
Citation: He, Z.-H.; Zhang, X.-N.;

Chen, X. Unitary Diagonalization of

the Generalized Complementary

Covariance Quaternion Matrices with

Application in Signal Processing.

Mathematics 2023, 11, 4840. https://

doi.org/10.3390/math11234840

Academic Editors: István Faragó and

Luca Gemignani

Received: 5 October 2023

Revised: 21 November 2023

Accepted: 29 November 2023

Published: 1 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Unitary Diagonalization of the Generalized Complementary
Covariance Quaternion Matrices with Application in
Signal Processing
Zhuo-Heng He 1,*,†, Xiao-Na Zhang 1 and Xiaojing Chen 2,†

1 Department of Mathematics, Shanghai University, Shanghai 200444, China; zhangxiaona98@shu.edu.cn
2 School of Finance, Shanghai University of International Business and Economics, Shanghai 201620, China;

chenxj@suibe.edu.cn
* Correspondence: zhuohenghe@shu.edu.cn
† These authors contributed equally to this work.

Abstract: Let H denote the quaternion algebra. This paper investigates the generalized comple-
mentary covariance, which is the φ-Hermitian quaternion matrix. We give the properties of the
generalized complementary covariance matrices. In addition, we explore the unitary diagonalization
of the covariance and generalized complementary covariance. Moreover, we give the generalized
quaternion unitary transform algorithm and test the performance by numerical simulation.
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1. Introduction

A covariance matrix describes the relationship between different dimensions, and it
can be applied in stochastic modeling and principal component analysis (PCA)
(e.g., [1–6]). The central idea of principal component analysis is the diagonalization of
covariance matrix. Moreover, diagonalization covariance matrices play an important
role in many statistical signal processing algorithms (e.g., [7–9]). The covariance ma-
trix C = E{xxH} and pseudo-covariance matrix P = E{xxT} both compose complete
second-order statistical information on the complex field [10]. Diagonalization of C and
P is performed using eigen-decomposition and Takagi factorization, respectively. These
two decompositions can decorrelate the data in its general form [11]. De Lathauer and De
Moor [12] as well as Eriksson and Koivunen [13] introduced the strong uncorrelated trans-
formation (SUT). Ollila and Koivunen [14] presented its extension, namely, generalized
uncorrelated transformation (GUT). Cheong Took et al. [15] researched the approximate
uncorrelating transform (AUT) to decorrelate the mixed signal. SUT, GUT, and AUT can be
used in blind separation of non-circular complex source [16], separation of signal and noise
components in harmonic signal subbands [17], and so on.

Quaternion algebra is an associative and non-commutative division algebra over the
real number field. The application of quaternion matrices involves many fields, such as
computer science, orbital mechanics, statistics, and so on (e.g., [1,18–21]). Especially in
the field of signal processing, C.C. Took and D.P. Mandic [22] proposed the quaternion
widely linear (QWL) model for quaternion valued mean square error (MSE) estimation.
C.C. Took et al. [23] studied the augmented second-order statistics of quaternion random
signals, in [15] they investigated the approximate diagonalization of correlation matri-
ces in widely linear signal processing, and so on. Quaternions can be used to process
high-dimensional data. As such, the quaternion matrix is a new and effective tool in
signal processing. The research of quaternion signal processing has involved Fourier trans-
forms [24], neural networks (e.g., [25,26]), independent component analysis (ICA) [27], and
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so on. Due to its widespread application, in linear algebra, the structure and simultaneous
diagonalization of the covariance matrices of the quaternion field have received great
attention in widely linear signal processing (e.g., [21,23,28]).

Because quaternion multiplication cannot be exchanged, the related theory in complex
field C cannot be directly extended to quaternion field H. In the quaternion field, Cheong
Took et al. [23] presented the standard covariance matrix Cx = E{xxH}, which is a Hermi-
tian quaternion matrix, and the complementary covariance matrices Cη

x = E{xxηH}, which
are η-Hermitian quaternion matrices, where η ∈ {i, j, k}, i, j, k are unit imaginary numbers
and (·)H represents the Hermitian (conjugate transpose). In recent years, some scholars
have studied the η (-skew-) Hermitian (e.g., [2,29]). The diagonalization of Cx can be used
in eigen-decomposition and Cη

x can be used in singular value decomposition [21]. As for
their joint diagonalization, Enshaeifar et al. [30] presented the quaternion uncorrelating
transform (QUT), which is the generalization of SUT in the quaternion field. Moreover,
Min et al. [31] introduced the quaternion approximate uncorrelating transform (QAUT),
which simultaneously diagonalizes all four covariance matrices associated with improper
quaternion signals.

Rodman [32] presented the definition of φ-Hermitian quaternion matrix A = Aφ,
where φ is a non-standard involution, i.e., φ(a) = −δaHδ, aH is a conjugate transposition
of quaternion a, and δ = u1i + u2j + u3k ∈ Hn×n is unit and purely imaginary. Obviously,
when δ ∈ {i, j, k}, φ-Hermitian is the same as η-Hermitian, so φ-Hermitian is a more general
case of η-Hermitian. In recent years, some scholars researched the φ-Hermitian quaternion
matrices in many fields. For example, Aghamollaei et al. [33] studied the numerical ranges
with respect to non-standard involutions φ on the quaternion field. They [34] also presented
some quaternion matrix equations involving φ-Hermicity.

In this paper, we investigate the generalized complementary covariance quaternion
matrices Cxφ = E{xxδH}, where δ = u1i + u2j + u3k ∈ Hn×n is unit and purely imagi-
nary. It is obvious that Cxφ is a φ-Hermitian quaternion matrix. Furthermore, we study
the simultaneous diagonalization of the standard covariance matrix and the generalized
complementary covariance quaternion matrices. Moreover, we give the joint diagonaliza-
tion algorithm and the numerical simulation. The main contribution of this paper is to
generalize the complementary covariance quaternion matrices, which we promote from
η-Hermitian matrix to φ-Hermitian matrix, and by comparing the separation time of mixed
signals, the performance after generalization is improved.

The remainder of this paper is organized as follows. In Section 2, we review the
definitions of involution, complex representation of quaternion, the φ-Hermitian quater-
nion matrix, and quaternion improperness. In Section 3, we introduce the structure of
the generalized complementary covariance quaternion matrices. In Section 4, we give the
conditions of unitary diagonalization of standard covariance and generalized complemen-
tary covariance quaternion matrices. In Section 5, we present the generalized quaternion
unitary transform algorithm and test the performance by numerical simulation.

2. Preliminaries
2.1. Quaternion Algebra

Let R, C, H represent the real number field, complex field, and quaternion field,
respectively. We know that the complex field is composed of two unit bases {1, i}, and the
quaternion field is composed of four bases {1, i, j, k}. A quaternion x includes one real part
and three imaginary parts, whose general expression [35] is

x = a0 + a1i + a2j + a3k,

where a0, a1, a2, a3 ∈ R is a real number, and i, j, k satisfy

i2 = j2 = k2 = ijk = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j.
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The real part and imaginary part of quaternion x are expressed as Re {x} = a0 and
Im {x} = a1i + a2j + a3k, respectively. In particular, when a0 = 0, it is called a pure
quaternion. The conjugation of x is defined as

x = x∗ = a0 − a1i− a2j− a3k,

and the norm is defined as

|x| =
√

x∗x =
√

a2
0 + a2

1 + a2
2 + a2

3.

When |x| = 1, the quaternion x is called a unit quaternion.
Next, we review the definition of quaternion involution. On the quaternion field,

Rodman [32] provided the definition of involution.

Definition 1 (involution [32]). A map φ: H → H is called an antiendomorphism if φ(xy) =
φ(y)φ(x) and φ(x + y) = φ(x) + φ(y) for all x, y ∈ H. An antiendomorphism φ is called an
involution if φ(φ(x)) = x for every x ∈ H.

Quaternion involution is divided into standard involution and non-standard involu-
tion [32]. In this paper, we only research the non-standard involution, whereby φ needs to
be contented φ(a) = aδH = −δaHδ, where δ = u1i + u2j + u3k ∈ Hn×n is unit and purely
imaginary, i.e., u1, u2, u3 ∈ R and u2

1 + u2
2 + u2

3 = 1.
The non-standard involuton of quaternion x defined as xδH = −δxHδ, where δ =

u1i + u2j + u3k. In particular, when δ ∈ {i, j, k} [21], the non-standard involution is

xiH = (xi)H = (xH)i = −ixHi = a0 − a1i + a2j + a3k, i f δ = i,

xjH = (xj)H = (xH)j = −jxHj = a0 + a1i− a2j + a3k, i f δ = j,

xkH = (xk)H = (xH)k = −kxHk = a0 + a1i + a2j− a3k, i f δ = k.

(1)

Furthermore, Rodman [32] presented the definition of φ-Hermitian matrices as follows.

Definition 2 (φ-Hermitian [32]). A ∈ Hn×n is said to be φ-Hermitian if A = Aφ, where φ is a
non-standard involution.

2.2. Complex Representation of Quaternion and Quaternion Matrix

In this section, we review the complex representation of a quaternion and quaternion
matrix [36]. A quaternion x can be represented as

x = a0 + a1i + a2j + a3k = (a0 + a1i) + (a2 + a3i)j, (2)

Let a0 + a1i = xa, a2 + a3i = xb, and they are both complex numbers. Then the quaternion
x can be expressed as

x = xa + xbj, (3)

which is the complex representation of quaternion x. Its matrix representation [35] is
as follows:

x̂ =

(
xa xb
−xb xa

)
, (4)

where x̂ is a 2× 2 complex matrix.
Similarly, the quaternion matrix An×n can be expressed as

A = A0 + A1i + A2j + A3k = (A0 + A1i) + (A2 + A3i)j = Aa + Abj, (5)
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where A0, A1, A2, A3 ∈ Rn×n, Aa = A0 + A1i, Ab = A2 + A3i are complex matrices. The
above formula (5) is the complex representation of the quaternion matrix, whose matrix
expression [35] is as follows

Â =

(
Aa Ab
−Ab Aa

)
, (6)

where Â is a 2n× 2n complex matrix.
Using complex representation, any quaternion matrix can be transformed from the

quaternion field to the complex field; thus, many quaternion problems can be solved.

2.3. Quaternion Improperness

On the quaternion field, the improperness is characterized by the degree of irrelevance
between the real part and the imaginary part. The properness of a quaternion can be
divided into two types: H-improperness and Cα- improperness [37]. The definitions are
given as follows.

Definition 3 (H-properness [37]). A quaternion random vector x is H-proper if it is uncorrelated
with its vector involutions, xi, xj, and xk, so that

Cxi = E
{

xxiH
}
= 0, Cxj = E

{
xxjH

}
= 0, Cxk = E

{
xxkH

}
= 0. (7)

Definition 4 (Cα-properness [37]). A quaternion random vector x is Cα-improper with respect to
α = i, j, or k if it is correlated only with the involution xα, so that all the complementary covariances
except for Cxα vanish.

According to the complex representation of a quaternion, two proper complex random
vectors can produce a Cα-properness vector. According to the Cayley–Dickson construction,
for different α, β ∈ {i, j, k}, a quaternion can be represented as x = z1 + z2β, where z1
and z2 are generated by {1, α}. Any quaternion vector x is Cα-improper if and only if the
following conditions are both satisfied [37]:

(1) z1 and z2 are proper complex vectors, which is achieved when their real and imaginary
parts are uncorrelated and with the same variance.

(2) z1 and z2 have different variances.

3. The Structure of Quaternion Covariance Matrices
3.1. Three Kinds of Structure of Quaternion Covariance Matrices

There are three kinds of quaternion covariance matrices: the pseudo-covariance matrix,
the standard covariance matrix, and the complementary covariance matrix.

In recent years, there has been success in using the standard covariance matrix
(CX = E{XXH}) and pseudo-covariance matrix (PX = E{XXT}) of simple expression
and physical meaning in complex augmented statistics [31]. The pseudo-covariance matrix
can explain the complex variable improperness. Moreover, in the complex domain, the
pseudo-covariance matrix is a symmetric matrix, which can use Takagi decomposition
PX = QΣQT , where Q is the complex unitary matrix and Σ is the real diagonal matrix.
Note that the diagonal elements are the singular values of PX [38]. Because quaternion mul-
tiplication cannot be exchanged, pseudo-covariance in a quaternion is asymmetrical. Given
a random quaternion vector X = [x1, x2, · · · , xn]T , the expression of the pseudo-covariance
matrix is as follows:

PX = E{XXT} =


E{x1x1} E{x1x2} · · · E{x1xn}
E{x2x1} E{x2x2} · · · E{x2xn}

...
...

. . .
...

E{xnx1} E{xnx2} · · · E{xnxn}

.
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Quaternion involution plays an important role in generalized linear processing
(e.g., [22,39,40]), which provides a useful basis for second-order statistics in the quaternion
domain. Complete second-order statistics need to consider both the standard covariance
matrix and complementary covariance matrix. The following are their respective expres-
sions [23].

Given a random quaternion vector X = [x1, x2, · · · , xn]T , the expression of standard
covariance matrix is as follows:

CX = E{XXH} =


E{x1x∗1} E{x1x∗2} · · · E{x1x∗n}
E{x2x∗1} E{x2x∗2} · · · E{x2x∗n}

...
...

. . .
...

E{xnx∗1} E{xnx∗2} · · · E{xnx∗n}

.

The expression of complementary covariance matrix is as follows:

CXη = E{XXηH} =


E{x1xη∗

1 } E{x1xη∗
2 } · · · E{x1xη∗

n }
E{x2xη∗

1 } E{x2xη∗
2 } · · · E{x2xη∗

n }
...

...
. . .

...
E{xnxη∗

1 } E{xnxη∗
2 } · · · E{xnxη∗

n }

, (8)

where η ∈ {i, j, k}, x∗i is defined as the conjugate of xi, and the non-diagonal elements
satisfy CXη (m, n) = (CXη (n, m))η∗, that is, m rows and n columns in CXη are equal to the
conjugate of n rows and m columns.

It is worth noting that the standard covariance matrix CX is a Hermitian quaternion
matrix, i.e., CX = CH

X , and the complementary covariance matrix is a η-Hermitian quater-
nion matrix, i.e., CXη = (CXη )ηH . In addition, the relationship among the three covariance
matrices is as follows:

PX =
1
2
(CXi + CXj + CXk −CX).

3.2. The Generalized Complementary Covariance Quaternion Matrix

Quaternion involution basis occupies an important place in second-order statistics.
We have already given the complementary covariance matrix representation (8), where
η ∈ {i, j, k}. According to the definition of non-standard involution given above, in this
section, we will give the generalized complementary covariance quaternion matrix, whose
representation is as follows.

Definition 5 (Generalized complementary covariance quaternion matrix). The expression of
the generalized complementary covariance quaternion matrix is

CXφ = E
{

XXδH
}
=


E
{

x1xδ∗
1
}

E
{

x1xδ∗
2
}
· · · E

{
x1xδ∗

n
}

E
{

x2xδ∗
1
}

E
{

x2xδ∗
2
}
· · · E

{
x2xδ∗

n
}

...
...

. . .
...

E
{

xnxδ∗
1
}

E
{

xnxδ∗
2
}
· · · E

{
xnxδ∗

n
}
, (9)

where δ = u1i + u2j + u3k ∈ Hn×n is unit and purely imaginary.

Note that CXφ
is φ-Hermitian matrix. It is obvious that when δ ∈ {i, j, k}, CXφ

= CXη .
Thus, the complementary covariance matrix is a special case of the generalized complemen-
tary covariance quaternion matrix.

4. Unitary Diagonalization of Standard Covariance and Generalized Complementary
Covariance Quaternion Matrices

In this section, we consider three cases where the Hermitian quaternion matrix and
φ-Hermitian quaternion matrix are simultaneously unitary diagonalized: both are Her-
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mitian quaternion matrices, both are φ-Hermitian quaternion matrices, and there is one
Hermitian quaternion matrix and one φ-Hermitian quaternion matrix.

Firstly, we give some Lemmas:

Lemma 1 ([30]). The standard covariance quaternion matrix (CX) is a Hermitian quaternion
matrix. Its eigen-decomposition is CX = QHΛXQ, where Q is the unitary quaternion matrix, ΛX
is a real-valued diagonal matrix, and the elements on the diagonal are the eigenvalues of CX.

Lemma 2. The generalized complementary covariance quaternion matrix (CXφ
) is a φ-Hermitian

quaternion matrix. Its eigen-decomposition is CXφ
= UΛUδH , where U is the unitary quaternion

matrix, Λ is a real-valued non-negative diagonal matrix, and the diagonal elements are singular
values of CXφ

. δ = u1i + u2j + u3k is unit and purely imaginary.

Proof. The singular value decomposition of the φ-Hermitian quaternion matrix CXφ
is [32]:

CXφ
= USVH , CXφ

CH
Xφ

can be represented as

CXφ
CH

Xφ
= US2UH .

Using the φ-Hermitian property, CXφ
= CδH

Xφ
, we rewrite the matrix product CXφ

CH
Xφ

as

CXφ
CH

Xφ
= VδS2VδH .

On the basis of [21] Lemma 2.1, we can assume U = VδD, where D is diagonal quaternion
matrix. Therefore, we can obtain

CXφ
= USVH

= USVHUδUδH

= US
(

VHVDδ
)

UδH

= U(SDffi)UδH

= UΛUδH .

(10)

Lemma 3. If A, B ∈ H are φ-Hermitian matrices and A is a non-singular matrix, then A, B are
simultaneously diagonalizable if and only if D = A−1B is normal.

Proof. Assuming the existence of unitary matrix M, this makes

Λa = MδHAM, Λb = MδHBM,

able to be diagonalized simultaneously. We have

A−1 = MΛ−1
a MδH , B = MδΛbMH .

Therefore,
A−1B = M(Λ−1

a Λb)M
H

is unitary diagonalized. In other words, D = A−1B is normal.

Lemma 4 ([30]). If A =

(
B C
0 0

)
∈ H, then A is normal if and only if B is normal and C = 0.

According to Lemmas 1–4, we will give the simultaneous diagonalization of covariance
matrix conditions in the following theorem.
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Theorem 1. Given the matrices A, B ∈ H:

(a) If A and B are both Hermitian quaternion matrices, then there exists a unitary matrix R ∈ H
that makes RHAR and RHBR able to be diagonalized simultaneously if and only if AB is
Hermitian quaternion matrix, i.e., AB = BA.

(b) If A and B are both φ-Hermitian quaternion matrices, then there exists a unitary matrix
R ∈ H that makes RδHAR and RδHBR able to be diagonalized simultaneously if and only
if ABδ is normal, i.e., ABδBδHAH = BδHAHABδ, where δ = u1i + u2j + u3k is unit and
purely imaginary.

(c) If A is a Hermitian quaternion matrix and B is a φ-Hermitian quaternion matrix, then
there exists a unitary matrix R ∈ H that makes RHAR and RδHBR able to be diagonalized
simultaneously if and only if BA is φ-Hermitian quaternion matrix, i.e., BA = (BA)δH =
AδHBδH = AδB, where δ = u1i + u2j + u3k is unit and purely imaginary.

Proof. (a). Because A and B are both Hermitian quaternion matrices, matrix A can be

decomposed into A = USaUH . Let D = S−
1
2

a UH , therefore

DADH = I, DBDH = WΛbWH .

We consider R = WHD, then

RARH = WHDADHW = I = Λa,

RBRH = WH
(

DBDH
)

W = Λb.

Therefore, there exists a unitary quaternion matrix R that makes RHAR and RHBR able
to be diagonalized simultaneously. Next, we will prove the sufficiency and necessity of
diagonalization, respectively.

First, we prove the sufficiency:
Assuming RHAR = Λa, RHBR = Λb, then A = RΛaRH , B = RΛbRH . Hence,

we have
AB = RΛaRHRΛbRH = RΛb

(
RHR

)
ΛaRH = BA.

Then, we prove the necessity:
Because A and B are both Hermitian quaternion matrices, i.e., A = AH , B = BH .

According to Lemma 3, there exists unitary quaternion matrices U and V that make
A = UHΛaU, B = VHΛbV. On the basis of AB = BA, we can obtain

AB = AHBH = (BA)H = BA. (11)

Substituting A = UHΛaU, B = VHΛbV into (11), we have

BA = VHΛbVUHΛaU = UHΛaUVHΛbV = (BA)H .

Let U = V := R, and we can obtain

Λa = RHAR, Λb = RHBR.

Therefore, there exists a unitary matrix that makes A and B able to be diagonalized simultane-
ously.

(b). If A and B are both φ-Hermitian quaternion matrices, and ABδ is normal, the
singular value of matrix A can be decomposed into A = USVH . A can also be decomposed
into A = QSQδH , where Q = U(Dδ)

1
2 , U = VδD. Therefore, there exists R = QH that

makes A and B able to be diagonalized simultaneously. Next, we will prove the sufficiency
and necessity of diagonalization, respectively.

First, we prove the sufficiency:
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Assuming RδHAR = Λa, RδHBR = Λb, then, A = RδΛaRH , B = RδΛbRH . Hence,
we have

ABδ = RδΛaRHRΛbRδH = Rδ(ΛaΛb)R
δH ,

It is easy to know that ABδ is normal.
Then, we prove the necessity:
We consider the following two cases to prove:
(i) Assuming ABδ is a normal matrix, A is a non-singular matrix. ABδ = (A−1)−1Bδ

is normal, on the basis of Lemma 3, and A−1 and Bδ can be diagonalized simultaneously.
Because A and B are both φ-Hermitian quaternion matrices, we have A−1 = RΛ−1

a RδH ,
Bδ = RΛbRδH . Hence,

A = RδΛaRH = RδΛa

(
Rδ
)δH

,

B = RδΛbRH = RδΛb

(
Rδ
)δH

.

In other words, A and B can be diagonalized simultaneously.
(ii) Assuming ABδ is a normal matrix, A is a singular matrix, then there exists unitary

matrix R ∈ H that makes RδHAR a diagonal matrix, and the column elements of R can
be rearranged:

RδHAR =

[
Σ 0
0 0

]
, RδHBR =

[
B11 B12
BδH

12 B22

]
,

where Σ is a block diagonal matrix. The block matrix Σ, B11, B22 module length of elements
on the diagonal is 1. We can obtain(

RδHAR
)(

RδHBR
)δ

= RδHABδRδ

=

[
ΣBδ

11 ΣBδ
12

0 0

]
.

Because ABδ is a normal matrix, according to Lemma 4, we have ΣBδ
12 = 0. Owing to Σ is

the non-singular matrix, B12 = 0, i.e.,

RδHAR =

[
Σ 0
0 0

]
, RδHBR =

[
B11 0
0 B22

]
,

Therefore, if there exists unitary matrix R that makes A diagonalized, it can also diagonalize
B.

(c). Because A = USaUH is a Hermitian quaternion matrix and B is a φ-Hermitian

quaternion matrix, let D = S
1
2
a UH , and we have

DADH = I, DBDδH = WΛbWδH .

We consider R = WHD, so

RARH = WHDADHW = I,

RBRδH = WH
(

DBDδH
)

Wδ = Λb.

Hence, there exists unitary matrix R ∈ H that makes RHAR and RδHBR able to be diagonal-
ized simultaneously. Next, we will prove the sufficiency and necessity of diagonalization,
respectively.

First, we prove the sufficiency:
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If RHAR = Λa, RδHBR = Λb, we obtain A = RΛaRH , B = RδΛbRH . Therefore,

BA = RδΛbRHRΛaRH

= RηΛa

(
RδHRδ

)
ΛbRH = AδB,

where δ = u1i + u2j + u3k ∈ Hn×n is unit and purely imaginary.
Then, we prove the necessity:
Because A and B are both φ-Hermitian matrices, i.e., A = Aφ, B = Bφ. According to

Lemma 2, there exist unitary matrices U and V that make A = UδHΛaU, B = VδHΛbV.
We have

AB = AδHBδH = (BA)δH = BA. (12)

Substituting A = UδHΛaU and B = VδHΛbV into (12), we can obtain

BA = VδHΛbVUδHΛaU = UδHΛaUVδHΛbV = (BA)δH .

Let U = V := R, we can obtain

Λa = RδHAR, Λb = RδHBR,

where δ = u1i + u2j + u3k is unit and purely imaginary. Therefore, the matrices A and B
can be diagonalized simultaneously.

5. Generalized Quaternion Unitary Transform
5.1. The Algorithm of Generalized Quaternion Unitary Transform

Based on Lemma 1, the Hermitian quaternion matrix CX can be decomposed into
CX = UΛXUH , where U is a unitary quaternion matrix and ΛX is a real diagonal matrix.

We define the whitening transformation D = Λ
− 1

2
X UH , let s = DX, and s is a φ-Hermitian

quaternion matrix. We can obtain the covariance matrix of s:

Cs = DCX = UΛ
− 1

2
X UHUΛXUHUΛX

− 1
2 UH = I.

As a consequence, Cs can be decomposed into Csφ = WΛδWδH , where W is a unitary
quaternion matrix and Λδ is real diagonal matrix. We define the non-singular uncorre-
lated transformation Q = WHD, let y = QX. Then, Cy and Cyφ can be diagonalized
simultaneously:

Cy = WHCsW = WHIW = I,

Cyφ = WHCsφ Wδ = WHWΛδWδHWδ = Λδ.

We call the transformed Q as the generalized quaternion uncorrelated transformation.
Using the theory of simultaneous diagonalization of covariance matrix based on

Section 4, we can receive the steps of solving the generalized quaternion uncorrelated
transformation matrix. First, the covariance matrix can eigen-decomposed into Cx =

E
{

xxH} = UΛxUH . Then, we calculate the whitening matrix D = VΛ
− 1

2
x VH , and we can

obtain the whitened data s = DX. Next, we calculate the complementary covariance matrix
of s, i.e., Csφ = E

{
ssδH}. It is obvious that Csφ is a φ-Hermitian quaternion matrix, and

we can calculate the eigen-decomposition of Csφ : Csφ = WΛδWδH , where W is unitary
quaternion matrix and Λδ is real diagonal matrix. Finally, we can gain the generalized
quaternion uncorrelated transformation Q = WHD.

The following Algorithm 1 shows the specific steps of the MATLAB implementation
of the generalized quaternion unitary transform algorithm for the standard covariance
matrix and generalized complementary covariance matrix.
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Algorithm 1: The specific steps of the MATLAB implementation of the general-
ized quaternion unitary transform algorithm for the standard covariance matrix
and the generalized complementary covariance matrix

function [R,t] = GQUT(s)
if size(s,1)>size(s,2)
s = s.

′
;

end
n = length(s);
%Generate the covariance matrix of s
Cs = (s ∗ s

′
)/n;

%Using singular value decomposition to calculate standard covariance matrix
[U, V] = svd(Cs);
%Obtain whitening matrix D and whitening data q
D = diag(diag(V)−

1
2 ) ∗U

′
;

q = D ∗ s;
%Calculating the φ complementary covariance matrix of generating whitening

data q
%We use ’inv’ function to calculate the φ involution, note that δ = u1i + u2j + u3k
Cφ = (q ∗ invijk(q,′ δ′)

′
)/n;

%Analyze the complementary covariance matrix
%Select the unit imaginary number with the greatest correlation
c =

(
norm

(
Cφ − diag

(
diag

(
Cφ

))) )
;

[ , g] = max(c.
′
);

%For the φ complementary covariance matrix, we use the Takagi factorization as
% Cφ = W ∗V1 ∗ invijk(W,′ ffi′)

′

[U2, S2, V2] = svd(Cδ);
P = invijk(V2,′ δ′)

′ ∗U2;
W = U2 ∗ diag(sqrt(diag(invijk(P,′ δ′))));
%Calculate the generalized quaternion unitary matrix R and after decorrelation t
R = W

′ ∗D;
t = R ∗ s.

5.2. Testing the Performance of the Generalized Quaternion Unitary Transform by
Numerical Simulation

In this section, we test the performance of the generalized unitary transform for Cs
decorrelation of improper quaternion signals. First, we use the complex representation of a
quaternion to generate the Ck-improper quaternion signal. Then, randomly generated a
third-order mixed matrix A, which obeying standard normal distribution. We can generate
the mixed Ck-improper signal x = As. Each line is recorded as x1, x2, x3. The 3D diagram
represents the degree of correlation of mixed signals, which is shown in Figure 1. From the
3D scatter diagram, it can be seen that the signals are highly correlated.

We use the generalized quaternion unitary transform to decorrelate the mixed signals.
We know that the φ-Hermitian quaternion matrix A satisfies A = δAHδ, where δ = u1i +
u2j + u3k. In this section, we consider three cases, δ ∈ {i, j, k}, δ ∈ {

√
2

2 (i + j),
√

2
2 (j +

k),
√

2
2 (i + k)}, and δ =

√
3

3 (i + j + k), respectively.
We define non-standard involution φ(a) = −δa∗δ, where a is any quaternion. For the

first case, the quaternion matrix A is a η-Hermitian quaternion matrix. In the second case
δ ∈ {

√
2

2 (i + j),
√

2
2 (j + k),

√
2

2 (i + k)} [41], we can obtain:

a(
√

2/2)(i+j)∗ = a0 − a2i− a1j + a3k, if δ =
√

2
2 (i + j);

a(
√

2/2)(i+k)∗ = a0 − a3i + a2j− a1k, if δ =
√

2
2 (i + k);

a(
√

2/2)(j+k)∗ = a0 + a1i− a3j− a2k, if δ =
√

2
2 (j + k).
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In the third case δ =
√

3
3 (i + j + k), we can obtain

a
√

3
3 (i+j+k)∗ = a0 −

1
3
(−a1 + 2a2 + 2a3)i−

1
3
(2a1 − a2 + 2a3)j−

1
3
(2a1 + 2a2 − a3)k.

Figure 1. 3D scatter diagram of the original signal.

We use the generalized quaternion unitary transform algorithm to de-mix the signal.
For the above three cases, we obtain the 3D scatter diagram after decorrelation, which is
shown in Figures 2–4. Compared with Figure 1, it can be clearly seen that the signal has
been de-mixed and the degree of correlation has decreased.

Figure 2. Generalized quaternion unitary transform algorithm to de-mix the signal (δ∈{i, j, k}).

Next, we will compare the CPU time for the above cases, take 150, 300, 500, 650, 800,
and 1000 samples, respectively, and calculate their CPU time and draw a scatter diagram as
shown in Figure 5. It can be seen from the figure that case 3, δ =

√
3

3 (i + j + k), requires
the least CPU time. Case 1, δ ∈ {i, j, k}, requires a longer time than the second case,
δ ∈ {

√
2

2 (i + j),
√

2
2 (j + k),

√
2

2 (i + k)}.
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Figure 3. Generalized quaternion unitary transform algorithm to de-mix the signal (δ ∈ {
√

2
2 (i + j),√

2
2 (j + k),

√
2

2 (i + k)}).

Figure 4. Generalized quaternion unitary transform algorithm to de-mix the signal (δ =
√

3
3 (i + j + k)).

Figure 5. CPU Time.
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6. Conclusions

We investigated the generalized complementary covariance quaternion matrix. After-
wards, we presented the conditions of unitary diagonalization of standard covariance and
generalized complementary covariance quaternion matrices. Furthermore, we investigated
the generalized quaternion unitary transform algorithm and tested its performance under
three different conditions by numerical simulation. Finally, we compared the CPU time
required by the algorithm in three cases. In the future, we intend to generalize this result to
the field of quaternion tensors for the separation of high-dimensional signals.
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