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Abstract: The demand for accurate and reliable unsupervised image segmentation methods is
high. Regardless of whether we are faced with a problem for which we do not have a usable
training dataset, or whether it is not possible to obtain one, we still need to be able to extract the
desired information from images. In such cases, we are usually gently pushed towards the best
possible clustering method, as it is often more robust than simple traditional image processing
methods. We investigate the usefulness of combining two clustering methods for unsupervised image
segmentation. We use the mixture models to extract the color and spatial image features based on
the obtained output segments. Then we construct a similarity matrix (adjacency matrix) based on
these features to perform spectral clustering. In between, we propose a label noise correction using
Markov random fields. We investigate the usefulness of our method on many hand-crafted images of
different objects with different shapes, colorization, and noise. Compared to other clustering methods,
our proposal performs better, with 10% higher accuracy. Compared to state-of-the-art supervised
image segmentation methods based on deep convolutional neural networks, our proposal proves to
be competitive.

Keywords: spectral clustering; mixture models; color features; spatial features; image segmentation
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1. Introduction

Unsupervised image segmentation is a popular problem in many areas of mechanical
engineering [1–4]. The examples range from the identification of porous structures [1] to
the estimation of surface roughness and tool wear [2,3] or defect detection [5]. The goal is
to extract the interesting pixels from the image, which are then further processed to obtain
the desired information.

The usual image processing pipeline used in the above cases can be summarized in
the following four steps [6]. The first step is image acquisition. The second step is image
enhancement. Normally we need to manipulate the obtained raw image in some way,
either by resizing, contrast enhancement, lighting correction, etc. In this way, the image is
prepared for the image segmentation process, where segments of interest are found. These
segments are finally used for the desired information extraction, e.g., surface roughness,
tool wear, or defects. The third step is the image segmentation and the fourth step is the
post-processing of the obtained segmentation. Post-processing can range from the simple
calculation of the segment area to more sophisticated methods such as morphological
operations to improve the resulting segmentation.

The choice of image segmentation method is usually determined by the presence of
some kind of training dataset. Currently popular approaches to image segmentation, such
as deep convolutional neural networks, require large training datasets but provide very
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good results once the training dataset is available [2,5]. On the other hand, many conven-
tional image processing methods such as gradient estimation and thresholding can be used
as segmentation methods when no training dataset is available [1,3,6]. Conventional image
processing methods are heavily dependent on pre- and post-processing steps, which usually
need to be tailored to a specific problem and are therefore very difficult to automate. In the
middle, which we call unsupervised image segmentation, are clustering methods, a form
of machine learning that does not require a training dataset but is largely independent of
pre- and post-processing steps, so they can usually be used without them [4].

A popular choice for unsupervised image segmentation is mixture modelling [7].
Mixture modelling is also interesting for unsupervised image segmentation because it can
be used for further clustering [7,8] and also in conjunction with Markov random fields
(MRFs), a powerful framework for image analysis [9]. Mixture models treat the image
as a complex probability distribution consisting of a large number of simple parametric
probability distributions that form a segment in the image. In this way, image segments are
constructed that typically have similar pixel colors.

The problem with using mixture models for segmentation is that the segmentation is
only based on the color information of the pixels and not on the spatial information. This
can be mitigated by the subsequent use of MRF [10], but the segmentation is only improved
locally and is generally suitable for noise reduction. Even with further clustering, such
as the spectral clustering used in [7], the final segmentation is still only based on color
pixel information. This can be satisfactory in some cases, but usually better results can be
achieved if some kind of spatial constraints are included [11].

Therefore, in this work, we propose to combine the spatial image features and the
color image features with spectral clustering to improve the image segmentation. Our
main concept of the research methodology is shown in Figure 1. The spatial and color
image features are obtained by mixture modelling. We introduce label moment estimation
together with spatial and color adjacency matrix estimation. We also introduce some
improvements in the estimation of the spatial MRF regularity matrix. Our proposals
are tested on a self-generated image dataset, which also reflects the intended use of our
proposals. Compared to the state of the art, our results are quite competitive.

On average, we achieved 10% higher accuracy than comparable clustering methods,
which are mostly used for unsupervised image segmentation. Furthermore, for all gen-
erated images, we experimentally verified that using a different non-normal probability
density function for the mixture model component has a negligible effect on performance.
This is true even if the image was generated with a non-normal mixture model. It must
be emphasized that this is true when the mixture model is to be used in the context of our
proposal, i.e., when the components are to be merged using the proposed method. In other
cases, the influence of a different probability density function is definitely not negligible [12].
Our results also show that using the MRF provides some relief for noisy images, but this
should be further investigated. Finally, the comparison of our proposal with state-of-the-art
deep convolutional neural networks used for supervised image segmentation shows that
they perform better on average. However, considering that the influence of the training
dataset is not negligible, our proposals offer an acceptable compromise, especially in cases
where the obtained images are not affected by noise.

The present work is organized as follows. Section 2 is reserved for related work.
Section 3 is reserved for image segmentation based on mixture models. Section 4 is
reserved for the proposal of our method and the derivation of the estimates used. Section 5
explains the method for generating the image dataset and Section 6 contains the results
and discussion. The last section, Section 7, summarizes our work with concluding remarks
and provides some insights into future work possibilities.
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Mixture modeling

Initial image segmentation using mixture 
model based clustering

Characterizing spatial 
segmentation features 

with label moments

Characterizing color 
segmentation features 

with mixture components

Estimating the similarity 
of spatial features via the 

distance of the label 
moments

Estimating the similarity 
of color features by 

summarising the overlap 
of mixture components

Combination of color and spatial 
similarity to estimate the adjacency 

matrix of an image

Unsupervised image segmentation by 
spectral clustering on the estimated 

adjacency matrix of an image

Noise reduction with Markov random 
fields

Figure 1. Main concept and methodology of our study presented in the form of a block diagram.
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2. Related Work

Unsupervised image segmentation is usually performed with the help of clustering al-
gorithms [13,14]. The most commonly used algorithms are k-means [15], fuzzy c-means [11],
mean-shift [16], density-based clustering [17], spectral-based clustering [18,19], and mixture
model-based clustering [20,21]. Recent studies have shown that mixture models actually
provide a better way to segment an image [14], at least compared to fuzzy c-means and
k-means clustering. On the other hand, methods such as density-based clustering, mean
shift, and spectral clustering can offer some advantages and improvements in unsuper-
vised image segmentation, but the computational efficiency of such algorithms is much
higher than that of mixture models or k-means and fuzzy c-means clustering [13]. Spectral
clustering is even more affected by this, since the construction of the adjacency matrix
for an image with n pixels has a time complexity of O(n3) [22]. Moreover, recent studies
show that the use of mixture models in combination with new superior supervised image
segmentation methods such as deep neural networks is very powerful [23–26].

Using the mixture model for unsupervised image segmentation requires modelling
the probability density function of the image, which is usually represented as an image
histogram [8,20,21,27]. The image histogram is often complex and unique and its modelling
is difficult. For this reason, various mixture models have been proposed. Recent studies
include the non-extensive mixture models described in Ref. [14], the flexible regularized
mixture model proposed in Ref. [20], the spatially restricted Student’s-t mixture model in
Ref. [21], the Laplace mixture model in Ref. [28], the Gumbel mixture model in Ref. [29], and
so on. On the other hand, some authors treat the problem of the complex image histogram
with a different strategy [7,30]. Since it is generally known (see, e.g., references [27,31])
that the mixture models are particularly good at approximating an arbitrary probability
density function, especially as the number of components increases, the equality of the
number of components and the number of segments in the image (or more generally the
number of clusters in clustering) can be different [7,8,12,30]. The number of components
in the mixture model is therefore estimated using information criteria [32,33], such as the
Bayesian information criterion (BIC) [34], which is usually optimal for estimating any
probability density function [27]. However, the number of components is then usually
higher than the desired number of segments for the unsupervised image segmentation,
and the problem is then translated into the mixture component merging problem [32]. The
authors in Ref. [7] use spectral clustering for the subsequent merging of the components,
while in Ref. [8], the authors propose hierarchical merging of mixture components for
unsupervised image segmentation. The work in Refs. [30,35] is similar. Instead of merging
the components of a mixture afterwards, each segment is modelled with a mixture model.
If merging components can be described as a top-down approach for unsupervised image
segmentation, then this approach can be described as a bottom-up approach. However,
to summarize, all these approaches generally tend to relax the need for a complex-shaped
probability distribution function as a mixture component by considering the image segment
as multiple mixture components.

Finally, the use of spectral clustering in conjunction with mixture models proved to be a
good method for merging components of a mixture model [7]. In general, spectral clustering
proves to be a quite good method for unsupervised image segmentation [36]. Therefore,
our main focus in this work is to fill the gaps in unsupervised image segmentation by using
the mixture models and spectral clustering. The work in Ref. [7] relies only on color image
features, while here we introduce both spatial and color-based features. Moreover, we
continue the work presented in Ref. [8] by tackling the problem of hierarchical merging of
mixture components with a more efficient algorithm. To model the spatial dependencies
between different image segments, we have relied on the image moments. Recently, there
has been some interesting work on using different image moments to improve image
segmentation [37–39]. It has been shown that using different image moments, either via
shape priors [37] or moment filters [38], can improve the results of supervised image
segmentation methods, such as convolutional neural networks. Furthermore, we partially
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address the Markov random fields [40], which seem to be a very important method for
modelling spatial dependencies with mixture models for image segmentation. In this
context, we propose a simple and effective way to circumvent the need for a spatial
regularization parameter β by introducing the spatial regularization matrix B, which is
fully estimated by measuring the overlap between the components of the mixture model.

3. Color-Based Image Segmentation Using Mixture Models

Let Z be the observed image with n pixels. The size of the image n = height×width
defines the number of rows nr and the number of columns nc. Each pixel is therefore defined
by the position xj, yj and the color value zj (gray value). It should be noted that we focus
here on monochromatic images, but an extension to RGB or other color image models is
easily possible, with the only difference being the process of mixture estimation.

The first step is to estimate the optimal mixture model based only on the color intensity
values. The digital image, which is represented as a matrix of size nr × nc, is usually
decomposed into a vector [8] of length n.

The mixture model is a composite probability distribution consisting of many simple
parametric distributions such as normal, lognormal, gamma, etc. [41]. It is most easily
described by its probability density function (PDF)

f (zj|c, w, Θ) =
c

∑
l=1

wl fl(zj|Θl), (1)

where zj is the observation, c the number of components, w the component weights, and Θ

the component parameters. The weights wl have the properties of the convex combination
wl ≥ 0 ∧ ∑c

l=1 wl = 1, which ensures that Equation (1) is a correct PDF.
The estimation procedure is described in detail in [27] and is mainly based on the stan-

dard model selection procedure with known information criteria and some improvements
of the estimation algorithms presented in [42]. The estimation procedure provides the
optimal number of components c in the mixture together with the component parameters
and component weights. Using the estimated optimal mixture model and the Bayes assign-
ment rule, which is commonly used to obtain a clustering solution with mixture models,
the initial image segmentation is determined. However, the initial number of segments
s may be less than the estimated number of components c due to the overlap between
different mixture components, so that s ≤ c.

Let L be the initial image segmentation. It has the same size nr × nc as the originally
observed image Z, but the pixel color values are now replaced by the index of the compo-
nent of origin. Using the Bayes allocation rule, for each pixel color intensity zj, we find the
index of component of origin lj that maximizes the posterior probability τjl , i.e.,

lj = argmax
l̃=1,...,c

τjl̃ ∀j ∈ {1, . . . , n}, (2)

where the τjl , the posterior probability, is the probability that the jth pixel arose from the
lth component, estimated as

τjl =
wl fl(yj|Θl)

∑c
l̃=1 wl̃ f l̃(yj|Θl̃)

. (3)

For example, the original image and the initial image segmentation for s = c = 3 can be
represented as follows:
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Z =


7 8 20 24 19 6
5 6 22 21 20 3
7 9 92 10 9 1
7 71 75 85 4 5
4 5 75 7 6 8

, L =


1 1 3 3 3 1
1 1 3 3 3 1
1 1 2 1 1 1
1 2 2 2 1 1
1 1 2 1 1 1

. (4)

4. Spectral Clustering Based on Color and Spatial Features

Let A be the adjacency matrix between the pixels of the image. The adjacency matrix
encodes pairwise similarities between the pixels and represents the image as a graph
structure suitable for further graph clustering, which is the core of spectral clustering [22].
Since an image contains a large number of pixels, creating an adjacency matrix for all pixels
is expensive and usually impractical [43]. Instead of using the original image to construct
the adjacency matrix, we reduce the tedious problem of constructing the image graph to a
mixture component merging problem, effectively reducing the n× n adjacency matrix of
the image to a c× c adjacency matrix. In this way, we improve the time complexity of the
spectral image clustering problem to O(1) if we always choose the same model selection
procedure for the optimal estimation of the mixture model.

There are at least two aspects when thinking about similarities in images, at least when
we reason about the use of image segmentation in mechanical engineering. The first usually
concerns color similarity. Image segments with similar color tend to belong to the same
object. This is already partly taken into account in color-based image segmentation with
mixture models. However, since color-based image segmentation based on mixture models
is usually incomplete [7,8], it is generally best to apply additional clustering algorithms to
the results obtained with mixture models. We also want to take into account some spatial
similarities between the segments. For this purpose, we first need to define the spatial
features of the segmentation and calculate the pairwise similarity between them.

4.1. Label Moment Estimation

Let mp,q be the raw image p, q-moment. The raw image moment can be estimated as
follows [44]:

mp,q =
n

∑
j=1

xp
j yq

j zj, (5)

where xj and yj are the jth pixel coordinates, p and q are the moment orders, and zj is the
pixel gray intensity. We have decided to estimate different raw image moments up to order
1, i.e., four different combinations: p = 0 and q = 0, p = 0 and q = 1, p = 1 and q = 0,
and p = 1 and q = 1. So four different moments.

To estimate the different raw moments for each segment in the obtained initial seg-
mentation L, Equation (5) can be conveniently written as follows:

mp,q
l =

n

∑
j=1

xp
j yq

j I(l, lj) ∀l ∈ {1, . . . , s}, (6)

where I(l, lj) returns 1 if the jth pixel belongs to the lth segment; otherwise, if l 6= lj,
the function returns 0. In this way, we obtain four different raw moments for each image
segment, which we call raw label moments.

Then we estimate both x and y centroids for each label l:

m1,0
l =

m1,0
l

m0,0
l

, m0,1
l =

m0,1
l

m0,0
l

. (7)

Finally, for each label, we retain the values m1,0
l , m0,1

l , and m1,1
l and then standardize them

to N (0, 1) to remove the effects of different moment scaling. The resulting label moment
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vector ml = (m1,0
l , m0,1

l , m1,1
l )>. It should be emphasized that the vector elements represent

Z-scores of the values specified in Equations (6) and (7).

4.2. Estimating Adjacency Matrix Based on Spatial Segment Features

Let As be the spatial adjacency matrix used for spectral clustering. The idea is that
the matrix should capture pairwise spatial similarities between estimated segments in the
initial image segmentation L. Therefore, the size is s× s. The remainder s is the initial
number of estimated segments.

The pairwise spatial similarity between two segments l and l̃ can be determined using
the simple radial basis kernel function

Ks,(l,l̃) = exp

(
−
||ml −ml̃ ||2

2σ2

)
, (8)

where l = 1, . . . , s, l̃ = l, . . . , s, σ is a smoothing parameter that controls the exponential
decay, and || · ||2 is the Euclidean norm that transforms the vector into a real positive
number. Ks,(l,l̃) thus provides the element (l, l̃) of the matrix As together with (l̃, l), because
Ks,(l,l̃) = Ks,(l̃,l). Moreover, Ks,(l,l) = 1, which agrees well with our definition of the similar-
ity problem, since each segment should be most similar only to itself. Thus, the final matrix
As is symmetric positive definite.

4.3. Estimating Adjacency Matrix Based on Color Segment Features

Since the initial image segmentation L was created using a mixture model, we can also
examine the similarity between the two mixture components used to label two different
image segments. In other words, the color distribution of the image segment l is described
by the distribution of the l-th mixture component, and the image segment l̃ is described
by the distribution of the l̃-th component. To determine the similarity of the color features
between the two image segments, it is therefore sufficient to determine the statistical
distance between the two mixture components [32].

In terms of mixture modelling and clustering, we usually summarize the clustering
solution by measuring the overlap between different mixture components [45]. A larger
overlap between mixture components usually occurs when more components are needed
to estimate the probability density, but these are underrepresented in the clustering solu-
tion [8]. Therefore, measuring the overlap between different mixture components provides
a good representation of the similarity between the mixture components and thus the
similarity of the color features in the image.

Let Kc,(l,l̃) be the color similarity measure between the mixture component l and the

mixture component l̃, which is responsible for the image segments l and l̃. Let Ac be
the color adjacency matrix used for spectral clustering. Each matrix element (l, l̃) thus
represents the color similarity between the segments (l, l̃) in the same way as we discussed
spatial similarity, and can be estimated with the color similarity measure Kc,(l,l̃). Again iden-
tical to the spatial adjacency matrix As, the color adjacency matrix Ac must be symmetric
and positive definite with all diagonal elements Ac,(l,l) = 1 and consequently with the trace
tr(Ac) = s. According to the reports of [8], both entropy-based and misclassification-based
similarity measures provide good results for the combination of mixture model components
in unsupervised image segmentation. Nevertheless, the improvements proposed in [45]
are also considered to ensure that the above conditions are met.

4.3.1. Entropy-Based Similarity Metric

Let El,l̃ be the resulting entropy of the combination of l and l̃ image segments. Us-
ing [33] we can estimate El,l̃ with

Êl,l̃ = −
n

∑
j=1

(
τl j log τl j + τl̃ j log τl̃ j

)
+

n

∑
j=1

(τl j + τl̃ j) log(τl j + τl̃ j), (9)
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where τl j denotes the component-specific posterior probabilities of Equation (3) for the
color intensity of the j-th pixel. Then, based on Ref. [45], El,l̃ is scale-corrected based on the
weights wl , wl̃ of the components l and l̃:

Êc,(l,l̃) =
Êl,l̃

n(wl + wl̃)
. (10)

The final similarity metric (ent) is obtained by removing the weight bias, i.e.,

Kc,(l,l̃) =
Êc,(l,l̃)

Hl,l̃
, (11)

where Hl,l̃ is

Hl,l̃ =
wl

wl + wl̃
log
(

wl
wl + wl̃

)
+

wl̃
wl + wl̃

log
(

wl̃
wl + wl̃

)
. (12)

4.3.2. Misclassification-Based Similarity Metric

Let pl,l̃ be the misclassification probability between two mixture components. Based
on [32,45], it can be estimated as

p̂l,l̃ =
∑n

j=1 τl j1(τl j, τl̃ j)

∑n
j=1 τl j

, (13)

where 1(τl j, τl̃ j) is equal to 1 if τl̃ j > τl j, and 0 otherwise. This metric is already correctly
scaled and freed from weighting bias, and fulfills the condition that it results in 0 if the
components do not overlap and 1 if the components overlap completely. However, this
metric is not necessarily symmetric, which means that pl,l̃ 6= pl̃,l . To ensure that the
metric becomes symmetric, we simply use a higher value. The similarity metric for the
misclassification probability (demp) can thus be written as follows:

Kc,(l,l̃) = Kc,(l̃,l) = max
(

p̂l,l̃ , p̂l̃,l

)
. (14)

4.4. Improving Initial Image Segmentation Using Markov Random Fields

Images affected by noise usually have a high number of distorted pixels. They are ran-
domly distributed across the image and can severely affect the initial image segmentation
with mixture models, as they introduce randomly scattered segments into the image. In ad-
dition, the initial image segmentation with mixture models may contain some segments
that do not have a coherent spatial shape, are not visibly compatible with other segments,
etc., even if no noise is visible (or present) in the image. Such segments are barely connected
to other segments and provide little to no information gain or understanding required for
the further steps.

To mitigate this problem somewhat, we use Markov random fields to improve the
initial image segmentation. In this way, we enforce a certain spatial regularity for the
obtained image segments [40]. A segmentation task is reformulated as the minimization of
a suitable energy function

U(xj| lj) = u(xj| lj) + β ∑
j̃∈Nj

v(lj, l j̃), (15)

where u(xj| lj) is a unary term that depends on the probability of assigning the jth pixel
to the segment lj, and β ∑ j̃∈Nj

v(lj, l j̃) is a pairwise term that controls the spatial regularity.
The image segmentation is based on the minimization of Equation (15), which can be
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performed in many ways [40,46]. We have chosen the famous Iterated Conditional Modes
(ICM) algorithm [47] because of its simplicity and straightforward parallelization.

The spatial regularity of the segment is determined (1) by the neighborhood of the jth
pixel Nj, (2) by the potential function v(lj, l j̃), and (3) by the parameter β. For the potential
function v(lj, l j̃), we choose the Potts model [40,46]:

v(lj, l j̃) = 1− δ(lj, l j̃), (16)

where δ(lj, l j̃) = 1 if and only if lj is equal to l j̃. For the neighborhood system, we choose
a second-order neighborhood that has nine connections [40,46]. Finally, we replace the
parameter β with the spatial regularity matrix B, which is based on the estimated color
adjacency matrix Ac. The spatial regularity matrix B is estimated as

B̂ = exp(−Ac). (17)

In this way, we introduce a variable regularization for different pairs of segments found in
the neighborhood of the jth pixel Nj based on their color similarity. The energy function is
reformulated as

U(xj| lj) = u(xj| lj) + ∑
j̃∈Nj

β(lj ,l j̃)
v(lj, l j̃), (18)

where β(lj ,l j̃)
is the element (lj, l j̃) of the matrix B, if Kc,(lj ,l j̃)

→ 0 is the value of β(lj ,l j̃)
→ 1.

This simply means that the penalty is smaller if the color similarity between the segments
is greater, and that the penalty is greater if the color similarity between the segments
is smaller.

4.5. Concatenating Color and Spatial Adjacency Matrix for Spectral Clustering

Let A be the final adjacency matrix used for spectral clustering and unsupervised
image segmentation. We propose that the final adjacency matrix A is formed from both
the spatial adjacency matrix As and the color adjacency matrix Ac. The idea behind this
is that we can control the proportion of one of the two matrices in the construction of the
final adjacency matrix A, so that the limiting cases where we only want unsupervised
color-based image segmentation with spectral clustering A = Ac and the opposite, where
we only want unsupervised spatial image segmentation with spectral clustering A = As,
are possible. Any other scenario in between should be possible.

Let α be the weighting parameter that controls the proportion of the color-based
adjacency matrix Ac. The final adjacency matrix A can be written as

A = D1/2PD−1/2, (19)

where P is the probability adjacency matrix with the element (l, l̃), defined as

P(l, l̃) =
αAs(l, l̃)

∑s
l=1 ∑s

l̃=l+1 As(l, l̃)
+

(1− α)Ac(l, l̃)
∑s

l=1 ∑s
l̃=l+1 Ac(l, l̃)

(20)

and D is a diagonal degree matrix whose diagonal elements are defined as follows:

D(l, l) =
s

∑̃
l=1

P(l, l̃). (21)

Finally, we merge the initial s segments found on the image Z into a smaller and more
informative final number of segments k by using the classical spectral clustering algorithm
described in [22] and implemented in the package rebmix via the method mergelabels.
This step completes the unsupervised image segmentation. The method and the results
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are shown in Figure 2. Pseudocode for the unsupervised image segmentation with our
proposed method can be found in Algorithm 1.

Algorithm 1: Model selection procedure.

Input: Grayscale image Z, smoothing parameter σ, weighting parameter α, Boolean vari-
able useMrf indicating whether MRF should be used for denoising, Boolean variable
useEntropy indicating whether entropy-based similarity should be used for the color
similarity metric, and the final desired number of segments in the image k;

Output: Segmented image with k optimal segments;
1: Estimate the optimal mixture model using the model selection method [27];
2: Estimate the initial image segmentation L with the optimal mixture model [27];
3: if useMrf do:
4: Optimize the MRF formulated with Equation (18) using the ICM algorithm [47];
5: end
6: Initialize the label moment matrix M of size s× 3;
7: foreach l ∈ {1, . . . s} do:
8: Estimate m1,0

l , m0,1
l and m1,1

l label moments using Equations (6) and (7);
9: Store the estimated values of the m1,0

l , m0,1
l and m1,1

l label moments in the l-th row
of the label moment matrix M;

10: end
11: Normalize the columns of the matrix M;
12: Initialize the spatial similarity matrix As of size s× s;
13: foreach l ∈ {1, . . . , s} do:
14: Select the l-th row of the matrix M as ml ;
15: foreach l̃ ∈ {1, . . . , s} do:
16: Select the l̃-th row of the matrix M as ml̃ ;
17: Estimate As(l, l̃) using the Equation (8);
18: end
19: end
20: Initialize the color similarity matrix Ac with the size s × s;
21: foreach l ∈ {1, . . . , s} do:
22: foreach l̃ ∈ {1, . . . , s};
23: if useEntropy do:
24: Estimate Ac(l, l̃) using Equations (9)–(12);
25: else do:
26: Estimate Ac(l, l̃) using the Equations (13) and (14);
27: end
28: end
29: end
30: Estimate the adjacency matrix A with Equations (19)–(21);
31: Finish the image segmentation using spectral clustering and the adjacency matrix A;
32: end
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(a) (b) (c)
Figure 2. Illustration of results of proposed method for unsupervised image segmentation. (a) Original
image. Image is filled with ellipses. Ellipses are populated with gray intensities from normal mix-
ture model. (b) Initial image segmentation with normal mixture model. Number of initial segments is
s = 8. (c) Final image segmentation using described procedure. Final number of segments k = 4.

5. Experimental Dataset

To illustrate the benefits of our proposals, we will use a simulated image dataset.
The simulated image dataset aims at the task of segmenting images that contain a varying
distribution of objects of different shapes and sizes. A similar image segmentation task is
commonly used in many diagnostic problems in mechanical engineering [48] and model
reconstruction [1].

The simulated dataset focuses on two-dimensional objects. The images are constructed
as follows. First, the image is filled with objects of different shapes and sizes without
overlapping (see Figure 3a). In this way, 50 images are created. These also represent the
ground truth that we use to measure the success of our proposals. In the second step,
we create artificial colorizations of pixels of different objects. We assign gray values from
different mixture distributions in five different ways. The first colorization, shown in
Figure 3b, assumes that the gray value of each pixel in the image comes from a normal
mixture model. So each pixel gray value coming from each image object was taken from
a normal mixture model with random number of components and random component
parameters. In the same way, we apply the lognormal, gamma, and Weibull mixture model
for the second, third, and fourth colorization (see Figure 3c–e). For the fifth colorization
(Figure 3f), we also assume that the pixel gray intensities of an image object may belong to
the normal mixture model, while some others may belong to the gamma mixture model.
This makes the gray intensity distribution of the image more complex and difficult to
approximate. The probability density functions of the different colorizations are shown in
Figure 4b–f). Finally, we further increase the difficulty of image segmentation by applying
Gaussian noise to the images of all scenarios (Figure 3g–k). In this way, we generate
500 different images for the test.

(a) (b) (c) (d) (e) (f)

Figure 3. Cont.
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(g) (h) (i) (j) (k)

Figure 3. Original image along with different scenarios of colorizing pixel gray intensity values.
(a) Original image. (b) First colorization. (c) Second colorization. (d) Third colorization. (e) Fourth col-
orization. (f) Fifth colorization. (g) First colorization with added noise. (h) Second colorization with
added noise. (i) Third colorization with added noise. (j) Fourth colorization with added noise.
(k) Fifth colorization with added noise.
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Figure 4. Pixel gray value distribution for the original image and different colorizations with and
without noise addition. (a) Original image histogram. (b) Normal mixture colorization image his-
togram. (c) Lognormal mixture colorization image histogram. (d) Gamma mixture colorization
image histogram. (e) Weibull mixture colorization image histogram. (f) Random mixture colorization
image histogram.

6. Results and Discussions

For our experiment, we used the R package rebmix to estimate the optimal mixture
parameters [49]. As in Panic et al. [27], the estimation strategy was single with the number
of bins in the histogram K = 255. This is the best way to approximate the image histogram.
Moreover, the maximum possible number of components in the mixture model was set
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to cmax = 64 and the information criterion for the optimal model selection was BIC.
The ICM algorithm for Markov random fields was implemented in Python using the numba
library [50], which allows the implementation of different algorithms for fast processing
on GPU units. Finally, the methods labelmoments and mergelabels were added to the
rebmix R package to further implement the label moment estimation and merging with
spectral clustering described in this work.

6.1. Comparison of Different PDFs for Mixture Modelling with BIC Values

First, we focus on the results of the mixture modelling. Figure 5 shows the BIC values
obtained for different image colorizations and different PDFs used for the parametric family
distribution of the components of the mixture model, namely boxplots (distributions) of
the BIC values with respect to the different colorizations, the PDF used for the mixture
estimation, and the presence of noise. For example, the first colorization column yields eight
different boxplots, four in the top panel and four in the bottom panel. The top panel shows
four boxplots where the image used for the mixture estimation was not contaminated with
noise. The bottom panel, on the other hand, shows four boxplots where the image used for
mixture estimation was contaminated with noise. Finally, each boxplot in each panel was
colored differently for the different component PDFs used for the mixture estimation.
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Figure 5. Boxplots of BIC values. The plots are grouped according to the PDF used for estimating the
mixture model, image colorization, and the presence or absence of noise in the image.

Figure 5 shows that the normal mixture model is a very good approximator for
different densities, as it usually has the best BIC values. For noisy images, the estimation
procedure for the parametric gamma and Weibull families could not converge in most cases.
This is due to the numerical procedure used for maximum likelihood estimation, which



Mathematics 2023, 11, 4800 14 of 22

does not have a closed form. Therefore, the available results in the presence of noise mainly
refer to normal and lognormal PDF.

6.2. Comparison of Image Segmentation Accuracy between Different PDFs for Mixture Modelling
and the Use of MRF

Our next reports deal with the accuracy of image segmentation. Here we use the
adjusted rand index [51] for accuracy evaluation, which in this case corresponds to the
classical accuracy definition for classification. We also report two figures, Figures 6 and 7.
Figure 6 shows the boxplots of the accuracy values without using Markov random fields
(MRFs) between the mixture modelling and the segment merging and with MRF as an
intermediate step between the mixture modelling and the segment merging to improve the
spatial coherence of the segmented image with mixture model.
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Figure 6. Boxplots of estimated accuracy values (ARI metric) without using Markov random fields
(MRFs) as an intermediate step. Results are grouped by the PDF used to estimate the mixture model,
the method used to estimate the similarity matrix (adjacency matrix), the absence/presence of noise
on the image, and different colorization.

As can be seen in Figures 6 and 7, the presence of noise significantly degrades the
results. In general, the estimated accuracy for a noisy image was twice as poor as for
a noise-free image. It is also clear that using the MRF as an intermediate step between
the mixture estimation and the segment merging improves the accuracy values very well.
Regarding the PDF used for the mixture component, we can again conclude that the normal
PDF is a rather strong competitor, which also agrees well with our results for the BIC
values. Nevertheless, we can again conclude that the lognormal distribution is quite useful,
especially for noisy images, where it shows the best accuracy values in most cases. Finally,
the choice of estimation method for the similarity matrix of the mixture components does
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not seem to play a significant role. This is especially true in the case where the Markov
random fields are used as an intermediate step.
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Figure 7. Boxplots of estimated accuracy values (ARI metric) using Markov random fields (MRFs) as
an intermediate step. Results are grouped by the PDF used to estimate the mixture model, the method
used to estimate the similarity matrix (adjacency matrix), the absence/presence of noise on the image,
and different colorization.

6.3. Impact of Weight Parameter in Constructing the Adjacency Matrix

In the following, we focus on the weighting parameter used to create the final similarity
matrix for spectral clustering. The ARI metric is estimated for different weights and averaged
over all images (different shapes and different colorizations). The results are shown in
Figure 8, where the accuracy value (i.e., the average ARI value over multiple images) is
plotted against the value of the weighting used to create the final similarity matrix for
spectral clustering.

With noise-free images (the two upper plots), the weighting parameter does not appear
to have any significant effect. The accuracy seems to decrease significantly only when
we strongly favor spatial similarity over color similarity (i.e., higher weighting values
mean that the final adjacency matrix used for spectral clustering is mainly created from
the spatial adjacency matrix). For noisy images (the bottom two plots), it is clear that the
accuracy values increase with increasing weight, which ultimately means that we obtain
better results when we favor spatial coherence. This could also be related to our chosen
accuracy metric (ARI), which also gives better values for more compact blobs.
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Figure 8. Impact of weight value α on estimated accuracy values (ARI metric).

6.4. Impact of the Smoothing Parameter and the Weight Parameter

The next reports deal with the weighting parameter α and the smoothing parameter
σ. The smoothing value was used in Equation (8) to create the spatial adjacency matrix.
The results are shown in Figure 9. It shows contours with averaged ARI values for all
images (colorization and noise) for the two most interesting PDF components and both
methods for creating the color adjacency matrix. We have chosen 0.3–3 for the range of
smoothing values and 0–1 for the weights, as before. Since, in all our previous reports, the
use of MRF as an intermediate step led to better results, we only report the results with
MRF as an intermediate step.

Obviously, the influence of the smoothing and the weighting value is not very large.
The largest difference was about 0.11 between the estimated average ARI value. The lowest
value was 0.44 with a weighting value of 1, a smoothing value of 0.3, a demp similarity
matrix, and a normal PDF. On the other hand, the highest value of 0.55 was obtained with
a weighting value of 0.7 and a smoothing value of 0.3, a demp similarity matrix, and the
lognormal PDF. The maximum value for the normal PDF was 0.545 for the ent method and
a weighting value and sigma of 0.8. The minimum value for the lognormal PDF was 0.475
with ent with a weighting value of 1 and a sigma value of 0.3. It is clear that the effect of
the “spurious” distribution can be mitigated by a different choice of weighting and sigma
parameters and also by using a different method for estimating the color adjacency matrix
(e.g., by using ent versus demp and vice versa). It is also clear that when using a larger
smoothing value, the accuracy tends to be lower, but a wider range of weights can be used
to obtain equivalent results. On the other hand, when using smaller values for the sigma
parameter, we tend to obtain higher accuracy values (i.e., ARI) but need to be more critical
in the choice of weight.
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Figure 9. Impact of different smoothing values σ and weighting value α on estimated accuracy values
(ARI metric). Results are grouped according to the PDF used for mixture estimation and the method
used to create the color adjacency matrix.

6.5. Accuracy Comparisons with Other Unsupervised Clustering Algorithms for
Image Segmentation

In addition, we have made some comparisons with other common clustering algo-
rithms for unsupervised image segmentation. The algorithms used, k-means [52], mean-
shift [53], dbscan [54], and optics [55], are all available and implemented in Python in the
famous scikit-learn library [56]. To obtain the results in a reasonable time, we followed the
strategy used by other authors [13]. First, we construct superpixel solutions using the SLIC
algorithm [57], which is included in the scikit-image Python library [58]. The positions and
intensities of the superpixels are then used for the final clustering. In this way, we shrink
the input image from its original size (240× 240) to the number of superpixels, which we
set to 1000. As in our proposal, we use both spatial and color values.

The estimated ARI values are averaged over the entire dataset (different colorizations
and noise) and the obtained values are shown in Table 1. For comparison with the results
of our proposals, we show in Figure 10 the best ARI value obtained with the clustering
algorithm dbscan as a horizontal line and the averaged ARI values for different weighting
parameters and simply keeping the smoothing parameter σ = 1. It can be clearly seen
that the accuracy achieved with our proposals is better for almost the entire range of
weighting values.
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Table 1. Results of the different clustering algorithms mainly used for unsupervised image segmentation.

Mean-Shift k-Means Optics Dbscan

Accuracy value 1 0.06 0.15 0.37 0.49
1 ARI is used as accuracy value.

dbscan result
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Figure 10. Comparisons with dbscan algorithm. For accuracy metric, ARI is used.

6.6. Accuracy Comparisons with Convolutional Neural Networks for Supervised
Image Segmentation

Finally, we have added some results obtained with state-of-the-art deep learning
neural networks. Since we had no luck finding a suitable convolutional neural network
that does not need to be trained and can be used immediately for unsupervised image
segmentation, we used some of the best supervised convolutional neural networks for im-
age segmentation. We chose the Attention U-Net convolutional neural network explained
in [59] and implemented in Python using the PyTorch module [60]. Since the Attention
U-Net was to be trained with labelled images, we selected our fifth colorization for train-
ing, as it would contain the most differences and features to be learned. Since training
eleven classes with only 50 pictures seemed somewhat unrealistic, we only trained for two
classes. All shapes were grouped into one class and the second class was the background.
The resulting binary segmentation was then further segmented by applying connected
component algorithms that split all shapes that were not connected into a separate segment.
This was appropriate in this case, as our original simulated images were such that there
was no overlap between the shapes.
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First, we trained with images that did not contain noise and achieved a mean ARI
(i.e., mean accuracy) of 0.84. In the second run, we trained with images that contained
noise and achieved a mean ARI (i.e., mean accuracy) of 0.94. Both results were significantly
better than the best result obtained with our proposal. However, this was to be expected,
as the network learned almost 35 million parameters to discriminate between the image
features, as opposed to the 100–200 parameters (mainly component parameters from the
estimated mixture) used in our proposal. It is also quite difficult to properly evaluate the
impact of the training dataset, as it is not always available and sometimes very complicated
to obtain. Since unsupervised methods usually perform worse than supervised methods,
we consider our proposal to be competitive in this comparison as well. This becomes clear
when looking at the results in Figure 7, where some of the results are very clearly above the
0.9 mark.

7. Conclusions and Future Considerations

We conclude this study with the following remarks. In this work, we have proposed a
strategy for using spectral clustering with mixture models for the purpose of unsupervised
image segmentation. First, we encode the single image into a mixture model and use
this model to estimate adjacency matrices that capture the color and spatial similarity
in the image. Then we use spectral clustering to propose the final segmentation. As an
intermediate step, we propose Markov random fields that can help with scattered segments
due to noise.

Our proposal provided promising results that outperform the current state of the
art in unsupervised image segmentation. Unfortunately, the current state of the art in
supervised image segmentation, such as the Attention U-Net convolutional neural network,
is still very far ahead. Although our proposed method is still inferior to the convolutional
neural network in terms of accuracy, it has many advantages. It can be easily applied to a
variety of problems, requires no training and consequently no training data, requires fewer
parameters, which directly translates into lower computational costs, and so on. Ultimately,
the added value of such comparisons is highly questionable, as the final intended use of the
two methods is very different. While supervised image segmentation with convolutional
neural networks focuses more on inference on many images that are similar to those used
for training, unsupervised image segmentation focuses more on pattern recognition and
further image analysis.

Finally, some interesting points have emerged in the course of this study. The first
again concerns the estimation of the mixture model. Here we have not constrained any of
the estimated parameters of the mixture model. However, it is quite common to impose
restrictions on some parameters because different patterns could be found in the data [61].
We found that the “width” of the estimated component was inappropriate, resulting in too
much scatter in the component’s color features, which could not be corrected at later stages.
In addition, we again used only color values to estimate the mixture model. Although we
consider this model to be quite robust for many examples, it still lacks some form of spatial
coding to be even more robust, for example, the inclusion of local spatial information
through the gradient intensity mixture model [62]. However, this requires further in-depth
research. Second, we found that the labelling moments approach clearly benefited the
segmentation procedure. However, it seemed to be limited in its ability to capture all the
nuances of the shapes generated by the initial segmentation with the mixture model. It
seems that more moments should be used that can also encode the orientation and some
other spatial information about the segments. In this context, it might also be beneficial to
include some kind of convolutional neural network for more precise shape matching and
spatial adjacency matrix estimation, but this needs further research. The third point, which
is also partly related to the second point, is the use of only two adjacency matrices. In this
work, we used only two adjacency matrices to create the final adjacency matrix for spectral
clustering. However, it is easily extendable to more adjacency matrices, which in general
could provide more information and thus better final segmentation. Finally, we would like



Mathematics 2023, 11, 4800 20 of 22

to point out that our proposal currently relies on the manual selection of values for the
smoothing and weighting parameters (σ and α). Although we have reported extensively
on the effects of these parameters, it would be good if an estimation procedure for their
determination could be proposed.
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