
Citation: Quintero, R.; Mendiola, E.;

Guzmán, G.; Torres-Ruiz, M.;

Guzmán Sánchez-Mejorada, C.

Algorithm for the Accelerated

Calculation of Conceptual Distances

in Large Knowledge Graphs.

Mathematics 2023, 11, 4806.

https://doi.org/10.3390/

math11234806

Academic Editors: András Benczúr,

Domenico Ursino and Bálint Molnár

Received: 10 October 2023

Revised: 16 November 2023

Accepted: 25 November 2023

Published: 28 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Algorithm for the Accelerated Calculation of Conceptual
Distances in Large Knowledge Graphs
Rolando Quintero , Esteban Mendiola, Giovanni Guzmán * , Miguel Torres-Ruiz
and Carlos Guzmán Sánchez-Mejorada

Centro de Investigación en Computación (CIC), Instituto Politécnico Nacional (IPN),
Unidad Profesional Adolfo López Mateos (UPALM)-Zacatenco, Mexico City 07320, Mexico;
rquintero@ipn.mx (R.Q.); emendiolat2020@cic.ipn.mx (E.M.); mtorresru@ipn.mx (M.T.-R.);
cmejora@ipn.mx (C.G.S.-M.)
* Correspondence: jguzmanl@ipn.mx; Tel.: +52-(55)-5729-6000 (ext. 56617)

Abstract: Conceptual distance refers to the degree of proximity between two concepts within a
conceptualization. It is closely related to semantic similarity and relationships, but its measurement
strongly depends on the context of the given concepts. DIS-C represents an advancement in the
computation of semantic similarity/relationships that is independent of the type of knowledge
structure and semantic relations when generating a graph from a knowledge base (ontologies,
semantic networks, and hierarchies, among others). This approach determines the semantic similarity
between two indirectly connected concepts in an ontology by propagating local distances by applying
an algorithm based on the All Pairs Shortest Path (APSP) problem. This process is implemented for
each pair of concepts to establish the most effective and efficient paths to connect these concepts.
The algorithm identifies the shortest path between concepts, which allows for an inference of the
most relevant relationships between them. However, one of the critical issues with this process is
computational complexity, combined with the design of APSP algorithms, such as Dijkstra, which
is O

(
n3). This paper studies different alternatives to improve the DIS-C approach by adapting

approximation algorithms, focusing on Dijkstra, pruned Dijkstra, and sketch-based methods, to
compute the conceptual distance according to the need to scale DIS-C to analyze very large graphs;
therefore, reducing the related computational complexity is critical. Tests were performed using
different datasets to calculate the conceptual distance when using the original version of DIS-C
and when using the influence area of nodes. In situations where time optimization is necessary
for generating results, using the original DIS-C model is not the optimal method. Therefore, we
propose a simplified version of DIS-C to calculate conceptual distances based on centrality estimation.
The obtained results for the simple version of DIS-C indicated that the processing time decreased
2.381 times when compared to the original DIS-C version. Additionally, for both versions of DIS-C
(normal and simple), the APSP algorithm decreased the computational cost when using a two-hop
coverage-based approach.

Keywords: conceptual distance; shortest path algorithms; accelerated calculation; computational
complexity

MSC: 68Q25

1. Introduction

The spread of information and communication technologies has significantly increased
the amount of available information. Thus, we can decode this information through
concepts. Conceptual matching is essential for human and machine reasoning, enabling
problem-solving and data-driven inference. Researchers studying the human brain use
the term “concept” to describe a unit of meaning stored in memory. The ability to relate

Mathematics 2023, 11, 4806. https://doi.org/10.3390/math11234806 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11234806
https://doi.org/10.3390/math11234806
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4454-8791
https://orcid.org/0000-0002-8420-3520
https://orcid.org/0000-0001-8289-6979
https://orcid.org/0000-0001-6935-2870
https://doi.org/10.3390/math11234806
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11234806?type=check_update&version=1

Mathematics 2023, 11, 4806 2 of 30

concepts and generate knowledge is inherent to humans. Giving computers this capability
is a significant advance in computer science.

Transferring the relationship between concepts from the human domain to the compu-
tational domain is complex. Sociocultural and language aspects are closely related to the
types of concepts acquired by human beings. Determining the similarity between concepts
so that a computer can process them is one of the most fundamental and relevant problems
in various research fields. Over time, people have explored multiple structures and meth-
ods to represent the semantic relationships underlying conceptual distance. The graph is
one of the most commonly used abstract data types to represent this information, designed
to model connections between people, objects, or entities. Nodes and edges are the two
main elements of a graph. Moreover, graphs have specific properties that make them
unique and important in different applications.

According to Mejia Sanchez-Bermejo (2013) [1], measuring the conceptual distance and
semantic similarity between words has been studied for many years in the fields of linguistic
computing and artificial intelligence (AI) because it represents a generic procedure in a
wide variety of applications, such as natural language processing, word disambiguation,
detection and error correction in text documents, and text classification, among others.
Based on psychological assessments, semantic similarity refers to how humans categorize
and organize objects or entities [2]. Semantic similarity is a metric determining how closely
two terms representing objects from a conceptualization are related. It is determined by
analyzing whether the terms share a common meaning [3].

Reducing the computational cost of computing conceptual distances for each pair of
concepts in massive graphs will accelerate the evaluation of similarity. As a result, it will
have practical benefits and contribute to the development of more efficient applications
to solve practical problems, for instance, reducing the computational time required to
search for pairs of documents with high semantic similarity in large datasets composed of
millions of documents and analyzing the transport network obtained automatically using
AI techniques, as described by Chen et al. (2022) [4]. It also extends the understanding of
the phenomenon of semantic similarity in computing systems based on conceptual graphs.
The research and development of efficient algorithms that reduce computation time by
combining approximation or analytical techniques is essential to advance the study of
semantic similarity.

In recent years, conceptual graphs generated from ontologies have gained importance.
These graphs are strongly connected, where each concept is a vertex, and the two edges
represent each relationship (one in each direction). Consequently, it is possible to apply
various graph theory search algorithms to study and analyze the relations represented in a
conceptual graph. DIS-C Quintero et al. (2019) [5] is a method with which to measure the
conceptual distance between concepts. It requires a conversion of a conceptualization into a
conceptual graph by calculating the All Pairs Shortest Path (APSP) through the graph. Thus,
shortest path algorithms are crucial for solving various optimization problems. The primary
purpose of these algorithms is to find the path with the minimum cost or distance between
a given pair of vertices in a graph or network. The study of shortest path algorithms and the
proposal of different approaches to reduce computational cost have been largely studied,
as per the research works proposed by Dreyfus (1969) [6], Gallo and Pallottino (1988) [7],
Magzhan and Jani (2013) [8], and Madkour et al. (2017) [9].

Different research works have proposed several techniques and optimizations for
efficient, shortest path algorithm performance to handle massive data. Fuhao and Jip-
ing (2009) [10] proposed a novel algorithm using adjacent nodes that was more effective at
analyzing networks with massive spatial data. Chakaravarthy et al. (2016) [11] introduced
a scalable parallel algorithm that significantly reduces internode communication traffic and
achieves high processing rates on large graphs. Yang et al. (2019) [12] focused on routing
optimization algorithms based on node-compression in big data environments, addressing
the common problem of finding the shortest path in a limited time and the number of con-
nected nodes. Liu et al. (2019) [13] presented a navigation algorithm based on a navigator

Mathematics 2023, 11, 4806 3 of 30

data structure that effectively navigates the shortest path with high probability in massive
complex networks.

On the other hand, research has been developed that generates complex graphs
with information that represents vehicle paths or sensor networks, such as the work of
Ma et al. (2021) [14]. Li et al. (2023) [15] investigated a massive MIMO uplink system,
where a transmitter with two antennas has to upload data in real time to a BS with a more
significant number of antennas. Techniques and algorithms are required for high-speed
and accurate graph processing in their different forms.

Unfortunately, the shortest path algorithm can propagate local distances to determine
the distance between two concepts that are not directly connected by a relation in the
ontology. This process is applied to each pair of concepts, allowing semantic proximity to
be established. However, these techniques compute such distances at a high computational
rate since traditional algorithms, like Dijkstra, have a complexity of O

(
n3), which is disad-

vantageous for massive graphs. The computational complexity of DIS-C is O
(
n2 log(n)

)
(using the Floyd–Warshall algorithm); therefore, using techniques such as DIS-C in its
original version is inadequate to handle very large graphs directly. This paper proposes
the use of other approaches to solve the APSP calculation. The pruned Dijkstra and the
Sketch-based algorithms were used in the first approach. Considering that the analysis of
the obtained results includes different datasets and that the generated graphs are sparse, a
centrality-based strategy is presented to reduce the computational complexity.

The manuscript is organized as follows: Section 2 summarizes the state-of-the-art
related to this field. Section 3 presents an analysis of the complexity of the DIS-C algorithm
to reference those parts that need to be accurately improved, the algorithms proposed to
enhance performance, and the demonstration of its precision and the associated computa-
tional complexity. In Section 4, we establish the execution scenarios, which include the total
number and type of tests, present the experimental results, and discuss their significance.
Finally, Section 5 outlines the conclusion and future work.

2. Related Work
2.1. Semantic Similarity

Conceptual distance is closely related to semantic relationship and semantic similarity.
The semantic relationship, on the other hand, is not necessarily conditioned by a taxonomic
relationship; in general terms, these relationships are given by any relationship between
concepts, such as meronymy, antonymy, functionality, cause-effect, holonymy, hyponymy,
hyperonymy, and so on. Moreover, we define conceptual distance as the space that separates
two concepts within a conceptualization; in other words, it is the degree of proximity
between concepts Quintero et al. (2023) [3]. We can establish a rule that indicates conceptual
closeness in terms of how close to 0 (in terms of distance) the assigned value is. However,
computing such distances is entirely dependent on the context of the concepts. In order to
calculate it, the concepts must first be represented in a model that allows for the expression
of the semantic relations and defining the measurement metric from the different underlying
structures and representations.

In the network model, ontologies are used to address the problem of formally represent-
ing the semantics of information and its relationships Meersman (1999) [16]. The mentioned
structures evaluate the conceptual distance between terms. The present work considers the
assumption that an ontology can be represented as a strongly connected graph (conceptual
graph); in this context, some authors have proposed many approaches to evaluate the
closeness between concepts. The contributions of Bondy (1982) [17], West et al. (2001) [18],
Bollobás (1998) [19], and Gross et al. (2018) [20] describe the basic concepts, mathematical
foundations, and representative problems of graph theory.

On the other hand, since their conception in 2012 by Google [21], knowledge graphs
have been the research subject in several articles. This term has been frequently used
in academic and business contexts, typically associated with semantic web technologies,
linked data, large-scale data analytics, and cloud computing Ehrlinger and Wöß (2016) [22].

Mathematics 2023, 11, 4806 4 of 30

The works presented by Fensel et al. (2020) [23] and Ehrlinger and Wöß (2016) [22] fo-
cused on reviewing several definitions of a knowledge graph to develop a formal def-
inition. A Knowledge graph describes structured information and can be applied to
specific domains such as answering questions, recommending, and retrieving information
Zou (2020) [24]. In addition, Pujara et al. (2013) [25] present a method for transforming
uncertain extractions about entities and their relationships into a knowledge graph by
filtering noise, inferring missing information, and identifying the relevant candidate facts.

In the literature, the authors have identified four groups of methods, models, and tech-
niques for computing semantic similarity: (a) edge counting-based, (b) feature-based,
(c) information content-based, and (d) hybrids. In this work, information content-based
methods are used to determine semantic similarity based on their direct relationship to
the measurement of conceptual distance. The underlying knowledge base provides these
methods with a structured representation of terms or concepts connected by semantic
relationships. In addition, it proposes an unambiguous semantic measure since it considers
the real meaning of the terms Sanchez et al. (2012) [26].

Edge counting-based methods consider an ontology a connected graph, where the
nodes are concepts, and the edges are relationships (almost always taxonomic). The num-
ber of edges separating two concepts determines the similarity between them. Table 1
summarizes some representative edge counting-based methods. Furthermore, it describes
the expression used to calculate the similarity (sim)/distance (dis) and a summary of the
variables involved.

Table 1. Edge counting-based methods. dis ≡ conceptual distance; sim ≡ similarity between two
concepts: a and b.

Reference Expression Description

Rada et al. (1989) [27] disrada(a, b) = length of the path from a to b

Wu and Palmer (1994) [28] simwu(a, b) = 2Nc
Na+Nb+2Nc

a and b are concepts within the hierarchy; c is a
less common super concept of a and b. Na is the
number of nodes on the path from a to c, Nb is

the number of nodes in the path from b to c,
and Nc is the number of nodes in the path from

c to the hierarchy root.

Hirst and Stonge (1995) [29] simhirst(a, b) = C− λ(a, b)− K ∗ Ch(a, b)

C and K are constants, λ(a, b) is the length of the
shortest path between a and b, and Ch(a, b) is

the number of times that the path
changes direction.

Li et al. (2003) [30] simli(a, b) = e−αλ(a,b) eβh−e−βh

eβh+e−βh

λ is the length of the shortest path between a
and b, h is the minimum depth of LCS (the more
specific concept that is an ancestor of a and b) in

the hierarchy, and α ≥ 0 and β > 0 are
parameters that scale the contribution of the

length and depth of the shortest path,
respectively.

Shenoy et al. (2012) [31] simshenoy(a, b) = (2Ne−
γL
N)

Na+Nb

L is the shortest distance between a and b,
calculated by taking into account the direction
of the edges. Each vertical direction is assigned

a value of 1; one is added for every direction
change. N is the depth of the entire tree. Na and

Nb are the distances from the root to the
concepts a and b, respectively. γ is 1 for the

adjacent concepts and 0 for the rest.

Mathematics 2023, 11, 4806 5 of 30

Feature-based methods are based on the Tversky (1977) [32] similarity model, obtained
from set theory, which assesses the similarity between concepts based on their properties,
subtracts the common and uncommon features of the terms, and attempts to overcome
the limitations of edge count-based measures regarding the fact that taxonomic links in
an ontology do not necessarily represent uniform distances; Sanchez et al. (2012) [26].
These types of measurement have the potential to be applied in the calculation of semantic
similarity supported by crossed ontological structures. The main limitation is that it requires
ontologies or knowledge sources with semantic features, such as dictionaries, and most
ontologies rarely contain semantic features other than relations.

The Lesk study [33] proposed the homonymous computing method, which consists
of calculating the Lesk measure to disambiguate words in texts. The work presented by
Banerjee and Pedersen (2003) [34] is an extension of this and used the terms or synsets
provided by WordNet. However, in the modern world, there are multiple sources of
information, such as social networks and internet blogs, which provide a large amount of
information. For this reason, other works have used different sources of knowledge, such
as Wikipedia. In this context, the study of Jiang et al. (2015) [35] evaluated the existing
specific methods based on the features, using a formal representation of concepts.

Information content-based approaches improve some of the limitations of edge-
counting-based methods. These methods are based on computing information content (IC)
and similarity, (sim). Table 2 summarizes the IC-based methods. In addition, this table
describes the expressions used to calculate IC and briefly explains the variables involved.

Hybrid methods combine two or more techniques for calculating semantic similarity.
Quintero et al. (2019) [5] proposed the DIS-C method to compute the conceptual distance
between two concepts in an ontology based on a fundamental approach that uses the
topology of an ontology to compute the weight of relationships between concepts. DIS-C
can incorporate various relationships between concepts, such as meronymy, hyponymy,
antonymy, functionality, and causality.

The DIS-C method considers the conceptual distance as the space separating two
concepts within a conceptualization represented as a directed graph, and it is related to the
difference in the information content of the concepts in their definitions. The conceptual
structure is irrelevant since the method assigns a distance value to each relationship type
and transforms this into a weighted directed graph; as a consequence, DIS-C can be
applied to any conceptual structure. The only requirement for the algorithm is that the
conceptualization be a 3-tuple of elements K = (C,<, R), where C is a set of concepts,
< is the set of relation types, and R is the set of relationships in the conceptualization.
In summary, the method is described through the following steps:

1. Assign to each relation ρ ∈ < as an arbitrary conceptual weight defined in each
direction of the relationship.

2. A directed and weighted graph (conceptual graph) is created, where the vertices are
the concepts contained in the conceptualization, and the edges are the relationships
that connect each pair of concepts. Each edge has its counterpart in the opposite
direction with a different weighting. Finally, to compute the weighting, the generality
of each concept is necessary.

3. Calculate the APSP length between each pair of vertices, i.e., diffuse the conceptual
distance to all concepts.

Mathematics 2023, 11, 4806 6 of 30

Table 2. Information content-based methods. sim ≡ similarity; IC ≡ information content.

Reference Expression Description

Resnik (1995) [36] simresnik(a, b) = IC(LCS(a, b))

Based on the concept of the least common
subsumer (LCS), information content (IC) is
calculated when the terms share an LCS. A

high IC value indicates that the term is more
specific and clearly describes a concept with

less ambiguity.

Jiang and Conrath (1997) [37] simjiang(a, b) = IC(a) + IC(b)− 2IC(LCS(a, b))

It focuses on determining the link strength of
an edge connecting a parent node to a child

node. These taxonomic links between concepts
are reinforced by the difference between a

concept’s IC and its LCS.

Gao et al. (2015) [38] simgao(a, b) = max(e−αλ(as ,bs)|as ∈ S(a), bs ∈
S(b))

Where α > 0 is a constant and S(x) is the set of
meanings of the concept x.

Jiang et al. (2017) [39]

ICjiang_1 (a) = − log(p(a)) =

− log(
∑c∈h(a)∪a |pg(c)+1|

∑c∈CA
|pg(c)+1|)

Where h(a) is the set of hyponyms for a, pg(c)
is the set of pages in category c, and CA is the

set of categories.

ICjiang_2 (a) = 1− log(h(a)+1)
log(|CA|)

The second proposed approach is the
combination of IC by using category structure
and the extension of ontology-based methods.

ICjiang_3 (a) =

γ

(
1− log(h(a)+1)

log(|CA |)

)
+ (1− γ)

(
log(d(a)+1)

log(dmax)

)
Generalization of the Zhou et al. (2008) [40]

approach. Where γ is an adjustment factor for
the weight of the two features involved in the
IC calculation, d(a) is the depth of the leaf a,

and dmax is the maximum depth of a leaf.

ICjiang_4 (a) = − log
(|l(a)|
|H(a)∪a|+1
|lmax |+1

) Generalization of the Sanchez et al. (2011) [41]
approach. Where l(a) is the set of leaves of a in

the category hierarchy, H(a) is the set of
hypernyms, and lmax is the maximum number

of leaves in the hierarchy.

2.2. All Pairs Shortest Path Problem (APSP)

Computing the shortest path between each pair of concepts in large graphs is compu-
tationally expensive. This type of problem is known in graph theory as “All Pairs Shortest
Path” (APSP) [42]. In [5], we used two well-known algorithms: the Floyd–Warshall and
Johnson–Dijkstra algorithms. The Floyd–Warshall algorithm is based on transitive Boolean
matrix closure [43], with a computational complexity of O

(
n3) (n is the number of nodes,

and m is the number of edges in the graph). On the other hand, Johnson-Dijkstra has a
complexity O

(
mn + n2 log(n)

)
(using Fibonacci heaps); however, it requires that there be

no negative cycle in the graph, and when m ∈ O
(
n2), the complexity is equal toO

(
n3) [44].

When using accelerated matrix multiplication algorithms, the cost is O
(
n2+ε

)
,

ε < 1 [45]. Techniques, such as divide and conquer [46], or metaheuristic algorithms [47]
are also employed. Another approach is to use new-generation hardware, such as the GPU,
to parallelize existing algorithms and reduce runtime [48]. According to Reddy (2016) [49],
most algorithms are based on the following two types of computational models:

• Addition comparison model: Assume that the inputs are real weighted graphs, where
the only operations allowed on real data are comparison and addition.

• Random access machine (RAM) model: Shortest path algorithms assume that the
inputs are weighted graphs of integers manipulated by addition, subtraction, compar-
ison, shift, and various logical operations [50] (the most commonly used model).

Despite the significant interest in the APSP problem, there have only been minor
advances in computational complexity over O

(
n3) for general graphs based on distance

product computation, which is closely related to matrix multiplication. Although subcubic

Mathematics 2023, 11, 4806 7 of 30

algorithms exist, they only exploit the properties of specific graphs or advantage sparse
graphs, so there is no real subcubic combinatorial algorithm. Table 3 describes the algo-
rithms developed with their computational complexity over time, and Figure 1 shows a
comparison of the execution time of each algorithm.

Although it is possible to solve the APSP problem in polynomial time, its application
in large graphs is not practical. For this reason, it is interesting to analyze heuristic
and metaheuristic methods and approximation algorithms with regard to this problem.
The clear advantage of this approach is the speed gain, whereas the disadvantage is the
accuracy of the computation. In the literature, the authors have employed some relevant
investigations into this class of algorithms with regard to the APSP problem: genetic,
evolutionary, and optimization algorithms per ant colony.

Attiratanasunthron and Fakcharoenphol (2008) [51] presented a rigorous analysis of
the running time of ACO in the shortest path problem. The n-ANT method is inspired by
the 1-ANT [52] and AntNet [53] algorithms. Horoba and Sudholt (2009) [54] formalized and
optimized the n-ANT algorithm to solve the APSP. The MAPSP algorithm is a generalization
of MSDSP presented in the same research study. This algorithm decodes the single-source
shortest path problem. The computational complexity of MAPSP is O

(
∆ll∗ + l log(∆l)

p
)
,

where ∆ is the maximum degree of the graph, l is the maximum number of edges in any
shortest path, and l∗ := max{l, ln(n)}.

Table 3. Analytical runtimes for different APSP algorithms.

O
(
.
)

Reference Year

n3 Dijkstra/Floyd–Warshall 1959/1962
n3 log

1
3 (log(n))

log
1
3 (n)

Fredman (1976) [55] 1976

n3 log
1
2 (log(n))

log
1
2 (n)

Takaoka (1992) [56] 1991

n3

log
1
2 (n)

Dobosiewicz (1990) [57] 1990

n3 log
5
7 (log(n))

log
5
7 (n)

Han (2004) [58] 2004

n3 log2(log(n))
log(n) Takaoka (2004) [59] 2004

n3 log(log(n))
log(n) Takaoka (2005) [60] 2005

n3 log
1
2 (log(n))

log(n)
Zwick (2004) [61] 2004

n3

log(n) Chan (2008) [62] 2005

n3 log
5
4 (log(n))

log
5
4 (n)

Han (2006) [63] 2006

n3 log3(log(n))
log2(n)

Chan (2010) [64] 2007

n3

2Ω(log(n))1/2 Williams (2018) [65] 2014

Mathematics 2023, 11, 4806 8 of 30

n (nodes)

O
(f(

n)
)

2.00 x 105 4.00 x 105 6.00 x 105 8.00 x 105 1.00 x 106

Dijkstra/Floyd-Warshall

Fredman (1976)

Takaoka (1992)

Dobosiewicz (1990)

Han (2004)

Takaoka (2004)

Takaoka (2005)

Zwick (2004)

Chan (2008)

Han (2006)

Chan (2010)

Williams (2018)

1.00 x 1018

7.50 x 1017

5.00 x 1017

2.50 x 1017

0.00

Figure 1. Comparison between the execution times of the APSP algorithms. This figure shows the number
of operations (y-axis) required for each algorithm as the number of nodes increases (x-axis) [55–65].

On the other hand, Chou et al. (1998) [66] used a hierarchical approach to decompose
a network (graph) into several smaller subnets. Therefore, when it is necessary to search
for a shorter path, a smaller graph is evaluated. The authors compared the computational
complexity between Dijkstra’s algorithm (no error) and two versions of the algorithm called
HA: Best HA (best results: 21.5% error) and Nearest HA (the fastest execution instance:
4.68% error). Mohring et al. (2007) [67] presented a similar report that focuses on the
shortest path to a single source.

Other research studies that improve the asymptotic limit concerning the O
(
n3) are

Baswana et al. (2009) [68] and Yuster (2012) [69]. The first applied it to unweighted and
undirected graphs and introduced the first algorithm, (n2), to compute the APSP with a
3-approximation, meaning that for each pair of vertices u, v ∈ V, the distance is less than or
equal to 3 ∗ δ(u, v), where δ(u, v) is the shortest distance of the path. In addition, two algo-
rithms are presented for a 2-approximation, with a complexity ofO

(
m2/3n log(n) + n2) and

O
(
n2 log(n)3/2), and the shortest distance being 2δ(u, v) + 1 and 2δ(u, v) + 3, respectively.

In both cases, there is a predefined error bound.
Finally, there is the sketch-based approach, which requires two extensive processes.

The first is to preprocess, in which the result is a data structure that allows the distance be-
tween two nodes to be consulted. This data structure and a distance oracle were introduced
in [70]. The second process is related to queries, which is a case of making queries to the
oracle, and it returns, in a specified time limit, the result of the shortest distance between
two nodes.

In comparison to identical algorithms, these algorithms reduce the time by several
orders of magnitude. Das Sarma et al. (2010) [71] is one of the first studies that applied
this approach to complex graphs with hundreds of millions of nodes and billions of edges.
The description of the algorithm is the following: sample a small number of node sets
from the graph, called seed node sets. Then, for each node of the graph, the closest seed
within each of these seeds is found. The sketch of a node is the set of the closest seeds
and the distance to them. Thus, given a pair of nodes, u and v, the distance between
them can be estimated by searching for a common seed in their sketches. However, there
are no theoretical guarantees on the degree of optimization of the method for directed
graphs. The results showed a better average close to the actual distance when applied to
directed graphs.

Wang et al. (2021) [72] focused on finding all the shortest paths in large-scale undi-
rected graphs. The principal difference, regarding the work of Das Sarma et al. (2010) [71],

Mathematics 2023, 11, 4806 9 of 30

is that Wang et al. (2021) [72] considered the computational complexity needed to perform
the preliminary computation. The standard method employed in this problem involves
applying a BFS algorithm to the seed node set. It is known that the complexity of BFS
is O

(
m + n

)
when using an adjacency list or O

(
n2) for an adjacency matrix. This com-

plexity is a drawback when processing large graphs. For this reason, they investigated
whether it is possible to speed up the preliminary computation using the [73] pruned
reference point-labeling technique, i.e., applying a pruned BFS. The specific results of this
stage showed linear time in terms of its construction, i.e., O

(
m
)
. The results indicated a

significant improvement, especially in terms of runtime for large graphs.

3. Materials and Methods

The DIS-C presented by Quintero et al. (2019) [5] uses two algorithms: a basic one,
which calculates the conceptual distance within a conceptualization, K = (C,<, R), and the
weights δρ for each relationship type ρ ∈ Re. This algorithm converts the conceptualization
K into a graph G = (VG, AG) with VG = C and AG = R, through which we compute the
conceptual distance by calculating the APSP in graph G. The solution described in this
paper combines and evaluates several approaches to optimize the APSP. The second algo-
rithm enables automatic weighting, which allows the conceptual distance to be computed
automatically without having to provide the weights of the relationship types. Figure 2
shows the flowchart corresponding to the DIS-C algorithm with automatic weighting
(where i(a) is the entry degree of node a, and o(a) is the exit degree of node a; wi(a) and
wo are the costs of entering and leaving node a, respectively; g(a) is the generality of node
a; Vγ

j and Aγ
j are the nodes and edges, respectively, of the graph Γj

K, which is the graph
corresponding to the conceptualization K in the j-th iteration. Thus, wj(a, b) is the cost of
the edge from node a to node b; pw is a geometric weighting factor. Furthermore, M

Γj
K

is

the APSP distance matrix, and ρ∗ is the set of edges representing the relation ρ. Finally, εK
is the convergence threshold of the algorithm), which will be referred to simply as DIS-C
in this paper. Although the DIS-C algorithm consists of several processes, in terms of
computational complexity, it is related to the execution of the APSP.

At this stage, we can assume that the computational complexity of the DIS-C algorithm
for a conceptualization with n concepts is O

(
n2 log n

)
(A detailed analysis of this topic is

presented in [74]).

3.1. The Pruned Dijkstra Algorithm

The algorithm implemented is described in Algorithm 1, and the index construction
algorithm is presented in Algorithm 2. Appendix A explains the pruned Dijkstra algorithm.
We executed the pruned Dijkstra in the order v1, v2, . . . , vn, and the sequence of vertices is
arbitrary but relevant for good algorithm performance. Ideally, starting from the central
vertices, many shortest paths will cross them. There are many strategies to order the
vertices; one of the most common is based on ordering by centrality. In this work, we
choose to order the vertices by the degree of centrality. The graphs generated by the
semantic networks behave like networks without scale, where high-degree vertices provide
high connectivity to the network. In this way, the shortest path between two vertices is
usually through these nodes.

Mathematics 2023, 11, 4806 10 of 30

Start

∀ρ ∈ ℜ
δρ = 0
δ̃ρ = 0

∀a ∈ VG

i(a) = in degree(a)
o(a) = out degree(a)

wi(a) = 1 − i(a)
i(a)+o(a)

wo(a) = 1 − o(a)
i(a)+o(a)

g0(a) = 1

j = 1

V γ
j = VG

Aγ
j = ∅

∀e(a, b, ρ) ∈ AG

wj(a, b) = pw (wo(a) · gj−1(a) + wi(b) · gj−1(b)) + (1 − pw) · δρ
wj(b, a) = pw (wo(b) · gj−1(b) + wi(a) · gj−1(a)) + (1 − pw) · δρ

Aγ
j = Aγ

j ∪ {(a, b, wj(a, b)), (b, a, wj(b, a))}

Γj
K = graph(V j

γ , A
j
γ)

M
Γ
j
K

= APSP(Γj
K)

∀a ∈ Vγ

ga =

∑
b∈V

j
γ

M
Γ
j
K

(a,b)∑
b∈V

j
γ

M
Γ
j
K

(b,a)

∀ρ ∈ ℜ
ρ∗ = {(a, b, ρ) ∈ AG}
δρ =

∑
(a,b,ρ)∈ρ∗ w

j
ab

|ρ∗|

δ̃ρ =
∑

(a,b,ρ)∈ρ∗ w
j
ba

|ρ∗|

∑
x∈V

j
γ
(gj(x)−gj−1(x))

2

|V j
γ | ≤ ϵK End

O
(
1
)

O
(
n
)

O
(
1
)

O
(
1
)

O
(
m
)

O
(
n2 logn

)

O
(
n2

)

O
(
m
)

yesno

Figure 1: Caption

1

Figure 2. The DIS-C algorithm flow diagram.

Mathematics 2023, 11, 4806 11 of 30

Algorithm 1: The pruned Dijkstra

Function PDijkstra(G, uk, L, dir):
1 Q← (uk, 0)
2 d← ∅
3 S← ∅
4 while Q do
5 u, δ← pop(Q)
6 if u /∈ d then
7 append u to d
8 du ← δ
9 if dir is ’in’ then

/* Determine if the best path is already known. In that
case, it is not necessary to continue on that path,
therefore it is pruned. */

if query(uk, u, L) ≤ du then
continue

end
10 else
11 if query(u, uk, L) ≤ du then
12 continue
13 end
14 end

/* There is no previous path, so the current path is added
to the index of the node being processed, and ordinary
Dijkstra execution is performed. */

Ldir
u ← Ldir

u ∪ {(uk, du)}
forall v ∈ NG

1 (u) do
if dir is ’in’ then

duv ← du + wG
u,v

else
duv ← du + wG

v,u
end
if v /∈ S and duv < Sv then

Sv ← duv
push(Q, v, duv)

end
end

15 end
16 end
17 return d

end
/* Review the distance from the source to the target nodes according

to a two-hop cover. */
Function query(s, t, L):

18 d← ∞
19 foreach k ∈ Lin

s do
20 if k ∈ Lout

t then
21 d←min

(
d, Lin

s (k) + Lout
t (k)

)
22 end
23 end
24 return d

end

Mathematics 2023, 11, 4806 12 of 30

Algorithm 2: APSP_PDijkstra

Function APSP_PDijkstra(G, uk, L, dir):
1 ∀v ∈ V, Lin

v ← ∅
2 ∀v ∈ V, Lout

v ← ∅
3 for k = 1, 2, · · · , |V| do
4 Lout ← PDijkstra (G, k, L, ’out’)
5 Lin ← PDijkstra (G, k, L, ’in’)
6 end
7 return L

end

In order to formalize the proposed approach, it must be demonstrated that the al-
gorithm is correct and produces the theoretically proposed result. In order to prove the
correctness of the method, it suffices to show that the algorithm computes a two-hop cover-
age, i.e., Q(s, t, L

′
k) = dG(s, t) for any s, t ∈ V. This statement is equivalent to proving that,

when given any vertex, s ∈ V, all other vertices belong to the input and output coverages of
vertex s. Let Lk be the index built without the pruning process; so, it is a two-hop coverage;
L
′
k is the index generated by applying the pruning process. Since there exists a node,

vj, such that (vj, dG(vj, s)) ∈ Lk(s)in, (vj, dG(vj, t)) ∈ Lk(t)out and δvj ,s + δvj ,t = dG(s, t),

the goal is to show that vj also exists in L
′
k(s)

in and L
′
k(t)

out.

Theorem 1. For k = 1, . . . , n, and s, t ∈ V, Q(s, t, L
′
k) = Q(s, t, Lk)

Proof. Let s, t ∈ V, assuming there is a path between them, and j be the smallest number,
such that (vj, dG(vj, s)) ∈ Lk(s)in , (vj, dG(vj, t)) ∈ Lk(t)out and δvj ,s + δvj ,t = dG(s, t).

It must show that (vj, dG(vj, s)) and (vj, dG(vj, t)) are contained in L
′
k(s)

in and L
′
k(t)

out,
respectively; that is, Q(s, t, L

′
k) = Q(s, t, Lk). In order to prove that vj ∈ L

′
k(t)

out, first
consider, for any i < j, in that vi ∈ PG(s, vj), where PG(a, b) is a path between a and b.
Suppose vi ∈ PG(vj, t); through inequality, we obtain the following:

Q(s, t, Lk) = dG(s, vj) + dG(vj, t)

= dG(s, vj) + dG(vj, vi) + dG(vi, t)

≥ dG(s, vi) + dG(vi, t)

Since (vi, dG(vi, s)) ∈ Lk(s)in and (vi, dG(vi, t)) ∈ Lk(t)out, it contradicts the fact that j
is the smallest number. Therefore, vi /∈ PG(vj, t) for any i < j.

Now, we prove that (vj, dG(vj, t)) ∈ L
′
k(t)

out. Suppose we perform the j-th pruned
Dijkstra iteration from node vj to construct index L

′out
j . Let t ∈ PG(vj, t). Since there is

no vi ∈ PG(vj, t) for i < j, this means that there is no vertex in the i-th pruned Dijkstra
iteration that covers the shortest path from vj to t, and, therefore, Q(vj, t, L

′
j−1) > dG(vj, t).

Consequently, vertex t is visited without pruning, and (vj, dG(vj, t)) ∈ Lj(t)out ⊆ Lk(t)out

is added.
Finally, suppose we execute the j-th pruned Dijkstra iteration from vj, but this time,

we construct L
′in
j . If s and t are reachable in G, it means that there is a path between

vj and s when considering the input edges or, equivalently, there is PG(s, vj). Since we
have already proved that vi /∈ PG(vj, t) for i < j, this means that vj is a neighbor of s or
vj = s, and since vj is the initial vertex of the path PG(vj, t), then vj is the neighbor with
the least distance sharing s. In all cases, Q(s, vj, L

′
j−1) > dG(s, vj); therefore, the node s

is visited without pruning (remember that it considers the input edges). Consequently,
(vj, dG(vj, s)) ∈ Lj(s)in ⊆ Lk(s)in is added.

Mathematics 2023, 11, 4806 13 of 30

As mentioned earlier, the order in which the nodes are processed affects the perfor-
mance of the algorithm. Is there an order of execution such that the construction time is
minimized? The answer is ’yes’, but finding such an order is challenging. So, there are two
approaches: the first is to find the minor nodes that cover all the shortest paths, which is a
much bigger problem since it is an instance of the minimum vertex coverage problem, which is
NP-hard. The second approach is a parameterized perspective; specifically, the parameter
explored is the width of the tree. It also relies on the process of the centroid decomposition of a
tree [75]. This approach derives the following lemma; the formal proof is given in [73].

Lemma 1. Let w be the width of the graph of G. There is a vertex order where the pruned Dijkstra
method preprocesses in O

(
wm log(n) + w2n log2(n)

)
time, stores an index in O

(
wn log(n)

)
space, and answers each query in O

(
w log(n)

)
time.

Considering that this research is not looking for minimum two-hop coverage, using
the upper bound of O

(
wm log(n) + w2n log2(n)

)
for the algorithm can be considered an

inconsistency. However, there is no guarantee that the selected order (degree centrality) is
the same as the order required to achieve this computational complexity. We conclude that,
according to our implementation, it cannot be faster than that theoretically obtained using
the order with which we achieve O

(
wm log(n) + w2n log2(n)

)
. This means that there is

a lower bound, Ω(wm log(n) + w2n log2(n)), in the implementation. In addition, when
referring to the Dijkstra algorithm, we can hypothesize that the construction of the coverage
using the pruned process, regardless of the order of execution, is much smaller than for the
construction of the naive coverage in highly connected graphs, i.e., thatO

(
mn + n2 log(n)

)
.

Thus, we concluded that this lemma indicates an optimal order for processing vertices.
Unfortunately, it is extremely complicated to find it.

3.2. The Sketch-Based Algorithms

It is necessary to compute two sketches for each node. The first SKETCHout(u) and
SKETCHin(u) represent the distance from node u ∈ V to the nearest seed and inverse. This
is carried out by running the search algorithm two different times, with one employing
the input edges and the other using the output edges. We can randomly choose S when
considering some criteria to guide the choice; for example, take into account discarding
those nodes for which the degree is less than two. Alternatively, the structure of the
graph and its specific properties (The strategy for choosing the seed nodes is to emphasize
the nodes with the highest value of generality in the conceptual graph; this implies that
the most general concepts will be chosen) can be employed. Appendix B provides some
complementary aspects of sketch-based algorithms. Algorithm 3 describes the proposed
pseudocode for generating the sketches of each node.

Algorithm 3: Sketches_DIS-C: offline sampling

Function offlineSampling(s, t, L):
1 R← log(|V|) ; /* Number of seeds */
2 S← ∅
3 samples← ∅
4 for i = 0, 1, · · · , R do
5 Si ← choice(V, 2i) ; /* Choice a set of 2i seed nodes */
6 end
7 forall s ∈ S do
8 S in ← Dijkstra_Multisource(G, s, in_edges)
9 Sout ← Dijkstra_Multisource(G, s, out_edges)

10 end
11 return S

end

Mathematics 2023, 11, 4806 14 of 30

For each sample, the closest seed node and its distance are obtained for each node. It is
carried out by employing the classic Dijkstra multi-source algorithm. In this form, the seed
nodes are computed for each u ∈ V (see Algorithm 4).

Algorithm 4: Sketches_DIS-C: k sketches offline

Function K_sketches(G, K):
1 S ← ∅
2 for k = 0, 1, · · · , K do
3 Sk ← offlineSampling (G)
4 S ← S ∪ Sk
5 end
6 return S

end

In each iteration, we generate a sketch from an offline sample; therefore, at the end of
the algorithm, there will be k log(n) seeds for each node. The second process of the method
is the online one. The calculation of the approximate minimum distance between nodes
u and v is carried out by looking at the distance from u and v to any node w that appears
in both S in

u and Sout
v . So, we compute the path length from u to v by adding the distance

from u to w plus the distance from w to v. The minimum distance is taken if there are two
or more shared nodes w. Algorithm 5 shows the proposal to perform this calculation.

Algorithm 5: Sketches_DIS-C: k sketches online

Function sketchesDistance(u, v,S):
1 su ← S in

s
2 st ← Sout

t
3 d← ∞
4 foreach w ∈ su do
5 if w ∈ sv then
6 d←min (d, su(w) + sv(w))
7 end
8 end
9 return d

end

Finally, to solve the APSP problem, it is necessary to create another algorithm that is
executed for each pair of nodes (Algorithm 6).

Algorithm 6: Sketches_DIS-C: k sketches online APSP

Function sketchesDistance(u, v,S):
1 S ← K_sketches (G, k)
2 D ← ∅
3 foreach u ∈ V do
4 foreach v ∈ V do
5 Du,v ← sketchesDistance (u, v,S)
6 end
7 end
8 return D

end

Mathematics 2023, 11, 4806 15 of 30

In the sketch-based method, there is no accuracy test for general graphs. The method
does not guarantee exact node labeling to determine the distance between all vertex pairs.

On the other hand, one of the objectives of this paper is to improve the computational
complexity of the original algorithm (which isO

(
n3)). The following theorem demonstrates

that the sketch-based method accomplishes this aim.

Theorem 2. For a set of nodes, S ⊆ V, such that the set size is 2w for 0 ≤ w ≤ n; the complexity
of the algorithm is O

(
w(m + n log(n))

)
.

Proof. We know that the sketch-based method selects a value, w, based on the number of
nodes in the graph, i.e., w = f (V) ≤ |V|. Then, given w, Qi subsets of nodes are created
for i = 0, 1, 2, . . . , log n, such that the size of each one is |Qi| = 2i | i = 0, 1, . . . , w. It follows
that S =

⋃w
i=0 Qi. For each element of the Qi subsets, the multi-source Dijkstra algorithm is

applied, with the purpose of finding, for all the nodes of G, the closest node of the Qi set.
The multi-source Dijkstra has a complexity of O

(
m + n log(n)

)
; for each subset of nodes,

it is necessary to apply a single execution of Dijkstra algorithm (regardless of the size).
Therefore, since there are w subsets of nodes, w Dijkstra processes must be performed from
multiple sources, i.e., in total, the complexity is O

(
w(m + n log(n))

)
.

For the implementation employed in this work, we determined w by using the loga-
rithmic function w = log2(n), where n = |V|. It ensured that |S| < |V|. Therefore, for the
implementation performed, the method has a complexity of O

(
log2(n)(m + n log2(n))

)
.

4. Results

This section describes the results of the different experiments carried out. In the first
section, the performance metrics of the generated graphs are analyzed, and the control
algorithm is compared with the proposed one. The second part analyzes the results of the
semantic metrics.

4.1. The Datasets

The used datasets contain pairs of words assigned to a numerical value by human
evaluation. These sets are divided into two categories: those that measure semantic
similarity and those that measure semantic relationship. These sets are described in Table 4.

Table 4. List of datasets used in the evaluation process.

Dataset Content Type Word Pairs Nodes Edges

MC30 [76] Nouns Similarity 30 5496 9583

RG65 [77] Nouns Similarity 65 5080 9271

PS [78] Nouns Similarity 65 5080 9271

Agirre201 [79] Nouns Similarity 201 29,738 75,120

SimLex665 [80] Nouns Similarity 665 44,798 138,122

MTurk771 [81] Nouns Relation 771 55,403 185,523

MTurk287 [82] Nouns Relation 287 25,576 58,637

WS245Rel [83] Nouns Relation 245 24,029 56,983

Rel122 [84] Nouns Relation 122 23,775 58,322

SCWS [85] Nouns Relation 1,994 53,052 183,366

All - - 4,445 119,034 818,788

Thus, this process is executed by a script and, for each dataset, selects a few words,
generating the conceptual graph that connects them by applying the DIS-C algorithm to
find the conceptual distances. We repeat this process with all word pairs, and finally, all

Mathematics 2023, 11, 4806 16 of 30

graphs generated from a set of words are merged to obtain a graph with all word pairs
in the set. We also apply the DIS-C algorithm to combine the graph that contains the
conceptual distances. The purpose of applying DIS-C to those graphs holding a few words
is to measure the runtime with different sizes of graphs and, therefore, obtain a significantly
larger record.

4.2. Evaluation Metrics

The evaluation metrics used for this research are divided into performance and se-
mantics. The first corresponds to the runtime measurement, which is related to the number
of nodes and edges of the graph. The semantic metrics measure the precision in estimat-
ing similarity, using the Pearson correlation coefficient (Equation (1)), the Spearman rank
correlation coefficient (Equation (2)), and the harmonic score (Equation (3)).

r = ∑n
i=1(Xi − X)(Yi −Y)√

∑n
i=1(Xi − X)2

√
(Yi −Y)2

(1)

p = 1−
6 ∑n

i=1 d2
i

n(n2 − 1)
, di = (xi − yi) (2)

h =
2rp

r + p
(3)

The Pearson correlation compares human similarity vectors and has been widely used
to evaluate methods that estimate similarity between words and concepts. The Spearman
rank correlation provides an invariant ranking and allows for a comparison of the under-
lying quality of word similarity measures. Additionally, harmonic scoring that combines
Pearson and Spearman correlations to provide a unique weighted score for evaluating
word similarity methods has been used. These correlation measurements are essential for
evaluating and comparing similarity methods in the literature.

4.3. Generated Graphs and Performance

For each dataset, we generated a graph connecting each pair of words. Later, we
computed the corresponding unified graphs. Table 4 shows the size of these graphs.
The last row of the table (labeled ‘All’) refers to the union of all graphs; in addition,
the algorithms were applied to this graph.

The following is a series of charts on the running time of each proposed algorithm.
Figure 3 shows the runtime of the control algorithm, the pruned Dijkstra, and sketch-based
algorithms. At specific points, the runtime increases in an “abnormal” way; this is caused
by a parameter that differs from the size of the graph; specifically, it is the convergence
threshold of the algorithm. It indicates that more iterations are required for this dataset,
in particular, the graph structure, to converge with the threshold.

The convergence threshold is a function of the total generality of the graph, i.e., the
sum of all generalities of each node. The total generality of the graph depends on the
distance value between each pair of nodes provided by the APSP algorithm; for this reason,
the algorithms that obtained the shortest actual distance always reach the convergence
threshold in the same number of iterations. In this case, it is the control algorithm and
the pruned Dijkstra. On the other hand, the sketch-based algorithm varies the number of
iterations to reach the threshold, but in general, it cannot be less than the number achieved
by the control algorithm. The reason for this is that the control algorithm determines the
precise shortest distances; thus, the total generality of the graph is the smallest possible.
The generality of the graph cannot be less than the minimum generality since it is known
that the sketch-based algorithm (and any other approximation algorithm) cannot compute
a shorter distance than the real one.

Mathematics 2023, 11, 4806 17 of 30

In Figure 3, it is possible to recognize that most of the proposed algorithms have a
longer runtime than the control algorithm; this is primarily attributed to graph density; that
is, the generated graphs have few edges and can be considered sparse graphs. Notice that
only the sketch-based algorithm with k = 1 is faster than the control algorithm. However,
the acceleration is not significant. In order to significantly improve the runtime, it must be
reduced by at least one order of magnitude, considering that the runtime in the studied
results is measured in days. Since the proposed algorithms are divided into two significant
processes (construction and query), the runtimes of these two processes are measured
separately. Figure 4 depicts this specific operation.

Figure 3. DIS-C runtime for the Dijkstra, pruned Dijkstra, and sketch-based algorithms.

The query time is the most important constraint in the algorithms. When analyzing
the complexity of the query process, we found that the complexity of the sketch-based
algorithm depends on the size of the coverages, and these are a function of k, so the response
when increasing the value of k is predictable, as shown in Figure 4. In the case of the pruned
Dijkstra algorithm, the coverage size is huge for more general nodes and decreases as a
function of such generality. It induces some nodes to find their shortest distance, which
takes longer; this pattern speeds up the overall query time. Although a binary search can
be used instead of a linear one, it does not underestimate the quadratic factor inherent in
the APSP, the behavior of which is reflected in the results. Considering this inconvenience,
we conjecture that graph generality can be computed using only node coverages. This
implies that solving the APSP to determine the generality is unnecessary, eliminating the
quadratic factor of the APSP.

Mathematics 2023, 11, 4806 18 of 30

(a) Construction time (offline process). (b) Query time (online process).

Figure 4. Comparative offline and online processes using pruned Dijkstra and sketch-based algorithms.

Based on the previous assumption, a framework for computing generality was estab-
lished that only considers node coverage because generality was defined as the average
of the conceptual distances from concept x to all other concepts, divided by the sum of
the average conceptual distances and all concepts in the ontology. In the case of pruned
Dijkstra, the more general concepts contain more significant coverage; their influence area is
much larger than the less general concepts. This area can be used in a form where the gen-
erality of a node depends on itself. The principle of generality is respected by considering
the information that other concepts provide for concept x (the distances of the coverage
Lin

x) and the information that concept x itself provides to its related concepts (the distances
of the coverage Lout

x). We can consider it as a generality measure based on the extended
neighborhood of the nodes represented by their coverages. This is possible because the
covers map the topology of the graph. So, we performed the generality computation,
as per Equation (4). Henceforth, versions of DIS-C that use this type of generality are
denoted as simple.

g(x) =
∑b∈Lout

x
δ(b, x)

∑b∈Lin
x

δ(b, x)
(4)

In Figure 5, it is possible to study the total cost of running the simple algorithms
in comparison with the others. An evident acceleration is obtained concerning the first
versions of the proposed algorithms.

In the case of the simple pruned Dijkstra algorithm, there is a significant improvement
in the runtime, reducing it by an order of magnitude from days to hours for the most
extensive graph. In the case of the sketch-based algorithms, there is a more predictive,
straight-line relationship with k, i.e., the runtime for k = 2 is two times lower than for k = 1,
and so on.

An effective speedup is observed when using the simple version of the algorithms.
Similarly, the use of the proposed algorithms in their original form is not recommended
in a time-limited context. It is important to emphasize that all algorithms do not use any
heuristic; therefore, all are made precise by employing the same input, and the results are
obtained consistently. Consequently, a statistically significant analysis does not allow for
the detection of differences in the proposed algorithms; in other words, we have the same

Mathematics 2023, 11, 4806 19 of 30

input, and there is no sensed or monitored data to apply descriptive or inference statistics.
The following section examines the usefulness of conceptual distance in practical situations,
how much precision is lost in the computation, and whether this is compensated for by the
acceleration obtained.

Figure 5. Simple DIS-C runtime for the following algorithms: Dijkstra, pruned Dijkstra simple,
and sketch-based simple.

4.4. Conceptual Distance Results

In this section, the results of the conceptual distance obtained in the different datasets
evaluated are analyzed, considering the previously proposed metrics. Correlation co-
efficients are frequently applied in knowledge representation systems; therefore, these
coefficients are employed to compare the obtained results with other approaches. Before an-
alyzing the group of datasets, we analyzed the results of a single dataset: MC30. The results
of the pruned Dijkstra algorithm correspond directly to the results of the control algorithm
because the process obtains the identical shortest distances. The sketch-based algorithm
adequately adjusts to the conceptual control distance results; the accuracy of these results
depends, essentially, on the value of k; at higher values, the difference from the original
results is decreased. This behavior enables us to detect a high correlation with the control
algorithm and, in general, with the other versions of the algorithms.

Figures 6 and 7 show the correlation matrix of Person and Spearman, respectively.
The upper part of the diagonal represents the correlation between the words in the a− b
direction (conceptual distance from the word “a” to the word “b”). In contrast, the lower
half of the diagonal is the correlation of b− a. Appendix C provides both the Pearson and
Spearman correlation results.

Mathematics 2023, 11, 4806 20 of 30

1

1

0.9

0.93

0.98

0.99

0.99

0.99

1

1

0.89

0.93

0.98

0.99

0.99

0.99

0.94

0.94

1

0.91

0.9

0.89

0.89

0.89

0.98

0.98

0.92

1

0.94

0.95

0.94

0.94

0.98

0.99

0.94

0.98

1

0.99

0.99

0.99

0.99

0.99

0.93

0.99

0.99

1

1

0.99

0.99

1

0.94

0.99

0.99

1

1

1

1

1

0.93

0.99

0.99

1

1

1

Pru
ne

d
Dijk

str
a

0.85

0.86

0.88

0.9

0.91

0.92

0.94

0.96

0.97

0.98

1
Dijk

str
a

Dijkstra

Pruned Dijkstra

Sketches k=1

Sketches k=2

Sketches k=5

Sketches k=10

Sketches k=15

Sketches k=20

Sk
et

ch
es

 k=
15

Sk
et

ch
es

 k=
1

Sk
et

ch
es

 k=
2

Sk
et

ch
es

 k=
5

Sk
et

ch
es

 k=
10

Sk
et

ch
es

 k=
20

Figure 6. The Pearson correlation matrix for the MC30 dataset.

The matrices reveal a high correlation for all algorithms. Although the results are
excellent in all cases, the correlation values related to the control algorithms are the most
relevant for the analysis; these correspond to row 1 and column 1, with values of a− b
and b − a, respectively. By correlating the results of each algorithm with the control
algorithm, an analysis of the error of each algorithm is implicitly performed. Therefore,
as the correlation value is higher in the experiment, the error is decreased, and vice versa,
with the advantage of using a metric limited to a specific interval.

In the first case, the lowest correlation value (0.94) corresponds to the sketch-based
algorithm with k = 1; however, the correlation increases according to the value of k. The same
behavior is replicated in the Spearman matrix and the results of the direction b− a of the
concepts. When considering the pruned Dijkstra algorithms, the correlation for the standard
version is 1, and for the simple version, it obtained values close to 1 (0.99). These results
indicate that the use of the algorithms in the standard or simple version is indifferent because,
in both cases, the obtained correlation is very similar or, in some cases, identical.

All the algorithms produced a correlation that was considered high (greater than 0.7).
For both types of correlations, the algorithm with the best performance was pruned Dijk-
stra. The algorithm that produced the lowest correlation was the sketch-based algorithm,
with k = 1, and values ranging between 0.77 and 0.81; even if they cannot be considered
bad results, they show disparity when compared to all the others. If the analysis is focused
on the sketch-based algorithms, the pattern observed for the MC30 dataset can be verified,
i.e., increasing the value of k also increases the probability of obtaining a better correlation.

Finally, the harmonic values are shown in Table 5; these values unify the performance
obtained by both correlations. As mentioned in the previous sections, this table shows
that the pruned Dijkstra algorithm achieves the highest correlation values. In contrast,
the sketch-based algorithms perform better depending on the given value of its k parameter.

Mathematics 2023, 11, 4806 21 of 30

1

0.99

0.88

0.93

0.97

0.99

0.99

1

0.99

1

0.87

0.92

0.96

0.99

0.98

0.99

0.94

0.92

1

0.9

0.87

0.87

0.86

0.87

0.98

0.98

0.91

1

0.93

0.94

0.93

0.93

0.98

0.98

0.92

0.99

1

0.98

0.98

0.98

0.99

0.99

0.92

0.99

0.99

1

1

1

0.99

0.99

0.92

0.99

0.99

0.99

1

1

0.99

0.99

0.91

0.98

0.99

0.99

0.99

1

0.82

0.84

0.86

0.87

0.89

0.91

0.93

0.95

0.96

0.98

1Dijks
tra

Dijkstra

Pruned Dijkstra

Sketches k=1

Sketches k=2

Sketches k=5

Sketches k=10

Sketches k=15

Sketches k=20

1Sk
etc

he
s k

=1
5

Sk
etc

he
s k

=1

Sk
etc

he
s k

=2

Sk
etc

he
s k

=5

Sk
etc

he
s k

=1
0

Sk
etc

he
s k

=2
0

Prun
ed

 D
ijks

tra

Figure 7. The Spearman correlation matrix for the MC30 dataset.

Table 5. Harmonic values of the correlations.

Algorithm MC RG PS Agirre SimLex MTurk771 MTurk287 WSRel Rel SCWS All Avg.

Dijkstra 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.0 1.00

Pruned Dijkstra 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.0 1.00

Sketches k = 1 0.94 0.86 0.86 0.72 0.75 0.61 0.85 0.69 0.82 0.82 0.0 0.79

Sketches k = 2 0.98 0.95 0.96 0.85 0.81 0.73 0.87 0.83 0.91 0.90 0.0 0.88

Sketches k = 5 0.98 0.98 0.98 0.92 0.89 0.88 0.93 0.91 0.95 0.95 0.0 0.94

Sketches k = 10 0.99 0.98 0.99 0.95 0.95 0.93 0.97 0.95 0.97 0.97 0.0 0.97

Sketches k = 15 0.99 0.99 0.99 0.97 0.97 0.96 0.97 0.97 0.98 0.98 0.0 0.98

Sketches k = 20 0.99 0.99 0.99 0.98 0.98 0.97 0.98 0.97 0.99 0.99 0.0 0.98

5. Conclusions and Future Work

This paper investigates the optimization of conceptual distance computation in an
ontology using the DIS-C technique. When considering the case of computing conceptual
distances by employing a method that solves the APSP problem, both the pruned Dijkstra
and the sketch-based algorithms can substitute the Dijkstra algorithm. However, when
analyzing the execution times obtained for the test datasets, the use of these two algorithms
(pruned Dijkstra and sketch-based) is not recommended for situations where time con-
straints exist because the growth of the function (which estimates the execution time based
on the number of nodes in the graph) is above that obtained by applying the standard
Dijkstra algorithm.

Mathematics 2023, 11, 4806 22 of 30

Thus, to reduce the computational cost, a simple version of DIS-C was proposed by
replacing the use of the APSP as a subprocess for propagating the conceptual distances
between all pairs of concepts to compute generality, taking the vertex cover (sometimes
referred to as node cover) into account. Based on this simple version, the experiments show
that the processing time is up to 2.381 times faster than the original DIS-C approach. One
of the main purposes of this paper was to maintain a reduced loss of precision in distance
computation when compared to the original version of DIS-C, with correlation values of
1.0. The simple version can be useful in practical applications, and if the highest precision
in distance calculation is required, this version using pruned Dijkstra is the best option.
Moreover, using the complete topology of a graph to compute the conceptual distance in
the DIS-C model is excessive and requires high computational cost. Therefore, we have
experimentally demonstrated that the vertex cover is a robust approximation for computing
the generality.

On the other hand, if speed is a priority, the simple version of the sketch-based
algorithm with moderate values (greater than 1 but less than 20) for the parameter k is a
good alternative. We must also consider the size of the conceptualization; for sizes of less
than 1000 concepts, the type of algorithm is indifferent, and the use of Dijkstra is a better
option since the computation time is not excessive and ensures the calculation, as proposed
by the DIS-C model. An interesting way to take advantage of the speed of the sketch-based
algorithm with low parameters (less than five) for k is when it is necessary to quickly
perform tests on systems using DIS-C or directly when we want to compare the method
with others. Implementing the sketch-based approach can provide a reference guide; for
example, when good results are obtained with the simple version, it is reasonable to assume
that the same results are obtained by executing the original DIS-C approach (when using
the Dijkstra algorithm). The previous statement assumes that precision is the most crucial
factor and that computation time is not a primary constraint. On the other hand, if time
is a limitation, the pruned Dijkstra algorithm can be used as a replacement for Dijkstra,
considering its high correlation.

Future work will be oriented toward evaluating the performance of these algorithms on
other types of massive graphs, such as knowledge graphs, and analyzing the performance
of the simple DIS-C approach with graphics unit processing (GPU) implementations.
In addition, new advances in microprocessor architecture design, such as high-performance
cores and high-efficiency cores, might be an exciting and suitable alternative to improve
performance and computational time. Moreover, additional implementations to test this
approach in other application domains involving information theory could be considered
to evaluate the effectiveness of the proposed method.

Author Contributions: Conceptualization, R.Q. and E.M.; methodology, G.G. and M.T.-R.; software,
E.M. and C.G.S.-M.; validation, R.Q., E.M., and G.G.; formal analysis, M.T.-R. and G.G.; investigation,
R.Q. and C.G.S.-M.; resources, M.T.-R.; data curation, G.G.; writing—original draft preparation, R.Q.
and C.G.S.-M.; writing—review and editing, M.T.-R. and G.G.; visualization, E.M.; supervision, R.Q.;
project administration, C.G.S.-M.; funding acquisition, G.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was partially sponsored by the Instituto Politécnico Nacional under grants
20231372, 20230901, and 20230655, the Consejo Nacional de Humanidades, Ciencias y Tecnologías and
Secretaría de Educación, Ciencia, Tecnología e Innovación de la Ciudad de México (SECTEI/182/2023).

Data Availability Statement: Data are contained within the article.

Acknowledgments: We are thankful to the reviewers for their time and invaluable and constructive
feedback, which helped improve the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2023, 11, 4806 23 of 30

Appendix A. The Pruned Dijkstra

The pruned Dijkstra algorithm is a generalization of the PLL (pruned landmark
labeling) method for undirected, weighted graphs [73]. The PLL method is based on the
idea of two-hop coverage [86], which is an exact method. It is defined as follows: let
G = (V, E) be an undirected and weighted graph; for each vertex, v ∈ V, the cover L(v) is
a set of pairs, (u, δuv), where u is a vertex, and δuv is the distance from u to v in the graph,
G. All coverage is denoted as indexed L(v)v∈V . To compute the distance between the two
vertices, s and t, we used the search function (Q), as shown in Equation (A1). L is a two-hop
cover of G if Q(s, t, L) = δst for any s, t ∈ V.

Q(s, t, L) =

{
∞ L(s) ∩ L(t) = ∅
min{δvs + δvt|(v, δvs) ∈ L(s), (v, δvt ∈ L(t)} L(s) ∩ L(t) 6= ∅

(A1)

In regard to weighted directed graphs, it is necessary to evaluate two indices; the first,
Lin, contains the coverage of all the nodes, considering the incoming edges. The second,
Lout, considers the outgoing edges. The procedure for consulting the distances has a simple
modification but the idea remains the same. This change is shown in Equation (A2).

Q(s, t, L) =

{
∞ L(s)in ∩ L(t)out = ∅
min

{
δvs + δvt|(v, δvs) ∈ L(s)in, (v, δvt ∈ L(t)out} L(s)in ∩ L(t)out 6= ∅

(A2)

A simple solution to build these indices is to employ two executions of the Dijkstra
algorithm. Although this method needs to be more obvious and effective, we will explain
the details when discussing the next method. Let V = {v1, v1, . . . , vn}; start with an empty
index, Lin

0 , where ∀u ∈ V, Lin
0 (u) = ∅. Suppose Dijkstra is applied to each vertex in the

order v1, v2, . . . , vn. After the k-th Dijkstra on a vertex vk, the distances of vk are added
to the coverages of the vertices reached, where Lin

k (u) = Lin
k−1(u) ∪ {(vk, dG(vk, u))} for

each u ∈ V with dG(vk, u) 6= ∞, where dG(u, v) is the distance from vertex u to vertex v
within the graph, G. It is important to note that the coverages of the vertices reached are
not changed, which implies that Lin

k (u) = Lin
k−1(u) for each u ∈ V with dG(vk, u) = ∞.

Performing this procedure, starting from Lout
0 , gives the same result but takes into account

the output edges.
Therefore, Lin

n and Lout
n are the final indices contained in Ln. It follows that Q(s, t, L) =

dG(s, t) for any vertex pair, so Lin
n and Lout

n are the two-hop covers of G. If s and t are
reachable, then (s, 0) ∈ Lin

n (s) and (s, dG(s, t)) ∈ Lout
n (t). Creating indices in this form

might be more efficient. For this reason, pruning is added to the original method. This
technique reduces the search space considerably. In the classic method, a pruned search
is performed using the Dijkstra algorithm, processing the vertices in the following order:
v1, v2, . . . , vn. Start with a pair of indices, Lin

0 and Lout
0 , and create indices Lin

k , Lout
k from

Lin
k−1 and Lout

k−1, respectively, using the information obtained by the k-th execution of pruned
Dijkstra for vertex vk.

The pruning process is as follows: Suppose we have the indices Lout
k−1 and Lin

k−1 and we
execute the pruned Dijkstra from vk to create a new index Lout

k . We assume that a vertex,
u, with a distance of δ is visited. If Q(s, t, Lk−1) ≤ δ, then we prune u, i.e., not adding
both (uk, δ) to Lout

k (u) and any neighbors of u to the priority queue. If the condition is not
satisfied, then (uk, δ) is added to the cover of u, and Dijkstra is performed as usual. Similar
to the original method, for all vertices that were not reached in the k-th execution of the
pruned Dijkstra, set Lin

k (u) = Lin
k−1(u) and Lout

k (u) = Lout
k−1(u). Finally, Lout

k and Lin
k are the

terminal indices contained in L
′
k.

Mathematics 2023, 11, 4806 24 of 30

Figure A1 shows an example of the algorithm applied to the graph depicted in the
figure, assuming that the order of execution is 1, 8, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12. The first
pruned Dijkstra from vertex 1 visits all other vertices forwards (Figure A2a) and back-
wards (Figure A2b). In the next iteration from vertex 8 (Figure A2c), when vertex 1 is
visited, given that Q(8, 1, L

′
1) = 1 = δ(8, 1) = 1, vertex 1 is pruned and neither of its

neighbors is visited again; the same occurs in the opposite direction (see Figure A2d).
With these two executions, it is possible to cover all the shortest paths, and after executing
the process on the remaining vertices, they only refer to themselves.

Figure A1. Example of a graph for the pruned Dijkstra algorithm.

(a) (b)

(c) (d)
Figure A2. Example of a pruned Dijkstra. The red vertices denote the execution root, the green
vertices represent those visited and added to the coverage, and the gray vertices are the roots. (a) The
first pruned Dijkstra from vertex 1 with trailing edges. All vertices are visited. (b) The first pruned
Dijkstra from vertex 1 with entry edges. All vertices are visited. (c) The second pruned Dijkstra from
vertex 8 with exit edges. Only those adjacent to 8 are visited. (d) The second pruned Dijkstra from
vertex 8 with entry edges. Only those adjacent to 8 are visited.

Mathematics 2023, 11, 4806 25 of 30

Appendix B. The Sketch-Based Algorithms

Sketch-based algorithms are methods that include two general processes: offline and
online. In the offline process, a set of sketches represents the crucial nodes, defined ran-
domly. By considering these sketches, the shortest path to all other vertices is determined.
In the online process, the shortest distance between a pair of nodes, u, v ∈ V, is calculated
from the closest common sketch of them.

The offline process consists of sampling log(n) sets of the seed vertex, each containing
a subset, S ⊆ V, of size 2i, i = 1, 2, 3, . . . , log(n). For each set, the closest seed, s ∈ S,
of each vertex is stored, including its distance; i.e., for every node, u, a sketch of the form
SKETCH(u) = {(s, δs,u)} is created. Therefore, the final size of the sketch for each node is
log(n). This technique can be performed using the Dijkstra algorithm. The vertex, s ∈ S,
closest to u is denoted as the seed of u. This procedure is repeated k times with different
sample sizes. At the end of the k iterations, each node has k log(n) seeds.

Figure A3 shows an example of the implemented procedure. The graph in Figure A1
is used as a reference. Since there are 12 vertices, the number of seed sets is 3 (log2(12) = 3),
and the size of the sets is 1, 2, and 4, respectively. The vertices in each set are 1 for the first,
3.1 for the second, and 8, 1, 2, 7 for the last.

In the first iteration (Figure A3a), all the vertices have vertex 1 in their coverage; this
also happens for the input edges (see Figure A3b). In the second iteration (Figure A3c,d),
the coverages do not change since vertex 3 does not cover any path shorter than those
already covered by vertex 1. Finally, in the last iteration (Figure A3e,f), we have vertex 8 in
the seed set; this covers the shortest path of its neighbors, except those that are also in the
set; therefore, vertices 5, 12, and 9 will have 8 in their coverage. On the other hand, vertices
2 and 7 are included in their respective coverages.

(a) (b)

(c) (d)

Figure A3. Cont.

Mathematics 2023, 11, 4806 26 of 30

(e) (f)

Figure A3. Sketch-based algorithm example. The red vertices denote the execution root, and the
green ones represent those that are visited. (a) Sketches from set 1 with output edges. All vertices
have node 1 in their coverage. (b) Sketches from set 1 with input edges. All vertices have node 1 in
their coverage. (c) Sketches from set 2 with output edges. Coverages do not change. (d) Sketches
from set 2 with input edges. Coverages do not change. (e) Sketches from set 3 with output edges. 8 is
added to the coverage of vertices 5, 9, and 12. (f) Sketches from set 3 with input edges; 8 is added to
the coverage of vertices 5, 9, and 12.

Appendix C. Pearson and Spearman Correlation Results

According to the described experiments, Tables A1 and A2 describe the results of the
Pearson correlation obtained by applying all the algorithms and their configurations to the
11 datasets. In addition, Tables A3 and A4 show the values of the Spearman correlation.

Table A1. The Pearson correlation of all datasets in the direction a− b.

Algorithm MC RG PS Agirre SimLex MTurk771 MTurk287 WSRel Rel SCWS All Avg.

Dijkstra 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Pruned Dijkstra 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 1.000

Sketches k = 1 0.940 0.853 0.862 0.733 0.762 0.605 0.864 0.720 0.841 0.815 0.745 0.795

Sketches k = 2 0.977 0.947 0.961 0.870 0.813 0.731 0.888 0.842 0.922 0.898 0.802 0.877

Sketches k = 5 0.985 0.984 0.978 0.923 0.897 0.881 0.937 0.921 0.953 0.944 0.899 0.937

Sketches k = 10 0.991 0.979 0.995 0.961 0.955 0.931 0.967 0.959 0.976 0.971 0.942 0.966

Sketches k = 15 0.993 0.996 0.991 0.980 0.972 0.959 0.971 0.971 0.983 0.982 0.957 0.978

Sketches k = 20 0.996 0.992 0.994 0.983 0.974 0.971 0.979 0.975 0.989 0.986 0.972 0.983

Table A2. The Pearson correlation of all datasets in the direction b− a.

Algorithm MC RG PS Agirre SimLex MTurk771 MTurk287 WSRel Rel SCWS All Avg.

Dijkstra 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Sketches k = 1 0.897 0.777 0.877 0.734 0.722 0.562 0.862 0.757 0.857 0.793 0.733 0.779

Sketches k = 2 0.932 0.961 0.956 0.893 0.806 0.725 0.890 0.827 0.879 0.896 0.795 0.869

Sketches k = 5 0.979 0.984 0.981 0.909 0.893 0.865 0.946 0.936 0.947 0.945 0.897 0.935

Sketches k = 10 0.987 0.991 0.992 0.963 0.952 0.944 0.960 0.945 0.979 0.967 0.939 0.965

Sketches k = 15 0.992 0.998 0.994 0.968 0.971 0.958 0.975 0.966 0.978 0.980 0.960 0.976

Sketches k = 20 0.995 0.996 0.997 0.979 0.971 0.972 0.980 0.983 0.984 0.988 0.972 0.983

Mathematics 2023, 11, 4806 27 of 30

Table A3. The Spearman correlation of all datasets in the direction a− b.

Algorithm MC RG PS Agirre SimLex MTurk771 MTurk287 WSRel Rel SCWS All Avg.

Dijkstra 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Pruned Dijkstra 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.968 0.997

Sketches k = 1 0.938 0.876 0.858 0.702 0.742 0.605 0.843 0.671 0.799 0.831 0.736 0.782

Sketches k = 2 0.977 0.944 0.959 0.823 0.804 0.729 0.855 0.821 0.900 0.906 0.807 0.866

Sketches k = 5 0.978 0.978 0.984 0.911 0.887 0.876 0.925 0.907 0.950 0.954 0.897 0.931

Sketches k = 10 0.987 0.981 0.991 0.941 0.955 0.931 0.963 0.946 0.973 0.978 0.942 0.962

Sketches k = 15 0.987 0.993 0.985 0.968 0.971 0.969 0.963 0.960 0.980 0.986 0.954 0.974

Sketches k = 20 0.989 0.988 0.991 0.973 0.979 0.978 0.976 0.961 0.985 0.990 0.965 0.980

Table A4. The Spearman correlation of all datasets in the direction b− a.

Algorithm MC RG PS Agirre SimLex MTurk771 MTurk287 WSRel Rel SCWS All Avg.

Dijkstra 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Pruned Dijkstra 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.969 0.997

Sketches k = 1 0.875 0.826 0.843 0.735 0.700 0.573 0.823 0.693 0.817 0.807 0.732 0.766

Sketches k = 2 0.925 0.921 0.932 0.859 0.816 0.733 0.876 0.764 0.835 0.902 0.803 0.851

Sketches k = 5 0.972 0.970 0.961 0.898 0.884 0.866 0.920 0.906 0.936 0.953 0.896 0.924

Sketches k = 10 0.991 0.980 0.985 0.953 0.950 0.947 0.945 0.928 0.969 0.974 0.938 0.960

Sketches k = 15 0.991 0.990 0.981 0.959 0.974 0.960 0.961 0.952 0.969 0.984 0.958 0.971

Sketches k = 20 0.996 0.985 0.990 0.973 0.971 0.977 0.971 0.975 0.982 0.991 0.966 0.980

References
1. Mejia Sanchez-Bermejo, A. Similitud Semantica Entre Conceptos de Wikipedia. Bachelor’s Thesis, Universidad Carlos III de

Madrid, Getafe, Madrid, Spain, 2013.
2. Goldstone, R.L. Similarity, interactive activation, and mapping. J. Exp. Psychol. Learn. Mem. Cogn. 1994, 20, 3. [CrossRef]
3. Quintero, R.; Torres-Ruiz, M.; Saldaña-Pérez, M.; Guzmán Sánchez-Mejorada, C.; Mata-Rivera, F. A Conceptual Graph-Based

Method to Compute Information Content. Mathematics 2023, 11, 3972. [CrossRef]
4. Chen, X.; Wang, Z.; Hua, Q.; Shang, W.L.; Luo, Q.; Yu, K. AI-empowered speed extraction via port-like videos for vehicular

trajectory analysis. IEEE Trans. Intell. Transp. Syst. 2022, 24, 4541–4552. [CrossRef]
5. Quintero, R.; Torres-Ruiz, M.; Menchaca-Méndez, R.; Moreno-Armendariz, M.A.; Guzmán, G.; Moreno-Ibarra, M. DIS-C:

Conceptual distance in ontologies, a graph-based approach. Knowl. Inf. Syst. 2019, 59, 33–65. [CrossRef]
6. Dreyfus, S.E. An appraisal of some shortest-path algorithms. Oper. Res. 1969, 17, 395–412. [CrossRef]
7. Gallo, G.; Pallottino, S. Shortest path algorithms. Ann. Oper. Res. 1988, 13, 1–79. [CrossRef]
8. Magzhan, K.; Jani, H.M. A review and evaluations of shortest path algorithms. Int. J. Sci. Technol. Res 2013, 2, 99–104.
9. Madkour, A.; Aref, W.G.; Rehman, F.U.; Rahman, M.A.; Basalamah, S. A survey of shortest-path algorithms. arXiv 2017, arXiv:1705.02044.
10. Zhang, F.; Liu, J. A new shortest path algorithm for massive spatial data based on Dijkstra algorithm. J. LiaoNing Technol. Univ.

Sci. Ed. 2009, 28, 554–557.
11. Chakaravarthy, V.T.; Checconi, F.; Murali, P.; Petrini, F.; Sabharwal, Y. Scalable single source shortest path algorithms for massively

parallel systems. IEEE Trans. Parallel Distrib. Syst. 2016, 28, 2031–2045. [CrossRef]
12. Yang, Y.; Li, Z.; Wang, X.; Hu, Q. Finding the shortest path with vertex constraint over large graphs. Complexity 2019, 2019, 8728245.

[CrossRef]
13. Liu, J.; Pan, Y.; Hu, Q.; Li, A. Navigating a Shortest Path with High Probability in Massive Complex Networks. In Proceedings of

the Analysis of Experimental Algorithms: Special Event, SEA2 2019, Kalamata, Greece, 24–29 June 2019; Revised Selected Papers;
Springer: Berlin/Heidelberg, Germany, 2019; pp. 82–97.

14. Ma, X.; Huo, E.; Yu, H.; Li, H. Mining truck platooning patterns through massive trajectory data. Knowl. Based Syst. 2021,
221, 106972. [CrossRef]

15. Li, S.; Sun, X.; Xiao, Y.H.; Guo, X.; Zhang, J. Noncoherent space-time coding for correlated massive MIMO channel with
Riemannian distance. Digit. Signal Process. 2023, 133, 103876. [CrossRef]

http://doi.org/10.1037/0278-7393.20.1.3
http://dx.doi.org/10.3390/math11183972
http://dx.doi.org/10.1109/TITS.2022.3167650
http://dx.doi.org/10.1007/s10115-018-1200-3
http://dx.doi.org/10.1287/opre.17.3.395
http://dx.doi.org/10.1007/BF02288320
http://dx.doi.org/10.1109/TPDS.2016.2634535
http://dx.doi.org/10.1155/2019/8728245
http://dx.doi.org/10.1016/j.knosys.2021.106972
http://dx.doi.org/10.1016/j.dsp.2022.103876

Mathematics 2023, 11, 4806 28 of 30

16. Meersman, R.A. Semantic ontology tools in IS design. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany,
1999; pp. 30–45. [CrossRef]

17. Bondy, J.A. Graph Theory with Applications; Elsevier Science Publishing Co., Inc.: New York, NY, USA, 1982.
18. West, D.B. Introduction to Graph Theory, 2nd ed.; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 2001.
19. Bollobás, B. Modern Fraph Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1998; Volume 184.
20. Gross, J.L.; Yellen, J.; Anderson, M. Graph Theory and Its Applications; Chapman and Hall/CRC: London, UK, 2018.
21. Juel Vang, K. Ethics of Google’s Knowledge Graph: Some considerations. J. Inf. Commun. Ethics Soc. 2013, 11, 245–260. [CrossRef]
22. Ehrlinger, L.; Wöß, W. Towards a definition of knowledge graphs. SEMANTiCS (Posters, Demos, SuCCESS) 2016, 48, 2.
23. Fensel, D.; Şimşek, U.; Angele, K.; Huaman, E.; Kärle, E.; Panasiuk, O.; Toma, I.; Umbrich, J.; Wahler, A.; Fensel, D.; et al. Intro-

duction: What is a knowledge graph? In Knowledge Graphs: Methodology, Tools and Selected Use Cases; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 1–10.

24. Zou, X. A survey on application of knowledge graph. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing:
Bristol, UK, 2020; Volume 1487, p. 012016.

25. Pujara, J.; Miao, H.; Getoor, L.; Cohen, W. Knowledge graph identification. In Proceedings of the Semantic Web—ISWC 2013:
12th International Semantic Web Conference, Sydney, NSW, Australia, 21–25 October 2013; Proceedings, Part I 12; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 542–557.

26. Sanchez, D.; Batet, M.; Isern, D.; Valls, A. Ontology-based semantic similarity: A new feature-based approach. Expert Syst. Appl.
2012, 39, 7718–7728. [CrossRef]

27. Rada, R.; Mili, H.; Bicknell, E.; Blettner, M. Development and application of a metric on semantic nets. IEEE Trans. Syst. Man
Cybern. 1989, 19, 17–30. [CrossRef]

28. Wu, Z.; Palmer, M. Verb semantics and lexical selection. arXiv 1994, arXiv:cmp-lg/9406033.
29. Hirst, G.; Stonge, D. Lexical Chains as Representations of Context for the Detection and Correction of Malapropisms. Wordnet

Electron. Lex. Database 1995, 305, 305–332.
30. Li, Y.; Bandar, Z.A.; Mclean, D. An approach for measuring semantic similarity between words using multiple information

sources. IEEE Trans. Knowl. Data Eng. 2003, 15, 871–882. [CrossRef]
31. Shenoy, M.K.; Shet, K.; Acharya, U.D. A new similarity measure for taxonomy based on edge counting. Int. J. Web Semant.

Technol. 2012, 3, 23. [CrossRef]
32. Tversky, A. Features of similarity. Psychol. Rev. 1977, 84, 327. [CrossRef]
33. Lesk, M. Automatic sense disambiguation using machine readable dictionaries: How to tell a pine cone from an ice cream cone.

In Proceedings of the 5th Annual International Conference on Systems Documentation, Toronto, ON, Canada, 8–11 June 1986;
pp. 24–26.

34. Banerjee, S.; Pedersen, T. Extended gloss overlaps as a measure of semantic relatedness. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence, IJCAI, Acapulco, Mexico, 9–15 August 2003; Volume 3, pp. 805–810.

35. Jiang, Y.; Zhang, X.; Tang, Y.; Nie, R. Feature-based approaches to semantic similarity assessment of concepts using Wikipedia.
Inf. Process. Manag. 2015, 51, 215–234. [CrossRef]

36. Resnik, P. Using Information Content to Evaluate Semantic Similarity in a Taxonomy. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, IJCAI, Montreal, QC, Canada, 20–25 August 1995; Volume 1, pp. 449–453.

37. Jiang, J.J.; Conrath, D.W. Semantic similarity based on corpus statistics and lexical taxonomy. In Proceedings of the 10th Research
on Computational Linguistics International Conference, ROCLING X, Taipei, Taiwan, 25–27 August 1997; pp. 19–33.

38. Gao, J.B.; Zhang, B.W.; Chen, X.H. A WordNet-based semantic similarity measurement combining edge-counting and information
content theory. Eng. Appl. Artif. Intell. 2015, 39, 80–88. [CrossRef]

39. Jiang, Y.; Bai, W.; Zhang, X.; Hu, J. Wikipedia-based information content and semantic similarity computation. Inf. Process.
Manag. 2017, 53, 248–265. [CrossRef]

40. Zhou, Z.; Wang, Y.; Gu, J. A New Model of Information Content for Semantic Similarity in WordNet. In Proceedings of
the 2008 Second International Conference on Future Generation Communication and Networking Symposia, Sanya, China,
13–15 December 2008; Volume 3, pp. 85–89. [CrossRef]

41. Sanchez, D.; Batet, M.; Isern, D. Ontology-based information content computation. Knowl. Based Syst. 2011, 24, 297–303.
[CrossRef]

42. Seidel, R. On the All-Pairs-Shortest-Path Problem. In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of
Computing, STOC’92, New York, NY, USA, 4–6 May 1992; pp. 745–749. [CrossRef]

43. Warshall, S. A Theorem on Boolean Matrices. J. ACM 1962, 9, 11–12. [CrossRef]
44. Singh, P.; Kumar, R.; Pandey, V. An Efficient Algorithm for All Pair Shortest Paths. Int. J. Comput. Electr. Eng. 2010, 2, 984–991.

[CrossRef]
45. Zwick, U. All Pairs Shortest Paths Using Bridging Sets and Rectangular Matrix Multiplication. J. ACM 2002, 49, 289–317.

[CrossRef]
46. D’alberto, P.; Nicolau, A. R-Kleene: A high-performance divide-and-conquer algorithm for the all-pair shortest path for densely

connected networks. Algorithmica 2007, 47, 203–213. [CrossRef]
47. Islam, M.T.; Thulasiraman, P.; Thulasiram, R.K. A parallel ant colony optimization algorithm for all-pair routing in MANETs. In

Proceedings of the International Parallel and Distributed Processing Symposium, Nice, France, 22–26 May 2003.

http://dx.doi.org/10.1007/bfb0095088
http://dx.doi.org/10.1108/JICES-08-2013-0028
http://dx.doi.org/10.1016/j.eswa.2012.01.082
http://dx.doi.org/10.1109/21.24528
http://dx.doi.org/10.1109/TKDE.2003.1209005
http://dx.doi.org/10.5121/ijwest.2012.3403
http://dx.doi.org/10.1037/0033-295X.84.4.327
http://dx.doi.org/10.1016/j.ipm.2015.01.001
http://dx.doi.org/10.1016/j.engappai.2014.11.009
http://dx.doi.org/10.1016/j.ipm.2016.09.001
http://dx.doi.org/10.1109/FGCNS.2008.16
http://dx.doi.org/10.1016/j.knosys.2010.10.001
http://dx.doi.org/10.1145/129712.129784
http://dx.doi.org/10.1145/321105.321107
http://dx.doi.org/10.7763/IJCEE.2010.V2.263
http://dx.doi.org/10.1145/567112.567114
http://dx.doi.org/10.1007/s00453-006-1224-z

Mathematics 2023, 11, 4806 29 of 30

48. Katz, G.J.; Kider, J.T. All-Pairs Shortest-Paths for Large Graphs on the GPU. In Proceedings of the EUROGRAPHICS/ACM
SIGGRAPH Conference on Graphics Hardware 2008, Sarajevo, Bosnia and Herzegovina, 20–21 June 2008; pp. 47–55.

49. Reddy, K.R. A survey of the all-pairs shortest paths problem and its variants in graphs. Acta Univ. Sapientiae Inform. 2016, 8,
16–40. [CrossRef]

50. Aho, A.V.; Hopcroft, J.E. The Design and Analysis of Computer Algorithms; Pearson Education India: Chennai, India, 1974.
51. Attiratanasunthron, N.; Fakcharoenphol, J. A running time analysis of an ant colony optimization algorithm for shortest paths in

directed acyclic graphs. Inf. Process. Lett. 2008, 105, 88–92. [CrossRef]
52. Neumann, F.; Witt, C. Runtime analysis of a simple ant colony optimization algorithm. In Proceedings of the International

Symposium on Algorithms and Computation, Kolkata, India, 18–20 December 2006; Springer: Berlin/Heidelberg, Germany, 2006;
pp. 618–627.

53. Di Caro, G.; Dorigo, M. AntNet: Distributed stigmergetic control for communications networks. J. Artif. Intell. Res. 1998,
9, 317–365. [CrossRef]

54. Horoba, C.; Sudholt, D. Running time analysis of ACO systems for shortest path problems. In Proceedings of the Inter-
national Workshop on Engineering Stochastic Local Search Algorithms, Brussels, Belgium, 3–4 September 2009; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 76–91.

55. Fredman, M.L. New bounds on the complexity of the shortest path problem. SIAM J. Comput. 1976, 5, 83–89. [CrossRef]
56. Takaoka, T. A new upper bound on the complexity of the all pairs shortest path problem. Inf. Process. Lett. 1992, 43, 195–199.

[CrossRef]
57. Dobosiewicz, W. A more efficient algorithm for the min-plus multiplication. Int. J. Comput. Math. 1990, 32, 49–60. [CrossRef]
58. Han, Y. Improved algorithm for all pairs shortest paths. Inf. Process. Lett. 2004, 91, 245–250. [CrossRef]
59. Takaoka, T. A faster algorithm for the all-pairs shortest path problem and its application. In Proceedings of the International

Computing and Combinatorics Conference, Jeju Island, Republic of Korea, 17–20 August 2004; Springer: Berlin/Heidelberg,
Germany, 2004; pp. 278–289.

60. Takaoka, T. An O (n3loglogn/logn) time algorithm for the all-pairs shortest path problem. Inf. Process. Lett. 2005, 96, 155–161.
[CrossRef]

61. Zwick, U. A slightly improved sub-cubic algorithm for the all pairs shortest paths problem with real edge lengths. In
Proceedings of the International Symposium on Algorithms and Computation, Hong Kong, China, 20–22 December 2004;
Springer: Berlin/Heidelberg, Germany, 2004; pp. 921–932.

62. Chan, T.M. All-pairs shortest paths with real weights in O (n 3/log n) time. Algorithmica 2008, 50, 236–243. [CrossRef]
63. Han, Y. An o (n 3 (loglogn/logn) 5/4) time algorithm for all pairs shortest paths. In Proceedings of the European Symposium on

Algorithms, Zurich, Switzerland, 11–13 September 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 411–417.
64. Chan, T.M. More algorithms for all-pairs shortest paths in weighted graphs. SIAM J. Comput. 2010, 39, 2075–2089. [CrossRef]
65. Williams, R.R. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput. 2018, 47, 1965–1985. [CrossRef]
66. Chou, Y.L.; Romeijn, H.E.; Smith, R.L. Approximating shortest paths in large-scale networks with an application to intelligent

transportation systems. INFORMS J. Comput. 1998, 10, 163–179. [CrossRef]
67. Mohring, R.H.; Schilling, H.; Schutz, B.; Wagner, D.; Willhalm, T. Partitioning graphs to speedup Dijkstra’s algorithm. J. Exp.

Algorithmics 2007, 11, 2–8. [CrossRef]
68. Baswana, S.; Goyal, V.; Sen, S. All-pairs nearly 2-approximate shortest paths in O(n2polylogn) time. Theor. Comput. Sci. 2009,

410, 84–93. [CrossRef]
69. Yuster, R. Approximate shortest paths in weighted graphs. J. Comput. Syst. Sci. 2012, 78, 632–637. [CrossRef]
70. Thorup, M.; Zwick, U. Approximate distance oracles. J. ACM 2005, 52, 1–24. [CrossRef]
71. Das Sarma, A.; Gollapudi, S.; Najork, M.; Panigrahy, R. A sketch-based distance oracle for web-scale graphs. In Proceedings of

the Third ACM International Conference on Web Search and Data Mining, New York, NY, USA, 3–6 February 2010; pp. 401–410.
72. Wang, Y.; Wang, Q.; Koehler, H.; Lin, Y. Query-by-Sketch: Scaling Shortest Path Graph Queries on Very Large Networks. In

Proceedings of the 2021 International Conference on Management of Data, Virtual Event, 20–25 June 2021; pp. 1946–1958.
73. Akiba, T.; Iwata, Y.; Yoshida, Y. Fast exact shortest-path distance queries on large networks by pruned landmark labeling. In

Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, 22–27 June 2013;
pp. 349–360.

74. Mendiola, E. Algoritmo Para el Cálculo Acelerado de Distancias Conceptuales. Master’s Thesis, Instituto Politécnico Nacional,
Mexico City, Mexico, 2022.

75. Robertson, N.; Seymour, P. Graph minors. III. Planar tree-width. J. Comb. Theory Ser. B 1984, 36, 49–64. [CrossRef]
76. Miller, G.A.; Charles, W.G. Contextual correlates of semantic similarity. Lang. Cogn. Process. 1991, 6, 1–28. [CrossRef]
77. Rubenstein, H.; Goodenough, J.B. Contextual correlates of synonymy. Commun. ACM 1965, 8, 627–633. [CrossRef]
78. Pirro, G. A semantic similarity metric combining features and intrinsic information content. Data Knowl. Eng. 2009, 68, 1289–1308.

[CrossRef]
79. Agirre, E.; Alfonseca, E.; Hall, K.; Kravalova, J.; Pasca, M.; Soroa, A. A Study on Similarity and Relatedness Using Distributional

and WordNet-based Approaches. In Proceedings of the Human Language Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, Boulder, Colorado, 31 May–5 June 2009; pp. 19–27.
Available online: https://aclanthology.org/N09-1003 (accessed on 9 October 2023).

http://dx.doi.org/10.1515/ausi-2016-0002
http://dx.doi.org/10.1016/j.ipl.2007.08.013
http://dx.doi.org/10.1613/jair.530
http://dx.doi.org/10.1137/0205006
http://dx.doi.org/10.1016/0020-0190(92)90200-F
http://dx.doi.org/10.1080/00207169008803814
http://dx.doi.org/10.1016/j.ipl.2004.05.006
http://dx.doi.org/10.1016/j.ipl.2005.08.008
http://dx.doi.org/10.1007/s00453-007-9062-1
http://dx.doi.org/10.1137/08071990X
http://dx.doi.org/10.1137/15M1024524
http://dx.doi.org/10.1287/ijoc.10.2.163
http://dx.doi.org/10.1145/1187436.1216585
http://dx.doi.org/10.1016/j.tcs.2008.10.018
http://dx.doi.org/10.1016/j.jcss.2011.09.001
http://dx.doi.org/10.1145/1044731.1044732
http://dx.doi.org/10.1016/0095-8956(84)90013-3
http://dx.doi.org/10.1080/01690969108406936
http://dx.doi.org/10.1145/365628.365657
http://dx.doi.org/10.1016/j.datak.2009.06.008
https://aclanthology.org/N09-1003

Mathematics 2023, 11, 4806 30 of 30

80. Hill, F.; Reichart, R.; Korhonen, A. Simlex-999: Evaluating semantic models with (genuine) similarity estimation. Comput. Linguist.
2015, 41, 665–695. [CrossRef]

81. Halawi, G.; Dror, G.; Gabrilovich, E.; Koren, Y. Large-scale learning of word relatedness with constraints. In Proceedings of the
18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012;
pp. 1406–1414.

82. Radinsky, K.; Agichtein, E.; Gabrilovich, E.; Markovitch, S. A word at a time: Computing word relatedness using temporal
semantic analysis. In Proceedings of the 20th International Conference on World Wide Web, Hyderabad, India, 28 March–1 April
2011; pp. 337–346.

83. Finkelstein, L.; Gabrilovich, E.; Matias, Y.; Rivlin, E.; Solan, Z.; Wolfman, G.; Ruppin, E. Placing search in context: The concept
revisited. In Proceedings of the 10th International Conference on World Wide Web, Hong Kong, China, 1–5 May 2001; pp. 406–414.

84. Szumlanski, S.; Gomez, F.; Sims, V.K. A new set of norms for semantic relatedness measures. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics, Sofia, Bulgaria, 4–9 August 2013; Volume 2: Short Papers, pp. 890–895.

85. Huang, E.H.; Socher, R.; Manning, C.D.; Ng, A.Y. Improving word representations via global context and multiple word
prototypes. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, Jeju Island, Republic of
Korea, 8–14 July 2012; Volume 1: Long Papers.

86. Cohen, E.; Halperin, E.; Kaplan, H.; Zwick, U. Reachability and distance queries via 2-hop labels. SIAM J. Comput. 2003,
32, 1338–1355. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1162/COLI_a_00237
http://dx.doi.org/10.1137/S0097539702403098

	Introduction
	Related Work
	Semantic Similarity
	All Pairs Shortest Path Problem (APSP)

	Materials and Methods
	The Pruned Dijkstra Algorithm
	The Sketch-Based Algorithms

	Results
	The Datasets
	Evaluation Metrics
	Generated Graphs and Performance
	Conceptual Distance Results

	Conclusions and Future Work
	Appendix A
	Appendix B
	Appendix C
	References

