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Abstract: LiDAR point clouds often suffer from sparsity and uneven distributions in outdoor scenes,
leading to the poor performance of cutting-edge 3D object detectors. In this paper, we propose
Point-Rich, which is designed to improve the performance of 3D object detection. Point-Rich consists
of two key modules: HighDensity and HighLight. The HighDensity module addresses the issue of
density imbalance by enhancing the point cloud density. The HighLight module leverages image
semantic features to enrich the point clouds. Importantly, Point-Rich imposes no restrictions on the
3D object detection architecture and remains unaffected by feature or depth blur. The experimental
results show that compared with the Pointpillars on the KITTI dataset, the mAP of Point-Rich under
the bird’s eyes view improves by 5.53% on average.

Keywords: Point-Rich; 3D object detection; lightweight network

MSC: 68-04

1. Introduction

In autonomous driving scenarios, 3D object detection is crucial for understanding the
surroundings. Cameras and LiDAR are two fundamental sensors used by autonomous
vehicles. LiDAR provides precise 3D localization and velocity estimation, unaffected
by weather or lighting conditions. However, LiDAR measurements are sparse, posing
challenges for 3D perception. Cameras provide rich visual information, including color,
texture, and pixel-level details. To overcome limitations, multi-modal data fusion has
emerged as an effective approach, combining the strengths of different sensor modalities.
In this paper, we present a simple and effective framework to fuse 3D LiDAR and high-
resolution color measurements.

Existing fusion methods for multi-modal 3D point cloud object detection can be
broadly categorized into three groups: point-level fusion, proposal-level fusion, and feature-
level fusion. Point-level fusion methods, like Pointpainting [1] and Pointaugmenting [2],
integrate information at the point level by projecting or incorporating additional data
onto the point cloud, such as RGB images or semantic segmentation maps, to enhance the
discriminative representation. Proposal-level fusion methods, including F-PointNets [3],
F-ConvNet [4], MV3D [5], and AVOD [6], operate at the proposal level and combine images
and point clouds to generate regional proposals, improving the proposal quality. Feature-
level fusion methods, such as EPNet [7] and EPNet++ [8], fuse features extracted from
different modalities, aiming to learn feature representations from both LiDAR point clouds
and images.
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Nevertheless, cutting-edge 3D object detectors often face challenges due to the sparsity
and uneven distribution of data in outdoor scenes. This sparsity and uneven distribution
negatively impact the performance of these detectors. To address these limitations, this
paper introduces Point-Rich, a lightweight, flexible, and efficient method for multi-modal
fusion. Point-Rich enhances various 3D object detection networks by supplementing the
semantic characteristics of scene images assembled using LiDAR point clouds. This novel
approach comprises two essential modules: the HD module and the HL module. The HD
module generates a high-resolution point cloud in proximity to the 3D object, while the HL
module distinguishes foreground points from background points by colorizing the point
cloud in the vicinity of the object. The application of this method makes the measurement
of LiDAR point clouds more accurate and robust and improves the accuracy and reliability
of 3D object detection.

Our contributions can be summarized as follows:

• We propose Point-Rich, a lightweight plug-and-play module that encompasses two
crucial components: the HighDensity module (HD) and the HighLight module (HL).
By seamlessly integrating these modules into existing 3D object detection networks,
the overall performance can be significantly enhanced.

• The HighDensity (HD) module aims to enhance the density of the point cloud sur-
rounding the object, ensuring more accurate and consistent measurements.

• The HighLight (HL) module enriches the point cloud with additional semantic features
from images, enabling improved discrimination between the foreground object and
the background.

2. Related Work

In this section, we present an overview of LiDAR-based 3D learning and multi-modal
fusion-based 3D object detection, discussing different approaches within each category.

2.1. LiDAR-Based 3D Learning

Point-based methods. Point-based approaches utilize the original point cloud as
input. One example is PointNet [9], which employs a symmetric function to extract
features from point clouds for classification tasks. PointNet++ [10] extends PointNet to
perform 3D detection by extracting key points and their features. Other methods, such as
3DSSD [11] and Point-RCNN [12], combine PointNet with region of interest (RoI) pooling
or refinement modules for object detection.

Voxel-based methods. Voxel-based methods convert point cloud data into a dense
voxel grid and perform classification and localization tasks on the grid. PointPillars [13]
represents the point cloud as a bird’s eye view (BEV) pseudo-image. VoxelNet [14] divides
the point cloud into voxels and maps them to fixed-size voxel features for detection.
SECOND [15] improves upon VoxelNet by introducing a feature pyramid to capture multi-
scale features. Voxel-based methods offer a higher computational efficiency compared to
point-based methods, enabling faster training on large-scale datasets.

PV-based methods. PV-based methods merge the advantages of point-based and
voxel-based methods, combining detailed point cloud information with the modeling
capabilities of voxels. PV-RCNN [16] includes a voxel feature encoder and a point cloud
feature encoder, which encode voxel and point cloud information, respectively, and combine
them for detection. While PV-based methods achieve a good performance, they often
require significant computational resources.

2.2. Multi-Modal Fusion-Based 3D Object Detection

Multi-modal fusion-based 3D object detection aims to leverage complementary infor-
mation from images and point clouds. Existing fusion methods can be categorized into
point-level, proposal-level, and feature-level fusion.

Point-level fusion. Point-level fusion methods augment the point cloud with addi-
tional pixel features from images. For example, PointPainting [1] attaches semantic scores
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from a pretrained semantic segmentation network to each LiDAR point. PointAugment-
ing [2] decorates the point cloud with depth embeddings from camera images. However,
obtaining these pixel features can be challenging, and aligning LiDAR points with image
pixels can introduce geometric alignment issues.

Proposal-level fusion. Proposal-level fusion fuses detection results obtained from
individual sensors. F-PointNets [3] and F-ConvNet [4] generate frustum point clouds based
on 2D detection results and perform 3D object detection on each frustum. MV3D [5] and
AVOD [6] generate region proposals separately from images and point clouds and fuse
them for refined 3D bounding box estimation. Proposal-level fusion can face challenges
when dealing with occluded objects.

Feature-level fusion. Feature-level fusion combines features extracted from both
sensors through domain transformation. Methods like EPNet [7], 3D-CVF [17], MMF [18],
and ContFuse [19] use different techniques to fuse features at different scales. Recent
works, such as DeepFusion [20], AutoAlign [21], and TransFusion [22], employ Transformer
models to dynamically capture correlations between camera and LiDAR features.

Our proposed method combines proposal-level and point-level fusion approaches. In
the HighDensity (HD) module, we generate dense point clouds in point cloud scenes using
region proposals from images. In the HighLight (HL) module, we perform point-level
fusion by projecting additional information onto point clouds to enhance their representa-
tion. This combination addresses occlusion issues in proposal-level fusion and alignment
problems in point-level fusion. The HD and HL modules work in tandem to enhance the
overall performance of Point-Rich in 3D object detection tasks. This combined approach
improves the accuracy and reliability of object detection.

3. Methodology

The methodology of the proposed method, Point-Rich, is outlined in Figure 1. Point-
Rich consists of two essential components: the HighDensity module (HD) and the High-
Light module (HL). These modules work together to enhance the original sparse 3D point
cloud by generating dense virtual points and decorating them with semantic segmentation
information. The HD and HL modules work together to enhance Point-Rich. The HD mod-
ule ensures a denser point cloud representation, capturing more detailed information about
the target object. Simultaneously, the HL module decorates meaningful semantic features,
enabling a more accurate and comprehensive analysis of the object. Finally, these dense
semantic points are used in 3D object detection tasks to realize the accurate perception and
recognition of objects in the environment.
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Figure 1. Overview of Point-Rich. Point-Rich comprises two essential components: (1) HighDensity
module; (2) HighLight module. The HD module enhances point cloud density around the instance,
providing a more robust and advanced representation. The HL module uses segmentation scores to
decorate point clouds and generate point clouds containing semantic segmentation information.
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In summary, Point-Rich’s HD module enhances the point cloud density, while the HL
module decorates valuable semantic features. These two components work in tandem to
improve the overall performance of Point-Rich in 3D object detection tasks. This combined
approach improves the accuracy and reliability of object detection.

3.1. HighDensity Module

Generate dense semantic virtual points. The density imbalance in distant regions
affects the accuracy and stability of 3D object detection. To overcome this issue, the HD
module is employed to generate virtual point clouds related to the target object, enhancing
the point cloud density and ensuring consistent measurements. By leveraging the mature
stage of 2D object detection, instance frustums can be generated, serving as a basis for
creating virtual point clouds. This approach addresses the density imbalance between
objects by adjusting the density of virtual point clouds as needed, providing a more
balanced representation across distances. Virtual points enable consistent descriptions of
object shapes and features at different distances. Combining virtual points with the original
point cloud enhances the initial measurement, supporting subsequent 3D object detection
algorithms. This module improves the accuracy and reliability of 3D object detection by
making LiDAR point cloud measurements more accurate and robust.

Specifically, given a set of 2D detection results, we extend the original LiDAR points
and initially generate enhanced LiDAR points P = (x, y, z, r), where (x, y, z) is the 3D
position and r is the semantic feature from the 2D detector. For simplicity, we use 2D
detector class scores as semantic features.

We initiate the process by projecting the point cloud onto our detection. This involves
converting each LiDAR point (x, y, z, r)i into the reference frame of the RGB camera. Subse-
quently, we project these points into image coordinates p, accompanied by their associated
depth d, utilizing a perspective projection. For a specific 2D detection j, the assembly of
all projected points and depth values forms the object frustum Fj = (−→p , d). The frustum
only considers projected 3D points pi that fall within the detection mask mj. Any LiDAR
measurement falling outside detection masks is disregarded. Following this, we proceed to
generate virtual points from each frustum Fj.

Then, we randomly sample 2D points s ∈ m from each instance mask mj. For each
sampled point sk, a depth estimate d is obtained from its nearest neighbor in the frustum Fj.
Upon acquiring the depth estimate, we reverse the projection to return the point to its 3D space.

For each detection with relevant instance mask mj, we generate a fixed number of τ
multi-modal virtual points, which together with the original point cloud form the prelimi-
nary enhanced LiDAR points. We provide the algorithm for this process in Algorithm 1.

3.2. HighLight Module

Recode the LiDAR point cloud. In Point-Rich, the semantic segmentation network
plays a vital role in enhancing the precision and robustness of point cloud processing.
The image network, which receives input images, is responsible for generating per-pixel
class scores. By leveraging the 2D semantic segmentation network, accurate segmentation
information can be obtained, preserving fine contour details of objects and ultimately
enhancing the accuracy of object detection and segmentation.

However, the deep ambiguity that arises within the HD module can significantly
impact the accuracy and robustness of point cloud processing. To address this issue, we
propose an HL module where LiDAR points are projected onto the output of the image-
only semantic segmentation network. Subsequently, class scores are attached to each
point, enabling us to effectively handle complex scenarios involving variations in distance
and environmental conditions. By adopting this approach, we can improve the overall
robustness and stability of point cloud processing.

Specifically, the algorithm projects LiDAR points into the image, attaching the segmen-
tation fraction of the relevant pixels to the LiDAR points to create a drawn LiDAR point.
For the KITTI dataset, the output of the semantic segmentation network is a class score with
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C channels, where C = 4 (car, pedestrian, bicycle, background). This projection method
can better maintain the shape information of the object and can better deal with complex
situations, such as environmental changes and distance changes. We provide pseudo-code
for this process in Algorithm 2.

Algorithm 1: Generate dense semantic virtual points to initially enhance the
point cloud

Input: LiDAR point P = (x, y, z, r); Instance mask {m1, . . . , mn}; Homogeneous
transformation matrix T ∈ R4×4; Camera matrix C ∈ R3×4.

Output: Preliminary enhanced LiDAR point P.
1 for p = (x, y, z, r) ∈ P do

/* Perspective projection to 2D point p depth d */
2

−→p , d← PROJRCT(C, T, p)
3 for j ∈ {1, . . . n} do
4 if −→p ∈ mj then
5 Fj ← Fj ∪ {(−→p , d)} // Add point to frustum
6 end
7 end
8 end
9 for j ∈ {1, . . . n} do

10 S← Sampleτ(mj) for k ∈ {1, . . . τ} do
11 (−→p , d)← NN(Sk, Fj) // Find closest projected 3D point

/* Unproject the 2D point using the nearest neighbors depth */
12 q← Unproject(C, T, (Sk, d))
13 Add (q, e) to P
14 end
15 end

Algorithm 2: Recode the LiDAR point cloud

Input: LiDAR point P = (x, y, z, r); Instance mask {m1, . . . , mn}; Homogeneous
transformation matrix T ∈ R4×4; Camera matrix C ∈ R3×4.

Output: Preliminary enhanced LiDAR point P.
1 for p = (x, y, z, r) ∈ P do
2

−→p ← PROJRCT(C, T, p)
3

−→s = S[−→p [0],−→p [1], :]
4 p = Concatenate(p,−→s )

5 end

3.3. Three-Dimensional Object Detection

Two-dimensional object detection networks often encounter challenges such as impre-
cise 2D bounding box regression, and the HD module’s performance is influenced by the
output of any 2OD network. To address these issues, we draw inspiration from the data
augmentation techniques used in 2OD networks and propose a simple yet effective training
strategy for the 3D object detection network during both the training and inference stages.

During the training stage, we introduce a strategy to handle the variability in 2D
bounding box sizes. We randomly increase the length and width of the 2D bounding
box by 0% to 10%. This augmentation ensures that the 3D object detection network can
handle larger bounding boxes accurately. In the inference stage, we address the problem
of small-sized 2D bounding boxes by enlarging their dimensions by 5%. This expansion
enhances the receptive field of the frustum point cloud. Furthermore, we apply a confidence
threshold of 0.1 to filter out 2D bounding boxes with low confidence scores in the KiTTI
dataset. This filtering step helps to improve the overall detection accuracy by removing
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uncertain or unreliable detection results. By incorporating these modifications, we aim
to enhance the performance and robustness of the 3D object detection network, enabling
more accurate and reliable object detection in various scenarios.

The decorated point cloud can be used by LiDAR detectors that learn an encoder since
Point-Rich simply changes the input dimension and number of the LiDAR points. In this
paper, we prove that Point-Rich is suitable for different LiDAR detectors: PointPillars [13],
PointRCNN [12], and VirConv [23]. Despite these different design options, all LiDAR
detectors benefit from Point-Rich.

4. Experiments
4.1. Dataset

We validate our proposed Point-Rich 3D detector on KITTI [24].
KITTI. KITTI is a popular benchmark and evaluation framework for 3D object detec-

tion in autonomous driving scenarios. The dataset was collected with a vehicle equipped
with a 64-beam Velodyne LiDAR point cloud and a single PointGrey camera. Both the
training and testing datasets in this paper are derived from the KITTI dataset. It contains
7481 LiDAR and image frames for training and 7518 for testing. The KITTI object detec-
tion benchmark requires the detection of cars, pedestrians, and cyclists. Following the
commonly applied setting, training data are divided into 3712 samples and 3769 sam-
ples for train split and val split. The KITTI datasets are divided into easy, medium, and
hard difficulties, and the official KITTI leaderboard ranks performance based on medium
average accuracy. In the evaluation, we used the mean average precisionn(mAP) as a
primary metric. The mAP was calculated using recall 40-point precision (R40) and 11-point
precision. For object orientation detection, the average orientation similarity (AOS) is used
to measure the degree of orientation similarity between detection results and real labels.
Visualization of detection results in Figure 2 prove our method effective.

Figure 2. Qualitative analysis of KITTI results. PointRich+PointPillars predicted 3D bounding boxes
are displayed on the input point cloud.

4.2. Experiment Settings

The enriched point cloud can be seamlessly integrated into various 3D object detection
networks employing both pillar-based and point-based encoders. To demonstrate the
effectiveness of Point-Rich across different point-based 3D object detection networks, we
conduct extensive experiments on KITTI. We compare our approach against the two-stage
PointRCNN and pillar-based Pointpillar, which both serve as our baseline models. We
utilized publicly available implementations of PointPillars and PointRCNN algorithms and
extended them to incorporate semantic segmentation scores for four classes into the point
cloud. This augmentation resulted in an increase in the dimensions of the decorated point
cloud from 9 to 13 for PointPillars and from 4 to 8 for PointRCNN. In the case of PointPillars,
the modified encoder now has (13, 64) channels. The 8-dimensional augmented point
cloud for PointRCNN is used as input for both the encoder and the region pooling layer.
According to the model configuration provided in SASA [25], we train PointRCNN with
the ADAM optimizer for 80 epochs. The learning rate schedule is a one-cycle schedule [26]
with a peak learning rate at 0.01. We follow the original data augmentation strategies
and inference settings. No additional modifications were made to the public experimental
configurations. Please refer to [12,25] for more details.

In addition, we use Yolov5 [27] for 2D detection and the DeepLabv3+ [28] network [28]
for semantic segmentation on the KITTI dataset.
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Yolov5. For the KITTI dataset, we train 100 epochs in an end-to-end manner using the
largest model, Yolov5x, with the SGD optimizer, and use an image size of 1280 pixels in the
training and reasoning phases. In addition, we merge cars, trucks, and vans into the car
category, leaving only the car, pedestrian, and cyclist categories for training and reasoning.
We follow the original data enhancement strategy, training, and inference settings.

DeepLabv3+ [28]. For the image-based semantic segmentation, the segmentation
scores for our KITTI experiments are generated from DeepLabv3+. The network is first
pretrained on Mapillary [29], then finetuned on Cityscapes [30], and finally finetuned again
on KITTI pixelwise semantic segmentation [31]. Note that in semantic segmentation and
object detection, the class definition of a rider is different. In detection, the cyclist is defined
as rider on a bike, while in semantic segmentation, the cyclist is defined as a rider only and
the bike is a separate class. Therefore, there is a need to map the bikes to the cyclist class
when a rider is within its 1 m radius and the rest to the background.

4.3. Main Results

We evaluate the effectiveness of our proposed point cloud preprocessing module on
the KITTI datasets. To broadly validate point cloud data preprocessing, we selected three
distinct and representative baselines, PointPillars, PointRCNN, and VirConv, for evaluation.

For the visualization of the HL module, the results are shown in Figure 3, where the
green and red points are decorative points, and the black points are background point.
For the visualization of the HD module, the results are shown in Figure 4, where the
red points are newly generated near the target object and the gray points are the original
point cloud. Table 1 shows the 3D object detection performance on the KITTI validation
set. In the most competitive car category, adding Point-Rich to VirConv-L surpasses most
existing 3D detection networks in terms of 3D detection, bird’s eye view, and directional
average accuracy.

Figure 3. Visualization of HL module results. We create two different comparison figures. We show
our HL module results of two different scenes. The pictures on the left are the original point cloud,
and the pictures on the right are the result after HL module processing. The green and red points are
decorative points, and the black points are background points.

The core components proposed in this paper are added to existing LiDAR-based object
detection methods. The experimental results are shown in Tables 2 and 3. Experiments
have shown that, with the addition of Point-Rich, the LiDAR method can significantly
increase the average accuracy of cars, pedestrians, and bicycles in 3D object detection
tasks conducted from an aerial view on the KITTI verification set. In our study, we
successfully improved the detection accuracy of pedestrians and bicycles. This means
that our approach is better able to distinguish and identify these two categories of targets,
providing more accurate environmental awareness for autonomous driving systems. By
improving pedestrian and cyclist detection, we can improve the safety and reliability of
autonomous driving systems and reduce the potential risk of traffic accidents.
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Table 1. Results on the car category of the KITTI val set. The evaluation metrics of 3D detection,
bird’s eye view, and orientation average precision are calculated on 40 recall points. “L” and “C”
indicate the LiDAR and camera, respectively.

Methods Year Modality
3D Detection Bird’s Eye View Orientation

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
PointPillars [13] 2019 L 87.91 76.40 73.76 92.53 87.52 85.39 95.54 91.57 90.84
PointRCNN [12] 2019 L 92.04 82.63 80.55 93.19 90.31 88.48 95.90 94.01 91.84

3DSSD [11] 2020 L 92.37 83.11 80.13 95.22 91.31 88.72 98.63 95.07 92.50
3DSSD_SASA [25] 2022 L 92.23 85.28 82.58 95.38 91.81 89.27 98.62 95.52 94.78

SFD [32] 2022 L + C 92.73 87.82 84.59 95.78 92.68 90.19 99.05 96.72 94.95
VirConv-L [23] 2023 L + C 93.21 88.02 85.61 96.16 93.50 91.39 99.22 97.52 95.05

VirConv-L+Point-Rich - L + C 93.03 88.22 85.75 95.98 93.44 91.34 99.15 97.62 95.02

Table 2. Results on the KITTI val set under the bird’s eye view. PointPillars is used as the baseline.

Methods
mAP Car Pedestrian Cyclist
Mod. Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Pointpillars 66.88 92.53 87.52 85.39 59.63 52.82 48.32 83.97 60.31 56.31
Pointpillars+Point-Rich 72.41 93.15 87.82 85.56 66.51 60.58 56.52 89.12 68.84 64.55

Delta +5.53 +0.62 +0.30 +0.17 +6.88 +7.76 +8.20 +5.15 +8.53 +8.24

Figure 4. Visualization of HD module results. The red points are the enhancements generated near
the target object, and the green points are the original point cloud.

Table 3. Results on the car category of the KITTI val set. PointRCNN is used as the baseline.

Methods
Detection Bird’s Eye View Orientation

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
PointRCNN 91.45 82.28 78.33 93.08 88.73 86.34 95.78 93.19 89.57

PointRCNN+Point-Rich 92.04 82.63 80.55 93.19 90.31 88.48 95.90 94.01 91.84

Delta +0.59 +0.35 +2.22 +0.11 +1.58 +2.14 +0.12 +0.82 +2.27

All of the experimental results above show that our method is more suitable for 3D net-
works and can significantly improve the performance of existing 3D object detection networks.

4.4. Ablation Study

To demonstrate the effectiveness of the different modules proposed in this work, we
conduct module ablation experiments and compare them according to the order of Point-
Rich. These ablation module experiments are performed on the KITTI verification set, and
the ablation results of each module are shown in Table 4.

Effects of HD module. Comparing the first row (without adding any modules) with
the second row (adding the HD module), we can see improvements in the detection
accuracy. For example, in the easy scenario, the detection accuracy for cars increased from
92.53% to 93.81%. This indicates that the HD module focuses on enhancing the point cloud
density surrounding the target object, resulting in a more comprehensive and accurate
representation. It effectively improves the detection performance in various scenarios.

Effects of HL module. Comparing the first row with the third row (adding the
HL module), we can observe significant improvements in detection accuracy across all
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scenarios. By converting the point cloud data into a visual form, the HL module provides
intuitive visual information that helps the algorithm better understand the scene and target.
This enhancement in understanding the shape, size, and orientation of the target leads to
improved accuracy and robustness in pedestrian detection.

Table 4. Ablation results of our Point-Rich in the bird’s eye view (BEV) of the KITTI val set. PointPillars
is used as the baseline. The 3D average precision metric is calculated on 40 recall points.

PointPillars HD Module HL Module
Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
X 92.53 87.52 85.39 59.63 52.82 48.32 83.97 60.31 56.31
X X 93.81 87.32 85.13 59.40 52.52 48.46 83.29 59.65 55.97
X X 93.19 87.71 86.99 64.35 59.57 56.28 89.07 68.57 65.03
X X X 93.15 87.82 85.56 66.51 60.58 56.52 89.12 68.84 64.55

After adding the HD module and HL module, the effect is better than that of adding
a single module. By observing the data in Table 4, we believe that a small number of
noise points may be introduced in the HD module due to the depth ambiguity, but after
the HL module these noise points are distinguished and weakened, so as to improve the
detection effect.

Both the HD module and the HL module play an important role in the proposed
Point-Rich and contribute significantly to the performance of the overall algorithm. This
further proves the effectiveness and superiority of the proposed method. By introducing the
HD module and HL module, we have successfully improved the quality and availability of
LiDAR point cloud data, laying a solid foundation for subsequent target detection missions.
The HL module provides intuitive visual information by converting point cloud data into
a visual form, which helps the algorithm better understand the scene and target. This
decoration process enhances the understanding of features such as the shape, size, and
orientation of the target, thus improving the accuracy and robustness of object detection.

4.5. Compared with SOTA

VirConv-S [23], the SOTA method, generates a large number of virtual points with the
help of a deep completion network, which is similar to our HighDensity module. However,
the number of virtual points generated by VirConv-S is much larger than the original
point cloud, which greatly increases the amount of input data and model parameters. Our
approach increases the point cloud density while maintaining computational efficiency.
This makes our method stand out among many 3D object detection methods.

4.6. Limitations

The limitations of Point-Rich are summarized below:
Blindness to objects unrecognized by 2D networks. Point-Rich relies on the output

of 2D networks to enrich the point cloud data. However, if an object is not detected by
the 2D network, Point-Rich cannot compensate for this limitation. Consequently, the
3D network may remain unaware of such objects, leading to their omission in the final
detection results.

Potential enhancement of false positives. In cases where the 2D object detection
network mistakenly identifies an object, Point-Rich may inadvertently amplify the features
of the corresponding point cloud. This may result in an increased likelihood of false
positives, as the enriched features may mislead the subsequent 3D object detection network.

It is important to consider these limitations when applying Point-Rich in practical
scenarios. Further research and improvements are necessary to address these challenges
and enhance the overall effectiveness and robustness of Point-Rich in multi-modal 3D
object detection tasks.
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5. Conclusions

This paper proposed Point-Rich, a simple yet effective method for multi-modal fusion,
aiming to improve the detection performance of 3D object detection networks. Our main
concept is to mitigate the discrepancy between objects that are near and far in the point
clouds and to distinguish the foreground points from background points. Extensive
experiments conducted on the KITTI dataset demonstrate the effectiveness and superiority
of Point-Rich and show the impressive improvements for the 3D object detection networks.
In addition, by integrating lightweight and flexible Point-Rich modules, several 3D object
detection networks are empowered to prioritize regions that are more likely to contain
target objects. Our proposed method provides a promising direction for 3D object detection.
Not only can it be implemented in point-based models but it is also compatible with, for
example, pillar-based networks. We hope that our work encourages further advancements
in this field and encourages researchers to explore innovative solutions for addressing the
challenges in 3D object detection.
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