evaluate the impact of these
components on the overall performance.

CSPDarknet53+PAFPN serves as the baseline model. Different components are gradu-
ally added to evaluate their effectiveness. The performance of the following four detection
models is compared.

Baseline: CSPDarknet53+PAFPN is used as the baseline model.
Baseline+A (MSS Backbone): A multi-branch scalable perception backbone is used as

the backbone network of the driver distraction behavior detector architecture to enhance the
feature extraction capabilities of the backbone network with the smallest possible increase
in complexity and number of parameters.

Baseline+A (MSS Backbone)+B (LaFPN): The lightweight asymptotic feature pyramid
on top of the multi-branch scalable perceptual backbone is further enhanced to improve
feature fusion while minimizing the increase in the number of model parameters and
computational complexity.

Baseline+A (MSS Backbone)+B (LaFPN)+C (Model-Driven Optimization based on
Greedy Pruning Algorithm): The model-driven optimization based on the greedy pruning
algorithm on top of the above model in introduced to achieve a better trade-off between
accuracy and speed on cloud platforms and edge devices.

The performance of Baseline and Baseline+A is shown in Table 3 to demonstrate
the capabilities of multi-branch scalable backbone networks incorporated into the model.
Comparing Baseline+A with Baseline+A+B confirms that the introduction of lightweight
progressive feature pyramid brings significant performance gains and a slight increase
in model weights. Subsequent comparisons show that model-driven optimization based
on the greedy detection algorithm brings significant improvements in model calculation
volume, computational complexity, and detection latency on cloud platforms and edge
devices, with minimal performance loss, proving that it achieves an excellent balance
between speed and accuracy.

Table 3. Evaluation Indicators for Ablation Experiments on LDDB dataset.

Models AP50 AP Param (M) GFLOPs Latency (ms) FPS Size (M)

Baseline 0.951 0.771 1.76 4.2 24.4 40.98 3.73
+ A 0.954 0.775 1.84 4.2 29.3 34.09 4.34

+ A + B 0.964 0.794 2.16 5.6 23.7 42.26 6.44
+ A + B + C 0.960 0.788 1.33 3.2 9.9 84.98 2.87

Table 3 shows the detection performance of various models. The optimal values have
been presented in bold, where the MAP column is labeled with the highest accuracy. No-
tably, we have further emphasized the minimum number of parameters and computations,
which highlights the degree of lightness of the model. Additionally, we have bolded the
lowest latency, which is a direct reflection of the high speed of the network when it comes to
actual inference. These bolded values not only highlight the model’s superior performance
in terms of accuracy, but also its outstanding properties in terms of lightweight and effi-
cient reasoning. It is evident from the data in the table that each of the above components
contributes to an improved detection. It is pointed out that individual modules in the
scalable network aim to improve detection accuracy, and model-driven optimization aims
to improve detection efficiency and speed. Figure 9a,b shows the performance of various
ablation experiment steps in terms of accuracy, weight and speed. In each case, the best
performing method is marked with an asterisk on the corresponding column. The proposed
scalable network PSDNet ranks first in both accuracy indicators, with AP50 and AP of
0.964 and 0.794, respectively. After model-driven optimization of the model based on
the greedy pruning algorithm, the number of model parameters is reduced by 38.42%,
the computational complexity is reduced by 42.85% and the accuracy loss is only 0.004%.
Additionally, the optimized model doubles in latency, FPS and model size, indicating that a
better balance between model accuracy and speed is achieved.
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Figure 9. Indicator Comparison for Ablation Experiments on Statefarm Dataset

5. Conclusions

In this study, we propose a cloud computing-based approach for driving distraction
behavior detection by taking advantage of cloud computing architecture, including a
multi-branch scalable perceptual backbone network and a lightweight asymptotic feature
pyramid. We employ a model-driven optimization path based on greedy pruning to accel-
erate the inference and computation process. Experimental results show that our approach
achieves excellent performance on multiple driving distraction behavior image datasets,
confirming the superiority of the scalable network component. Future research directions
will focus on two main areas: lightweight model design and acceleration for real-world
deployment. First, the exploration of further lightweight network architectures to meet
the real-time performance requirements of embedded devices and mobile-based platforms
continues. Second, we will work on applying our findings to real-world scenarios and
further optimizing the performance in cloud and fog computing environments. We plan to
conduct more field tests to verify the performance under different hardware devices and
network conditions to provide a more reliable and efficient solution for real-time driving
behavior detection.
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