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Abstract: Textual documents serve as representations of discussions on a variety of subjects. These
discussions can vary in length and may encompass a range of events or factual information. Present
trends in constructing knowledge bases primarily emphasize fact-based common sense reasoning,
often overlooking the temporal dimension of events. Given the widespread presence of time-related
information, addressing this temporal aspect could potentially enhance the quality of common-sense
reasoning within existing knowledge graphs. In this comprehensive survey, we aim to identify
and evaluate the key tasks involved in constructing temporal knowledge graphs centered around
events. These tasks can be categorized into three main components: (a) event extraction, (b) the
extraction of temporal relationships and attributes, and (c) the creation of event-based knowledge
graphs and timelines. Our systematic review focuses on the examination of available datasets and
language technologies for addressing these tasks. An in-depth comparison of various approaches
reveals that the most promising results are achieved by employing state-of-the-art models leveraging
large pre-trained language models. Despite the existence of multiple datasets, a noticeable gap
exists in the availability of annotated data that could facilitate the development of comprehensive
end-to-end models. Drawing insights from our findings, we engage in a discussion and propose
four future directions for research in this domain. These directions encompass (a) the integration of
pre-existing knowledge, (b) the development of end-to-end systems for constructing event-centric
knowledge graphs, (c) the enhancement of knowledge graphs with event-centric information, and
(d) the prediction of absolute temporal attributes.

Keywords: event extraction; temporal information; knowledge graphs; survey

MSC: 68T35

1. Introduction

Understanding the discourse described in documents is a critical task for many AI
systems that need to comprehend text. Understanding the discourse boils down to grasping
the sequence of events that occur in a document and the people or things involved in those
events. One particularly important part of events is their timing, as it helps us arrange
the events in order of when they happened. The most common way to represent this
information is by using knowledge graphs. Most research on creating knowledge graphs
focuses on information about entities. This means that the knowledge graphs store facts
about entities and how they are connected. Some well-known knowledge graphs that
contain this kind of information are DBpedia [1], Wikidata [2], and YAGO [3]. These
knowledge graphs often also include some information about events, especially historical
events. For instance, Wang et al. added information about the timing of historical events
to the YAGO knowledge base [4]. Such knowledge graphs are predominantly centered
around entities and their attributes. However, in many real-world use cases, like clinical
dead end prediction or authomatic timeline reconstruction, it can be more important to
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understand the discourse in text. For understanding such discourse, it is better to use
a knowledge graph centered around events. In this type of graph, we represent events
as nodes and the connections between events as edges. These connections mostly show
the order in which events happened or how one event caused another. An interesting
knowledge graph that contains common-sense information about events and entities is
ATOMIC 2020 [5]. This graph contains common-sense information about how events are
related. These relations cover more detailed information than just showing which event
caused another event. The authors of the ATOMIC knowledge base also created a model
that can predict these common-sense connections between events and entities that are not
in the knowledge base. Besides events and their connections, knowledge graphs also often
include other things that describe the time-related aspects of events.

Building knowledge graphs focused on events typically involves a series of smaller
tasks. A general overview of how a graph is constructed is shown in Figure 1. There are
three main steps: (1) figuring out what the events are and gathering information about them,
(2) finding out how events are related in terms of time and cause and effect, and (3) creating
a knowledge graph from all this information. Some methods combine the steps of figuring
out events and their relationships into one step to make a more straightforward process. This
is most common in the medical field because events there usually do not need additional
details. Some models also use extra knowledge when figuring out the timing of events.
This extra information can make the models work better in some cases. Instead of using a
knowledge graph, some previous studies represent events in timelines, which are simpler
but can still give a good idea of how the events occurred in a document.

Event extraction
In 1880, the family moved to
Munich, where Einstein's father and
his uncle Jakob founded a
company.

Document
In 1880, the family moved to Munich,
where Einstein's father and his uncle
Jakob founded a company.

Temporal relation 
extraction 

Before
moved founded

Knowledge graph
construction 

Before
moved founded

The
family

Munich

Temporal attribute 
extraction 

 
moved founded

1880 1880-
1885

Company

1880 1880-1885

Common knowledge

CityMunich Germany

Ocupation
Einstein Physicist

Figure 1. General pipeline for event-centric temporal knowledge graph construction.

In this survey, we provide an overview of the primary methods employed to address
the tasks essential for creating knowledge graphs centered around events using unstruc-
tured documents. Figure 2 illustrates the systems discussed in our paper, positioning
them based on their key characteristics. We assess these systems according to whether
they engage in event extraction, temporal relation extraction, event duration identification,
or event timeline generation. Notably, only two of the systems we present encompass
the complete process, spanning from event extraction to knowledge base construction.
We cluster the systems into smaller groups, based on the machine learning techniques
employed (see Figure 2).

We introduce systems tailored to extract events and their associated attributes, tem-
poral relationships, and additional temporal characteristics, ultimately culminating in the
development of event-centric knowledge graphs or timelines. A comprehensive compar-
ative analysis of all the systems featured herein is presented in Table 1. Our overarching
objective is to guide future research endeavors toward the automated construction of tem-
poral event-centric knowledge graphs. We achieve this by delineating existing work in
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this domain and discussing the remaining challenges and opportunities that need to be
addressed to enhance the efficacy of such systems.

Table 1. Comparison of features from all of the described projects. EE: event extraction, EA: event
attribute extraction, TR: temporal relation extraction, ED: event duration recognition, TC: time-
line creation, add: additional attributes, SY: syntactic dependencies, CL: cross-lingual model, CK:
common knowledge.

Paper EE EA TR ED TC Add. Domain

Riloff (1993) [6] 3 3 7 7 7 News
Riloff (1995) [7] 3 3 7 7 7 News
Kim and Moldovan (1995) [8] 3 3 7 7 7 News
Grishman et al. (2005) [9] 3 3 7 7 7 News
Ahn (2006) [10] 3 3 7 7 7 News
Yang and Mitchell (2016) [11] 3 3 7 7 7 News
Chen et al. (2015) [12] 3 3 7 7 7 News
Nguyen et al. (2016) [13] 3 3 7 7 7 News
Sha et al. (2018) [14] 3 3 7 7 7 SY News
Liu et al. (2018) [15] 3 3 7 7 7 SY News
Liu et al. (2019) [16] 3 3 7 7 7 SY, CL News
Zhang et al. (2019) [17] 3 3 7 7 7 News
Zhang et al. (2020) [18] 7 3 7 7 7 News
Ji (2009) [19] 3 3 7 7 7 CL News
Zhu et al. (2014) [20] 3 3 7 7 7 CL News
Chen et al. (2009) [21] 3 3 7 7 7 CL News
Liu et al. (2020) [22] 3 3 7 7 7 News
Lu et al. (2021) [23] 3 3 7 7 7 News
Gaizauskas et al. (2006) [24] 7 7 3 7 7 News
Mani et al. (2006) [25] 7 7 3 7 7 News
Bethard (2013) [26] 3 7 3 7 7 News
Lin et al. (2016) [27] 7 7 3 7 7 Medical
Ning et al. (2017) [28] 7 7 3 7 7 CK News
Tourille et al. (2017) [29] 7 7 3 7 7 Medical
Dligach et al. (2017) [30] 7 7 3 7 7 Medical
Lin et al. (2019) [31] 7 7 3 7 7 Medical
Cheng and Miyao (2017) [32] 7 7 3 7 7 SY News
Leeuwenberg and Moens (2018) [33] 7 7 3 3 3 News
Zhou et al. (2021) [34] 7 7 3 7 7 CL Medical
Zhang et al. (2021) [35] 3 7 3 7 7 SY News
Xu et al. (2021) [36] 7 7 3 7 7 SY News
Mathur et al. (2021) [37] 7 7 3 7 7 SY News
Ning et al. (2018) [38] 7 7 3 7 7 CK News
Ning et al. (2019) [39] 7 7 3 7 7 CK News
Han et al. (2020) [40] 3 7 3 7 7 CK News, Medical
Leeuwenberg and Moens (2020) [41] 7 7 7 3 3 Medical
Vashishtha et al. (2019) [42] 7 7 3 3 3 News
Pan et al. (2011) [43] 7 7 7 3 7 News
Gusev et al. (2011) [44] 7 7 7 3 7 News
Vempala et al. (2018) [45] 7 7 7 3 7 News
Rospocher et al. (2016) [46] 3 3 3 7 3 News
Ma et al. (2021) [47] 3 3 3 3 3 News
Jindal and Roth (2013) [48] 3 7 7 7 7 Medical
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Leeuwenberg et al. (2018) 
Vashishta et al. (2019)
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Ning et al. (2017)
Ning et al. (2018)
Ning et al. (2019)

 Pretrained language model

Han et al. (2020) 

 Extracting absolute timelines 

Leeuwenberg et al. (2020)

 Extracting event duration 

Pan et al. (2011)
Gusev et al. (2011) 
Vempala et al. (2018) 
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Rospocher et al. (2016) 
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Bethard (2013)
Zhang et al. (2021)

 Hand crafted rules 

Gaizauskas et al. (2006) 

Figure 2. The systems performing main tasks required for event-centric knowledge graph
construction [6–10,12–18,22–47,49].

The main contributions of this work are summarized as follows:

(a) Literature review for all tasks related to temporal event knowledge graph construc-
tion. We identify the tasks required for the automatic construction of event-centric
temporal knowledge graphs and provide a review of research dealing with each of the
tasks. We compare different approaches and identify the most successful model designs.
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(b) Identification of emerging advancements. We identify the directions in which sys-
tems for each of the tasks are likely to evolve in the future. We also provide our
opinion on which approaches seem to be the most prospective for future systems.

(c) Identification and proposal of open research problems. We summarize each of the
areas and highlight promising future research directions. We also provide the main
criteria that future work should achieve.

We identified several surveys that address general relation extraction [50–55]. In con-
trast, there are fewer surveys dedicated to the topics of event extraction [56] and tempo-
ral relation extraction [57,58]. Additionally, we found surveys that explore knowledge
graphs [59,60].

To the best of our knowledge, our survey paper represents the first comprehensive ex-
amination of the entire process involved in constructing temporal event-centric knowledge
graphs. While previous surveys have delved into individual aspects of this process, none
have provided a comprehensive overview of all the challenges that must be addressed to
facilitate the automated creation of such knowledge graphs.

The remainder of this paper is structured as follows: In Section 3, we elucidate the
methodologies employed in conducting our survey. Section 4 details the existing standards
for representing events, their relationships, and associated properties. We also present
datasets containing temporal information about events in documents. Section 5 offers an
overview and comparison of existing models for event extraction. In Section 6, we present
models designed for the extraction of temporal relations. Subsequently, in Section 7, we
introduce existing systems capable of constructing event timelines and knowledge graphs.
Finally, Sections 8 and 9 delve into prospects for future research in this domain and provide
a concluding perspective on the paper’s findings.

Formal Definition of an Event-Centric Knowledge Graph

An event-centric temporal knowledge graph is a structured representation of knowl-
edge that models and organizes information about events, their attributes, and their tem-
poral relationships within a domain. It is composed of a directed graph consisting of
nodes and edges, where nodes represent events and their associated attributes, and edges
represent temporal relationships between events. The knowledge graph is designed to
capture the temporal nature of events, allowing for the representation of chronological
sequences, durations, and temporal overlaps [61].

We define an event-centric temporal knowledge graph with the following components:

1. Nodes: The knowledge graph is comprised of a set of nodes V = {v1, v2, ..., vn}
representing individual events. Each node vi corresponds to a specific event.

2. Attributes: Each node vi contains a set of attributes associated with the event. We
denote the set of attributes as A(vi) = {a1, a2, ..., am}.

3. Edges: The knowledge graph contains a set of directed edges between nodes vi and
vj, where each edge represents a temporal relation. We denote a set of edges as
E = {e1, e2, ..., ek}, where each edge ei = (v1, v2, r) is a triplet of two nodes and a
relation r from the set of valid relations R, which differs between different domains
and use cases.

Event-centric temporal knowledge graphs have a number of properties that need to
hold for a valid graph:

1. Temporal consistency: A temporal knowledge graph ensures consistency between
temporal relations so that events with temporal relations form valid timelines.

2. Granularity: An event-centric knowledge graph needs to accommodate different
levels of event granularities. An event might be a specific instance that occurred at a
specific point in time or a general concept that can occur in multiple situations.
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2. Motivation

In the rapidly evolving landscape of information, the ability to extract temporal se-
quences from unstructured documents holds immense potential for unlocking valuable
insights. This survey explores innovative approaches that empower the recognition of
temporal patterns, laying the groundwork for constructing event timelines and unraveling
the dynamics of how events unfold. Extracting temporal information allows us to create a
structured representation of the chronological order in which events occur. This chronolog-
ical perspective is invaluable for understanding the evolution of various phenomena and
gaining insights into the underlying mechanisms.

The extraction of temporal sequences facilitates the identification of patterns and
trends within corpora. By discerning the temporal relationships between events, we
can unveil hidden correlations, enabling us to make informed predictions and strategic
decisions. This capability is useful in diverse domains, such as customer behavior analysis,
where the identification of patterns can be harnessed for applications like recommender
systems [62].

Temporal knowledge graphs are also a powerful tool with interdisciplinary applica-
tions. Beyond the realms of computer science, they find utility in social sciences, history,
disaster management, and beyond. These knowledge graphs serve as dynamic repositories
of temporal information, fostering a deeper understanding of complex relationships and
interactions across diverse domains. An example of such use is trend analysis as demon-
strated by Bonifazi et al. [63]. Their exploration of time patterns in TikTok trends not only
sheds light on emerging trends but also helps discern potentially harmful trends. This
analytical approach is instrumental in staying ahead of the curve in dynamic environments.
Recent developments in sentiment scope analysis, as highlighted by Bonifazi et al. [64],
showcase another facet of the importance of temporal sequence extraction. Understanding
the temporal scope of a user’s sentiment on a topic in a social platform enables a nuanced
understanding of evolving opinions and attitudes over time.

The extraction of temporal sequences from documents transcends disciplinary bound-
aries, offering a versatile toolkit for understanding, predicting, and influencing various
phenomena. From constructing event timelines to uncovering hidden patterns and trends,
the applications are diverse and impactful, making this field a focal point of research and
development across multiple domains.

3. Methodology

The objective of this review is to present the primary methodologies for automating
the construction of event-centric temporal knowledge graphs. We identified event extrac-
tion, temporal relation, and attribute extraction, as well as knowledge graph or timeline
construction as the three main steps required for constructing an event-centered knowledge
graph. These tasks were determined through an analysis of existing models that are capable
of automatically generating event-centric temporal graphs or timelines.

Our selection of papers for inclusion in this survey adhered to a systematic methodol-
ogy as illustrated in Figure 3. Initially, we conducted queries on scientific search engines
Google Scholar, Semantic Scholar, and Web of Science, using general queries pertaining to
the creation of event-centric knowledge graphs. Subsequently, we scrutinized the top search
results to gain a foundational understanding of the field. Additionally, we considered
papers that were referenced in the papers we identified as pertinent to our survey.

Upon acquiring a comprehensive understanding of the tasks associated with extracting
temporal information about events and the primary strategies for addressing these tasks,
we systematically reviewed papers related to the identified tasks. To accomplish this, we
utilized the Web of Science database, executing a distinct query for each task. For event
extraction, we searched for papers featuring the terms “event” and “extraction” in their
titles. Given that many returned papers were not directly relevant, we refined the query
by stipulating that the paper also includes the phrase “natural language processing”. This
modification ensured that the majority of retrieved papers were germane to our survey.
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In the case of temporal relation extraction, we sought papers with titles containing the words
“temporal”, “relation”, and “extraction”. For the extraction of event-centric knowledge
graphs, we identified papers with titles comprising the terms “event”. “knowledge graph”
or “timeline”, and “extraction” or “construction”.

43 papers for review

General area search
Web of Science
Google scholar
Semantic scholar
References of
relevant papers 

109 papers
considered 

 Filtering papers
Paper availability
Paper presents a model
Topic related to
knowledge graph
construction 

46 papers
for review

89 papers
reviewed

 Systematic review 
Web of Science

Figure 3. Flow diagram of our systematic review process.

Our selection criteria for including papers in this survey were based on specific
considerations. Firstly, a paper had to present a functional model or pipeline. Secondly,
the task addressed in the paper needed to be directly related to the construction of event-
centric temporal knowledge graphs. Furthermore, we excluded papers that had already
been included in our preliminary review. During the systematic phase of the review, we
assessed a total of 109 papers, ultimately incorporating 46 papers into our survey.

In addition to discussing information extraction models, we also introduce datasets
containing temporal information about events. These datasets can prove invaluable for
the development of future models. We identified these relevant datasets by analyzing
the results provided by Google Scholar and examining the datasets employed in papers
outlining pertinent models.

4. Schemas and Datasets

For the tasks of event, temporal relation, and temporal attribute extraction, we need
datasets that we can use to train machine learning models. To create the datasets, we need
to define annotation schemas for annotating the information we would like to capture.
In this section, we describe the schemas used to present events and their information.

4.1. Schemas for Capturing Events

In the realm of event extraction, two prominent event schemas have emerged to
structure and annotate textual information: the TimeML model [65] and the ACE (Auto-
matic Content Extraction) model [66]. Each schema serves a distinct purpose in capturing
information about events, with its own characteristics:

TimeML Model:

Aim: The TimeML model seeks to identify and capture all mentions of events within the
text and establish relations between these events.

Coverage: It aims for comprehensive event recognition, encompassing a broad spectrum
of event types.

Annotations: TimeML employs XML tags to annotate text, marking event mentions
and their attributes, temporal expressions, their meanings, and relationships be-
tween them.

Additional Information: Documents in TimeML format often incorporate the recording
of document creation times as a special time expression.
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ACE (Automatic Content Extraction) Model:

Aim: The primary objective of the ACE event model is to provide more detailed informa-
tion about each event, focusing on a predefined set of event types.

Coverage: ACE defines a specific set of 34 event types, and the model is designed to
capture events that fall within these predetermined categories.

Annotations: ACE specifies a structured format for annotating text with details about
events, including their attributes.

Attributes: Each event type in the ACE model comes with a predefined set of attributes,
which vary depending on the specific event type.

These schemas play a vital role in the annotation of text documents to extract infor-
mation about events and time expressions. The TimeML specification, in particular, has
served as a foundation for the annotation format in numerous time-centric corpora, such
as TimeBank [67], AQUAINT [68], i2b2 [69], and WikiWars [70]. By adopting these stan-
dardized schemas and formats, researchers can effectively annotate text data to facilitate
event-centric knowledge graph construction and temporal information extraction.

4.2. Schemas for Capturing Temporal Relations

Temporal relations are a fundamental aspect of representing the temporal dynamics of
events in a document. They provide crucial information about the sequence in which events
occurred. Among the various temporal relations, some of those most commonly of interest
include before, after, and during. In 1989, Allen and Hayes [71] defined a comprehensive
set of 13 possible relations between two time intervals as illustrated in Figure 4. However,
in practice, many temporal relation extraction datasets focus on annotating a subset of
Allen’s relations that are most pertinent to the specific task or domain under consideration.
These annotated datasets play a pivotal role in training and evaluating machine learning
models for temporal relation extraction and event-centric knowledge graph construction.

A
B

A
B

A
B

A
B

A
B

A
B

A
B

A precedes B B is preceded by A

A meets B B is met by A

A overlaps with B B is overlapped by A

A starts B B is started by A

A during B B contains A

A finishes B B is finished by A

A is equal to B B is equal to A

Figure 4. Temporal relations between events as defined by Allen and Hayes [71].

The TimeML schema [65,72,73] serves as the most prevalent schema for representing
temporal relations between events. It offers a structured framework for encoding basic
temporal relations such as “Before”, “After”, and “During”.

In addition to these fundamental temporal relations, there has been research dedicated
to extracting more precise relations that encompass estimates of the time intervals, event
durations, and related temporal attributes [33,42]. These precise relations are particularly
valuable for constructing event timelines and demand a distinct annotation schema. Unlike
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the standardized TimeML schema, projects focusing on these precise relations often define
their own schemas tailored to their specific requirements and objectives. As a result, there
is no unified schema for representing these intricate temporal relationships.

4.3. Capturing Temporal Properties of Events

In the context of describing the time of an event, it is imperative to define the specific
time properties of interest. For that purpose, we analyzed the properties that are defined
in the OWL time ontology (https://www.w3.org/TR/owl-time/ (accessed on 12 October
2023)), as it is commonly used to record the time in knowledge graphs. The OWL time
ontology encapsulates several key time components, including (1) time of the event (date,
year, month, day, day of the week, time zone, etc.), (2) duration (years, months, weeks, days,
etc.), (3) interval (combination of a time and duration), and (4) temporal relation (before,
after, meets, met by, overlaps overlapped by, starts, started by, during, contains, finishes,
finished by, and equals). We found that in addition to the temporal properties defined in
the time ontology, it would also be useful to track the repetition of an event. For example,
an event of taking medication might repeat every 24 h for a set amount of time. Leeuwen-
berg and Moens [41] provided annotations for event times and durations. The prediction of
event duration has also been explored in multiple other systems (presented in Section 7.3).
Temporal attributes other than the time and duration of an event remain unexplored.

4.4. General Datasets for Temporal Description and Relation Extraction

One of the earliest temporal-centric corpora introduced to the field is the TimeBank 1.1
corpus [74]. This corpus comprises 186 documents extracted from the domain of news arti-
cles. Annotations in this corpus adhere to the TimeML standard, version 1.1 [65], and were
established as a proof of concept for the TimeML specification [67]. However, the TimeBank
1.1 corpus harbors certain inconsistencies and errors, leading to its replacement by version
1.2, known as the TimeBank 1.2 corpus [75]. The TimeBank 1.2 corpus adheres to the
updated TimeML specification [72] and encompasses 183 news articles, encompassing
approximately 61,000 tokens. This dataset encompasses texts featuring annotated time
expressions, events, and temporal relations between the events. In addition to conforming
to the TimeML standard, the corpus includes supplementary information, such as sentence
separation. In parallel to the TimeBank corpus, the TimeML specification was also lever-
aged to construct the AQUAINT corpus [68] The AQUAINT corpus consists of 73 English
news reports and bears structural similarities to the TimeBank corpus.

Notably, these datasets, which facilitate the extraction of temporal information from
textual documents, have been featured in the SemEval shared tasks. The inaugural shared
task TempEval took place during the 2007 SemEval challenge [76] and utilized a dataset
derived from the TimeBank 1.2 corpus. However, it included only a subset of the original
dataset’s relations and annotations. A follow-up task, TempEval-2, was conducted in
2010 [77], employing a dataset based on the TimeBank 1.2 corpus but featuring distinct
annotated relations. In 2013, SemEval introduced TempEval-3 [78], aimed at enabling
models that leverage large neural networks. For this purpose, the organizers provided an
extensive dataset conforming to the TimeML annotation specification. They augmented
the TimeBank 1.2 dataset by incorporating missing relations and annotations. This dataset
served as both the gold and evaluation components. Additionally, a substantial amount
of text from the English Gigaword corpus [79] was automatically annotated to generate a
sizable "silver" dataset. The silver dataset, while potentially containing errors, primarily
serves as training data for large neural models. Notably, this corpus introduces over
600 thousand new silver tokens, 20 thousand new gold tokens, and 20 thousand new
evaluation tokens.

One limitation of the TimeBank corpus is the relatively sparse occurrence of temporal
relations among event pairs. To address this, Cassidy et al. [80] developed the TimeBank-
Dense dataset. This dataset entails manual re-annotation of temporal relations between a
substantially larger number of event pairs, effectively mitigating the sparsity issue. While

https://www.w3.org/TR/owl-time/


Mathematics 2023, 11, 4852 10 of 32

the dataset comprises only 36 documents, the overall number of annotated relations is
four times greater than those in the TimeBank corpus. Nevertheless, the TimeBank-Dense
dataset still grapples with low inter-annotator agreement as identified by Ning et al. [38].
In response, Ning et al. [38] introduced the MATRES dataset. In MATRES, temporal
relations between events are based solely on the starting point of the event. Notably,
MATRES employs multiple axes to compare events to one another, enhancing the precision
of temporal annotations.

In 2017, Zhong et al. [81] introduced the Tweets dataset, annotating time expressions in
concise text documents sourced from the Twitter social network. This dataset encompasses
942 documents and 18 thousand tokens, covering a range of general topics rather than
focusing on a specific domain. Notably, Twitter documents differ from other similar datasets
in their brevity and inclusion of precise time and date of posting.

We present the comparison of the available datasets in Table 2. The most commonly
used datasets for temporal information extraction from news articles are the dataset pro-
vided for the TempEval-3 challenge, TimeBank-Dense and the MATRES dataset. The
TempEval-3 dataset is useful for its large number of documents, enabling the use of neural
network models. Its main drawback is the sparsity and low quality of annotated relations.
These problems are addressed in the TimeBank-Dense and MATRES datasets. While the
number of documents in this dataset is significantly smaller, the annotated relations are a
lot more complete. We believe that the MATRES dataset is better than TimeBank-Dense for
most applications, due to its higher inter-annotator agreement.

Table 2. The datasets on general domains for extracting temporal expressions and temporal event relations.

Dataset Year Domain Amount of Data Documents Origin

TimeBank 1.1 2003 News 186 documents Original
TimeBank 1.2 2006 News 183 documents Original
AQUAINT 2002 News 73 documents Original
TempEval 2007 News 183 documents TimeBank 1.2
TempEval-2 2010 News 183 documents TimeBank 1.2

TempEval-3 2013 News

61 k TimeBank tokens
34 k AQUAINT tokens
666 k new silver tokens
20 k new gold tokens
20 k new evaluation tokens

TimeBank 1.2
AQUAINT
Gigaword

TB-Dense 2014 News 36 documents TimeBank 1.2
MATRES 2018 News 36 documents TimeBank-Dense
Tweets 2017 Twitter 942 documents (18k tokens) Original

4.5. Domain Specific Datasets

The task of temporal information extraction finds applicability across diverse do-
mains, prompting the development of domain-specific datasets aimed at capturing unique
temporal information within those domains.

One such domain-specific dataset is WikiWars, introduced in 2010 [70]. This corpus
comprises Wikipedia articles centered around famous wars. Within these documents, time
expressions are meticulously annotated in the TIMEX2 format (a subset of the TimeML
annotation schema). The WikiWars dataset encompasses 22 documents, containing nearly
120 thousand tokens and featuring 2671 annotated temporal expressions. Another domain-
specific temporal dataset emerges from the i2b2 2012 challenge [69], catering to the medical
domain. This dataset supplies 310 discharge summaries replete with annotated time
expressions, events, and the temporal relations existing between these events. Notably,
the temporal relations in this dataset exhibit greater granularity, with eight distinct relation
types: “before”, “after”, “simultaneous”, “overlap”, “begun by”, “ended by”, “during”,
and “before with overlap”.

Expanding further into the medical extraction of temporal information, the THYME
dataset emerged for the 2015 Medical TempEval task [82]. This dataset, drawn from
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clinical notes on patients with colon cancer from the Mayo Clinic, comprises approximately
600 documents, each painstakingly annotated. Annotations encompass marked events,
time expressions, and temporal relations between events. The same task was subsequently
revisited in SemEval 2016 [83] using the THYME dataset. In this iteration, the training and
testing segments of the SemEval 2015 dataset were employed as the training set, with new
test data introduced.

SemEval 2017 saw the reappearance of the Clinical TempEval task [84], this time with
a focus on evaluating the transfer learning capabilities of temporal information extraction
systems. Models were trained on clinical notes related to colon cancer patients from the
2016 Clinical TempEval task and subsequently tested on clinical notes pertaining to patients
with brain cancer. The dataset designed for this task encompasses 591 documents on
colon cancer patients and 595 documents on brain cancer patients. Annotations within
these documents mirror those employed in previous Clinical TempEval tasks, ensuring
consistency across evaluations and facilitating the exploration of transfer learning in the
context of temporal information extraction.

A comparative analysis of datasets specific to various domains is provided in Table 3.
Predominantly, the medical domain emerges as the most frequently explored domain in
the context of temporal relation extraction. Within this domain, two primary datasets stand
out: the i2b2 2012 dataset and the THYME dataset. The THYME dataset exhibits notable
advantages in terms of its size, rendering it particularly advantageous for training machine
learning models with a substantial number of parameters. Consequently, it is considered a
robust dataset for training models geared toward temporal relation extraction. Conversely,
the i2b2 2012 dataset offers additional value by being annotated with supplementary
temporal attributes by Leeuwenberg and Moens [41]. This enrichment extends its utility
beyond temporal relation extraction, encompassing the extraction of absolute temporal
attributes, such as duration and event times. Importantly, all the presented datasets
adhere to the TimeML annotation schema, facilitating the possibility of combining multiple
datasets to train a single model. This approach can be particularly advantageous for
training larger neural network models, leveraging the diversity of data sources to enhance
model performance.

Table 3. The datasets on specific domains for extracting temporal expressions and temporal
event relations.

Dataset Year Domain Amount of Data

WikiWars 2010
Wikipedia articles
about famous wars

22 documents
120 k tokens

i2b2 2012 2012 Discharge summaries
310 documents
178 k tokens

THYME (TempEval 2015) 2015 Notes on colon cancer 440 documents
THYME (TempEval 2016) 2016 Notes on colon cancer 600 documents

THYME (TempEval 2017) 2017 Notes on colon and brain cancer
591 colon documents
595 brain documents

4.6. Datasets for More Precise Temporal Relation Extraction

Several researchers have dedicated their efforts to establishing more fine-grained
temporal relations between events, enabling the construction of comprehensive timelines
within documents. These relations are not restricted to a limited set of categories (e.g., “be-
fore” and “after”) but instead are represented as continuous values that denote the precise
chronological order of events. To facilitate the training of models for this purpose, multiple
datasets have been developed. A comparison of datasets for precise temporal relations is
provided in Table 4.

The Event StoryLine Corpus [85] is one such dataset, designed to facilitate the creation
of storylines from news articles. A unique challenge addressed by this dataset is the
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detection of event co-occurrence, allowing for the identification and prevention of event
duplication when the same event is mentioned in the text.

The Fine-grained Temporal Relations dataset [42] endeavors to construct event time-
lines by going beyond the coarse temporal relations explored in previous datasets. This
dataset not only recognizes coarse temporal relations but also identifies event durations
and overlaps. This additional information facilitates the placement of each event on a
relative timeline. Notably, the corpus employs a distinct annotation schema, departing
from the TimeML standard. It comprises 91 thousand event pairs positioned on a relative
timeline. The motivation for building event timelines also underlies the dataset developed
by Leeuwenberg and Moens [41]. This dataset incorporates documents from the 2012 i2b2
challenge, specifically medical discharge summaries featuring labeled events. Within this
dataset, absolute start times, end times, and event durations are annotated. Recognizing
that precise absolute times and durations are often unexpressed in documents, the dataset
provides upper and lower bounds for each time or duration.

Many existing datasets primarily encompass relations between events mentioned
within the same or neighboring sentences. However, there is a need to discern temporal
relations between events that appear in different sections of a document. To support
systems capable of extracting such distant relations, the TDDiscourse dataset [86] was
conceived. This dataset incorporates the same documents employed in the TimeBank-
Dense dataset and comprises relations between events separated by more than one sentence
in the original document. It comprises 6 thousand manually annotated relations and an
additional 38 thousand relations automatically extracted. Another dataset catering to the
extraction of relations between distant events is the Cross-document Event Corpus [87].
This corpus includes news documents sourced from the ACE2005 dataset, supplemented by
additional news documents. In total, the dataset encompasses 125 documents and features
26 thousand event pairs.

Table 4. The datasets for more advanced tasks in temporal information extraction.

Dataset Year Domain Amount of Data

Event StoryLine Corpus 2018 News articles 281 documents
Fine-grained temporal relations [42] 2019 English Web Treebank 250 k tokens
Leeuwenberg and Moens [41] 2020 Discharge summaries 310 summaries
TDDiscourse 2019 News articles 36 documents
Cross-document event corpus 2016 News articles 125 documents

The datasets presented in Table 4 fulfill two main goals. The first three datasets
enable the extraction of event timelines instead of extracting individual temporal relations.
The last two datasets, on the other hand, aim to enable relation and event extraction across
an entire document or even multiple documents. When working with event timelines, we
believe that the most interesting dataset is the one provided by Leeuwenberg and Moens
since it contains absolute times of the events, while the other two datasets only contain
relative positions of events on a timeline. The absolute times enable a number of additional
applications that are not possible when only working with relative timelines.

4.7. Temporal Extraction for Non-English Languages

Most of the available datasets for temporal extraction contain English texts. Some
other languages, however, might contain different properties that make models trained
on English perform poorly. To enable the training of models designed to work in a non-
English language or to work in multiple different languages, some additional datasets have
been released.

In 2005, the ACE 2005 Multilingual Training Corpus was released [66]. The corpus
focuses on event extraction tasks but also contains temporal attributes. The ACE corpus con-
tains documents in three different languages. The included languages are English, Arabic,
and Chinese. The documents came from multiple different sources and include newswire,
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broadcast news, conversation, weblog, discussion forums, and telephone conversations.
The dataset contains almost 1800 documents.

Multiple versions of the TempEval corpus have also been created in different languages.
Currently available languages are Arabic [73], French [88], Portuguese [89], Korean [90],
Spanish [91], Romanian [92] and Italian [93]. All of the mentioned datasets are compared
in Table 5.

Table 5. The temporal datasets in non-English languages.

Dataset Language Number of Tokens

ACE 2005 [66] English, Arabic, Chinese 750,000
FR-TB [88] French 61,000
Korean TB [90] Korean —
Spanish TB [91] Spanish 68,000
IT-TimeBank [93] Italian 150,000
TimeBank-PT [89] Portuguese 70,000
Ro-TimeBank [92] Romanian 65,375
Arabic TB [73] Arabic 95,782

4.8. Other Similar Corpora

The 2015 SemEval challenge featured the QA TempEval task [94], which focuses on
answering temporal questions. Questions in this task were formulated in the following
manner: “Is <entityA><RELATION><entityB>?” The primary objective of this task was to
assess how well-recognized relations could aid in answering human questions, rather than
solely evaluating their performance against official answers. Training data for this task
were drawn from the annotated TempEval-3 dataset. It comprised 79 yes and no questions.
The test dataset was compiled from various sources, including news articles, Wikipedia,
and informational blog posts, totaling 28 documents and 294 questions. Some questions in
this dataset pertained to entities mentioned more than one sentence apart in the document.

A similar task was proposed by Chen et al. [95], involving the creation of a dataset for
answering time-sensitive questions. In this dataset, the task involves answering questions
based on the provided text, with questions designed to necessitate a temporal understand-
ing. For example, a question might inquire about George Washington’s position in 1777.
The dataset relies on text sourced from Wikipedia articles.

5. Event Extraction

The construction of event knowledge graphs hinges on a fundamental task known
as event extraction, which involves identifying events mentioned within a text document.
In addition to recognizing events, many systems performing event extraction also aim
to identify the event types and their associated attributes [96–98]. These attributes may
include details about the entities participating in an event, the event’s location, timing,
and more. In this section, we present and compare existing models for extracting events
from text documents.

Event extraction from text has been investigated by various researchers, resulting in
the development of several different methods. The scope of event extraction tasks may
range from solely identifying event mentions in the document to a more comprehensive
recognition of event types and their attributes.

In the context of event extraction, common terminology is used in research papers.
The Oxford English Dictionary defines an event as something that happens or takes place,
especially something significant or noteworthy [99]. An event mention refers to the words
within a document that describe an event, with each mention typically associated with an
event trigger, which is the key word that triggers the event. Researchers often define a
finite set of event types under which the events of interest can be categorized. Each event
type is associated with a set of expected attributes that describe the event.
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While much of the work on event extraction has focused on news articles, the ap-
plication of event extraction is equally important in the context of medical documents.
Events in the medical domain differ significantly from those in the news domain. Medical
events are often described using longer phrases, such as “a pain in the lower right arm”,
whereas typical news events are described by single words or short phrases like “attack”.
Furthermore, the event types relevant to the medical domain, such as “test”, “problem”,
“treatment”, “clinical departments”, “evidential information”, and “clinically relevant occur-
rence” [69,100], differ substantially from those in news articles, which may include “attack”,
“transport”, “injure”, “meet”, and more [101]. Consequently, most systems designed for
event extraction from news articles may not perform well on medical documents due to
these significant differences in language and event types.

5.1. Event Extraction Using Pattern Matching

In the early stages of automated event extraction, initial methodologies involved the
creation of manually crafted rules to identify event mentions. One of the pioneering systems
from this era was AutoSlog as documented in 1993 [6]. The AutoSlog system facilitated
the development of event-matching patterns by suggesting potential event patterns based
on pre-defined linguistic structures and a given corpus. These linguistic structures were
established to represent syntactic patterns. For example, one such pattern was “<subject>
active-verb”, which aimed to identify nouns acting as subjects followed by an active
verb. AutoSlog utilized these linguistic patterns to generate candidate patterns for event
recognition, which were then presented to users to expedite the process of crafting rules for
event extraction. In an application of this system, the authors employed it to construct a
model for extracting terrorist events from the MUC-4 corpus. Subsequently, the authors
introduced an enhanced version of the system known as AutoSlog-TS [7]. AutoSlog-TS
improved upon AutoSlog by eliminating the need for an annotated corpus. Instead, it
employed the CIRCUS syntactic analyzer to automatically determine the syntactic roles of
words within a corpus.

Similarly, Kim and Moldovan proposed a system called PALKA (Parallel Automatic
Linguistic Knowledge Acquisition) [8], which also automatically identified event patterns
from an annotated corpus. PALKA’s primary objective was to create a system that was
domain-independent. Differing from the AutoSlog system, PALKA had the capability
to generate patterns for recognizing multiple attributes within the context of the same
event. For instance, PALKA could produce a pattern like “(perpetrator) attack (target) with
(instrument)”, where the attack event would encompass three attributes: perpetrator, target,
and instrument. Additionally, several other systems have been developed employing manually
defined rules and patterns for event extraction and argument identification [97,102–107].

5.2. Event Extraction Using Traditional Machine Learning

The advent of the Automatic Content Extraction (ACE) dataset [66] marked a signifi-
cant turning point in the research landscape, spurring heightened interest in the automated
event extraction domain within the research community. Much of the ensuing research
efforts were directed towards the development of machine learning models capable of
discerning events, categorizing them by type, and identifying their associated attributes.
Notably, the ACE dataset encompassed documents in three languages: English, Chinese,
and Arabic. Each document containing meticulously annotated events and their corre-
sponding attributes.

In the realm of event trigger recognition, the majority of machine learning approaches
function by first classifying individual words as either event triggers or not, then classifying
the remaining words to detect event attributes. Next, they recognize the attributes of recog-
nized events and finally detect event coreference [10]. When classifying the event triggers,
the trigger class is commonly subdivided into various event types [9,108]. The process is
illustrated in Figure 5.
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Figure 5. The process of event extraction described by Ahn [10].

The most common technique for detecting event triggers and their attributes is the use
of SVM classifiers and Maximum Entropy models. Such approaches were used by several
systems between the years 2010 and 2016 [48,109–112]. Yang and Mitchell (2016) [11]
presented another event extraction system that relies on classical machine learning. Their
approach employs conditional random fields based on manually selected features. Impor-
tantly, it does not consider each event in isolation but models relations between multiple
events within the document, enhancing event-type predictions. For instance, an event of
type “attack” is likely to occur in proximity to events of type “injure” and “die”, and this
kind of contextual information aids in event type recognition. Similar improvements were
also proposed by a number of other researchers [113–117].

5.3. Event Extraction Using Neural Networks

The field of event extraction has witnessed significant advancements thanks to de-
velopments in neural networks. One of the earlier neural network-based approaches was
introduced by Chen et al. [12]. They proposed a system that leverages a convolutional
neural network (CNN) on precomputed word embeddings to classify trigger candidates
and candidate event arguments into their respective roles. The neural network takes a
sentence with a marked candidate trigger or candidate argument and assigns it a role.

A notable shift in event extraction research occurred with the introduction of recurrent
neural networks (RNNs) [98,118–122]. One of the earliest approaches using RNNs was
proposed by Nguyen et al. [13]. They employed a Bidirectional Long Short-Term Memory
(LSTM) RNN to extract events. At each token, the network identifies the event type
triggered by that token and the argument role it represents concerning other potential
event triggers. In 2019, Nguyen and Nguyen [49] updated this approach by replacing the
LSTM layer with bidirectional gated recurrent units (GRUs). Sha et al. [14] enhanced the
bidirectional LSTM approach by incorporating additional connections between words in a
sentence based on their syntactic relations. Liu et al. [15] also explored the use of syntactical
dependencies to enhance event recognition. Their approach involved computing token
embeddings, applying a bidirectional LSTM, and then utilizing resulting vectors as input



Mathematics 2023, 11, 4852 16 of 32

for a graph neural network. The edges of the graph were computed based on syntactic
dependencies between words. The graph neural network produced a vector representation
for each word in a sentence. In the final stages, vectors representing event trigger candidates
were classified to determine the event type. For recognizing event arguments, the vectors
representing the event and argument candidates were combined using mean pooling
and classified to ascertain the argument type. This approach yielded improved results
compared to Sha et al.’s approach. Graph neural networks for event extraction have also
been employed by Guo et al. [123] and Wu et al. [124]. We also identified several approaches
in the medical domain using similar architectures [96,125,126].

5.4. Use of Pretrained Neural Language Models

In the realm of event extraction, the adoption of pretrained language models (PLMs)
has ushered in substantial advancements, with the most popular PLM for this task being
Bidirectional Encoder Representations from Transformers (BERT) and its variants [127–131].
Zhang et al. [132] leveraged a BERT model to extract implicit event arguments. Their model
aims to identify event arguments, including those not explicitly linked to the event mention.
This is accomplished by considering BERT embeddings of the event trigger and the argu-
ment candidate head. The model employs a biaffine module to calculate the probability of
a selected argument filling a particular role for the chosen event. The argument with the
highest score is designated for each argument type. Following argument head determina-
tion, the network performs head-to-span expansion to identify tokens that are part of an
argument based on token embeddings and the argument head. A multi-layer perceptron is
employed for this task. The algorithm’s evaluation was conducted on the RAMS dataset,
which includes implicit arguments, making direct comparisons to algorithms designed for
the ACE dataset unfeasible.

Another approach using a pretrained BERT network was proposed by [17]. Their
approach involves a transition system based on token embeddings. These embeddings are
derived from BERT, as well as other features, such as part-of-speech tags, character-level
LSTM representations, and GloVe word embeddings. The transition system executes a se-
quence of actions to determine the event’s position and event arguments. This methodology
achieved state-of-the-art results on the ACE dataset.

In the medical domain, several systems utilize BERT models for event extraction [40,129–131].
For example, Han et al. [40] use a BERT model to perform event extraction on medical
documents by classifying each token into one of the event classes. Based on the classification
results, the tokens are then grouped together into events.

With the advent of large language models (LLMs), researchers have also explored using
such models for tasks akin to event extraction [133–135]. These approaches typically prompt
the model to annotate events within the text. Wei et al. [134] improved their predictions by
employing chat-based prompts, which engage the model with a series of questions more
akin to a conversation. However, despite these efforts, all observed approaches achieve
performance levels significantly lower than those based on BERT [40,129–131].

5.5. Cross-Lingual Event Extraction

The development of event extraction models is often hindered by the scarcity of
labeled data, particularly for smaller or less-resourced languages. To address this challenge,
researchers have proposed cross-lingual event extraction methods, which aim to leverage
information acquired from training data in one language for event extraction in another
language. Several implementations of such systems have been explored [19–21]. However,
a common limitation of these approaches is their reliance on a substantial number of parallel
documents between the languages, which can be challenging to obtain. Liu et al. [16]
introduced a system designed to alleviate the need for a large number of parallel documents.
They accomplished this by introducing context-dependent lexical mapping, which allows
embeddings from one language to be translated into another. To address the issue of
differing word orders between languages, they employed a convolutional graph neural
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network that operates based on syntactic connections between words rather than their
order within a sentence. This innovative approach was tested on both the ACE 2005
dataset and the TAC KBP 2017 dataset. In both cases, the model outperformed models
trained exclusively on the target language, demonstrating its effectiveness in cross-lingual
event extraction.

5.6. Transfer Learning

Researchers have explored innovative approaches to leverage advancements in other
areas of natural language processing for event extraction tasks. One such approach was
introduced by Liu et al. [22], which frames event extraction as a reading comprehension
task. In this approach, the document serves as the source of knowledge for the model, and a
series of questions are posed to the model about the event. Event triggers are identified
using a specialized query prompt, while event attributes are extracted using prompts
designed to elicit specific information, such as “What instrument did the protester use to
stab an officer?” This reading comprehension-based approach offers a unique perspective
on event extraction.

Another intriguing approach for event extraction was presented by Lu et al. [23]. They
designed a transformer model, built upon the T5 pretrained language model, which trans-
forms text into a structured representation. The model takes a sentence as input and outputs
a structured representation containing the event, its type, and its associated arguments.
This approach aims to capture the essence of events and their attributes within a structured
format, offering potential benefits for downstream applications. Zhang et al. [136] explored
an approach that combines text and images for event extraction. Their model connects
textual and image information, combining both modalities within a single model. This
multimodal approach opens up new possibilities for event extraction by incorporating
visual cues from images to enhance the understanding of events described in the text.

5.7. Discussion

In Table 6, we compare the systems for event extraction. We compare the systems
based on F1 scores on the four tasks supported by the ACE 2005 corpus. The event
identification task requires the model to identify the event triggers in a document. By doing
so, the model recognizes the events that are described. In the event classification task,
the model has to identify the type of the detected events. Since some models solve the first
two tasks in a single classification, we report only a single score in that case. The argument
identification task requires the model to recognize the arguments of the identified events
and the argument role classification task requires the classification of a role each argument
plays in regards to the event. The presented scores are reported by each individual paper
and are not directly comparable because of that; however, the reported values still give
us an idea of the system’s performance. We see that the use of graph neural networks
for the introduction of syntactic dependencies in a sentence proposed by Liu et al. [15]
provides a big improvement. We believe that future systems for event extraction will also
use graph neural networks in a similar way. Another idea that is likely to be used in future
systems is the use of pretrained language models. We observed good results achieved by
Zhang et al. [17,132] by using pretrained language models, so we believe that this is another
promising future direction. Pretrained language models can also be combined with graph
neural networks, providing benefits for both.
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Table 6. Comparison of the described event extraction systems. We report the F1 scores for the tasks
defined in the ACE 2005 challenge where available. The results are the best results reported by each
of the papers.

System Extraction Method Corpus

EventIdentification

EventC
lassification

A
rgum

entIdentification

A
rgum

entR
ole

C
lassification

AutoSlog [6]
Semi automatic
pattern generation MUC-4 - - - -

PALKA [8]
Automatic pattern
generation with
labeled corpus

MUC-4 - - - -

AutoSlog-TS [7]
Automatic pattern
generation without
labeled corpus

MUC-4 - - - -

NYU’s ACE 2005 [9]

Event extraction
and entity
coreference using
machine learning

ACE 2005 - - - -

Chen et al. (2015) [12]
Convolutional
neural networks ACE 2005 0.735 0.691 0.591 0.535

Nguyen et al. (2016) [13]
Recurrent neural
networks ACE 2005 0.719 0.693 0.628 0.554

Sha et al. (2018) [14]
Recurrent neural
networks with
depencency bridges

ACE 2005 - 0.719 0.677 0.587

Zhang et al. (2017) [136]
Multimodal event
extraction ACE, ERE - 0.693 - 0.559

Zhang et al. (2019) [17]
Transition-based
neural model ACE 2005 0.761 0.738 0.574 0.533

6. Temporal Relation Extraction

The task of temporal relation extraction was first popularized by the creation of the
TimeBank corpus [74]. The first successful approaches for recognizing temporal relations
were based on hand-defined rules [24,137].

6.1. Temporal Relation Extraction Using Traditional Machine Learning

Temporal relation extraction, a task that involves identifying relationships between
events or between events and temporal expressions, saw early efforts rooted in traditional
machine learning techniques. In these approaches, machine learning models are coupled
with hand-crafted features to achieve temporal relation recognition.

Mani et al. [25] tackled the recognition of temporal relation types by experimenting
with various machine learning models, including Maximum Entropy (ME), Naive Bayes,
and Support Vector Machine (SVM) classifiers. Their features encompass event class, aspect,
modality, tense, negation, event string, and signal. Building on this foundation, Bethard [26]
extended the approach to the medical domain using the TempEval 2013 dataset. Their
system not only identified temporal relations but also detected events and time expressions
within documents, relying on a feature set similar to that of Mani et al. [25], albeit without
the signal feature.
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Lin et al. [27] applied SVM models to medical documents found in the THYME and
2012 i2b2 datasets. They developed separate classifiers for recognizing relations between
two events and between an event and a time expression. Features for these classifiers
included part-of-speech tags, event attributes, dependency paths, and more. Ning et al. [28]
further improved temporal relation prediction by introducing logical rules that considered
multiple relations concurrently. For example, if event B occurred after event A and event C
followed event B, then event C was inferred to be after event A. These logical rules were
applied by calculating probabilities for individual relations and selecting the most likely
combination. Their classification utilized a perceptron model with an expanded feature set
encompassing lexical, syntactic, semantic, linguistic, and time interval features.

Table 7 provides a comparative overview of these traditional machine learning-based
approaches to temporal relation extraction. Although the models were evaluated on
different datasets, the commonality among them was the utilization of Support Vector
Machines and Maximum Entropy models, reflecting the popularity of these traditional
machine learning techniques in the domain of temporal relation extraction.

Table 7. Systems using hand-crafted features for temporal relation extraction. Values report accuracy
for event–event (EE) relations and event–time (ET) relations.

System Model Used Corpus EE ET

Verhagen et al. (2006) [76] Hand-crafted rules TimeBank - 0.64

Mani et al. (2006) [25] SVM and ME models
TimeBank
Opinion Corpus 0.625 0.761

Bethard (2013) [26] ME model
TimeBank
AQUAINT
Verb-clause

0.31 -

Lin et al. (2016) [27] SVM
THYME
i2b2 2012 0.645 0.83

Ning et al. (2017) [28] structured perceptron

TimeBank
AQUAINT
Verb-clause
TB Dense

0.403 -

6.2. Temporal Relation Extraction Using Neural Networks

In recent times, the field of temporal relation extraction has witnessed a shift towards
the adoption of deep neural network architectures. These neural network-based models
have proven effective in capturing complex temporal relationships in text. Table 8 presents
a comparison of temporal relation extraction models employing neural networks.

Early neural network architectures in this context commonly incorporated Long Short-
Term Memory (LSTM) layers on top of word embeddings to generate event embeddings,
which were then used for relation classification [29,32,33].

Tourille et al. [29] introduced a deep neural network with an LSTM layer. They
computed word embeddings by combining manually engineered features, word2vec em-
beddings, and character-level LSTM embeddings. These embeddings were then fed into a
bidirectional LSTM layer. The resulting vectors from this layer were concatenated and used
for classification into relation classes. This approach was tested on medical documents from
the THYME corpus. Cheng and Miyao [32] adopted a similar approach but with a focus on
inter-sentence temporal relation recognition. Instead of applying the LSTM over neighbor-
ing tokens, they applied it over tokens located on a syntactic dependency path connecting
one event to another. This allowed them to establish connections between events described
in different sentences, thereby enhancing inter-sentence temporal relation recognition.
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Table 8. Comparison of temporal relation extraction models on several datasets. The reported
F-scores are the ones achieved by the best configuration. Some models only predict the “contains”
relation in a dataset and are marked with the contains only column. Some results are split into scores
for event–event (EE) relations and event–time (ET) relations.

System Model Contains Only F-Score

Dataset: THYME

Tourille et al. (2017) [29] Bi-LSTM 7 0.683
Dligach et al. (2017) [30] CNN 3 EE: 0.54, ET: 0.71
Lin et al. (2019) [31] BERT 3 0.684

Dataset: TimeBank-Dense

Cheng and Miyao (2017) [32] Bi-LSTM 7 EE: 0.53, ET: 0.47
Leeuwenberg and Moens (2018) [33] Bi-LSTM 7 0.561
Zhou et al. (2021) [34] soft logic 7 0.652
Zhang et al. (2021) [35] BERT + GNN 7 0.667
Xu et al. (2021) [36] BERT + GNN 7 0.732
Mathur et al. (2021) [37] BERT + GNN 7 0.678
Yuan et al. (2023) [138] ChatGPT 7 0.366
Chan et al. (2023) [139] ChatGPT 7 0.233

Dataset: i2b2 2012

Zhou et al. (2021) [34] Soft logic 7 0.802

Dataset: MATRES

Zhang et al. (2021) [35] BERT + GNN 7 0.793
Mathur et al. (2021) [37] BERT + GNN 7 0.823
Yuan et al. (2023) [138] ChatGPT 7 0.193
Chan et al. (2023) [139] ChatGPT 7 0.350

Dligach et al. [30] delved deeper into the use of neural networks for temporal relation
extraction. They explored various network architectures and found that neural networks
outperformed hand-engineered features. Interestingly, they discovered that convolutional
neural network (CNN) architectures performed better than LSTM networks. Their experi-
ments were conducted on the THYME dataset, which primarily focused on the “contains”
relation (referred to as “during” in Alen’s categorization in Figure 4).

In addition to LSTM and CNN architectures, researchers have also explored the
application of other neural network architectures, such as graph neural networks [140]
and attention-based neural networks [141]. These architectures offer diverse approaches to
capturing temporal relations in text, contributing to the advancement of the field.

6.3. Use of Pretrained Neural Language Models

The recent breakthroughs in natural language processing have been driven by the
widespread use of large pretrained language models. These models, trained on vast
amounts of text, leverage their learned knowledge to excel in various language-related
tasks, including temporal relation extraction [28,31,34,142].

Lin et al. [31] introduced an early approach to temporal relation extraction using
pretrained language models. Their method involved marking events with special tokens
and processing the sequence using a BERT network. The final classification relied on
the embedding of a “[CLS]” token. This model primarily recognized “CONTAINS” and
“CONTAINED_BY” relations and experimented with BERT models pretrained on different
types of text, with models pretrained on more relevant data, yielding improved results.
Zhou et al. [34] built on top of this approach by introducing probabilistic soft logic, incorpo-
rating logical rules that must hold between temporal relations. This approach, similar to the
work by Ning et al. [28], significantly improved results over the baseline BERT model. Their
evaluation encompassed the 2012 i2b2 medical dataset and the TimeBank-Dense dataset.
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To improve on simply classifying temporal relations based on embeddings provided
by BERT, some researchers proposed to complement them by graph neural networks
(GNNs), which offer additional information about sentence structure and inter-sentence
relations. Zhang et al. [35] employed BERT to compute token embeddings and then used
two graph neural networks—one that accepted events and related tokens and another that
accepted the shortest syntactic path between events. This approach yielded a 5% improve-
ment compared to only using BERT when tested on the TimeBank-Dense and MATRES
datasets. Xu et al. [36] proposed another approach, taking advantage of a GNN to improve
relation extraction performance. The approach incorporated attention mechanisms, out-
performing the LSTM-based architecture when evaluated on the TimeBank-Dense dataset.
Mathur et al. [37] extended the use of graph neural networks in conjunction with BERT
embeddings for document-level temporal relation extraction. Their approach incorporated
multiple graph neural networks with gating convolutional layers, achieving superior re-
sults compared to baselines across multiple datasets, including MATRES, TimeBank-Dense,
and a subset of the TDDiscourse corpus.

6.4. Use of External Knowledge

When humans comprehend natural language, they rely on their shared knowledge to
make educated guesses about implicit details not explicitly mentioned in the text. For in-
stance, if a text describes someone as feeling hungry and having lunch, we intuitively
understand that the hunger likely preceded the meal and that the meal itself probably
took a relatively short amount of time. These inferences are drawn from our common
background knowledge and contextual cues.

In contrast, computer models often lack access to this common knowledge and can
only extract information explicitly stated in the text. To address this limitation, researchers
have proposed methods to integrate general knowledge into computer models [38–40,143].

One approach to incorporating general knowledge into models involves compiling
statistics about target variables from a large corpus of text. For instance, by observing
temporal relations between events in a corpus, we can predict the likelihood of each relation
occurring between the observed events. This statistical knowledge aids the model in relation
extraction. Ning et al. [38] developed such a statistical resource, containing probabilities
for temporal relations between events in the news domain. This resource was constructed
using news articles from The New York Times over a 20-year period. Their findings
demonstrate that integrating this resource enhances the performance of existing temporal
relation extraction systems. In subsequent work, Ning et al. [39] introduced a novel state-of-
the-art system for temporal relation extraction that leverages this statistical resource. Their
model employs an architecture that applies a Long Short-Term Memory (LSTM) network
over contextualized token embeddings. Additional knowledge is incorporated through
a common sense encoder, which is concatenated with the event token embeddings. This
inclusion of common sense knowledge led to a 3% improvement in results. Han et al. [40]
proposed a similar approach for temporal relation classification that also integrates common
sense knowledge. Their model begins by computing BERT token embeddings, which are
then passed through an LSTM layer. The resulting representation is used to extract events
and predict probabilities for their temporal relations. Events are then associated with
their types, and probabilities of temporal relations between them are estimated based on
corpus statistics. The relation probabilities predicted by the model are combined with those
computed from corpus statistics using maximum a posteriori estimation. This approach
employs probabilistic constraints instead of rigid constraints.

Certain authors also utilize constraints grounded in their domain knowledge for
temporal relation extraction. Zhou et al. [34] and Ning et al. [28] applied transitivity be-
tween temporal relations to enhance their predictions. These types of constraints introduce
domain-specific knowledge into the model, even without statistics from a large corpus.
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6.5. Large Language Models

With the rise of large language models like ChatGPT and GPT-4 [144], which have
demonstrated their effectiveness across various tasks, researchers have explored the possi-
bility of using such general models for classification tasks like temporal relation extraction.

The primary advantage of these approaches is that they enable zero-shot classifica-
tion [138,139,145]. This means that these models can be used to extract temporal relations
without requiring any specific training data that provide examples of temporal relations.
Researchers have investigated the use of such models by fine-tuning or adapting prompts
to optimize extraction reliability. However, it is worth noting that the prediction accu-
racy of these general models tends to be considerably lower than that of purpose-built
models [138,139].

To enhance the performance of these models, efforts have been made to design
prompts that provide explanations about the question setting and causal relations [139].
Yuan et al. [138] took a step further by introducing "chain of thought" prompts, where the
model is prompted with a series of questions concerning the timing of events. Despite
these improvements, researchers still report significantly lower performance compared to
some approaches utilizing other specialized architectures for temporal relation extraction.

6.6. Discussion

Temporal relations are the most commonly extracted temporal features of events in the
papers that we analyzed. In order to compare the systems for temporal relation extraction,
we present them in two separate tables. Table 7 compares systems using traditional machine
learning models, and Table 8 compares systems using neural network architectures. Since
the models using traditional machine learning use different datasets, we cannot make
meaningful comparisons of their performance. Recent research suggests that the use of
language models like BERT and graph neural networks provides the best results [35–37].

We also believe that the use of common knowledge resources could provide large
benefits in the process of extracting temporal relations. Ning et al. [39] and Han et al. [40]
showed significant improvements to the results when using statistical resources to comple-
ment extracted relations. We believe that there is still a lot of unexplored potential for the
use of common sense knowledge in the process of temporal relation extraction. Research in
other areas of natural language processing has shown that the integration of common sense
knowledge is an effective way of improving model performance, especially in cases where
not a lot of training data are available. Liu et al. [146] demonstrated the improvements that
come from additional domain knowledge on a variety of natural language tasks.

7. Timeline and Knowledge Graph Construction

Once information about events and their temporal attributes is extracted from text,
the next step is to represent this information in a machine-readable format. A common rep-
resentation for knowledge extracted from plain text documents is a knowledge graph [1].
Most existing knowledge graphs are centered around entities. In such graphs, nodes
represent entities, and edges represent relations between them. However, we can also
use knowledge graphs to represent event information, leading to event-centric knowl-
edge graphs.

Event-centric knowledge graphs, like EventKG constructed by Gottschalk [147], fo-
cus on events as the central entities. EventKG was created by extracting events from
various sources, including Wikidata [2], DBpedia [1], YAGO [3], Wikipedia Event Lists,
and Wikipedia Current Events Portal. It comprises 322,669 events with 88,473,111 relations,
including information about the time and location of events when available.

In this survey, we explore the automatic generation of event-centric knowledge graphs
from unstructured documents. Automatically constructing such graphs can have various
applications, including event information analysis and using the extracted knowledge
graphs as sources of external knowledge as discussed in Section 6.4. To automatically
create event-centric knowledge graphs, we need to integrate the methods for informa-
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tion extraction described earlier with techniques for disambiguation and constructing
knowledge graphs.

7.1. Constructing Temporal Knowledge Graphs

Adding temporal information to a knowledge graph to create a temporal knowledge
graph has gained significant attention in recent years [148]. One example of automatically
building an event-centric temporal knowledge graph was presented by Rospocher et al. [46].
They developed a comprehensive pipeline of existing natural language processing tools
capable of extracting information from plain text news articles to construct a knowledge
graph containing events and their associated attributes. Another system for constructing
event-centric knowledge graphs was introduced by Song [149]. This system crawls news
articles from the web to extract credit events and represent them as nodes and their
causal relations as edges in a knowledge graph. The system detects events and their
causal relations based on syntactic dependencies between words. These methods rely on
traditional techniques for extracting events and temporal relations and could potentially be
enhanced with the integration of deep learning methods.

Similar approaches have been employed to construct knowledge graphs, such as the
Global Database of Event Language and Tone (GDELT) [150] and the Integrated Crisis Early
Warning System (ICEWS) [151]. These knowledge graphs contain temporal information
about events sourced from news articles, government reports, and other publicly available
documents. The methods used in these cases rely on statistical natural language processing
techniques, like Dirichlet Localization Algorithms (ALDs). EventKG [147] is another
example of a temporal knowledge graph. EventKG is constructed from existing structured
data sources, including DBpedia, Wikidata, Yago, and Wikipedia. Unlike the previously
mentioned models, EventKG does not work directly with natural language text but starts
with structured data. The construction of EventKG involves several steps, including
identifying events, extracting relations, integrating events and entities, and fusing the
temporal and spatial information associated with the events.

7.2. Estimating Event Timelines

The representation of temporal information about events in the form of timelines can
provide a more intuitive understanding for humans. Timelines can capture the sequencing
of events and their durations, making them easier to comprehend. However, while timelines
are beneficial for human interpretation, they may lack the ability to record additional
extracted data compared to knowledge graphs. Timelines can be categorized as relative or
absolute. Relative timelines focus on capturing the sequence of events without specifying
their actual time points, relying on temporal relations between events. In contrast, absolute
timelines record the actual times of events, enabling the combination of multiple timelines.
Absolute timelines are more informative but require more extensive temporal information.
Leeuwenberg and Moens [33] proposed an architecture to create relative event timelines
directly. Instead of predicting temporal relations, they predict relative times, allowing the
direct construction of timelines. Their model predicts relative start and end times for events,
where greater values indicate later times. The architecture employs two Bidirectional Long
Short-Term Memory (Bi-LSTM) layers, one for predicting event start times and another
for predicting event durations. These predictions are combined with token embeddings
of event and time expressions. Evaluation is performed on the THYME medical corpus
by checking if the predicted time points align with the annotated relations. Similarly,
Vashishtha et al. [42] constructed a dataset containing relative timeline positions of events
in a document. Their model takes pairs of events within a sentence and positions them
relative to each other on a timeline. Subsequently, these relative timelines are combined
into a single document timeline. The model also predicts the duration class (e.g., seconds,
minutes, hours, and days) for events in the timeline. In 2020, Leeuwenberg and Moens [41]
extended their work to extract absolute event times and durations. They annotated the i2b2
medical corpus with the event starting times, ending times, and durations. The model for
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predicting absolute event times uses the ELMo embeddings of words, which are processed
through an LSTM or a convolutional layer. The predictions are generated using a multi-
layer perceptron. For predicting event durations, the model considers only the event and
its surrounding context. The predicted values represent the absolute time of the event and
its duration.

7.3. Estimating Event Duration

Predicting the duration of events is a crucial aspect of temporal information extraction.
Various approaches have been explored for this task, ranging from binary classification
to fine-grained classification and continuous variable prediction. Pan et al. [43] created
a corpus of news articles and annotated events from the TimeBank corpus with their du-
rations. They designed a binary classification task to predict whether events are short
(less than a day) or long (more than a day), using hand-crafted features, including event
properties, bag-of-words vectors, subject and object of the events, and WordNet hyper-
nyms. Support Vector Machine (SVM) achieved the best results for this binary classification.
Gusev et al. [44] extended Pan et al.’s work by expanding the dataset with additional
annotations and predicting multiple duration classes, such as seconds, minutes, hours,
etc. They employed a similar set of features, including event attributes, named entity
classes, typed dependencies, and whether an event is a reporting verb. Various machine
learning models, including Naive Bayes, Logistic Regression, Maximum Entropy, and SVM,
were evaluated, with Maximum Entropy achieving the best performance. Additionally,
Gusev et al. proposed an unsupervised model to extract event durations using patterns.
Vempala et al. [45] introduced a neural network-based approach for event duration esti-
mation. Their model utilizes three Long Short-Term Memory (LSTM) networks over word
embeddings in a sentence: one capturing information from the entire sentence, one from
words before the event, and one from words after the event. These vectors, combined with
the event’s embedding, are classified using a softmax layer. While they improved upon
the previous binary classification models, their approach still predicted event duration as a
binary output.

Several models designed for event timeline construction also incorporate event du-
ration prediction, which is crucial for the timeline sequencing task [33,41,42]. Vashishtha
et al. [42] performed the fine-grained classification of event durations, classifying events
into categories such as seconds, minutes, hours, days, weeks, months, years, decades,
centuries, and forever.

7.4. Discussion

Presenting extracted information in a knowledge graph is important for increasing its
usability. Most of the research aiming to create a structured representation of events focuses
on creating event timelines. While these can be useful, we suggest that future projects
present the extracted data in the form of a knowledge graph, as these can capture more
diverse information. Once the necessary information has been captured in a knowledge
graph, a timeline can be constructed as an additional visualization of the events.

The systems constructing event timelines are also limited since many of them only
provide relative timelines [33,42]. We propose that future work focuses on anchoring
the timelines to absolute times, following the example of Leeuwenberg and Moens [41].
Absolute times are more useful since they can be directly combined with events extracted
from other documents. A challenge when predicting the absolute times of events is that
dates and times of the events are often not mentioned in a document. This can be solved by
using the document creation time as a reference point.

8. Discussion and Future Research Directions

In this section, we discuss how to combine the existing technologies into a single
system for constructing event-centric knowledge graphs from unstructured documents.
We describe how the challenges have been solved so far and which remain unsolved.
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Incorporating common knowledge into event-centric knowledge graph construction
can significantly enhance the accuracy of key tasks. Utilizing domain-specific common
knowledge and statistics can be valuable for improving tasks such as temporal relation
prediction and event duration estimation. Researchers may consider implementing a
mechanism to automatically generate and update common knowledge collections based
on the information extracted by the algorithm to ensure ongoing improvement. This is
especially relevant for the domain of temporal knowledge graphs, as the temporal patterns
that occurred in previously analyzed documents are likely to repeat in the future and can
thus help a lot with extracting new temporal information.

Developing end-to-end systems for event knowledge graph construction is an essen-
tial goal. Such systems can reduce error propagation and enhance overall efficiency by
combining multiple stages of the knowledge graph construction process. The creation of a
unified architecture that can perform event extraction, the recognition of temporal proper-
ties, and knowledge graph construction tasks within a single model would streamline the
process and reduce potential errors. While such systems are beneficial in all knowledge
graph construction applications, they are especially relevant for constructing knowledge
graphs focused on temporal information, as such construction generally requires pipelines
with many stages.

Future research should expand its focus to include the automatic creation of event-
centric knowledge graphs in addition to existing event timelines. These knowledge graphs
can provide a more comprehensive representation of events, including details such as
participants, location, and event type. To ensure interoperability between different data
sources and applications, utilizing standardized knowledge graph schemas and defining a
common representation for event-centric knowledge graphs is crucial.

The prediction of absolute temporal attributes, including event start times, end times,
and durations, remains an underexplored area. Addressing this gap requires the creation of
manually annotated datasets that include this information to effectively train and evaluate
models. In cases where manual annotation is limited, researchers may explore the use
of semi-automated annotations, combining hand-annotated examples with a substantial
number of silver annotations generated using ensemble algorithms to expand training data
while mitigating potential errors. This approach will facilitate the recognition of absolute
event times and enhance the capabilities of knowledge graph construction systems.

Integrating temporal knowledge graphs into question-answering (Q&A) systems also
presents an intriguing avenue for research. This involves devising methods that enable the
extraction of temporal context from queries and leveraging it to provide temporally aware
and accurate answers. In essence, advancements in time representation, time relationship
extraction, time reasoning, and Q&A are interconnected, as they collectively contribute to
the construction of more dynamic and contextually aware temporal knowledge graphs.

Constructing temporal knowledge graphs also necessitates a critical consideration
of ethical dimensions and potential biases inherent in the data sources and algorithms
involved. The selection and curation of data may inadvertently introduce biases, reflecting
historical inequalities or skewed perspectives. Ethical concerns arise in determining whose
narratives are prioritized and how events are framed within a temporal context. Biases can
also emerge through algorithmic decisions, impacting the representation of certain events
or communities. Transparency and inclusivity are paramount, demanding careful scrutiny
of the methods employed to construct these graphs. Vigilance is essential to mitigate ethical
pitfalls, ensuring that temporal knowledge graphs not only accurately reflect temporal
relationships but also adhere to principles of fairness, inclusiveness, and ethical data use.
Regular audits and ongoing ethical considerations should be integral to the construction
and maintenance of these graphs to foster a responsible and unbiased foundation for
knowledge representation.
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9. Conclusions

Event-centric temporal knowledge graphs are useful in many real-world applications.
Such applications are event-centric question answering and timeline generation [147].
By incorporating data from specific domains into such knowledge graphs, we can enable
even more applications like, for example, cross-cultural and cross-lingual event-centric
analytics [152,153], which can be enabled by including events collected from documents
from multiple cultural backgrounds.

In the field of medical research, the construction of event-centric temporal graphs
can be used to extract information from a large number of unstructured medical notes.
Such information can then be used to analyze patterns and trends across many patients
to solve real-world tasks, such as disease trajectory detection [154] and clinical dead-end
prediction [155].

In this survey, we delved into the existing methodologies and datasets for constructing
event-centric temporal knowledge graphs from unstructured documents. We structured
the process into three main stages: event extraction, the extraction of temporal attributes
and relations, and knowledge graph construction. Additionally, we examined the common
schemes for representing event information, temporal relations, and time properties, while
also highlighting the prevalence of pretrained language models in current systems.

Our findings indicate that models employing pretrained language models, particu-
larly BERT, achieved remarkable success in the extraction of events, temporal attributes,
and temporal relations. Furthermore, domain-specific pretrained models demonstrated
even higher effectiveness. However, the task of seamlessly integrating these extracted data
into event-centric knowledge graphs remains an understudied area. We also find that the
pretrained conversational models like ChatGPT perform poorly when applied directly to
most of the tasks connected to event-centric knowledge graph construction.

Building on our analysis, we propose several promising directions for future research.
Leveraging common knowledge in information extraction processes could enhance results,
especially in domains with limited labeled data. Additionally, there is a pressing need to
develop techniques for extracting absolute temporal attributes, as most current systems
primarily focus on relative event times. The creation of automated event-centric knowl-
edge graphs and end-to-end systems capable of executing all of the aforementioned tasks
should also be prioritized in future research endeavors. This way, we can move closer
to fully automating the construction of event-centric temporal knowledge graphs from
unstructured documents.
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