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Abstract: This work introduces an innovative approach that unites a PIDND2N2 controller and the
balanced arithmetic optimization algorithm (b-AOA) to enhance the stability of an automatic voltage
regulator (AVR) system. The PIDND2N2 controller, tailored for precision, stability, and responsive-
ness, mitigates the limitations of conventional methods. The b-AOA optimizer is obtained through
the integration of pattern search and elite opposition-based learning strategies into the arithmetic
optimization algorithm. This integration optimizes the controller parameters and the AVR system’s
response, harmonizing exploration and exploitation. Extensive assessments, including evaluations
on 23 classical benchmark functions, demonstrate the efficacy of the b-AOA. It consistently achieves
accurate solutions, exhibits robustness in addressing a wide range of optimization problems, and
stands out as a promising choice for various applications. In terms of the AVR system, comparative
analyses highlight the superiority of the proposed approach in transient response characteristics, with
the shortest rise and settling times and zero overshoot. Additionally, the b-AOA approach excels in
frequency response, ensuring robust stability and a broader bandwidth. Furthermore, the proposed
approach is compared with various state-of-the-art control methods for the AVR system, showcasing
an impressive performance. These results underscore the significance of this work, setting a new
benchmark for AVR control by advancing stability, responsiveness, and reliability in power systems.

Keywords: arithmetic optimization algorithm; elite opposition-based learning; pattern search;
PIDND2N2 controller

MSC: 68T20

1. Introduction

In the realm of power systems, the automatic voltage regulator (AVR) stands as a linchpin,
ensuring that connected electrical equipment functions within prescribed voltage bounds [1].
The consequences of inadequate voltage regulation can be profound, from equipment damage
and operational failures to costly downtime and extensive repairs [2–5]. Consequently, the
AVR plays a pivotal role in power systems reliant on generators or alternators for electricity
generation [6,7]. While existing control methodologies have achieved some success, they
remain encumbered by limitations [8], including challenges related to robustness, overshoots,
rise times, settling times, and persistent steady-state errors.

The motivation driving our study is rooted in a collective commitment to surpass these
limitations and contribute to the evolution of more robust and efficient power systems.
Our primary objective is to introduce an advanced control scheme capable of effectively
addressing these challenges. To accomplish this, we have innovatively integrated a novel
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optimizer, rooted in the arithmetic optimization algorithm (AOA) [9], meticulously fine-
tuned to enhance the parameters of our proposed control scheme and, by extension, its
overall performance and adaptability.

In the existing landscape of AVR control, controllers have emerged as indispensable
assets for the vigilant monitoring and regulation of the AVR itself [10]. These controllers
serve as hubs, facilitating real-time adjustments to maintain voltage stability, enabling
remote monitoring, fault detection, and automatic shutdown during emergencies, and
enhancing the overall system dependability. A range of controllers, from the standard
proportional–integral–derivative (PID) to more advanced variants like the PID Acceleration
(PIDA), fractional-order PID (FOPID), and PID with a second-order derivative (PIDD2),
offer diverse attributes to meet the specific requirements of AVR control [11–18].

However, the choice of controller alone is insufficient to address the complex chal-
lenges faced by AVR systems. The choice of a cost function is equally crucial, as it sig-
nificantly impacts performance [19]. Researchers employ various cost functions, such as
the integral of time-weighted squared error, integral of squared error, integral of absolute
error, and the dynamic response performance criteria-based Zwe-Lee Gaing (ZLG) cost
function [20–22]. In this context, our work introduces a novel approach that unites both the
controller and the optimizer to form a comprehensive solution for enhancing AVR stability.
The core innovation is the balanced arithmetic optimization algorithm (b-AOA). It marries
the powerful pattern search (PS) strategy [23], renowned for its exploitation capabilities,
with the elite opposition-based learning (EOBL) strategy [24], elevating exploration. This
marriage optimizes the controller parameters and the AVR system’s response, harmonizing
exploration and exploitation to attain a level of stability previously out of reach.

The efficacy of the b-AOA is first verified through comprehensive assessments against
23 classical unimodal, multimodal, and fixed-dimensional multimodal benchmark func-
tions. These evaluations compare the effectiveness of the proposed b-AOA to other opti-
mization algorithms, including the original AOA [9], sine cosine algorithm [25], weighted
mean of vectors algorithm [26], and marine predators algorithm [27]. The results from the
benchmark functions underscore the remarkable performance of the b-AOA. It consistently
achieves mean errors close to zero, demonstrating its capability to find accurate solutions.
Furthermore, its robustness and consistency make it a strong candidate for addressing a
wide range of optimization problems.

In the case of the AVR system, we firstly introduce a PIDND2N2 controller designed for
enhanced precision, stability, and responsiveness in voltage regulation. This configuration
mitigates the limitations associated with conventional methods, promising a superior control
performance. Secondly, the b-AOA optimizer fine-tunes the parameters of our proposed
control scheme, improving its overall performance and adaptability. Using the ZLG cost
function [28], we target the minimization of dynamic response performance criteria, such
as maximum overshoot, steady-state error, settling time, and rise time, thereby ensuring
that the AVR system meets the most stringent performance requirements. Our work seeks
to transcend theoretical innovation, anchoring itself in the practical applicability of power
systems, where stability and reliability are non-negotiable. Through extensive simulations
and rigorous experimentation, we aim to demonstrate the superiority of the b-AOA-based
AVR system in comparison to existing control and optimization techniques. Our focus on
stability, speed of response, robustness, and efficiency aligns with the motivations presented,
making our work a substantial contribution to the field of power system control.

To validate the superiority of the proposed b-AOA approach, we conducted extensive
comparative analyses, evaluating its performance against well-established control method-
ologies, such as the sine cosine algorithm-based PID controller [29], whale optimization
algorithm-based PIDA controller [30], slime mould algorithm-based FOPID controller [31],
and particle swarm optimization-based PIDD2 controller [32]. The results unequivocally
demonstrate that the b-AOA-based approach outshines its counterparts. It exhibits unmatched
transient response characteristics, with the shortest rise time (0.033485 s) and settling time
(0.050752 s) while eliminating overshoot. In contrast, other methods exhibit less favorable
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response characteristics. In terms of frequency response, the b-AOA approach consistently
excels, showcasing robust stability, favorable gain margins, and a broader bandwidth.

To further assess the effectiveness of the proposed approach, we compared it with sev-
eral other established controller approaches reported in the literature. These included sev-
eral recently reported control methods for the AVR system. These methods include a variety
of controllers, each tuned using different optimization algorithms such as the marine preda-
tors algorithm-based FOPID [33], hybrid atom search particle swarm optimization-based
PID [34], equilibrium optimizer-based TIλDND2N2-based controller [35], reptile search
algorithm-based FOPIDD2 [11], improved Runge–Kutta algorithm-based PIDND2N2 [36],
symbiotic organism search algorithm-based PID-F [37], whale optimization algorithm-
based 2DOF FOPI [38], Lévy flight-based reptile search algorithm with local search ability-
based PID [39], chaotic black widow algorithm-based FOPID [20], genetic algorithm-based
fuzzy PID [40], sine cosine algorithm-based FOPID with fractional-order filter [41], hy-
brid simulated annealing–Manta ray foraging optimization algorithm-based PIDD2 [42],
slime mould algorithm-based PID [43], gradient-based optimization-based FOPID [44],
and nonlinear sine cosine algorithm-based sigmoid PID [45]. We evaluate their transient
response performance to assess the effectiveness of the proposed approach. The results
demonstrate the efficacy of the b-AOA-based PIDND2N2 controller in comparison to vari-
ous state-of-the-art methods as it stands out with an impressive performance, suggesting
the exceptional stability and responsiveness of the b-AOA-tuned controller.

In summary, our work presents a superior solution to address the challenges in AVR
control, contributing to the advancement of power systems while establishing a new
benchmark for stability, responsiveness, and reliability in this critical domain. The unique
integration of the b-AOA with the PIDND2N2 controller signifies a significant leap forward
in achieving optimal voltage regulation and stability in power systems.

2. Overview of Arithmetic Optimization Algorithm

The arithmetic optimization algorithm (AOA) draws inspiration from arithmetic
principles [9] to construct a versatile metaheuristic optimization technique. It initiates the
optimization process by generating a set of randomized solutions represented as follows.

X =



x1,1 · · · · · · x1,j x1,n−1 x1,n
x2,1 · · · · · · x2,j · · · x2,n
· · · · · · · · · · · · · · · · · ·

...
...

...
...

...
...

xN−1,1 · · · · · · xN−1,j · · · xN−1,n
xN,1 · · · · · · xN,j xN,n−1 xN,n


(1)

Following this, the algorithm employs a function known as “Math Optimizer Accelerated”
(MopA) to execute exploration and exploitation tasks. The MopA function is defined as:

MopA(t) = Min + t×
(

Max−Min
tmax

)
(2)

where t represents the current iteration, tmax denotes the maximum number of iterations,
and Min and Max represent the minimum and maximum values of the accelerated function.
The exploration phase of the algorithm is carried out when r1 > MopA, where r1 is a
randomly generated number. During exploration, the multiplication (Mult) and division
(Div) operators are employed, defined as follows:

xi,j(t + 1) =
{

best
(
xj
)
×MopP×

((
UBj − LBj

)
× µ + LBj

)
, for r2 > 0.5

best
(
xj
)
÷ (MopP + ε)×

((
UBj − LBj

)
× µ + LBj

)
, for r2 < 0.5

(3)

where xi,j(t) represents the jth position of solution I at the current iteration, xi(t + 1)
denotes the solution of i in the next iteration, best

(
xj
)

signifies the best solution’s jth
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position obtained so far, ε is a small integer, µ is a control parameter that adjusts the search
process, and UBj and LBj, respectively, represent the upper and lower bounds of the jth

position. The “Math optimizer probability” function, denoted by MopP, is computed as
follows, with α reflecting the exploitation accuracy through iterations.

MopP(t) = 1− (t)1/α

(tmax)
1/α

(4)

The term r2 is another random number utilized for position updates. The Mult
operator is employed for r2 > 0.5, while the Div operator is used otherwise. Conversely,
the exploitation phase occurs when r1 < MopA. In this stage, the addition (Add) and
subtraction (Sub) operators are utilized, defined as:

xi,j(t + 1) =
{

best
(
xj
)
+ MopP×

((
UBj − LBj

)
× µ + LBj

)
, for r3 > 0.5

best
(

xj
)
−MopP×

((
UBj − LBj

)
× µ + LBj

)
, for r3 < 0.5

(5)

Here, r3 is a random number determining whether the Add or Sub operation is ap-
plied. Add operates when r3 > 0.5, while Sub is used for r3 < 0.5. Figure 1 presents a
comprehensive flowchart of the AOA, depicting its intricate process.
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Figure 1. Flowchart of the original arithmetic optimization algorithm. Figure 1. Flowchart of the original arithmetic optimization algorithm.

3. Balanced Arithmetic Optimization Algorithm

The balanced AOA (b-AOA) is an evolution of the pattern search (PS) [46] and the
opposition-based learning (OBL) [47] schemes, designed to enhance both exploration and
exploitation capabilities in the context of metaheuristic optimization. This section provides
a step-by-step explanation of the b-AOA’s development and its core components.
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The PS scheme serves as the foundation for the b-AOA. It is a derivative-free algorithm
known for its exploitation capabilities [48]. PS starts with an initial point (X0) defined
by the user and proceeds by generating a mesh around this point, gradually updating
the mesh as new points with lower objective function values are discovered. The process
involves the following key steps:

• Exploration Stage: If a new point with a lower objective function value ( f (X1) < f (X0))
is found (successful poll), it becomes the source point. The mesh size is then expanded
by a factor of 2, creating new points for exploration.

• Exploitation Stage: When no new points with lower values are discovered, the mesh
size is reduced by multiplying it by 0.5 (reduction factor). This contraction stage
continues until the termination condition is met.

The detailed flowchart of the PS scheme is illustrated in Figure 2.
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The OBL scheme, introduced as a machine-learning technique, enhances the perfor-
mance of metaheuristic algorithms by considering both the current individuals and their
opposites [47]. A special type of OBL mechanism known as elite OBL (EOBL) [49] focuses
on the elite (best) individuals in combination with the current individuals. EOBL generates
opposite solutions for the elite individuals, which are then evaluated for their fitness. The
mathematical representation of the EOBL strategy is as follows:

• Elite candidate solution: X = 〈x1, x2 . . . , xk〉 with k decision variables.
• Elite opposition-based solution: Xo =

〈
xo

1, xo
2 . . . , xo

k
〉

where xo
i = δ(dai + dbi)− xi and

δ is a parameter within the range (0, 1) controlling the opposition magnitude.
• Dynamic boundaries: dai = min(xi), dbi = max(xi).
• To ensure that opposite decision variables stay within the boundaries [Lbi, Ubi], the

following rule is applied: xo
i = rand(Lbi, Ubi), if xo

i < Lbi or xo
i > Ubi.

The working principle of the OBL mechanism is depicted in Figure 3.
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The b-AOA integrates the EOBL and the PS schemes to achieve a balanced approach
with improved exploration and exploitation capabilities. Figure 4 provides an overview of
the b-AOA’s operation. As depicted in the figure:

• The algorithm commences with the original AOA and generates the best solution.
• The EOBL scheme is introduced to produce N best solutions.
• The PS scheme takes over to enhance exploitation, running a total of 5 times with

100 × D iterations, where D represents the problem’s dimension size.
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The parameters for the b-AOA, derived from extensive simulations, include:

• PS scheme parameters: initial mesh size = 1, mesh expansion factor = 2, mesh contrac-
tion factor = 0.5, and all tolerances = 10−6.

• AOA parameters: sensitive parameter α = 5, control parameter µ = 0.4975, Min = 0.2,
Max = 1.

4. Adopted Test Functions
4.1. Unimodal Benchmark Functions

In this section, we introduce a set of unimodal benchmark functions that have been
adopted for our study. These benchmark functions are commonly used in the field of
optimization to evaluate the performance of optimization algorithms and to compare their
effectiveness. The following unimodal benchmark functions have been selected for our
analysis: Sphere, Schwefel 2.2, Schwefel 1.2, Schwefel 2.21, Rosenbrock, Step, and Quartic.
The mathematical equations defining these benchmark functions are, respectively, provided
in the following equations.

Func1(x) =
Dim

∑
i=1

x2
i (6)

Func2(x) =
Dim

∑
i=1
|xi|+

Dim

∏
i=1
|xi| (7)

Func3(x) =
Dim

∑
i=1

(
i

∑
j=1

xj

)2

(8)

Func4(x) = maxi{|xi|, 1 ≤ i ≤ Dim} (9)

Func5(x) =
Dim−1

∑
i=1

(
100
(

xi+1 − x2
i

)2
+
(

xi − 1)2
)

(10)

Func6(x) =
Dim

∑
i=1

(xi + 0.5)2 (11)

Func7(x) =
Dim

∑
i=1

ix4
i + random[0, 1) (12)

In addition to the mathematical expressions for these benchmark functions, we have
compiled the essential properties and information related to each function in Table 1. This
table provides details on the dimensionality of each function, the evaluation interval, and
the global minimum values. These properties are crucial for understanding the charac-
teristics of each benchmark function and for conducting a comprehensive analysis of the
optimization algorithms’ performance.

Table 1. Properties of the adopted unimodal benchmark functions.

Name Function Dimension Evaluation Interval Global Minimum

Sphere Func1(x) 30 [−100, 100]Dim 0
Schwefel 2.2 Func2(x) 30 [−10, 10]Dim 0
Schwefel 1.2 Func3(x) 30 [−100, 100]Dim 0
Schwefel 2.21 Func4(x) 30 [−100, 100]Dim 0
Rosenbrock Func5(x) 30 [−30, 30]Dim 0
Step Func6(x) 30 [−100, 100]Dim 0
Quartic Func7(x) 30 [−1.28, 1.28]Dim 0
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4.2. Multimodal Benchmark Functions

In this section, we introduce a collection of multimodal benchmark functions that have
been selected for our study. Multimodal functions are essential for assessing the capability
of optimization algorithms to handle complex, non-convex search spaces, where multiple
local optima exist. The following multimodal benchmark functions have been chosen
for our study: Schwefel, Rastrigin, Ackley, Griewank, Penalized, and Penalized2. The
mathematical equations representing these benchmark functions are, respectively, provided
in the following equations.

Func8(x) = −
Dim

∑
i=1

(
xisin

(√
|xi|
))

(13)

Func9(x) =
Dim

∑
i=1

[
10 + x2

i − 10cos(2πxi)
]

(14)

Func10(x) = 20 + e− 20exp

−0.2

√√√√ 1
Dim

Dim

∑
i=1

x2
i

− exp

(
1

Dim

Dim

∑
i=1

cos(2πxi)

)
(15)

Func11(x) =
Dim

∑
i=1

x2
i

4000
−

Dim

∏
i=1

cos
(

xi√
i

)
+ 1 (16)

Func12(x) = π
Dim

{
10sin2(πy1) +

Dim−1
∑

i=1
(yi − 1)2[1 + 10sin2(πyi+1)

]
+ (yDim − 1)2

}
+

Dim
∑

i=1
u(xi, 10, 100, 4)

(17)

Func13(x) = 0.1
{

sin2(3πx1) +
Dim−1

∑
i=1

(xi − 1)2[1 + sin2(3πxi+1)
]
+ (xDim − 1)2[1 + sin2(2πxDim)

]}
+

Dim
∑

i=1
u(xi, 5, 100, 4)

(18)

Moreover, to facilitate a comprehensive understanding of these benchmark functions,
we have compiled the vital properties and information for each function in Table 2. This
table presents information on the dimensionality of each function, the evaluation interval,
and the global minimum values. These properties are pivotal for comprehending the
characteristics of each benchmark function and for the subsequent analysis of optimization
algorithms in handling multimodal search spaces.

Table 2. Properties of the adopted multimodal benchmark functions.

Name Function Dimension Evaluation Interval Global Minimum

Schwefel Func8(x) 30 [−500, 500]Dim −1.2569 × 104

Rastrigin Func9(x) 30 [−5.12, 5.12]Dim 0
Ackley Func10(x) 30 [−32, 32]Dim 0
Griewank Func11(x) 30 [−600, 600]Dim 0
Penalized Func12(x) 30 [−50, 50]Dim 0
Penalized2 Func13(x) 30 [−50, 50]Dim 0

4.3. Fixed-Dimensional Multimodal Test Functions

This section introduces a collection of fixed-dimensional multimodal test functions,
which are indispensable for evaluating the performance of optimization algorithms in
solving problems with known characteristics. These benchmark functions are specifically
selected for their fixed-dimensional nature, making them suitable for comparing and bench-
marking various optimization techniques. The following fixed-dimensional multimodal
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test functions have been included in our study: Foxholes, Kowalik, Six-Hump Camel,
Branin, Goldstein–Price, Hartman 3, Hartman 6, Shekel 5, Shekel 7, and Shekel 10. The
mathematical equations describing these fixed-dimensional multimodal test functions can,
respectively, be found in the following equations.

Func14(x) =
1(

1
500 + ∑25

j=1
1

j+∑2
i=1(xi−aij)

6

) (19)

Func15(x) =
11

∑
i=1

[
ai −

x1
(
b2

i + bix2
)

b2
i + bix3 + x4

]2

(20)

Func16(x) = 4x2
1 − 2.1x4

1 +
1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2 (21)

Func17(x) = 10
(

1− 1
8π

)
cos x1 + 10 +

(
x2 −

5.1
4π2 x2

1 +
5
π

x1 − 6
)2

(22)

Func18(x) =
[
30 + (2x1 − 3x2)

2 ×
(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)]

×
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)] (23)

Func19(x) = −
4

∑
i=1

ciexp

(
−

3

∑
j=1

aij
(
xj − pij

)2
)

(24)

Func20(x) = −
4

∑
i=1

ciexp

(
−

6

∑
j=1

aij
(
xj − pij

)2
)

(25)

Func21(x) = −
5

∑
i=1

1

(X− ai)(X− ai)
T + ci

(26)

Func22(x) = −
7

∑
i=1

1

(X− ai)(X− ai)
T + ci

(27)

Func23(x) = −
10

∑
i=1

1

(X− ai)(X− ai)
T + ci

(28)

To further enhance the understanding of these benchmark functions, the essential
properties and information for each function are summarized in Table 3. This table pro-
vides key details such as the dimensionality of each function, the evaluation interval, and
the global minimum values, enabling a comprehensive evaluation and comparison of
optimization algorithms for fixed-dimensional search spaces.

Table 3. Properties of the adopted fixed-dimensional multimodal benchmark functions.

Name Function Dimension Evaluation Interval Global Minimum

Foxholes Func14(x) 2 [−65.536, 65.536]Dim 0.998
Kowalik Func15(x) 4 [−5, 5]Dim 3.0749 × 10−4

Six-Hump Camel Func16(x) 2 [−5, 5]Dim −1.0316
Branin Func17(x) 2 [−5, 10]× [0, 15] 0.39789
Goldstein–Price Func18(x) 2 [−2, 2]Dim 3
Hartman 3 Func19(x) 3 [0, 1]Dim −3.8628
Hartman 6 Func20(x) 6 [0, 1]Dim −3.322
Shekel 5 Func21(x) 4 [0, 10]Dim −10.1532
Shekel 7 Func22(x) 4 [0, 10]Dim −10.4029
Shekel 10 Func23(x) 4 [0, 10]Dim −10.5364
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5. Statistical Performance of the b-AOA on Test Functions
5.1. Compared Algorithms

In our study, we have evaluated the performance of several optimization algorithms
against the proposed b-AOA by comparing their effectiveness in solving the benchmark
functions. The algorithms considered for comparison include the following: original
AOA [9], sine cosine algorithm (SCA) [25], weighted mean of vectors (INFO) algorithm [26],
and marine predators algorithm (MPA) [27].

For each of these algorithms, we conducted 30 independent runs to ensure a robust
and comprehensive assessment. By executing multiple independent runs, we aimed to
account for the inherent variability in optimization processes and obtain reliable results.

Table 4 presents the key properties and control parameters associated with the com-
pared algorithms. These properties include the population size, total iteration number, and
values of other control parameters specific to each algorithm.

Table 4. Properties of the compared algorithms (population size, total iteration number, values of
other control parameters).

Algorithm Population
Size

Total Iteration
Number Values of Other Control Parameters

b-AOA 30 500
α = 5, µ = 0.4975, Min = 0.2, Max = 1,

initial mesh size = 1, mesh expansion factor = 2,
mesh contraction f actor = 0.5, all tolerances = 10−6

AOA [9] 30 500 α = 5, µ = 0.4975, Min = 0.2, Max = 1
SCA [25] 30 500 A = 2
INFO [26] 30 500 c = 2, d = 4
MPA [27] 30 500 FADs = 0.2, P = 0.5

5.2. Statistical Results Obtained from Unimodal Benchmark Functions

In this section, we present the comparative statistical results obtained from the evalu-
ation of the unimodal benchmark functions using various optimization algorithms. The
analysis is based on the mean, standard deviation, best, and worst performance of each
algorithm across the unimodal benchmark functions. Table 5 summarizes these results.
Upon examining the data in Table 5, we can draw several important observations:

• Sphere Function: The b-AOA demonstrates a superior performance, achieving a mean
error of zero across multiple runs. In contrast, other algorithms exhibit varying degrees
of error, with the AOA achieving the lowest mean error but still far from the precision
of the b-AOA.

• Schwefel 2.2 Function: Similar to the Sphere function, the b-AOA outperforms other
algorithms by achieving a mean error close to zero. The other algorithms, in contrast,
exhibit significant errors.

• Schwefel 1.2 and Schwefel 2.21 Functions: In both cases, the b-AOA once again stands
out with extremely low mean errors, indicating its effectiveness in solving these
functions. The other algorithms show larger mean errors.

• Rosenbrock Function: While the b-AOA exhibits a higher mean error compared
to some other algorithms, it still achieves competitive results, and its worst-case
performance is better than some other algorithms. It is important to note that the
Rosenbrock function is known for its challenging optimization landscape.

• Step Function: The b-AOA demonstrates exceptional performance with a mean error
close to zero. The other algorithms exhibit more significant errors, making the b-AOA
the most effective choice for this function.

• Quartic Function: Once again, the b-AOA shows a strong performance, with a mean er-
ror significantly lower than other algorithms. It is evident that the b-AOA consistently
performs exceptionally well across multiple unimodal benchmark functions.
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Table 5. Comparative statistical results obtained from unimodal benchmark functions.

Function Algorithm Mean Standard Deviation Best Worst

Func1(x)

b-AOA 0 0 0 0
AOA 0.00029656 0.0011413 3.9226 × 10−38 0.0060134
SCA 16.537 36.426 9.5633 × 10−6 175.47
INFO 1.0185 × 10−53 4.997 × 10−54 3.3545 × 10−55 2.0178 × 10−53

MPA 4.0116 × 10−23 6.3963 × 10−23 3.6461 × 10−25 2.7727 × 10−22

Func2(x)

b-AOA 8.5996 × 10−241 0 4.333 × 10−320 2.2954 × 10−239

AOA 2.8674 × 10−186 0 9.6235 × 10−296 8.6022 × 10−185

SCA 0.021241 0.031567 0.00013767 0.13042
INFO 1.0943 × 10−26 3.6605 × 10−27 4.7283 × 10−27 1.9892 × 10−26

MPA 2.6444 × 10−13 2.8514 × 10−13 8.2406 × 10−15 1.2622 × 10−12

Func3(x)

b-AOA 0 0 0 0
AOA 1.6011 3.3816 1.3815 × 10−7 16.177
SCA 8640.8 4939.5 1709.5 20,103
INFO 1.4606 × 10−50 1.1602 × 10−50 8.6654 × 10−52 3.9712 × 10−50

MPA 9.9612 × 10−5 0.00022346 7.2658 × 10−9 0.001186

Func4(x)

b-AOA 9.0422 × 10−244 0 1.2808 × 10−253 2.6479 × 10−242

AOA 0.15416 0.094877 0.014632 0.36318
SCA 37.033 13.087 12.166 61.964
INFO 2.1028 × 10−27 1.4215 × 10−27 3.5852 × 10−28 7.4954 × 10−27

MPA 2.7542 × 10−9 1.5152 × 10−9 3.1553 × 10−10 6.0257 × 10−9

Func5(x)

b-AOA 0.61615 1.8814 3.0737 × 10−9 6.3967
AOA 28.693 0.27549 27.902 29.18
SCA 1.3673 × 105 3.2682 × 105 107.54 1,175,700
INFO 22.585 0.51711 21.298 23.462
MPA 25.268 0.45451 24.487 26.042

Func6(x)

b-AOA 2.4395 × 10−12 9.2009 × 10−13 1.086 × 10−12 5.8521 × 10−12

AOA 3.7524 0.33331 3.0561 4.4582
SCA 14.254 13.542 4.7191 55.025
INFO 1.2654 × 10−8 3.7987 × 10−8 3.9266 × 10−11 2.07 × 10−7

MPA 4.1868 × 10−8 2.2575 × 10−8 1.3296 × 10−8 1.2965 × 10−7

Func7(x)

b-AOA 3.629 × 10−5 2.8489 × 10−5 6.8524 × 10−7 0.00010771
AOA 9.4896 × 10−5 7.1313 × 10−5 2.0672 × 10−6 0.00029718
SCA 0.099158 0.090509 0.0085847 0.44986
INFO 0.0015937 0.0012634 0.00017227 0.0049221
MPA 0.0013495 0.00060352 0.00041966 0.0026601

In summary, the results obtained from the unimodal benchmark functions highlight
the efficacy of the proposed b-AOA. It consistently achieves mean errors close to zero,
demonstrating its capability to find accurate solutions. While some other algorithms
perform well on specific functions, the b-AOA stands out as a robust choice across various
unimodal benchmark functions, making it a promising optimization algorithm for solving
such problems.

5.3. Statistical Results Obtained from Multimodal Benchmark Functions

In this section, we analyze the comparative statistical results obtained from the evalua-
tion of the multimodal benchmark functions using various optimization algorithms. The
statistical metrics considered include the mean, standard deviation, best, and worst perfor-
mance for each algorithm across the multimodal benchmark functions. Table 6 summarizes
these results. Upon examining the data in Table 6, several key observations can be made:

• Schwefel Function: The b-AOA exhibits a mean error of −12,536, which is notably
closer to the global minimum of this multimodal function. It also achieves the lowest
standard deviation, indicating a high level of consistency in its performance. The
worst-case result is still very competitive, showing the effectiveness of the b-AOA in
solving the Schwefel function.
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• Rastrigin Function: Interestingly, for the Rastrigin function, all algorithms, including
the b-AOA, achieve a mean error of zero. While the b-AOA does not stand out in this
case, it demonstrates a comparable performance to other algorithms.

• Ackley Function: For the Ackley function, the b-AOA achieves a mean error close to
zero, indicating its effectiveness in minimizing the function. The standard deviation is
also very low, demonstrating consistent results.

• Griewank Function: Similar to the Rastrigin function, all algorithms, including the
b-AOA, achieve a mean error of zero. While the b-AOA performs equally well in
terms of mean error, its consistency is reflected in a lower standard deviation.

• Penalized and Penalized2 Functions: The b-AOA outperforms other algorithms in
minimizing both the Penalized and Penalized2 functions, as indicated by the lower
mean error. Its consistent performance is highlighted by the low standard deviation,
making it a robust choice for solving these multimodal functions.

Table 6. Comparative statistical results obtained from multimodal benchmark functions.

Function Algorithm Mean Standard Deviation Best Worst

Func8(x)

b-AOA −12,536 172.87 −12,569 −11,623
AOA −7980.7 446.84 −9196.5 −7230.3
SCA −3848.4 286.86 −4371 −3283.7
INFO −8630.7 700.38 −9763.3 −7101.2
MPA −8736.9 438.15 −9687.9 −7946.9

Func9(x)

b-AOA 0 0 0 0
AOA 0 0 0 0
SCA 29.308 30.189 0.13996 122.46
INFO 0 0 0 0
MPA 0 0 0 0

Func10(x)

b-AOA 8.8818 × 10−16 0 8.8818 × 10−16 8.8818 × 10−16

AOA 8.8818 × 10−16 0 8.8818 × 10−16 8.8818 × 10−16

SCA 14.208 8.3212 0.043401 20.382
INFO 8.8818 × 10−16 0 8.8818 × 10−16 8.8818 × 10−16

MPA 1.7196 × 10−12 1.1519 × 10−12 2.7045 × 10−13 5.8482 × 10−12

Func11(x)

b-AOA 0 0 0 0
AOA 194.12 65.896 72.408 323.52
SCA 0.84569 0.41164 0.23545 1.9083
INFO 0 0 0 0
MPA 0 0 0 0

Func12(x)

b-AOA 2.1943 × 10−13 1.5539 × 10−13 5.0331 × 10−14 6.0379 × 10−13

AOA 0.29154 0.053809 0.14538 0.43947
SCA 52,428 1.5261 × 105 1.0947 614,430
INFO 1.4456 × 10−9 2.8117 × 10−9 5.3463 × 10−12 1.1459 × 10−8

MPA 0.00014286 0.0005059 2.4157 × 10−9 0.0023059

Func13(x)

b-AOA 3.1668 × 10−12 2.4141 × 10−12 7.6907 × 10−13 9.0849 × 10−12

AOA 2.4484 0.16915 2.1217 2.8078
SCA 1.0872 × 105 2.7869 × 105 2.2042 1,305,400
INFO 0.063752 0.14273 3.2034 × 10−10 0.69157
MPA 0.012215 0.036876 2.8969 × 10−8 0.19763

In summary, the results obtained from the multimodal benchmark functions emphasize
the efficacy of the proposed b-AOA. It not only achieves competitive mean errors but also
demonstrates remarkable consistency in its performance, as reflected by the low standard
deviations. This consistency is essential for solving complex multimodal functions where
the optimization landscape can be highly challenging. The b-AOA’s ability to approach the
global minimum and its robustness make it a strong candidate for addressing multimodal
optimization problems.
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5.4. Statistical Results Obtained from Fixed-Dimensional Multimodal Benchmark Functions

This section provides an analysis of the comparative statistical results obtained from
the evaluation of fixed-dimensional multimodal benchmark functions using various opti-
mization algorithms. The data in Table 7 present the mean, standard deviation, best, and
worst performance of each algorithm for these functions. Key insights drawn from the data
in Table 7 include:

• Foxholes Function: The b-AOA stands out as it achieves a mean error of 0.998, which
is very close to the global minimum of this function. Moreover, it demonstrates an
extremely low standard deviation, indicating remarkable consistency. The best- and
worst-case performance metrics further underscore its effectiveness in solving the
Foxholes function.

• Kowalik Function: The b-AOA once again excels, achieving a mean error of 0.00030749,
which is impressively close to the global minimum. The standard deviation is nearly
zero, highlighting its exceptional consistency. In contrast, other algorithms exhibit
higher mean errors and standard deviations.

• Six-Hump Camel Function: The b-AOA performs exceptionally well, achieving a
mean error close to the global minimum and an almost negligible standard deviation.
This indicates its strong capability to solve the Six-Hump Camel function effectively.

• Branin Function: The b-AOA continues to demonstrate outstanding performance with
a mean error of 0.39789, very close to the global minimum. It also exhibits an absence
of standard deviation, showcasing the consistency of its results.

• Goldstein–Price Function: The b-AOA delivers optimal performance by achieving a
mean error of 3. This not only aligns with the global minimum but is also consistent
without any standard deviation. This makes it a standout performer for the Goldstein–
Price function.

• Hartman 3, Hartman 6, Shekel 5, Shekel 7, and Shekel 10 Functions: Across all of these
functions, the b-AOA consistently achieves a mean error close to the global minimum,
with negligible standard deviations. This underscores its efficacy in solving these
fixed-dimensional multimodal benchmark functions.

Table 7. Comparative statistical results obtained from fixed-dimensional multimodal benchmark functions.

Function Algorithm Mean Standard Deviation Best Worst

Func14(x)

b-AOA 0.998 1.5701 × 10−17 0.998 0.998
AOA 8.3696 3.2389 0.998 12.671
SCA 1.795 0.9859 0.998 2.9821
INFO 2.1111 2.5903 0.998 10.763
MPA 0.998 1.515 × 10−16 0.998 0.998

Func15(x)

b-AOA 0.00030749 1.4923 × 10−15 0.00030749 0.00030749
AOA 0.015417 0.025604 0.00037189 0.11249
SCA 0.0010661 0.00037002 0.0005829 0.0015477
INFO 0.0024352 0.0060863 0.00030749 0.020363
MPA 0.00030749 4.3122 × 10−15 0.00030749 0.00030749

Func16(x)

b-AOA −1.0316 1.9902 × 10−16 −1.0316 −1.0316
AOA −1.0316 6.0816 × 10−7 −1.0316 −1.0316
SCA −1.0316 3.7905 × 10−5 −1.0316 −1.0315
INFO −1.0316 6.5843 × 10−16 −1.0316 −1.0316
MPA −1.0316 4.4024 × 10−16 −1.0316 −1.0316

Func17(x)

b-AOA 0.39789 0 0.39789 0.39789
AOA 0.40987 0.009864 0.39844 0.43767
SCA 0.40026 0.0023543 0.39797 0.40949
INFO 0.39789 0 0.39789 0.39789
MPA 0.39789 9.5078 × 10−15 0.39789 0.39789
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Table 7. Cont.

Function Algorithm Mean Standard Deviation Best Worst

Func18(x)

b-AOA 3 0 3 3
AOA 6.6 9.3351 3 30
SCA 3 5.4359 × 10−5 3 3.0002
INFO 3 8.6883 × 10−16 3 3
MPA 3 2.1709 × 10−15 3 3

Func19(x)

b-AOA −3.8628 2.4116 × 10−15 −3.8628 −3.8628
AOA −3.8523 0.0038518 −3.8593 −3.842
SCA −3.8547 0.0024361 −3.861 −3.8495
INFO −3.8628 2.6823 × 10−15 −3.8628 −3.8628
MPA −3.8628 2.4945 × 10−15 −3.8628 −3.8628

Func20(x)

b-AOA −3.322 2.1608 × 10−13 −3.322 −3.322
AOA −3.0471 0.091025 −3.1762 −2.8234
SCA −2.8784 0.34163 −3.1199 −1.6747
INFO −3.2784 0.058273 −3.322 −3.2031
MPA −3.322 1.7554 × 10−11 −3.322 −3.322

Func21(x)

b-AOA −10.153 7.6605 × 10−13 −10.153 −10.153
AOA −3.5023 1.1997 −6.0307 −1.8035
SCA −2.6202 2.0715 −7.8686 −0.49728
INFO −9.1039 2.4723 −10.153 −2.6305
MPA −10.153 4.1471 × 10−11 −10.153 −10.153

Func22(x)

b-AOA −10.403 1.1144 × 10−12 −10.403 −10.403
AOA −3.5619 1.2118 −6.8762 −1.4002
SCA −3.2023 1.8303 −5.9956 −0.52105
INFO −9.0488 2.7774 −10.403 −2.7659
MPA −10.403 5.9857 × 10−11 −10.403 −10.403

Func23(x)

b-AOA −10.536 3.2315 × 10−12 −10.536 −10.536
AOA −3.8733 1.6156 −6.5892 −1.5825
SCA −3.7421 1.7935 −6.1434 −0.94135
INFO −9.0039 3.151 −10.536 −2.4217
MPA −10.536 2.5368 × 10−11 −10.536 −10.536

In summary, the results obtained from the fixed-dimensional multimodal benchmark
functions highlight the efficacy of the proposed b-AOA. It consistently delivers mean errors
close to the global minimum and demonstrates exceptional consistency with minimal
standard deviations. This performance makes the b-AOA a robust choice for solving a
wide range of fixed-dimensional multimodal functions, showing its potential as a versatile
optimization algorithm.

6. Automatic Voltage Regulator System
6.1. Components of AVR System and Its Modeling

The AVR system comprises four main components: the exciter, generator, sensor, and
amplifier, each of which plays a crucial role in the system’s performance. Figure 5 illustrates the
schematic diagram of a typical AVR system, providing an overview of its structural components.

To model the AVR system effectively, it is essential to define the transfer functions and
constraints for each of these components. The transfer function for the amplifier is given by:

Gamp =
Kamp

1 + sTamp
(29)

which is subjected to constraints of 10 ≤ Kamp ≤ 40 ve 0.02 ≤ Tamp ≤ 0.1. The transfer
function for the exciter is represented as:

Gexc =
Kexc

1 + sTexc
(30)
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1 + 𝑠𝑇𝑒𝑥𝑐
 (30) 

with constraints of 1 ≤ 𝐾𝑒𝑥𝑐 ≤ 10 ve 0.4 ≤ 𝑇𝑒𝑥𝑐 ≤ 1. The generator’s transfer function is 

defined as: 

𝐺𝑔𝑒𝑛 =
𝐾𝑔𝑒𝑛

1 + 𝑠𝑇𝑔𝑒𝑛
 (31) 

which has constraints of 0.7 ≤ 𝐾𝑔𝑒𝑛 ≤ 1 ve 1 ≤ 𝑇𝑔𝑒𝑛 ≤ 2. The sensor’s transfer function 

is presented as: 
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1 + 𝑠𝑇𝑠𝑒𝑛
 (32) 
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𝑇𝑛𝑜−𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑠) =
𝐺𝑎𝑚𝑝(𝑠) × 𝐺𝑒𝑥𝑐(𝑠) × 𝐺𝑔𝑒𝑛(𝑠)
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Figure 5. Schematic diagram of a typical AVR system.

with constraints of 1 ≤ Kexc ≤ 10 ve 0.4 ≤ Texc ≤ 1. The generator’s transfer function
is defined as:

Ggen =
Kgen

1 + sTgen
(31)

which has constraints of 0.7 ≤ Kgen ≤ 1 ve 1 ≤ Tgen ≤ 2. The sensor’s transfer function is
presented as:

Hsen =
Ksen

1 + sTsen
(32)

which is constrained by 0.9 ≤ Ksen ≤ 1.1 ve 0.001 ≤ Tsen ≤ 0.06. To facilitate a fair
comparison with the literature reports, specific parameter values of Kamp = 10, Tamp = 0.1 s,
Kexc = 1, Texc = 0.4 s, Kgen = 1, Tgen = 1 s, Ksen = 1 ve Tsen = 0.01 s [29–32] are employed
in this study. By applying these parameter values, the transfer function for an uncontrolled
AVR system can be derived as follows.

Tno−control(s) =
Gamp(s)× Gexc(s)× Ggen(s)

1 + Gamp(s)× Gexc(s)× Ggen(s)×Hsen(s)
=

0.1s + 10
0.0004s4 + 0.0454s3 + 0.555s2 + 1.51s + 11

(33)

An uncontrolled AVR system, with its main components, is illustrated in Figure 6.
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6.2. Pole–Zero Map of an Uncontrolled AVR System

The pole–zero map of the uncontrolled AVR system is depicted in Figure 7. The
system’s poles are located at −99.9712, −12.4892, and −0.5198 ± 4.6642i, while it possesses
only one zero at −100. The system exhibits a very low damping ratio (11.1%) for complex
poles, indicating the necessity for enhancing the performance of the uncontrolled system.
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6.3. Time-Domain Response of an Uncontrolled AVR System

The unit step response of the uncontrolled AVR system is illustrated in Figure 8. The
relevant system exhibits a maximum overshoot of 65.7226%, a rise time of 0.2607 s, a settling
time of 6.9865 s, and a peak time of 0.7522 s. These values are considerably large for a power
system, and the proposed control approach aims to enhance the performance of the AVR system.
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6.4. Open-Loop Frequency Response of an Uncontrolled AVR System

Figure 9 displays the Bode plot of the uncontrolled open-loop AVR system. This
system exhibits a gain margin of 4.6176 dB, a phase margin of 16.1028 degrees, and a
bandwidth of 6.9454 rad/s. Just as with the time response criteria, it is evident that the
frequency response criteria also require improvement through an effective control approach
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7. The Proposed Novel Design Method for AVR System

7.1. Reported Controller Types and PIDND2N2 Controller

In the context of the AVR system, several controller types have been reported and applied.
These controllers play a critical role in regulating and stabilizing the system’s voltage. The
transfer functions of some of the most commonly reported controllers, including PID, PIDA,
FOPID, PIDD2, and PIDND2N2, are, respectively, provided in Equations (34)–(38) [50,51].

CPID(s) = Kp +
Ki
s
+ Kds (34)

CPIDA(s) =
Kas3 + Kds2 + Kps + Ki

s3 + αs2 + βs
(35)

CFOPID(s) = Kp +
Ki

sλ
+ Kdsµ (36)

CPIDD2(s) = Kp +
Ki
s
+ Kd1s + Kd2s2 (37)

CPIDND2 N2(s) = Kp +
Ki
s
+ Kd1

n1s
s + n1

+ Kd2
(n2s)2

(s + n2)
2 (38)

In the specific context of the AVR system, these controller types have been employed
to regulate the voltage. For this study, the PIDND2N2 controller was selected due to its
effectiveness in achieving the desired control objectives. The implementations were carried
out on MATLAB/Simulink environment that is installed on a windows computer with 12th
generation Intel i5-12400, 2.50 GHz processor and 16.00 GB RAM. A visual representation
of the PIDND2N2 controller can be found in Figure 10.
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7.2. Objective Function

In the literature, it is feasible to encounter commonly used error-based objective
functions of FIAE (integral of the absolute error), FISE (integral of the square of the error),
FITAE (integral of time-weighted absolute error), and FITSE (integral of time-weighted
square of the error). Their definitions are provided in the following equations [52].

FIAE =

∞∫
0

|e(t)| · dt (39)

FISE =

∞∫
0

(e(t))2 · dt (40)

FITAE =

∞∫
0

t·|e(t)| · dt (41)

FITSE =

∞∫
0

t · (e(t))2 · dt (42)

In Equations (39)–(42), the term e(t) represents the error signal, which, for the AVR
system, is defined as e(t) = Vt − Vre f where Vt is the terminal voltage and Vre f is the
reference voltage. Additionally, the FZLG objective function, which utilizes time response
performance criteria, is widely employed in the literature. In this study, the latter one has
been preferred, which is given by the following equation [53].

FZLG = (1− θ) · (MP + ES) + θ · (ST − RT) (43)

In Equation (43), MP denotes the maximum overshoot, ES stands for the steady-state
error, ST represents the settling time, and RT signifies the rise time. The parameter θ in the
equation serves as a weighting factor and is set to e−1 = 0.3679 in this study.

7.3. Integration of the Algorithm to PIDND2N2-Controlled AVR System

Table 8 lists the lower and upper boundary values used for the controller parameters
when applying the proposed b-AOA to the PIDND2N2 controller. These values are utilized
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during the optimization process to determine the range within which parameter values
should be sought.

Table 8. Boundaries for PIDND2N2 controller parameters.

Bound Kp Ki Kd1 Kd2 n1 n2

Lower 0.001 0.001 0.001 0.001 50 50
Upper 5 5 5 5 2000 2000

In Figure 11, we present a block diagram that outlines the application of our proposed
b-AOA in conjunction with the PIDND2N2 controller and the ZLG objective function within
the AVR system. This block diagram encapsulates the essential steps involved in optimizing
the controller parameters. The optimization process begins with the initialization of the
b-AOA. This involves setting up the initial population of parameter sets for the PIDND2N2

controller. These initial values serve as starting points for the algorithm. The ZLG objective
function is a dynamic response performance criteria-based cost function employed in our
work. It encapsulates various metrics, including maximum overshoot, steady-state error,
settling time, and rise time. The proposed algorithm evaluates the performance of each
set of controller parameters by calculating the ZLG cost based on the system’s dynamic
response. The b-AOA iteratively refines the controller parameters by considering the
performance evaluated through the ZLG objective function. During each iteration, the
algorithm employs a combination of PS and EOBL strategies to explore and exploit the
parameter space effectively. The algorithm adjusts the PIDND2N2 controller parameters
based on the outcomes of the ZLG objective function evaluation. The adjustment aims to
minimize the cost function, indicating the improved dynamic response characteristics of
the AVR system. The optimization process continues until reaching the total number of
iterations. The final values of the PIDND2N2 controller parameters, which correspond to
the lowest ZLG cost achieved during the optimization process, are identified as the optimal
or best parameters for the given AVR system.
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8. Simulation Results and Discussion
8.1. Statistical Performance of b-AOA and AOA Methods for AVR System

In the optimization of the AVR system, the b-AOA and AOA were executed 30 times.
A population size of 30 and a maximum iteration count of 50 were chosen for minimizing
the objective function. The statistical results obtained from all runs are presented in Table 9.
As observed in the table, all statistical metrics for optimizing the FZLG objective function
favor the b-AOA, indicating its superior performance. These results additionally confirm
the statistical stability of the b-AOA.
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Table 9. Statistical performance of b-AOA and original AOA for AVR system.

Algorithm Mean Standard Deviation Best Worst

b-AOA 0.0065138 9.3497 × 10−5 0.0063522 0.0067022
AOA 0.0078863 0.00012395 0.0076825 0.0081212

8.2. Obtained Best Controller Parameters and Transfer Functions of the Optimized System

In this section, we discuss the results regarding the best controller parameters and the
corresponding transfer functions of the optimized system. Figure 12 provides the conver-
gence curve, illustrating the progress of the b-AOA and the original AOA in minimizing
the objective function. Notably, it shows that the b-AOA outperforms the original AOA by
achieving the lowest objective function value through iterations.
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Table 10 presents the optimal parameters of the PIDND2N2 controller, obtained using 
both the b-AOA and the original AOA. 

Table 10. Optimal parameters of PIDND2N2 controller obtained via b-AOA and original AOA. 

Optimized by 𝑲𝒑 𝑲𝒊 𝑲𝒅𝟏 𝑲𝒅𝟐 𝒏𝟏 𝒏𝟐 
b-AOA 4.8723 2.0240 1.8094 0.15049 1595.2 1971.2 
AOA 3.9448 2.1188 1.6757 0.13014 1544.2 871.72 

Using those values would yield the following transfer functions of the optimized sys-
tems for the original AOA and proposed b-AOA. 𝑇஺ை஺ି௉ூ஽ே஽మேమ(𝑠) = ଵ.଴ଵହ௘଴ସ௦ఱାଵ.଺଻ସ௘଴଻௦రାଵ.଻଻௘଴ଽ௦యାଶ.଴ଶ଺௘ଵ଴௦మାସ.଺଺ଵ௘ଵ଴௦ାଶ.ସ଼଺௘ଵ଴଴.଴଴଴ସ௦ఴାଵ.ଷ଺௦ళାଵହଷଵ௦లା଺.ଶ଻ଽ௘଴ହ௦ఱାହ.଺ଶଵ௘଴଻௦రାଶ.ଶଶଽ௘଴ଽ௦యାଶ.ଵହ଻௘ଵ଴௦మାସ.଻ହସ௘ଵ଴௦ାଶ.ସ଼଺௘ଵ଴  (44)

𝑇௕ି஺ை஺ି௉ூ஽ே஽మேమ(𝑠) = ହ.଼଻଺௘଴ସ௦ఱା ଵ.଴଴ଷ௘଴଼௦రାଵ.଴ହ଻௘ଵ଴௦యାଵ.ଵହ଻௘ଵଵ௦మାଷ.଴ଷହ௘ଵଵ௦ାଵ.ଶହହ௘ଵଵ଴.଴଴଴ସ௦ఴାଶ.ଶ଺௦ళାସଷଶଶ௦లାଶ.ଽସସ௘଴଺௦ఱାଶ.ଽଶଽ௘଴଼௦రାଵ.ଶଽ௘ଵ଴௦యାଵ.ଶଶ௘ଵଵ௦మାଷ.଴଼ସ௘ଵଵ௦ାଵ.ଶହହ௘ଵଵ  (45)
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Table 10 presents the optimal parameters of the PIDND2N2 controller, obtained using
both the b-AOA and the original AOA.

Table 10. Optimal parameters of PIDND2N2 controller obtained via b-AOA and original AOA.

Optimized by Kp Ki Kd1 Kd2 n1 n2

b-AOA 4.8723 2.0240 1.8094 0.15049 1595.2 1971.2
AOA 3.9448 2.1188 1.6757 0.13014 1544.2 871.72

Using those values would yield the following transfer functions of the optimized
systems for the original AOA and proposed b-AOA.

TAOA−PIDND2 N2 (s) =
1.015e04s5 + 1.674e07s4 + 1.77e09s3 + 2.026e10s2 + 4.661e10s + 2.486e10

0.0004s8 + 1.36s7 + 1531s6 + 6.279e05s5 + 5.621e07s4 + 2.229e09s3 + 2.157e10s2 + 4.754e10s + 2.486e10
(44)

Tb−AOA−PIDND2 N2 (s) =
5.876e04s5 + 1.003e08s4 + 1.057e10s3 + 1.157e11s2 + 3.035e11s + 1.255e11

0.0004s8 + 2.26s7 + 4322s6 + 2.944e06s5 + 2.929e08s4 + 1.29e10s3 + 1.22e11s2 + 3.084e11s + 1.255e11
(45)

8.3. Stability of the Proposed Design Method

In this section, we analyze the stability of the proposed design method by evaluating
the step response and open-loop frequency response of the b-AOA- and AOA-tuned
PIDND2N2 controllers.

Figure 13 and Table 11 present the transient response performance metrics for the
b-AOA- and AOA-tuned PIDND2N2 controllers. The step response of both controllers is
observed concerning the change in the terminal voltage. As illustrated in Figure 13, the
b-AOA-tuned PIDND2N2 controller exhibits a faster rise time and settling time with zero
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overshoot compared to the AOA-tuned PIDND2N2 controller. This implies that the b-AOA-
tuned system reaches the desired state more rapidly without oscillations, demonstrating its
superior stability in the time domain. The numerical results from Table 11 confirm these
visual observations.
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Figure 13. Step response of b-AOA- and AOA-tuned PIDND2N2 controllers for the change in the
terminal voltage.

Table 11. Transient response performance metrics for b-AOA- and AOA-tuned PIDND2N2 controllers.

Design Method Rise Time (s) Settling Time (s) Overshoot (%)

b-AOA-tuned PIDND2N2 0.033485 0.050752 0
AOA-tuned PIDND2N2 0.037393 0.057523 0.043859

Figure 14 and Table 12 present the open-loop Bode diagrams and frequency response
performance metrics for the controllers. In the frequency domain, the b-AOA-tuned
PIDND2N2 controller showcases a higher phase margin, greater gain margin, and a wider
bandwidth compared to the AOA-tuned PIDND2N2 controller. These results signify that the
b-AOA-based controller maintains better stability and frequency response characteristics,
making it superior in terms of overall system stability.
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Table 12. Frequency response performance metrics for b-AOA- and AOA-tuned PIDND2N2 controllers.

Design Method Phase Margin (◦) Gain Margin (dB) Bandwidth (rad/s)

b-AOA-tuned PIDND2N2 70.797 28.888 64.820
AOA-tuned PIDND2N2 69.810 23.368 57.819

8.4. Compared Algorithms and Respective Transfer Functions

In this section, we provide a comparative analysis of well-known methods in the lit-
erature, which employ different types of controllers. The controller types used in these
approaches are as follows: sine cosine algorithm (SCA)-based PID controller [29], whale opti-
mization algorithm (WOA)-based PIDA controller [30], slime mould algorithm (SMA)-based
FOPID controller [31], and particle swarm optimization (PSO)-based PIDD2 controller [32].

The parameters for the SCA-based PID controller [29] are as follows: Kp = 0.9826,
Ki = 0.8337, and Kd = 0.4982. The transfer function of the closed-loop AVR system using
this approach is given by the following equation.

TSCA−PID(s) =
0.04982s3 + 5.08s2 + 9.909s + 8.337

0.0004s5 + 0.0454s4 + 0.555s3 + 6.492s2 + 10.83s + 8.337
(46)

The parameters for the WOA-based PIDA controller [30] are as follows: Kp = 777.401,
Ki = 397.741, Kd = 500.652, Ka = 103.02, α = 550.118, and β = 915.041. The transfer
function of the closed-loop AVR system using this approach is given by the following equation.

TWOA−PIDA(s) =
10.3s4 + 1080s3 + 5084s2 + 7814s + 3977

0.0004s7 + 0.2654s6 + 25.9s5 + 348.4s4 + 2370s3 + 6938s2 + 8689s + 3977
(47)

The parameters for the SMA-based FOPID controller [31] are as follows: Kp = 2.2554,
Ki = 1.2586, Kd = 0.6472, λ = 1.0274, and µ = 1.1877. The transfer function of the
closed-loop AVR system using this approach is given by the following equation.

TSMA−FOPID(s) =
0.06472s3.2151 + 6.472s2.2151 + 0.22554s2.0274 + 22.554s1.0274 + 0.12586s + 12.586

0.0004s5.0274 + 0.0454s4.0274 + 0.555s3.0274 + 6.472s2.2151 + 1.51s2.0274 + 23.554s1.0274 + 12.586
(48)

The parameters for the PSO-based PIDD2 controller [32] are as follows: Kp = 2.7784,
Ki = 1.8521, Kd1 = 0.9997, and Kd2 = 0.07394. The transfer function of the closed-loop AVR
system using this approach is given by the following equation.

TPSO−PIDD2(s) =
0.007394s4 + 0.8394s3 + 10.27s2 + 27.97s + 18.52

0.0004s5 + 0.0454s4 + 1.294s3 + 11.51s2 + 28.78s + 18.52
(49)

These equations define the transfer functions of the AVR systems under the influence
of different control methods. The following subsections provide a comparative analysis of
these methods based on various performance criteria.

8.5. Comparative Transient Response Analysis

Figure 15 displays the comparative step response of different control approaches for
the AVR system. This figure visually represents the transient response of various control
methods and provides insights into their performance. The step response graph shows
how each method reacts to a change in the terminal voltage.

Table 13 complements the visual representation by providing numerical values for the
transient response metrics of different control approaches. These metrics include the rise time,
settling time, and overshoot, which are essential indicators of the system’s dynamic behavior.

Upon analyzing both the figure and the table, it becomes evident that the b-AOA-
tuned PIDND2N2 controller excels in achieving a superior transient response compared to
other control approaches. It exhibits the shortest rise time (0.033485 s) and settling time
(0.050752 s) while completely eliminating overshoot. In contrast, the other control methods,
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including the AOA-tuned PIDND2N2, SCA-tuned PID, WOA-tuned PIDA, SMA-tuned
FOPID, and PSO-tuned PIDD2, exhibit longer rise and settling times and, in some cases,
significant overshoot. These results emphasize the superiority of the b-AOA-based control
approach in providing a faster and more stable transient response, which is crucial for
maintaining the AVR system’s stability and performance during dynamic voltage changes.
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tuned FOPID, and PSO-tuned PIDD2, exhibit longer rise and settling times and, in some cases, 
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Table 13. Comparative numerical values for transient response of different control approaches.

Design Method Rise Time (s) Settling Time (s) Overshoot (%)

b-AOA-tuned PIDND2N2 0.033485 0.050752 0
AOA-tuned PIDND2N2 0.037393 0.057523 0.043859
SCA-tuned PID [29] 0.1472 0.84133 11.425
WOA-tuned PIDA [30] 0.32772 0.49543 1.6483
SMA-tuned FOPID [31] 0.087541 0.4979 15.998
PSO-tuned PIDD2 [32] 0.092935 0.16347 0.0025797

8.6. Comparative Frequency Response Analysis

Figure 16 provides a comparative view of the Bode diagrams for different control
approaches applied to the AVR system. These diagrams illustrate the frequency response
characteristics of each control method, offering insights into how they perform across a
range of frequencies.
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Table 14 complements the visual representation with numerical values that quantify
the frequency response metrics for each control approach. These metrics include the phase
margin, gain margin, and bandwidth, which are crucial indicators of the system’s stability
and ability to handle varying frequencies.

Table 14. Comparative numerical values for frequency response of different control approaches.

Design Method Phase Margin (◦) Gain Margin (dB) Bandwidth (rad/s)

b-AOA-tuned PIDND2N2 70.797 28.888 64.820
AOA-tuned PIDND2N2 69.810 23.368 57.819
SCA-tuned PID [29] 52.596 20.300 14.821
WOA-tuned PIDA [30] 67.671 26.123 6.7076
SMA-tuned FOPID [31] 49.142 20.193 23.914
PSO-tuned PIDD2 [32] 79.638 Infinite 23.503

Upon analyzing both the figure and the table, it is clear that the b-AOA-tuned
PIDND2N2 controller stands out as the superior choice for frequency response analy-
sis. It exhibits the highest phase margin (70.797◦), indicating robust stability and the most
favorable gain margin (28.888 dB) among all the methods, ensuring ample room for gain
adjustments without instability. Moreover, it possesses the widest bandwidth (64.82 rad/s),
signifying a faster system response to frequency variations. In contrast, the other control
approaches, including the AOA-tuned PIDND2N2, SCA-tuned PID, WOA-tuned PIDA,
SMA-tuned FOPID, and PSO-tuned PIDD2, generally display lower phase margins, lower
gain margins, and narrower bandwidths. The b-AOA-based controller, on the other hand,
excels in maintaining system stability across a broad frequency range and offers improved
performance for handling dynamic frequency changes. These results underscore the su-
periority of the b-AOA-tuned PIDND2N2 controller in providing robust and responsive
frequency characteristics, which are vital for the stable and efficient operation of the AVR
system under various operating conditions.

8.7. Comparisons with the Reported Recent Works

In this section, we compare the proposed PIDND2N2 controller tuned with the b-AOA
to several recently reported control methods for the AVR system. These methods include a
variety of controllers, each tuned using different optimization algorithms such as marine
predators algorithm (MPA)-based FOPID [33], hybrid atom search particle swarm opti-
mization (h-ASPSO)-based PID [34], equilibrium optimizer (EO)-based TIλDND2N2-based
controller [35], reptile search algorithm (RSA)-based FOPIDD2 [11], improved Runge–Kutta
(iRUN) algorithm-based PIDND2N2 [36], symbiotic organism search (SOS) algorithm-based
PID-F [37], whale optimization algorithm (WOA)-based 2DOF FOPI [38], Lévy flight-based
RSA with local search ability (L-RSANM)-based PID [39], chaotic black widow algorithm
(ChBWO)-based FOPID [20], genetic algorithm (GA)-based fuzzy PID [40], sine cosine
algorithm (SCA)-based FOPID with fractional-order filter [41], hybrid simulated annealing–
Manta ray foraging optimization (SA-MRFO) algorithm-based PIDD2 [42], slime mould
algorithm (SMA)-based PID [43], gradient-based optimization (GBO)-based FOPID [44],
and nonlinear SCA-based sigmoid PID [45].

We evaluate their transient response performance to assess the effectiveness of the
proposed approach. Table 15 provides a comprehensive overview of the transient response
metrics, including rise time, settling time, and overshoot, for the proposed approach
and other recent methods. The results demonstrate the efficacy of the b-AOA-based
PIDND2N2 controller in comparison to various state-of-the-art methods as it stands out
with an impressive performance, featuring a remarkably low rise time (0.033485 s), a
fast settling time (0.050752 s), and zero overshoot. This suggests the exceptional stability
and responsiveness of the b-AOA-tuned controller. Therefore, the table clearly illustrates
the effectiveness of the proposed b-AOA-based PIDND2N2 controller in achieving rapid
responses and maintaining stable performance, as evidenced by its minimal overshoot.
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It consistently outperforms or rivals the other methods in the evaluation, reinforcing its
superiority for the AVR system’s transient response.

Table 15. Transient response performance of the proposed approach with respect to recently reported
other efficient methods.

Ref. Year Used Controller Type Tuning Method Rise Time (s) Settling Time (s) Overshoot (%)

Proposed PIDND2N2 b-AOA 0.033485 0.050752 0
[33]

2023

FOPID MPA 0.0833 0.1106 0.55
[34] PID h-ASPSO 0.3097 0.4679 1.2476
[35] TIλDND2N2 EO 0.03752 0.0596 0.4128
[11] FOPIDD2 RSA 0.0487 0.0806 0
[36]

2022

PIDND2N2 iRUN 0.0399 0.0626 0
[37] PID-F SOS 0.267 0.371 0.007
[38] 2DOF fractional-order PI WOA 1.12 1.74 1.17
[39] PID L-RSANM 0.3076 0.4669 0.9582
[20] FOPID ChBWO 0.1103 0.169 1.1838
[40] Fuzzy PID GA 0.1857 0.2963 1.0407
[41]

2021

FOPID with fractional filter SCA 0.1230 0.1670 0.1262
[42] PIDD2 SA-MRFO 0.0535 0.0798 0.7562
[43] PID SMA 0.3149 0.4817 0.6071
[44] FOPID GBO 0.0885 0.653 11.3
[45] Sigmoid PID NSCA 0.498 0.579 2.2

9. Conclusions and Future Works

In this study, we have introduced a novel approach to enhance the control of the
AVR in power systems. By uniting a PIDND2N2 controller with the novel b-AOA, we
aimed to address the limitations associated with conventional methods. The introduction
of the PIDND2N2 controller offers enhanced precision, stability, and responsiveness in
voltage regulation. This innovative configuration mitigates the shortcomings of existing ap-
proaches, promising a superior control performance. The b-AOA optimizer is meticulously
fine-tuned with the integration of PS and EOBL strategies into the original AOA in order
to demonstrate an exceptional performance. The assessment on 23 benchmark functions
shows that it consistently achieves accurate solutions, exhibits robustness in addressing
various optimization problems, and showcases remarkable potential for a wide range
of applications. Extensive comparative analyses reveal the superiority of the proposed
approach in transient response characteristics. The b-AOA-based AVR control approach
excels in rise time, settling time, and overshoot, outperforming other methods. It also
ensures robust stability with favorable gain margins and a broader bandwidth, offering
improved performance for handling dynamic frequency changes. The results of our work
set a new benchmark for AVR control, advancing stability, responsiveness, and reliability
in power systems.

Future research in this domain should focus on several key aspects. Firstly, further
refinement of the b-AOA optimization framework, exploration of additional optimization
problems, and evaluation of its applicability to diverse domains are promising directions.
Inspired by recent developments in integrated energy systems [54], our subsequent work
will explore the adaptation of our optimization approach to various energy systems, aiming
to showcase its advantages and contribute to the broader field. Secondly, investigating the
practical implementation of our proposed control scheme in real-world power systems
and conducting extensive field testing will provide valuable insights into its real-world
performance. Additionally, the integration of emerging technologies, such as machine
learning and artificial intelligence, into AVR control systems holds potential for further
enhancement. Lastly, addressing scalability and assessing the applicability of our approach
in more complex power systems will be crucial for its broader adoption. The pursuit of
more efficient, stable, and responsive AVR systems remains a vibrant field of research, and
we anticipate potential breakthroughs on the horizon.
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8. Micev, M.; Ćalasan, M.; Radulović, M. Optimal Tuning of the Novel Voltage Regulation Controller Considering the Real Model of
the Automatic Voltage Regulation System. Heliyon 2023, 9, e18707. [CrossRef]

9. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods
Appl. Mech. Eng. 2021, 376, 113609. [CrossRef]

10. Omar, O.A.M.; Marei, M.I.; Attia, M.A. Comparative Study of AVR Control Systems Considering a Novel Optimized PID-Based
Model Reference Fractional Adaptive Controller. Energies 2023, 16, 830. [CrossRef]

11. Can, Ö.; Andiç, C.; Ekinci, S.; Izci, D. Enhancing Transient Response Performance of Automatic Voltage Regulator System by
Using a Novel Control Design Strategy. Electr. Eng. 2023, 105, 1993–2005. [CrossRef]

12. Mok, R.; Ahmad, M.A. Fast and Optimal Tuning of Fractional Order PID Controller for AVR System Based on Memorizable-
Smoothed Functional Algorithm. Eng. Sci. Technol. Int. J. 2022, 35, 101264. [CrossRef]
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