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Abstract: This article is concerned with fixed-time synchronization and preassigned-time synchro-
nization of Cohen–Grossberg quaternion-valued neural networks with discontinuous activation
functions and generalized time-varying delays. Firstly, a dynamic model of Cohen–Grossberg neural
networks is introduced in the quaternion field, where the time delay successfully integrates discrete-
time delay and proportional delay. Secondly, two types of discontinuous controllers employing the
quaternion-valued signum function are designed. Without utilizing the conventional separation
technique, by developing a direct analytical approach and using the theory of non-smooth analysis,
several adequate criteria are derived to achieve fixed-time synchronization of Cohen–Grossberg
neural networks and some more precise convergence times are estimated. To cater to practical
requirements, preassigned-time synchronization is also addressed, which shows that the drive-slave
networks reach synchronization within a specified time. Finally, two numerical simulations are
presented to validate the effectiveness of the designed controllers and criteria.

Keywords: Cohen–Grossberg quaternion-valued neural network; fixed-time synchronization;
preassigned-time synchronization; non-separation approach
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1. Introduction

In the past few decades, quaternion-valued neural networks (QVNNs) have become
increasingly prevalent and have been applied extensively to various fields, including
image processing [1], speech recognition [2], robot control [3], and signal processing [4].
Owing to the multi-dimensional inherent properties of quaternions, quaternion neurons
exhibit enhanced storage and computational capabilities compared to real-valued and
complex-valued neurons. This inherent advantage equips QVNNs with formidable signal
processing capabilities. For instance, quaternion neurons have the capability to process
color information holistically, unlike real-valued and complex-valued neurons, which
handle color space components separately. Consequently, QVNNs naturally handle internal
dependencies between color channels [5]. Furthermore, because all parameters in QVNNs
are quaternion-valued, they excel in managing rotations and scaling of 3-D vectors [6].
Considering the aforementioned advantages, QVNNs have garnered increasing attention in
both practical applications and theoretical analysis, particularly in terms of their dynamic
characteristics, such as dissipativity [7,8], stability [9–12], and synchronization [13–16].

The synchronization of QVNNs involves attaining consistent states among the quater-
nion neurons under external control. Nowadays, significant advancements have been
achieved in the synchronization of QVNNs. For example, Singh et al. conducted research
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on the issue of anti-synchronization in quaternion-valued inertial neural networks with un-
bounded time delays [13]. Zhao et al. discussed the quasi-synchronization of discrete-time
fractional-order quaternion-valued memristive neural networks with uncertain parameters
and time delays [14]. In their works, synchronization is accomplished over an infinite time
frame. However, in numerous practical scenarios, achieving synchronization within a finite
time is crucial due to the limited lifespan of organisms or devices. In fact, compared to
asymptotic synchronization, finite-time synchronization offers advantages such as acceler-
ated convergence, strengthened robustness, and increased resistance to interference. Given
this, Ping et al. [16] investigated finite-time synchronization of QVNNs by employing
an improved one-norm and quaternion sign function, along with a well-designed event-
triggered controller. It is important to emphasize that the settling time (ST) obtained within
a finite-time framework is significantly influenced by the initial states and parameters of
the systems.

In many practical scenarios, it is challenging and difficult to measure all initial states.
Consequently, defining the ST for finite-time (FNT) synchronization becomes a formidable
task. In order to address this challenge, the concept of fixed time (FIT) was introduced
and the FIT stability theorem was first proposed in [17], in which the estimate of the ST is
improved by eliminating its dependence on initial values. Since then, numerous remarkable
research endeavors have emerged, encompassing FIT synchronization of recurrent neural
networks [18–20], complex-valued neural networks (CVNNs) [21–23], and QVNNs [24–28].
In [24–26], the FIT synchronization of QVNNs was investigated by decomposing the QVNN
model into four real valued neural networks, which resulted in four real-valued controllers
being designed. While this method indirectly raises control gain and complicates the
viability of control strategies, it underscores the urgency of developing a novel approach
that can directly examine neural networks within the quaternion domain.

Except for FIT synchronization, preassigned-time (PET) synchronization is a novel
direction achieved by utilizing the enhanced FIT stability outcomes. Unlike FNT and FIT
synchronization, the synchronization time of PET synchronization is predetermined to meet
practical requirements, making it independent of model parameters and initial conditions.
The research on PET synchronization has garnered significant attention among scholars
in recent years due to the aforementioned advantages and characteristics. Nevertheless,
there remains a scarcity of related research results [29,30]. In [29], a feedback controller
and a novel event-triggered controller are designed to discuss the PET synchronization
in real-valued networks of piecewise smooth systems. Similarly, in [30], several smooth
controllers were designed to facilitate the PET synchronization of real-valued complex
networks. It is noteworthy that the majority of existing research results are primarily
concentrated within the realm of real numbers, while the research in the quaternion field
is in dire need of augmentation. Hence, the research on PET synchronization of QVNNs
is of great significance and practical value. Furthermore, it is important to highlight
that discontinuous situations are commonplace and unavoidable in real-world problems.
However, the existing research outcomes pertaining to QVNNs seldom address these
scenarios. Therefore, delving into the behavior of QVNNs with discontinuous activation
functions carries substantial theoretical implications and practical relevance.

Drawing from recent research findings, scholars have explored a diverse array of
network models. For instance, with the smooth control, the FIT/PAT synchronization
was investigated for several types of neural networks, including switched coupled neural
networks [31], BAM neural networks [32]. Owing to the strong robustness and gener-
alization capabilities of Cohen–Grossberg neural networks (CGNNs) in data processing,
allowing them to better handle the issue of noise interference and unknown data, it has
attracted growing attention from scholars due to their significant practical application
value. However, it is noteworthy that the research on Cohen–Grossberg quaternion-valued
neural networks (CGQVNNs) remains conspicuously absent. Given the wide-ranging po-
tential applications of CGNNs in areas such as pattern recognition, intelligent computing,
and signal processing [32–36], a comprehensive examination of CGQVNNs is not only of
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great practical significance but also holds substantial research value. One of the primary
challenges in addressing CGQVNNs lies in determining whether an outer amplification
function exists within the quaternion field. If a real-valued amplification function is consid-
ered, CGQVNNs do not exhibit significant deviations from prior research outcomes. In
addition, if QVNNs are divided into four real valued systems, they will be confronted with
increased control costs and higher dimensions of computation. Therefore, how to develop
a simpler and more efficient method to explore the FIT/PET synchronization of QVNNs in
the quaternion field is an urgent problem to be overcome.

In consideration of the analysis outlined above, the FIT synchronization and PET
synchronization of CGQVNNs with generalized time delay and discontinuous activation
functions are investigated in this paper by using a measurable selection technique [37–40]
and introducing a direct non-separation analysis framework. The key innovations and
contributions of this paper can be succinctly summarized as follows:

(1) A generalized time delay is introduced into the model of CGQVNNs, which success-
fully incorporates discrete constant delays [7], discrete time-varying delays [13] and
proportional delays [9].

(2) Compared with previous research on the synchronization issue of QVNNs [27,28],
the synchronization problem of CGQVNNs with discontinuous activation functions
is investigated for the first time. An effective analytical method is introduced to
investigate the FIT synchronization and PET synchronization of CGQVNNs with
quaternion-valued amplification function without separation, and high-precision ST
is estimated.

(3) Different from the methods used in [28], the FIT synchronization and PET synchro-
nization of CGQVNNs are discussed through a direct analytical approach. Con-
sequently, several effective quaternion-valued controllers are directly designed for
the original CGQVNNs rather than for the four real-valued subsystems obtained by
separation, so as to obtain more economical control gains and derive more concise
synchronization conditions.

In Section 2, preliminaries are shown. The FIT synchronization and PET synchroniza-
tion of CGQVNNs are investigated by quaternion-valued controllers in Sections 3 and 4,
respectively. Two numerical examples are provided to validate the theoretical findings
presented in Section 5. Finally, Section 6 offers a concise summary of this paper.

Notation 1. In this article, R, Q, Rn and Qn are the set denoting all real numbers, the set of all
quaternion numbers, the set of all n-dimensional real column vectors and the set of all n-dimensional
quaternion column vectors, respectively. Denote M = {1, 2, · · · n}, ε = {R, I, J, K}. For any
z = zR + izI + jzJ + kzK ∈ Q, z̄ = zR − izI − jzJ − kzK, |z|1 = |zR|+ |zI |+ |zJ |+ |zK|,
|z|2 =

√
zz̄. For a discontinuous function m(·) = mR(·) + mI(·)i + mJ(·)j + mK(·)k, mε−(x)

and mε+(x) are the left and right limits of m(·) at point x, respectively. m̀ε(x) and ḿε(x) denote as
the minimum and the maximum of mε−(x) and mε+(x). The convex hull is defined as c̄o[m(x)] =
c̄o[mR(x)] + c̄o[mI(x)]i + c̄o[mJ(x)]j + c̄o[mK(x)]k = [ḿR(x), m̀R(x)] + [ḿI(x), m̀I(x)]i +
[ḿJ(x), m̀J(x)]j + [ḿK(x), m̀K(x)]k.

2. Model Description and Preliminaries

In this paper, the following CGQVNN is considered
ω̇p(t) = hp(ωp(t))

(
−apωp(t) + ∑

q∈M
bpqχq(ωq(t)) + ∑

q∈M
cpqρq(ωq(kpq(t))) + ξp

)
,

ωp(s) = ϑp(s), −ς ≤ s ≤ 0, p ∈M,
(1)

where ωp(t) ∈ Q is the state of the pth unit at time t, hp(·) ∈ Q is an amplification function,
ap ∈ Q is the feedback self-connection weight, bpq, cpq ∈ Q are the connection weights from
the q-th neuron to the p-th neuron, χq(·) and ρq(·) : Q→ Q are discontinuous quaternion
activation functions without and with time delay, kpq(t) ≤ t is the generalized time delay, ξp
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denotes the external input function, ϑp(s) ∈ C([−ς, 0]) is the initial state of the network (1),
in which ς = max

p,q∈M
{|dpq(0)|}. Then, the response system of the system (1) is governed by

ζ̇p(t) = hp(ζp(t))
(
−apζp(t) + ∑

q∈M
bpqχq(ζq(t)) + ∑

q∈M
cpqρq(ζq(kpq(t))) + ξp

)
+ δp(t),

ζp(s) = υp(s), −ς ≤ s ≤ 0, p ∈M,
(2)

where the parameters in system (2) are the same as system (1), δp(t) is the control input
needed to be designed later.

Assumption 1. For p ∈M, χp and ρp are continuous except on the sets of countable isolate points
{up

r } and {vp
r }, respectively, and χd−

p (up
r ), χd+

p (up
r ) and ρd−

p (vp
r ), ρd+

p (vp
r ) exist. Moreover, there

are a finite number of jump points at most for χp and ρp in every bounded compact interval.

Assumption 2. For any p, q ∈M, kpq(0) ≤ 0 and there exists a constant k̃pq > 0 such that

0 < k̃pq < k̇pq(t) < 1.

Remark 1. Note, that the time delay in the system (1) is a general and unified delay type. Actually,
if kpq(t) = t− τ, the time delay in this article will degenerate into a discrete constant time delay [7].
If kpq(t) = t− τpq(t) with 0 ≤ τpq(t) ≤ τ, the time delay in this article will degenerate into a
discrete time-varying delay [14]. If kpq(t) = kqt with 0 < kq < 1, the time delay in this article will
reduce to the proportional delay [9]. In other words, the time delay proposed in this paper involves
the traditional discrete-time delay and proportional delay.

Definition 1 ([41]). A continuous function vector ω(t) = (ω1(t), ω2(t), · · · , ωn(t))T : [−ς, T0)
→ Qn is called a solution of system (1) on [−ς, T0) if

(1) ω(t) is absolutely continuous on [0, T0).
(2) There exist measurable functions χ̌ = (χ̌1, · · · , χ̌n)T : [0, T0) → Qn and ρ̌ = (ρ̌1, · · · ,

ρ̌n)T : [0, T0)→ Qn satisfying χ̌q ∈ co[χq(ωq)], ρ̌q ∈ co[ρq(ωq)], such that

ω̇p(t) =hp(ωp(t))
(
−apωp(t) + ∑

q∈M
bpqχ̌q(t)

+ ∑
q∈M

cpqρ̌q(kpq(t)) + ξp

)
, p ∈M, (3)

for a.e. t ∈ [0, T0).

Similarly, for the response system (2), there exist measurable functions χ̂ = (χ̂1, χ̂2, · · · ,
χ̂n)T : [0, T0) → Qn and ρ̂ = (ρ̂1, ρ̂2, · · · , ρ̂n)T : [0, T0) → Qn satisfying χ̂q ∈ co[χq(ζq)],
ρ̂q ∈ co[ρq(ζq)], such that

ζ̇p(t) =hp(ζp(t))
(
−apζp(t) + ∑

q∈M
bpqχ̂q(t)

+ ∑
q∈M

cpqρ̂q(kpq(t)) + ξp

)
+ δp(t), p ∈M, (4)

for a.e. t ∈ [0, T0).
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Define ηp(t) = ζp(t)−ωp(t), η(t) = (η1(t), η2(t), · · · , ηn(t))T , from systems (3) and
(4), the error system can be derived

η̇p(t) =− (hp(ζp(t))apζp(t)− hp(ωp(t))apωp(t))

+ ∑
q∈M

(hp(ζp(t))bpqχ̂q(t)− hp(ωp(t))bpqχ̌q(t))

+ ∑
q∈M

(hp(ζp(t))cpqρ̂q(kpq(t))− hp(ωp(t))cpqρ̌q(kpq(t)))

+ (hp(ζp(t))− hp(ωp(t)))ξp + δp(t), p ∈M. (5)

Assumption 3. For any p ∈M, u, v ∈ Q, functions hp(·), χp(·), ρp(·) ∈ Q satisfy

|χp(u)− χp(v)|µ ≤ lµ
p |u− v|µ + l̃µ

p ,
|hp(u)− hp(v)|µ ≤ h̃µ

p |u− v|µ,

where lµ
p , l̃µ

p , h̃µ
p > 0, |χp(·)|µ ≤ Lµ

p , |hp(·)|µ ≤ Hµ
p , |ρp(·)|µ ≤ Rµ

p (µ = 1, 2).

Remark 2. For several decades, many excellent results were concerned with the real-valued and
complex-valued networks with hp(·) = 1 [41,42]. However, the theory and methods in these
existing works cannot be directly used to investigate CGQVNNs. On the one hand, it is not easy
to ensure the monotonicity of the inverse function of hp(·) if hp(·) ∈ Q. On the other hand, it is
difficult to construct suitable Lyapunov functions to drive the FIT synchronization of CGQVNN
due to the presence of special multiplications of quaternions with non-commutativity. Thus, a new
and effective method will be proposed in this paper to deal with these problems.

Definition 2 ([43]). Drive-response CGQVNNs (1) and (2) are said to be FIT synchronized if
there exists a number T̂∗(η(s)) ≥ 0 with s ∈ [−ς, 0] such that

lim
t→T̂∗(η(s))

|η(t)|µ = 0,

|η(t)|µ = 0, ∀ t ≥ T̂∗(η(s)),

and there is a positive constant Tmax such that

T̂∗(η(s)) ≤ Tmax, ∀ η(s) ∈ Q,

and
ηp(t) = ζp(t)−ωp(t) = ηR

p (t) + iη I
p(t) + jη J

p(t) + kηK
p (t).

Definition 3. Drive-response CGQVNNs (1) and (2) are said to be PET synchronized within the
preappointed time Tpet if

lim
t→Tpet

|η(t)|µ = 0,

|η(t)|µ = 0, ∀ t ≥ Tpet,

where Tpet > 0 is completely independent of system parameters and initial values.

Definition 4 ([44]). For a quaternion variable y = yR + yI i + yJ j + yKk ∈ Q, the signum
function is defined as

[y] , sign(yR) + sign(yI)i + sign(yJ)j + sign(yK)k.

Based on Definition 1, ∀ y ∈ Q, the convex hull of [y] is defined by

co([y]) , co[sign(yR)] + co[sign(yI)]i + co[sign(yJ)]j + co[sign(yK)]k,
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where

co[sign(yε)] =


{1}, yε > 0,
[−1, 1], yε = 0,
{−1}, yε < 0,

and yε ∈ R.

Lemma 1 ([43]). Assume that there exists a positive definite, regular and radially unbounded
function V(η(t)) : Rn → R such that

d
dt

V(η(t)) ≤ υV(η(t))− σ1Vθ1(η(t))− σ2Vθ2(η(t)), η(t) ∈ Rn \ {0},

where υ ∈ R, σ1 > 0, σ2 > 0, 0 ≤ θ1 < 1 and θ2 > 1, then the following conclusions are true.

(i) If 0 < υ < min{σ1, σ2}, then η(t) ≡ 0 for t ≥ T∗, where

T∗ =
πcsc(πw)

σ2(θ2 − θ1)
(

σ2

σ1 − υ
)1−w I(

σ2

σ1 + σ2 − υ
, w, 1− w)

+
πcsc(πw)

σ1(θ2 − θ1)
(

σ1

σ2 − υ
)w I(

σ1

σ1 + σ2 − υ
, 1− w, w).

(ii) If 0 < υ < 2
√

σ1σ2 and θ1 + θ2 = 2, then η(t) ≡ 0 for t ≥ T̃, where

T̃ =
2√

ι(θ2 − 1)
(

π

2
+ arctan(

υ

ι
)),

where w = (1 − θ1)(θ2 − θ1), ι = 4σ1σ2 − υ2, the incomplete Beta function ratio
I(r, p, q) was given in [43].

Lemma 2 ([43]). If there exist a positive, regular and radially unbounded function V(η(t)) : Rn →
R and υ ∈ R, σ1 > 0, σ2 > 0, 0 ≤ θ1 < 1, θ2 > 1, Tpet > 0 such that

d
dt

V(η(t)) ≤ − Ť
Tpet

(−υV(η(t)) + σ1Vθ1(η(t)) + σ2Vθ2(η(t)), η(t) ∈ Rn \ {0}),

then η(t) ≡ 0 for t ≥ Tpet, where

Ť =

{
T∗, 0 < υ < min{σ1, σ2},
T̃, 0 < υ < 2

√
σ1σ2, θ1 + θ2 = 2.

Lemma 3 ([43]). Assume that bp ≥ 0 for p ∈M, 0 ≤ θ1 ≤ 1 and θ2 > 1, then

∑
p∈M

bθ1
p ≥ ( ∑

p∈M
bp)

θ1 , ∑
p∈M

bθ2
p ≥ n1−θ2( ∑

p∈M
bp)

θ2 .

Lemma 4 ([44]). For any b, u ∈ Q, x(t) : R→ Q, the following properties hold

(1) b = b.
(2) b + b = 2bR ≤ 2|b|2 ≤ 2|b|1.
(3) bu = bu.

(4)
d|x(t)|1

dt
=

1
2
([x(t)]

dx(t)
dt

+
dx(t)

dt
[x(t)]).

Lemma 5 ([41]). For any r, z, m ∈ Q, one has

(1) (rR − |rI | − |r J | − |rK|)|z|1 ≤ ([z]rz)R ≤ (rR + |rI |+ |r J |+ |rK|)|z|1,
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(2) −|z|1|m|1 ≤ ([r]zm)R ≤ |z|1|m|1.

3. Fixed-Time Synchronization

In this section, two different controllers are designed to discuss the FIT synchronization
of the CGQVNNs (1) and (2).

For convenience, denote

λ = max
p∈M

{
ĥ|ap|1 + h̃1

p|ξ|1 + ∑
p∈M

(
ĥql1

p|bqp|1 + L1
q h̃1

p|bpq|1 + R1
q h̃1

p|cpq|1
)}

,

λ̃ = max
p∈M

{
∑

q∈M

(
2h́|ap|2 + h́l2

p|bqp|2 + h́l2
q |bpq|2 + 2L2

p h̃2
p|bpq|2 + 2R2

p h̃2
p|cpq|2

)}
,

α = min
p∈M
{αp}, β = n1−ε2 min

p∈M
{βp}, ι1 = 4αβ− λ̄2,

α̃ = 2
ε1+1

2 min
p∈M
{αp}, β̃ = 2

ε1+1
2 n

1−ε2
2 min

p∈M
{βp}, ι2 = 4α̃β̃− λ̃2,

λ1 = max
p∈M

{
|ap|1 − λp + ∑

q∈M
l1
p|bqp|1

}
, λ̃1 = max

p∈M

{
∑

q∈M
(|ap|2 + l2

q |bpq|2)
}

,

v1 = (1− ε1)(ε2 − ε1).

Firstly, based on the 1-norm, the control scheme is designed by

δp(t) =− [ηp(t)]
(

γp + λp|ωp(t)|1 + αp|ηp(t)|ε1
1 + βp|ηp(t)|ε2

1

)
, (6)

where αp, βp > 0, 0 ≤ ε1 < 1, ε2 > 1.

Theorem 1. Based on Assumptions 1–3, and the controller (6), if

∑
q∈M

(|bpq|1H1
p l̃1

q + 2|cpq|1H1
pR1

q)− γp < 0, (7)

2H1
p − λp < 0, (8)

then the following results hold.

(1) If 0 < λ < min{α, β}, systems (1) and (2) realize FIT synchronization and the ST is
estimated by

T̂1 =
πcsc(πv1)

β(ε2 − ε1)
(

β

α− λ
)1−v1 I(

β

α + β− λ
, v1, 1−v1)

+
πcsc(πv1)

α(ε2 − ε1)
(

α

β− λ
)v1 I(

α

α + β− λ
, 1−v1, v1).

(2) When ε1 + ε2 = 2, 0 < λ < 2
√

αβ, systems (1) and (2) are FIT synchronized and the
ST is estimated by

T̂2 =
2√

ι1(ε2 − 1)
(

π

2
+ arctan(

λ

ι1
)).

Proof. Consider the Lyapunov function based on 1-norm as follows

V1(η̂(t)) = ∑
p∈M
|ηp(t)|1,
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where η̂(t) = (|η1(t)|1, |η2(t)|1, · · · , |ηn(t)|1)T ∈ Rn.
According to the system (5), one obtains

D+V1(η̂(t)) =
1
2 ∑

p∈M

(
[ηp(t)]D+ηp(t) + D+ηp(t)[ηp(t)]

)
=

1
2 ∑

p∈M

(
[ηp(t)](hp(ωp(t))apωp(t)− hp(ζp(t))apζp(t))

+ hp(ωp(t))apωp(t)− hp(ζp(t))apζp(t)[ηp(t)]
)

+
1
2 ∑

p∈M
∑

q∈M

(
[ηp(t)]hp(ζp(t))bpq(χ̂q(t)− hp(ωp(t))χ̌q(t))

+ hp(ζp(t))bpqχ̂q(t)− hp(ωp(t))bpqχ̌q(t)[ηp(t)]
)

+
1
2 ∑

p∈M
∑

q∈M

(
[ηp(t)]cpq((hp(ζp(t))ρ̂q(kpq(t))− hp(ωp(t))ρ̌q(kpq(t)))

+ hp(ζp(t))cpqρ̂q(kpq(t))− hp(ωp(t))cpqρ̌q(kpq(t))[ηp(t)]
)

+
1
2 ∑

p∈M

(
[ηp(t)](hp(ζp(t))− hp(ωp(t)))ξp + (hp(ζp(t))− hp(ωp(t)))ξp[ηp(t)]

)
− ∑

p∈M
γp[ηp(t)][ηp(t)]− ∑

p∈M
λp[ηp(t)][ηp(t)]|ωp(t)|1

− ∑
p∈M

αp[ηp(t)][ηp(t)]|ηp(t)|ε1
1 − ∑

p∈M
βp[ηp(t)][ηp(t)]|ηp(t)|ε2

1 . (9)

According to Assumptions 3 and 4 and Lemmas 4 and 5,

1
2 ∑

p∈M

(
[ηp(t)](hp(ωp(t))apωp(t)− hp(ζp(t))apζp(t))

+ hp(ωp(t))apωp(t)− hp(ζp(t))apζp(t)[ηp(t)]
)

≤ ∑
p∈M
|hp(ζp(t))apζp(t)− hp(ωp(t))apωp(t)|1

≤ ∑
p∈M

(|hp(ζp(t))apζp(t)− hp(ζp(t))apωp(t)|1

+ |hp(ζp(t))apωp(t)− hp(ωp(t))apωp(t)|1)
≤ ∑

p∈M
|ap|1(|hp(ζp(t))|1|ηp(t)|1 + |hp(ζp(t))− hp(ωp(t))|1|ωp(t)|1)

≤ ∑
p∈M
|ap|1(H1

p|ηp(t)|1 + 2H1
p|ωp(t)|1). (10)
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Similarly,

1
2 ∑

p∈M
∑

q∈M

(
[ηp(t)](hp(ζp(t))bpqχ̂q(t)− hp(ωp(t))bpqχ̌q(t))

+ hp(ζp(t))bpqχ̂q(t)− hp(ωp(t))bpqχ̌q(t)[ηp(t)]
)

≤ ∑
p∈M

∑
q∈M

(
|hp(ζp(t))bpq(χ̂q(t)− χ̌q(t))|1

+ |χ̌q(t)bpq(hp(ζp(t))− hp(ωp(t)))|1
)

= ∑
p∈M

∑
q∈M

(|bqp|1H1
q l1

p + |bpq|1L1
p h̃1

p)|ηp(t)|1 + |bpq|1H1
p l̃1

q , (11)

and

1
2 ∑

p∈M
∑

q∈M

(
[ηp(t)](hp(ζp(t))cpqρ̂q(kpq(t))− hp(ωp(t))cpqρ̌q(kpq(t)))

+ hp(ζp(t))cpqρ̂q(kpq(t))− hp(ωp(t))cpqρ̌q(kpq(t))[ηp(t)]
)

≤ ∑
p∈M

∑
q∈M

2|cpq|1H1
pR1

q + |cpq|1R1
q h̃1

p|ηp(t)|1, (12)

further,

1
2 ∑

p∈M
([ηp(t)](hp(ζp(t))ξp − hp(ωp(t))ξp)(hp(ζp(t))ξp − hp(ωp(t))ξp)[ηp(t)])

≤ ∑
p∈M

h̃1
p|ξp|1|ηp(t)|1. (13)

Submitting (10)–(13) into (9),

D+V1(η̂(t)) ≤ ∑
p∈M

(
H1

p|ap|1 + h̃1
p|ξ|1 + ∑

q∈M
(H1

pl1
p|bqp|1 + L1

q h̃1
p|bpq|1 + R1

q h̃1
p|cpq|1)

)
|ηp(t)|1

+ ∑
p∈M

(2H1
p − λp)|ωp(t)|1 + ∑

p∈M

(
∑

q∈M
(|bpq|1ĥp l̃1

q + 2|cpq|1H1
pR1

q)− γp

)
− ∑

p∈M
αp|ηp(t)|ε1

1 − ∑
p∈M

βp|ηp(t)|ε2
1

≤ λ ∑
p∈M
|ηp(t)|1 − α( ∑

p∈M
|ηp(t)|1)ε1 − β( ∑

p∈M
|ηp(t)|1)ε2

= λV1(η̂(t))− αVε1
1 (η̂(t))− βVε2

1 (η̂(t)),

where the penultimate inequality is given by conditions (7) and (8).
If 0 < λ < min{α, β}, the networks (1) and (2) are FIT synchronized within the time

T̂1, which is obtained through Lemma 1. Similarly, the remaining results in Theorem 1 can
be readily deduced from Lemma 1.

Especially, if the amplification function hp(·) = 1, system (1) is degenerated to QVNN
as follows

ω̇p(t) = −apωp(t) + ∑
q∈M

bpqχq(t) + ∑
q∈M

cpqρq(kpq(t)) + ξp, p ∈M. (14)
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Correspondingly, the response system is degenerated to

ζ̇p(t) = −apζp(t) + ∑
q∈M

bpqχq(t) + ∑
q∈M

cpqρq(kpq(t)) + δp(t) + ξp, p ∈M. (15)

To realize FIT synchronization, the controller is redesigned by

δp(t) = −[ηp(t)](γp + αp|ηp(t)|ε1
1 + βp|ηp(t)|ε2

1 ), (16)

where αp, βp > 0, 0 ≤ ε1 < 1, ε2 > 1.
Based on the analysis of Theorem 1, the following corollary can be readily derived.

Corollary 1. Based on Assumptions 3 and 4, with controller (16), if

∑
q∈M

(|bpq|1 l̃1
q + 2|cpq|1R1

q)− γp < 0, (17)

then the following results are obtained.

(1) If 0 < λ1 < min{α, β}, systems (14) and (15) realize FIT synchronization and the ST is
estimated by

T̂3 =
πcsc(πv1)

β(ε2 − ε1)
(

β

α− λ1
)1−v1 I(

β

β + α− λ1
, v1, 1−v1)

+
πcsc(πv1)

α(ε2 − ε1)
(

α

β− λ1
)v1 I(

α

β + α− λ1
, 1−v1, v1).

(2) When ε1 + ε2 = 2, 0 < λ1 < 2
√

αβ, systems (14) and (15) are FIT synchronized and
the ST is estimated by

T̂4 =
2√

ι1(ε2 − 1)
(

π

2
+ arctan(

λ1

ι1
)).

In the following, the FIT synchronization of systems (1) and (2) will be investigated
based on 2-norm, the controller is designed as

δp(t) = −[ηp(t)](γp + λp|ωp(t)|2 + αp|ηp(t)|ε1
2 + βp|ηp(t)|ε2

2 ), (18)

where λp, αp, βp, γp > 0 for any p ∈ N, and 0 ≤ ε1 < 1, ε2 > 1.

Theorem 2. Under Assumptions 1–4 and the controller (18), if

2H2
p|ap|2 − λp < 0, (19)

∑
q∈M

(H2
p l̃2

q |bpq|2 + 2H2
pR2

q|cpq|2)− γp < 0, (20)

then the following results are obtained.

(1) If 0 < λ̃ < min{α̃, β̃}, systems (1) and (2) realize FIT synchronization and the ST is
estimated by
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T̂5 =
πcsc(πv1)

β(ε2 − ε1)
(

β̃

α̃− λ̃
)1−v1 I(

β̃

α̃ + β̃− λ̃
, v1, 1−v1)

+
πcsc(πv1)

α̃(ε2 − ε1)
(

α̃

β̃− λ̃
)v1 I(

α̃

α̃ + β̃− λ̃
, 1−v1, v1).

(2) When ε1 + ε2 = 2, 0 < λ̃ < 2
√

α̃β̃, systems (1) and (2) are FIT synchronized and the
ST is estimated by

T̂6 =
2√

ι2(ε2 − 1)
(

π

2
+ arctan(

λ̃

ι2
)).

Proof. Consider the following 2-norm-based Lyapunov function

V2(η̃(t)) =
1
2 ∑

p∈M
|ηp(t)|22,

where η̃(t) = (|η1(t)|2, |η2(t)|2, · · · , |ηn(t)|2)T ∈ Rn.
Combining with the error system (5), one has

D+V2(η̃(t)) =
1
2 ∑

p∈M
(ηp(t)D+ηp(t) + D+ηp(t)ηp(t))

=
1
2 ∑

p∈M

(
ηp(t)(hp(ωp(t))apωp(t)− hp(ζp(t))apζp(t))

+ (hp(ωp(t))apωp(t)− hp(ζp(t))apζp(t)))ηp(t)
)

+
1
2 ∑

p∈M
∑

q∈M

(
ηp(t)(hp(ζp(t))bpqχ̂q(t)− hp(ωp(t))bpqχ̌q(t))

+ hp(ζp(t))bpqχ̂q(t)− hp(ωp(t))bpqχ̌q(t)ηp(t)
)

+
1
2 ∑

p∈M
∑

q∈M

(
ηp(t)(hp(ζp(t))cpqρ̂q(kpq(t))− hp(ωp(t))cpqρ̌q(kpq(t)))

+ hp(ζp(t))cpqρ̂q(kpq(t))− hp(ωp(t))cpqρ̌q(kpq(t))ηp(t)
)

+
1
2 ∑

p∈M

(
ηp(t)(hp(ζp(t))ξ − hp(ωp(t))ξ) + (hp(ζp(t))ξ − hp(ωp(t))ξ)ηp(t)

)
− 1

2 ∑
p∈M

∑
q∈M

γp(ηp(t)[ηp(t)] + ηp(t)[ηp(t)])

− 1
2 ∑

p∈M
λp(ηp(t)[ηp(t)] + ηp(t)[ηp(t)])|ωp(t)|2

− 1
2 ∑

p∈M
αp(ηp(t)[ηp(t)] + ηp(t)[ηp(t)])|ηp(t)|ε1

2

− 1
2 ∑

p∈M
βp(ηp(t)[ηp(t)] + ηp(t)[ηp(t)])|ηp(t)|ε2

2 . (21)
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Based on Assumptions 3 and 4 and Lemmas 4 and 5, one obtains

1
2 ∑

p∈M

(
ηp(t)(hp(ωp(t))apωp(t)− hp(ζp(t))apζp(t))

+ (hp(ωp(t))apωp(t)− hp(ζp(t))apζp(t)))ηp(t)
)

≤ ∑
p∈M
|ηp(t)|2(|hp(ζp(t))ap(ζp(t)−ωp(t))|2

+ |apωp(t)(hp(ζp(t))− hp(ωp(t)))|2)
≤ ∑

p∈M
(H2

p|ap|2|ηp(t)|22 + 2H2
p|ap|2|ωp(t)|2|ηp(t)|2). (22)

Similarly,

1
2 ∑

p∈M
∑

q∈M

(
ηp(t)(hp(ζp(t))bpqχ̂q(t)− hp(ωp(t))bpqχ̌q(t))

+ hp(ζp(t))bpqχ̂q(t)− hp(ωp(t))bpqχ̌q(t)ηp(t)
)

≤ ∑
p∈M

∑
q∈M

(
(

1
2

h́l2
p|bqp|2 +

1
2

H2
pl2

q |bpq|2 + L2
p h̃2|bpq|2)|ηp(t)|22 + |bpq|2H2

p l̃2
q |ηp(t)|2

)
, (23)

and

1
2 ∑

p∈M
∑

q∈M

(
ηp(t)cpq(hp(ζp(t))ρ̂q(kpq(t))− hp(ωp(t))ρ̌q(kpq(t)))

+ hp(ζp(t))cpqρ̂q(kpq(t))− hp(ωp(t))cpqρ̌q(kpq(t)ηp(t)
)

≤ ∑
p∈M

∑
q∈M

2H2
pR2

q|cpq|2|ηp(t)|2 + R2
p h̃2|cpq|2|ηp(t)|22. (24)

Moreover,

− 1
2 ∑

p∈M
λp(ηp(t)[ηp(t)] + ηp(t)[ηp(t)])|ωp(t)|2 ≤ − ∑

p∈M
λp|ηp(t)|2|ωp(t)|2, (25)

− 1
2 ∑

p∈M
γp(ηp(t)[ηp(t)] + ηp(t)[ηp(t)]) ≤ − ∑

p∈M
γp|ηp(t)|2, (26)

−1
2 ∑

p∈M
αp(ηp(t)[ηp(t)] + ηp(t)[ηp(t)])|ηp(t)|ε1

2 ≤ −α̃( ∑
p∈M

1
2
|ηp(t)|22)

1+ε1
2 , (27)

− 1
2 ∑

p∈M
βp(ηp(t)[ηp(t)] + ηp(t)[ηp(t)])|ηp(t)|ε2

2 ≤ −β̃( ∑
p∈M

1
2
|ηp(t)|22)

1+ε2
2 . (28)



Mathematics 2023, 11, 4825 13 of 20

Substitute (22)–(28) into (21),

D+V2(η̃(t)) ≤ ∑
p∈M

∑
q∈M

(2H2
p|ap|2 − λp)|ωp(t)|2|ηp(t)|2

+ ∑
p∈M

( ∑
q∈M

(H2
p l̃2

q |bpq|2 + 2H2
pR2

q|cpq|2)− γp)|ηp(t)|2

+ ∑
p∈M

∑
q∈M

(H2
p|ap|2 +

1
2

H2
pl2

p|bqp|2 +
1
2

H2
pl2

q |bpq|2 + L2
p h̃2|bpq|2

+ R2
p h̃2

p|cpq|2)|ηp(t)|22 − ∑
p∈M

αp|ηp(t)|ε1+1
2 − ∑

p∈M
βp|ηp(t)|ε2+1

2

≤ λ̃V2(η̃(t))− α̃V ε̃1
2 (η̃(t))− β̃V ε̃2

2 (η̃(t)).

If 0 < λ̃ < min{α̃, β̃}, then the CGQVNNs (1) and (2) achieve FIT synchronization
within the time T̂5. Additionally, the other results presented in Theorem 1 can be straight-
forwardly derived from Lemma 1.

To obtain the synchronization criteria of systems (14) and (15) based on 2-norm, the
controller is designed as

δp(t) = −[ηp(t)](γp + αp|ηp(t)|ε1
2 + βp|ηp(t)|ε2

2 ), (29)

where γp, αp, βp > 0, 0 ≤ ε1 < 1, ε2 > 1.
According to Theorem 2, the following corollary is easily obtained.

Corollary 2. Based on Assumptions 3 and 4, with controller (29), if

∑
p∈M

(l̃2
q |bpq|2 + 2R2

q|bpq|2)− γp < 0,

then the following results are derived.

(1) If 0 < λ̃1 < min{α̃, β̃}, systems (14) and (15) can realize FIT synchronization and the
ST is estimated by

T̂7 =
πcsc(πv1)

β(ε2 − ε1)
(

β̃

α̃− λ̃1
)1−v1 I(

β̃

α̃ + β̃− λ̃1
, v1, 1−v1)

+
πcsc(πv1)

α̃(ε2 − ε1)
(

α̃

β̃− λ̃1
)v1 I(

α̃

α̃ + β̃− λ̃1
, 1−v1, v1).

(2) When ε1 + ε2 = 2, 0 < λ̃ < 2
√

α̃β̃, systems (14) and (15) are FIT synchronized and
the ST is estimated by

T̂8 =
2√

ι2(ε2 − 1)
(

π

2
+ arctan(

λ̃

ι2
)).

Remark 3. The FIT synchronization of QVNNs with or without time delay was discussed in [24,25],
in which the original QVNN was divided into four real-valued subnetworks. Different from the
above theoretical analysis method, a non-separation method is proposed in this paper, which greatly
reduces the complexity of the analysis. Besides, several control strategies are designed based on
the quaternion-valued sign function to realize the FIT synchronization of CGQVNNs, which can
extremely reduce control costs and obtain higher accuracy estimation of ST. Furthermore, the time
delay considered in this paper integrates discrete constant delay, discrete time-varying delay and
proportional delay, which is more general and widely applicable.
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4. Preassigned-Time Synchronization

To achieve the PET synchronization of CGQVNNs (1) and (2), the controller is pro-
posed by

δp(t) = −
Ť

Tpet
[ηp(t)](γp + λp|ωp(t)|1 + αp|ηp(t)|ε1

1 + βp|ηp(t)|ε2
1 ), (30)

where γp, λp, αp, βp > 0 for any p ∈ N, 0 ≤ ε1 < 1, ε2 > 1, and

Ť =

T̂1, 0 < λ < min{α, β},
T̂2, ε1 + ε2 = 2, 0 < λ < 2

√
αβ.

Theorem 3. Based on Assumptions 1–3 and the controller (30), if conditions (7) and (8) hold, then
the networks (1) and (2) realize PET synchronization within 0 < Tpet ≤ Ť.

Proof. Similar to the analysis of Theorem 1, one can obtain

D+V1(η̂(t)) ≤ ∑
p∈M

(H1
p|ap|1 + h̃1

p|ξ|1 + ∑
q∈M

(H1
q l1

p|bqp|1 + L1
q h̃1

p|bpq|1 + R1
q h̃1

p|cpq|1))|ηp(t)|1

+ ∑
p∈M

(2H1
p −

Ť
Tpet

λp)|ωp(t)|1 + ∑
p∈M

( ∑
q∈M

(|bpq|1H1
p l̃1

q + 2|cpq|1H1
pR1

q)−
Ť

Tpet
γp)

− ∑
p∈M

Ť
Tpet

αp|ηp(t)|ε1
1 − ∑

p∈M

Ť
Tpet

βp|ηp(t)|ε2
1

≤ Ť
Tpet

λ ∑
p∈M
|ηp(t)|1 −

Ť
Tpet

α( ∑
p∈M
|ηp(t)|1)ε1 − Ť

Tpet
β( ∑

p∈M
|ηp(t)|1)ε2

=
Ť

Tpet
(λV1(η̂(t))− αVε1

1 (η̂(t))− βVε2
1 (η̂(t))).

In light of Lemma 2, CGQVNNs (1) and (2) are PET synchronized within Tpet.

Corollary 3. Based on Assumptions 3 and 4 and the following controller

δp(t) = −
T̆

Tpet
[ηp(t)](γp + αp|ηp(t)|ε1

1 + βp|ηp(t)|ε2
1 ),

if condition (17) holds, then the networks (14) and (15) achieve PET synchronization within
0 < Tpet ≤ T̆, where γp, αp, βp > 0 for any p ∈ N, 0 ≤ ε1 < 1, ε2 > 1 and

T̆ =

T̂3, 0 < λ1 < min{α, β},
T̂4, 0 < λ1 < 2

√
αβ, ε1 + ε2 = 2.

Based on 2-norm, the control scheme is designed by

δp(t) = −
T́

Tpet
[ηp(t)](γp + λp|ωp(t)|2 + αp|ηp(t)|ε1

2 + βp|ηp(t)|ε2
2 ), (31)

where γp, λp, αp, βp > 0 for any p ∈ N, 0 ≤ ε1 < 1, ε2 > 1, and

T́ =

T̂5, 0 < λ̃ < min{α̃, β̃},

T̂6, 0 < λ̃ < 2
√

α̃β̃, ε1 + ε2 = 2.
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Theorem 4. Based on Assumptions 1–3 and the controller (31), if conditions (19) and (20) hold,
then the networks (1) and (2) achieve PET synchronization within 0 < Tpet ≤ T́.

Similarly, the following corollary can be drawn.

Corollary 4. Based on Assumptions 3 and 4 and the following controller

δp(t) = −
T̀

Tpet
[ηp(t)](γp + αp|ηp(t)|ε1

1 + βp|ηp(t)|ε2
1 ),

if condition (17) holds, then the networks (14) and (15) achieve PET synchronization within
0 < Tpet ≤ T̀, where γp, αp, βp > 0 for any p ∈ N, 0 ≤ ε1 < 1, ε2 > 1 and

T̀ =

T̂7, 0 < λ̃1 < min{α̃, β̃},
T̂8, 0 < λ̃1 < 2

√
α̃β̃, ε1 + ε2 = 2.

Remark 4. Compared with the results presented in [16,44], the FNT synchronization of CGQVNNs
is readily available when βp = 0 in this paper. In [25], the FIT and PET synchronization of QVNNs
has been discussed, in which the original QVNNs was decomposed into four real-valued systems and
four corresponding controllers were designed. Obviously, this separation method leads to complex
and redundant analysis and calculations. Nevertheless, there are limited relevant results available
for discussing the FIT and PET synchronization of CGQVNNs using a non-separation method.
In Theorems 1–3, three quaternion-valued controllers (18), (6) and (30) are designed, and the FIT
and PET synchronization of CGQVNNs under non-separation are completely solved under the
non-separation method. In theoretical analysis, only a few common inequalities and real number
operations are utilized, which simplifies the analytical process to some extent.

Remark 5. In [16], the authors designed an event-triggered controller to realize the FNT synchro-
nization of QVNNs through a non-decomposition method. Inspired by this issue, it is also a challenge
to construct event-triggered controllers for the FIT and PET synchronization of CGQVNNs, which
will be investigated in the future.

5. Numerical Simulations

In this section, two numerical examples are presented to verify the above theoretical
results.

Consider the following CGQVNN with two neurons

ω̇p(t) = hp(ωp(t))
(
−apωp(t) + ∑

q=1,2
bpqχq(ωq(t))

+ ∑
q=1,2

cpqρq(ωq(kpq(t))) + ξp

)
, p = 1, 2,

(32)

in which a1 = −0.4 + 0.2i− 0.5j− 1.3k, a2 = −0.3− 2.2i + 1.1j− 0.2k, χ1(κ) = χ2(κ) =
0.1 tanh(κR)+ 0.01sign(κR)+ i(0.1 tanh(κ I)+ 0.01sign(κ I))+ j(0.1 tanh(κ J)+ 0.01sign(κ J))
+ k(0.1 tanh(κK) + 0.01sign(κK)), ρ1(κ) = ρ2(κ) = 0.1 cos(κR) + 0.1sign(κR) + i(0.1 cos(κ I)
+0.1sign(κ I)) + j(0.1 cos(κ J) + 0.1sign(κ J)) + k(0.1 cos(κK) + 0.1sign(κK)), h(κ) = sin(κR)

+2 where κ ∈ Q, kpq(t) = t− et

1 + et , p, q = 1, 2, and

(bpq)2×2 =

(
−1.6 + 1.4i + 1.2j− 2.4k −0.4 + 0.6i− 0.3j− 1.6k
2.5 + 0.3i− 0.2j + 0.6k 2.1 + 0.4i− 0.6j− 0.2k

)
,

(cpq)2×2 =

(
−0.1 + 0.2i− 0.3j + 0.6k 0.8 + 0.3i− 0.5j− 0.5k
0.2 + 0.4i + 0.6j− 0.2k 0.6 + 0.2i− 0.3j + 0.6k

)
,
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(ξp)2×2 =

(
2.0 + 1.5i− 1.3j− 2.0k 0

0 1.2 + 0.6i− 1.6j− 0.8k

)
.

The corresponding CGQVNN is given as follows

ζ̇p(t) = hp(ζp(t))
(
−apζp(t) + ∑

q=1,2
bpqχq(ζq(t))

+ ∑
q=1,2

cpqρq(ζq(kpq(t))) + ξp

)
+ δp(t), p = 1, 2.

(33)

By randomly selecting the initial values, the synchronization error of CGQVNNs (32)
and (33) is shown in Figure 1 without control.
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Figure 1. Synchronization error of CGQVNNs (32) and (33) without control.

First of all, consider the synchronization of driven-response CGQVNNs (32) and (33)
with the controller (8). According to calculation, l1

q = 1, l̃1
q = 0.08, L1

q = 0.44, R1
q = 0.8,

h̃1
q = 1, H1

q = 3, for any q = 1, 2 and λ̄ = 22.124. In (8), select γ1 = 18.0, γ2 = 14.4,
λ1 = λ2 = 6.5, α = 23.0, β = 24.0, ε1 = 0.7, ε2 = 1.1. It is not difficult to verify that

17.5 =
2

∑
q=1

(|b1q|1H1
1 l̃1

q + 2|c1q|1H1
1 R1

q) < γ1 = 18.0,

13.9 =
2

∑
q=1

(|b2q|1H1
2 l̃1

q + 2|c2q|1H1
2 R1

q) < γ1 = 14.4,

6 = 2H1
p < λp = 6.5, p = 1, 2,

22.124 = λ̄ < min{α, β} = 22.39.

By means of Theorem 1, the driven-response CGQVNNs (32) and (33) achieve FXT
synchronization, here the settling time is estimated by T̂1 = 2.1253. The synchronization
result is simulated in Figure 2.

Furthermore, choose Tpet = 0.8 in (38). Under the above-selected parameters, CGQVNNs
(32) and (33) reach PET synchronization with Tpet = 0.8 according to Theorem 3, which is
demonstrated in Figure 3.
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Figure 2. FIT synchronization error of CGQVNNs (32) and (33) under controller (8).
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Figure 3. PET synchronization error of CGQVNNs (32) and (33) under controller (8).

Next, let us verify the FIX synchronization of driven-response CGQVNNs (32) and
(33) under a 2-norm-based controller (24). By simple calculation, l2

q = 0.02, l̃2
q = 0.090,

L2
q = 0.6957, R2

q = 0.4, h̃2
q = 1, H2

p = 3 for any q = 1, 2 and λ̄ = 29.02. In (8), select
γ1 = 11.0, γ2 = 6.0, λ1 = 8.40, λ2 = 15.19, α = 15.0, β = 15.5, ε1 = 0.7, ε2 = 1.1. Thus,

8.34 = 2H2
1 |a1|2 < λp = 8.40,

15.18 = 2H2
2 |a2|2 < λp = 15.19,

10.28 =
2

∑
q=1

(H2
p l̃2

q |b1q|2 + 2H2
pR2

q|c1q|2) < γp = 11.0,

5.80 =
2

∑
q=1

(H2
p l̃2

q |b2q|2 + 2H2
pR2

q|c2q|2) < γp = 6.0,

29.02 = λ̃ < min{α̃, β̃} = 31.

Therefore, CGQVNNs (32) and (33) achieve FIX synchronization based on the controller (24)
by using Theorem 2, and the settling time is estimated by T̂2 = 1.2318. The synchronization
result is given in Figure 4.
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Figure 4. FIT synchronization error of CGQVNNs (32) and (33) under controller (24).

On the other hand, choose Tpet = 0.8 in (39). Under the above selected parameters,
CGQVNNs (32) and (33) reach PET synchronization with Tpet = 0.8 according to Theorem 4,
which is shown in Figure 5.
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Figure 5. PET synchronization error of CGQVNNs (32) and (33) under controller (39).

6. Conclusions

In this article, the FIT and PET synchronization of CGQVNNs with discontinuous ac-
tivation functions and generalized time delays have been investigated. In contrast to the
previous CGNN models defined in the real-valued or complex-valued domain [34–36], the
proposed quaternion-valued neural network has stronger storage capacity and is suitable
for NNs with discontinuous activation functions. Based on the introduced quaternion-
valued symbolic function, two direct control schemes were proposed. At the same time,
the criteria of the FIT and the PET synchronization of the CGQVNNs were derived with-
out dividing the quaternion-valued system into real-valued or complex-valued systems.
Compared with [24,25], the non-separation method proposed in this paper greatly reduces
the computational complexity, and the direct control scheme saves control costs. Finally,
two numerical examples were provided to validate the theoretical results.

Considering the control cost, future work will focus on the discussion of FIT or PET
synchronization of quaternion-valued NNs by developing a reasonable event-triggered
controller, intermittent controller or impulsive controller to reduce the control cost.
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