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Abstract: This article explores the generalized Gerdjikov–Ivanov equation describing the propagation
of pulses in optical fiber. The equation studied has a variety of applications, for instance, in photonic
crystal fibers. In contrast to the classical Gerdjikov–Ivanov equation, the solution of the Cauchy
problem for the studied equation cannot be found by the inverse scattering problem method. In
this regard, analytical solutions for the generalized Gerdjikov–Ivanov equation are found using
traveling-wave variables. Phase portraits of an ordinary differential equation corresponding to the
partial differential equation under consideration are constructed. Three conservation laws for the
generalized equation corresponding to power conservation, moment and energy are found by the
method of direct transformations. Conservative densities corresponding to optical solitons of the
generalized Gerdjikov–Ivanov equation are provided. The conservative quantities obtained have not
been presented before in the literature, to the best of our knowledge.

Keywords: Gerdjikov–Ivanov equation; phase portraits; conservation laws; periodic and solitary
wave; optical soliton; partial differential equations; first integral; exact solutions; solitary wave
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1. Introduction

In this paper we study the generalized Gerdjikov–Ivanov equation of the form,

i qt + a qxx + b |q|4 q + i c q2 q∗x = i
[
α qx + λ (|q|2m q)x + µ (|q|2m)x q

]
, (1)

where q(x, t) is a complex-valued function, which describes the wave profile, a, b, c, α, λ and
µ are parameters of the mathematical model, where a is responsible for the group velocity
dispersion, b is the coefficient of quintic nonlinearity, α is the coefficient of intermodal
dispersion, c and µ are coefficients of nonlinear dispersion, and λ is the coefficient of the
self-steepening term for short pulses.

Equation (1) is a well-known nonlinear partial differential equation for the description
of optical solitons in fiber, especially in photonic crystal fibers. This equation does not pass
the Painlevé test, and the Cauchy problem for Equation (1) cannot be solved by the inverse
scattering transform in the general case. However, at α = λ = µ = 0, Equation (1) is an
integrable equation, which has been shown in paper [1].

Equation (1) has been considered at m = 1 in a number of articles. In [2], the au-
thors generated new optical soliton solutions to the perturbed Gerdjikov–Ivanov equation
which was detected by means of the extended direct algebraic method. The perturbed
Gerdjikov–Ivanov equation which describes the dynamics of the soliton in an optical fiber
was investigated in [3]. Using a traveling-wave transformation, the nonlinear perturbed
equation was transformed into two nonlinear ordinary differential equations and reduced
to a first-order ordinary differential equation. Bright, dark and kink soliton solutions were
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found. Optical propagation pulses, such as dark, bright, periodic-singular and periodic-M-
shaped soliton solutions, of the perturbed Gerdjikov–Ivanov equation with perturbation
effects, with various applications in optical fibers, were obtained in [4]. The perturbed
Gerdjikov–Ivanov equation was examined in [5] by taking into account the Jacobi elliptic
function expansion method.

The perturbed Gerdjikov–Ivanov equation with spatio-temporal dispersion was in-
vestigated in [6] by the trial equation method where the complex-envelope traveling-wave
transformation and the complete discriminant system for polynomial method were utilized.
The perturbed optical solitons for the time–space fractional Gerdjikov–Ivanov equation
were investigated with conformable derivatives having a group velocity dispersion and
quintic nonlinearity coefficients in [7], where abundant families of optical solitons in single
and combined forms were found.

A bifurcation analysis and soliton solutions for the generalized Gerdjikov–Ivanov
equation were presented by using the theory of dynamical systems for fixed-parameter
cases in [8]. The cubic–quartic optical solitons for the perturbed Gerdjikov–Ivanov equation
were considered for the scalar case and birefringent fibers in [9]. The optical solitons
to the perturbed Gerdjikov–Ivanov equation in optical fibers were explored in [10] us-
ing the improved projective Riccati equations method to solve the ordinary differential
equation analytically, where the existence conditions of all optical solitons were given.
A new fractional-mapping method based on a generalized fractional auxiliary equation
was proposed and applied to solve the space–time fractional perturbed Gerdjikov–Ivanov
equation in [11], where some exact fractional nonlinear wave solutions were constructed
by Mittag-Leffler function. Exact single traveling-wave solutions to the nonlinear frac-
tional perturbed Gerdjikov–Ivanov equation were captured by the complete discrimination
system for polynomial method and the trial equation method in the paper [12], where
rational-function solutions, solitary-wave solutions, triangular-function periodic solutions
and elliptic-function periodic solutions were obtained. The dark-soliton solutions to the
perturbed Gerdjikov–Ivanov equation describing the effects of ultrashort (femtosecond)
optical soliton propagation in non-Kerr media were investigated in the paper [13].

Exact solutions of the generalized Gerdjikov–Ivanov equation by means of the traveling-
wave reduction of the first integral were found in [14]. The space–time-perturbed fractional
Gerdjikov–Ivanov equation was studied based on the modified Riemann–Liouville deriva-
tive in [15], and the fractional projective Riccati expansion approach was utilized. The
dynamics of solitons of the perturbed Gerdjikov–Ivanov equation was carried out by con-
sidering transformations and newly well-established methods to obtain optical solitons of
the model in [16]. Some other questions corresponding to Equation (1) were considered
in [16–30].

The purpose of this paper was to find some exact solutions of Equation (1) by applying
the method of direct calculations. It has an advantage over special methods used in the
previously mentioned papers (for instance, see [5,6,31]) as it can provide a more general
class of solutions. There is no need to use a special method, when the exact solution can be
found by integrating the equation. Our aim was also to propose a classification of phase
portraits corresponding to Equation (1) and to write conservation laws for Equation (1)
by means of the direct method. To the best of our knowledge, there has been no works
devoted to the derivation of conservation laws for Equation (1). Finding conservation laws
of partial differential equations is very important for practical applications, since they are
used to check whether numerical schemes are conservative in experiments. This motivated
us to look for conservation laws of the studied equation.

The paper is organized as follows. In Section 2, we obtain the nonlinear ordinary
differential equation corresponding to Equation (1). The bifurcation of phase portraits of
the ordinary differential equation corresponding to Equation (1) is presented in Section 3.
The periodic- and solitary-wave solution of ordinary differential equation at m = 1 and
m = 2 are given in Sections 4 and 5. In the case of an arbitrary value m, exact solutions in
the form of optical solitons are presented in Section 6. Conservation laws corresponding
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to Equation (1) are derived by direct calculations in Section 7. In Section 8, the conserved
quantities are calculated.

2. Nonlinear Ordinary Differential Equation Corresponding to Equation (1)

The Cauchy problem for Equation (1) cannot be solved by the inverse scattering
transform in the general case, so we look for exact solutions of Equation (1) taking into
account the traveling-wave reduction

q(x, t) = y(z) ei(ψ(z)−ω t), z = x− C0 t. (2)

Substituting (2) into Equation (1), we obtain the system of equations of the form

2 ayzψz + a y ψzz + c y2 yz − α yz − C0 yz−
−(2 m + 1) λ y2m yz − 2 m µ y2m yz = 0,

(3)

ω y + C0 y ψz + a yzz − a y ψ2
z + b y5 + c y3 ψz + α y ψz + λ y2m+1 ψz = 0. (4)

From Equation (3), we obtain after integrating

ψz =
C0 + α

2 a
− c

4a
y2 +

(
(2m + 1) λ + 2 m µ

2 a (m + 1)

)
y2m +

C1

a y2 , (5)

where C1 is an arbitrary constant of the integration.
Using Equation (5), Equation (4) can be written as the following after integration with

respect to z

a
2

y2
z +

(
α2

8 a
+

C0
2

8a
+

3 c C1

4 a
+

ω

2
+

C0 α

4 a

)
y2 +

(
cα

8 a
+

C0 c
8 a

)
y4+

+
C2

1
2 a y2 +

(
b
6
− 5 c2

96 a

)
y6 − λ C1 + 2 µ C1

2 (1 + m)a
y2m+

+

(
c (5 m λ + 6µ m + 2 λ)

8 a (1 + m)(2 + m)

)
y4+2m +

(
λ C0 + λ α

4 a (1 + m)

)
y2+2m−

−
(

4µ2 m2 + 4λ µ m2 − 2 λ2m− λ2

8 a (1 + m)2(1 + 2m)

)
y2+4m − C2 = 0,

(6)

where C2 is an arbitrary constant.

3. Bifurcation of Phase Portraits Corresponding to Equation (6)

In this section, we visualize the results from the previous section by analyzing the
stability of equilibrium points of the traveling-wave reduction of the explored equation
and study the bifurcations of its phase portraits using the first integral (6) (see [32]). Let us
write Equation (6) before integration in its canonical form

yz = v, vz = −Ay− By3 − Cy5 − Dy2m−1 − Ey2m+1 − Fy2m+3 − Gy4m+1 − H
y3 , (7)
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where parameters A, B, C, E, F and H are determined by formulas

A =
4ωa + α2 + 2C0α + 6cC1 + C2

0
4a2 , B =

(α + C0)c
2a2 , C = − 5c2

16a2 +
b
a

,

D =
(−λ− 2µ)C1m

a2(m + 1)
, E =

(α + C0)λ

2a2 , F =
c(5λm + 6µm + 2λ)

4a2(m + 1)
,

G =
−4µ(µ + λ)m2 + 2λ2m + λ2

4a2(m + 1)2 , H = −
C2

1
a2 .

(8)

Introducing into (7) the following transformation

dz = y3dξ (9)

yields the associated regular system

yξ = y3v, vξ = −Ay4 − By6 − Cy8 − Dy2m+2 − Ey2m+4 − Fy2m+6 − Gy4m+4 − H. (10)

Ignoring the orientation, the trajectories of systems (7) and (10) are identical; therefore,
systems (7) and (10) are topologically equivalent. Due to their first integrals being the same,
they also have the same orbits, with the exception of the straight line y = 0.

The first integral of the regular system (10) is (6), which is written as follows, taking
into account the notations of the current section:

H(y, v) =
v2

2
+

Ay2

2
+

By4

4
+

Cy6

6
+

Dy2m

2m
+

Ey2m+2

2m + 2
+

+
Fy2m+4

2m + 4
+

Gy4m+2

4m + 2
− H

2y2 .
(11)

Let us conduct the analysis of the equilibrium point stability for the regular
system (10). All of its equilibrium points are located on the y axis (provided that H 6= 0),
with the coordinate determined by the following equation

Ay4 + By6 + Cy8 + Dy2m+2 + Ey2m+4 + Fy2m+6 + Gy4m+4 + H ≡ fm(y) = 0. (12)

The stability of an equilibrium point (ys, 0) is determined by the eigenvalues of the
following Jacobi matrix

J =

(
0 y3

s

− d fm(y)
dy (ys) 0

)
, (13)

where ys solves Equation (12).
One can see that the point (ys, 0) is of the center stability type if fm(y) decreases at ys

and ys > 0, it is of the saddle stability type if fm(y) increases at ys and ys > 0 (if ys < 0,
then the stability type is reversed), and (ys, 0) is a degenerate point if fm(y) has a zero
derivative at the equilibrium point and, therefore, a zero eigenvalue, since the eigenvalues
of the matrix J are determined by the following formula

λ1,2 = ±
√

y3
s ·

d fm

dy
(ys). (14)

For example, let us explore the case of m = 1. Equation (12) takes the form

(A + D)y4 + (B + E)y6 + (C + F + G)y8 + H ≡ f1(y) = 0. (15)

Making the change of variables y2 = w yields

w4 + k1w3 + k2w2 + k3 = 0 ≡ f1(w)

(C + F + G)
, (16)
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where
k1 =

B + E
C + F + G

, k2 =
A + D

C + F + G
, k3 =

H
C + F + G

. (17)

The discriminant of Equation (16) is as follows:

D0 = −k3

(
27k4

1k3 + 4k2
1k3

2 − 144k2
1k2k3 − 16k4

2 + 128k2
2k3 − 256k2

3

)
. (18)

Thus, our explored system for m = 1 can have either zero, two, four or six equilibrium
points (ys, 0) = (±√ws, 0), since Equation (16) can possess at most three positive roots.

Let us introduce the notation

w± =
−3k1 ±

√
9k2

1 − 32k2

8
, (19)

where w± are the turning points of the function f1(w), besides the turning point w0 = 0.
Based on the control parameter values, the sign of the discriminant (18) and the values

of f1(w±), there exist the following combinations of roots of Equation (16) (in particular,
we are interested in the positive ones, due to the nature of the substitution y2 = w):

1. k1 ≥ 0, k2 ≥ 0, k3 > 0, D0 > 0—Equation (16) has no real roots. The system (10) has
no equilibria (Figure 1a).

2. k1 > 0, k2 ≥ 0, k3 > 0, D0 < 0—Equation (16) has two real negative roots. The
system (10) has no equilibria.

3. k1 > 0, k2 > 0, k3 < 0, D0 > 0—Equation (16) has four real roots only one of which
is positive. The system (10) has two equilibria (Figure 1b).

4. k1 ≥ 0, k2 ≥ 0, k3 < 0, D0 < 0—Equation (16) has two real roots, one of which one is
positive. The system (10) has two equilibria.

5. k1 ≥ 0, k2 < 0, k3 > 0, D0 > 0—Equation (16) may have four real roots, out of which
two are positive, provided that f1(w+) < 0 and w+ ∈ R. The system (10) has two
equilibria of the center type and two saddle equilibria (Figure 2a)

6. k1 > 0, k2 ≤ 0, k3 > 0, D0 < 0—Equation (16) has two real roots, out of which two
are negative. The system (10) has no equilibria.

7. k1 ≥ 0, k2 ≤ 0, k3 < 0, D0 > 0—an impossible case.
8. k1 ≥ 0, k2 ≤ 0, k3 < 0, D0 < 0—Equation (16) has two real roots with one of them

positive. The system (10) has two equilibria.
9. k1 ≤ 0, k2 ≥ 0, k3 > 0, D0 > 0—Equation (16) has no real roots. The system (10) has

no equilibria.
10. k1 < 0, k2 ≥ 0, k3 > 0, D0 < 0—Equation (16) has two real positive roots. The

system (10) has two equilibria of the center type and two saddle equilibria.
11. k1 < 0, k2 > 0, k3 < 0, D0 > 0—Equation (16) has four real roots, three of which are

positive. The system (10) has four centers and two saddles (Figure 2b).
12. k1 ≤ 0, k2 ≥ 0, k3 < 0, D0 < 0—Equation (16) has two real roots with one of them

positive. The system (10) has two equilibria.
13. k1 ≤ 0, k2 < 0, k3 > 0, D0 > 0—Equation (16) has four real roots with two of them

positive if f (w+) < 0 and w+ ∈ R and no real roots otherwise. The system (10) has
either two centers and two saddles or no equilibria.

14. k1 < 0, k2 ≤ 0, k3 > 0, D0 < 0—Equation (16) has two real roots with two of them
positive if f (w+) < 0 and negative otherwise. The system (10) has either two centers
and two saddles or no equilibria.

15. k1 < 0, k2 < 0, k3 < 0, D0 > 0—an impossible case.
16. k1 ≤ 0, k2 ≤ 0, k3 < 0, D0 < 0—Equation (16) has two real roots, out of which one is

positive. The system (10) has two equilibria.
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(a) k1 = 1, k2 = 1, k3 = 1 (b) k1 = 3, k2 = 2, k3 = − 1
10

Figure 1. Phase portraits of system (7) at various parameter values, where parameters k1, k2 and k3

are determined by (17).

(a) k1 = 1, k2 = −3, k3 = 1
2 (b) k1 = 3, k2 = −3.5, k3 = − 1

2

Figure 2. Phase portraits of system (7) at various parameter values, where parameters k1, k2 and k3

are determined by (17).

All the above cases do not include degenerate equilibria, since for d f1
dy

∣∣
ys
= 0, we must

have D0 = 0.
The degenerate cases can show the parameter values at which solitary-wave solutions

vanish. For instance, Figures 2b and 3a show how the phase plane may transform from
having four solitary waves represented by homoclinic orbits to two solitary waves. Cases
where degenerate equilibria exist and D0 = 0 are as follows:

1. k3 = 0. Two zero roots and two roots w1,2 =
−k1±
√

k2
1−4k2

2 that are real if k2 <
k2

1
4 .

2. k3 =
(−9k3

1+32k1k2)
√

9k2
1−32k2

512 +
27k4

1
512 −

9k2
1k2

32 +
k2

2
4 and 9k2

1 − 32k2 > 0. At the root

w+ =
−3k1+

√
9k2

1−32k2
8 of Equation (16), f1(y) has a zero derivative; therefore, the

equilibrium points y+ = ±(√w+, 0) are degenerate provided that w+ > 0. There
may exist one additional positive root of (16) depending on the parameter values,
making it either two equilibria (Figure 4a) or four equilibria for system (10) (Figure 4b).

3. k3 =
(9k3

1−32k1k2)
√

9k2
1−32k2

512 +
27k4

1
512 −

9k2
1k2

32 +
k2

2
4 . At the root w− =

−3k1−
√

9k2
1−32k2

8 of
Equation (16), f1(y) has a zero derivative; therefore, the equilibrium points
y− = ±(√w−, 0) are degenerate provided that w− > 0. There also exists one addi-
tional positive root of (16), making it four equilibria for system (10) (Figure 3a).
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Figure 3. Phase portraits of system (7) at k1 = −5, k2 = 6, k3 = − 117
512 −

165
√

33
512 , where parameters

k1, k2 and k3 are determined by (17).

(a) k1 = −5, k2 = 6, k3 = 7227
512 + 645

√
129

512 . (b) k1 = −3, k2 = 23
10 , k3 = − 2917

12800 + 111
√

185
12800

Figure 4. Phase portraits of system (7) at various parameter values, where parameters k1, k2 and k3

are determined by (17).

Based on the above analysis of the equilibrium point stability of the system, we can
choose suitable parameter values for which solitary or periodic solutions of system (7) exist.
Figures 2a,b, 3a and 4b all contain cases for which Equation (7) admits a solitary solution.

4. Periodic and Solitary Waves of Equation (1) at m = 1

The solution of Equation (6) in the general case cannot be presented in the form
of quadratures. However, this integral can be calculated in a number of partial cases.
Equation (6) at m = 1 can be written as follows:

a
2

y2
z +

(
b
6
− 5 c2

96 a
− λ µ

24 a
− µ2

24 a
+

λ2

32 a
+

7 λ c
48 a

+
c µ

8 a

)
y6+

+

(
C0 c
8 a

+
c α

8 a
+

λ C0

8 a
+

λ α

8 a

)
y4 +

(
ω

2
+

3 c C1

4 a
+

C0
2

8 a
+

+
C0 α

4 a
+

α2

8 a
− λ C1

4 a
− C1 µ

2 a

)
y2 +

C2
1

2 a y2 − C2 = 0.

(20)

To simplify Equation (20), we introduce a new variable (see [33–35])

y(z) =
√

V(z); (21)
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we obtain

V2
z + A1 V4 + B1 V3 − E1 V2 − 8 C2

a
V +

4 C2
1

a2 = 0, (22)

where A1, B1 and E1 are determined by formulas

A1 =
4 b
3 a
− 5 c2

12 a2 −
µ2

3 a2 +
λ2

4 a2 −
λ µ

3 a2 +
7 λ c
6 a2 +

c µ

a2 ,

B1 =
C0 c
a2 +

cα

a2 +
λ C0

a2 +
λ α

a2 ,

E1 = −4 ω

a
− C0

2

a2 −
2 C0 α

a2 − α2

a2 +
2 λ C1

a2 +
4 µ C1

a2 − 6 c C1

a2 .

(23)

At C1 = 0 and C2 = 0, the solution of Equation (20) is the solitary wave of the form

V(z) =
4 E1 e

√
E1(z−z0)

4 A1 E1 +
(

B1 + e
√

E1(z−z0)
)2 , (24)

where z0 is an arbitrary constant. Solution y(z) is expressed by the formula

y1(z) =

 4 E1 e
√

E1(z−z0)

4 A1 E1 +
(

B1 + e
√

E1(z−z0)
)2


1/2

. (25)

The solitary wave for q(x, t) can be written as follows:

q1(x, t) =

 4 E1 e
√

E1(x−C0 t−z0)

4 A1 E1 +
(

B1 + e
√

E1(x−C0 t−z0)
)2


1/2

ei (ψ(x−C0 t)−ω t). (26)

Here, the function ψ(z) is found as a result of solving Equation (5)

ψ(z) =
2 µ + 3 λ− c

2 a
√

A1
arctan

[
e
√

E1(z−z0) + B1

2
√

A1 E1

]
+

(
C0 + α

2 a

)
z. (27)

Solution (25) is illustrated in Figure 5 at z0 = 3.0, A1 = 1.0, B1 = 2.0 and E1 = 5.0.

Figure 5. Solution (25) at z0 = 3.0, A1 = 1.0, B1 = 2.0 and E1 = 5.0.

The general solution of Equation (20) can be found by taking into account the Jacobi
elliptic function. It is well known that the solution of Equation (20) is expressed in terms
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of elliptic Jacobi or Weierstrass functions. The general solution at C1 6= 0 and C2 6= 0 of
Equation (20) takes the form

y2(z) =
[

V1 (V4 −V2) sn2(S1 (z− z0), k1) + V4 (V2 −V1)

(V4 −V2) sn2(S1 (z− z0), k1) + V2 −V1

]1/2

, (28)

provided that the following equation

A1 V4 + B1 V3 − E1 V2 − 8 C2

a
V +

4 C2
1

a2 =

= A1 (V −V1)(V −V2)(V −V3)(V −V4) = 0
(29)

has four real roots V1, V2, V3 and V4.
Values S1 and k1 are given by formulas

S1 =
1
2

√
A1 (V4 −V3) (V2 −V1) (30)

and

k1 =

√
(V3 −V1)(V4 −V2)

(V4 −V3)(V2 −V1)
. (31)

The periodic solution q2(x, t) of Equation (1) at m = 1 is determined by Formula (2), taking
into account (28).

Periodic solution (28) is illustrated in Figure 6 at z0 = 1.0, A1 = 1.0, V1 = 1.0,
V2 = 3.0, V3 = 2.0 and V4 = 4.0.

Figure 6. Solution (28) at z0 = 1.0, A1 = 1.0, V1 = 1.0, V2 = 3.0, V3 = 2.0 and V4 = 4.0.

5. General Solution of Equation (6) at m = 2

Equation (6) at m = 2 takes the form

a
2

y2
z − C2 +

C2
1

2 a y2 +

(
3 c C1

4 a
+

ω

2
+

α2

8 a
+

C0 α

4 a
+

C0
2

8 a

)
y2+

+

(
C0 c
8 a

+
c α

8 a
− C1 µ

3 a
− λ C1

6 a

)
y4 +

(
b
6
− 5 c2

96 a
+

λ α

12 a
+

λ C0

12 a

)
y6+

+

(
cλ

8 a
+

c µ

8 a

)
y8 +

(
λ2

72 a
− 2 λ µ

45 a
− 2 µ2

45 a

)
y10 = 0.

(32)

Let us assume that the following conditions in Equation (32) are satisfied:

C2 = 0, µ = −λ, C0 = −α− 4 λ C1

3 c
. (33)
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Substituting a new variable in Equation (32)

y = W(z)1/4, (34)

yields the following equation

W2
z +

16 C2
1

a2 W +

(
24 c C1

a2 +
16 ω

a
+

64
9

λ2 C1
2

a2c2

)
W2+

+

(
16 b
3 a
− 5 c2

3 a2 −
32
9

λ2C1

a2 c

)
W3 +

4 λ2

9 a2 W4 = 0.

(35)

Equation (35) can be written in the following form

W2
z +

16 C2
1

a2 W − R W2 + N W3 +
4 λ2

9 a2 W4 = 0, (36)

where N and R are determined by formulas

R = −
(

24 c C1

a2 +
16 ω

a
+

64
9

λ2 C1
2

a2c2

)
, (37)

N =

(
16 b
3 a
− 5 c2

3 a2 −
32
9

λ2C1

a2 c

)
. (38)

The general solution of Equation (36) is also expressed via the elliptic function

W(z) =
W3 W1

(W3 −W1) sn2(S2 (z− z0), k2) + W1
, (39)

provided that the following equation

16 C2
1

a2 − R W + N W2 +
4 λ2

9 a2 W3 = 0 (40)

has three real roots W1, W2 and W3. The values S2 and k2 are determined by formulas

S2 =
λ

3 a

√
(W3 −W2)W1 (41)

and

k2 =

√
(W3 −W1)W2

(W3 −W2)W1
. (42)

The general solution of Equation (32) is expressed at conditions (33) by the formula

y3(z) =
[

W3 W1

(W3 −W1) sn2(S2 (z− z0), k2) + W2

]1/4
. (43)

Periodic solution (43) is illustrated in Figure 7 at z0 = 1.0, a = 1.0, λ = 3.0,
W1 = 3.0, W2 = 2.0 and W3 = 4.0.
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Figure 7. Solution (43) at z0 = 1.0, a = 1.0, λ = 3.0, W1 = 3.0, W2 = 2.0 and W3 = 4.0.

At C1 = 0, we have the solitary-wave solution of Equation (35) of the form

W(z) =
36 R a2 e

√
R(z0−z)

144 λ2 R a2 +
(

9 N a2 + e
√

R (z0−z)
)2 (44)

and the solution of Equation (32) of the form

y4(z) =

 36 R a2 e
√

R(z0−z)

144 λ2 R a2 +
(

9 N a2 + e
√

R (z0−z)
)2


1/4

. (45)

Solution (45) allows us to find the solution of Equation (1) by Formula (2).
Solitary-wave solution (45) is illustrated in Figure 8 at z0 = 20.0, a = 2.0, λ = 4.0,

R = 1.0 and N = 2.0.

Figure 8. Solution (45) at z0 = 20.0, a = 2.0, λ = 4.0, R = 1.0 and N = 2.0.

6. Exact Solutions of Equation (1) at an Arbitrary m

There are solitary-wave solutions with additional conditions on the parameters of Equa-
tion (6) at an arbitrary value of m. Assuming

C1 = 0, C2 = 0, C0 = −α, b =
5

16
c2

a
, µ = − (2 + 5 m) λ

6 m
, (46)
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we have Equation (6) in the form

y2
z +

5 λ2

36 a2(2m + 1)
y4m+2 +

ω

a
y2 = 0. (47)

Using the new variable
y(z) = W(z)1/2m (48)

we obtain the equation
W2

z −M W2 + N W4 = 0, (49)

where

M = −4 m2 ω

a
, N =

5 m2 λ2

9 a2 (2m + 1)
. (50)

The solution of Equation (49) is the solitary-wave solution of the form

W(z) =
4 M e

√
M (z−z0)

4 M N + e2
√

M(z−z0)
. (51)

The solution of Equation (47) is

y5(z) =

[
4 M e

√
M (z−z0)

4 M N + e2
√

M(z−z0)

]1/2m

. (52)

Solitary-wave solution (52) is illustrated in Figure 9 at m = 3, z0 = 2.0, M = 4.0 and
N = 3.0.

Figure 9. Solution (52) at m = 3, z0 = 2.0, M = 4.0 and N = 3.0.

Solution (52) gives a solitary wave of Equation (1). We have obtained that there is a
solution of the generalized Gerdjikov–Ivanov equation in the form of a solitary wave at an
arbitrary value of m.

7. Conservation Laws Corresponding to Equation (1)

Conservation laws are important characteristics of partial differential equations, which
are especially useful in practical applications for numerical schemes testing. In this section,
we find three conservation laws corresponding to Equation (1). In order to look for these
laws, we write Equation (1) as the system of equations of the form (see, for example, [36])

i qt + a qxx + b |q|4 q + i c q2 q∗x = i [α qx + λ (|q|2m q)x + µ (|q|2m)x q]. (53)
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and

−i q∗t + a q∗xx + b |q|4 q∗ − i c q∗2 qx = −i [α q∗x + λ (|q|2m q∗)x + µ (|q|2m)x q∗]. (54)

Firstly, let us find the first conservation law of Equation (53). With this aim, we
multiply Equation (53) by q∗ and Equation (54) by −q and then add these equations. As a
result, we obtain the following equality:

∂T1

∂t
+

∂X1

∂x
= 0, (55)

where T1 and X1 are as follows:

T1 = |q|2, X1 = −i a (q∗ qx − q q∗x) +
c
2
|q|4 − α |q|2−

−λ (2− 1
m + 1

) |q|2(m+1) − 2 µ
m

m + 1
|q|2(m+1).

(56)

In order to obtain the second conservation law, we use a similar approach to the first
law. Differentiating Equations (53) and (54) with respect to x, multiplying the first equation
by q∗ and the second equation by q, and then adding them yields

∂

∂t
(q∗ qx − q q∗x) +

∂X(1)
2

∂x
+ 2 c |q|2 (q q∗xx − q∗ qxx) =

= 2 (λ + µ)[|q|2m (q q∗xx − q∗ qxx)],
(57)

where X(1)
2 is as follows:

X(1)
2 = −i a (q∗ qxx + q q∗xx − 2 |qx|2)−

4
3

i b |q|6 + c |q|2 (q∗ qx−

−q q∗x)− α (q∗ qx − q q∗x)− λ ((|q|2m q)x q∗ − (|q|2m q∗)x q+

+2 |q|2m ( q∗ qx − q q∗x))− 2 µ |q|2 m (q∗ qx − q q∗x).

(58)

Multiplying Equation (53) by q∗|q|2k and adding Equation (54) multiplied by−q|q|2k, where
k ∈ N, yields

i
k + 1

∂

∂t
(|q|2k+2) +

∂X(2)
2

∂x
+ a |q|2k (q∗ qxx − q q∗xx) = 0. (59)

where X(2)
2 is as follows:

X(2)
2 = i

c
k + 2

|q|2 (k+2) − i
α

k + 1
|q|2 (k+1)−

−i λ
2 m + 1

k + m + 1
|q|2 (k+m+1) − 2 i µ

m
k + m + 1

|q|2 (k+m+1).
(60)

Adding Equation (57) and Equation (59) at k = 1 and Equation (59) at k = m, we have the
second conservation law of the form

∂T2

∂t
+

∂X2

∂x
= 0, (61)

where T2 and X2 are as follows:

T2 = a (q∗ qx − q q∗x) + i c |q|4 − 2 i (λ + µ)

m + 1
|q|2m+2,

X2 = a X(1)
2 + 2 c X(2)

2

∣∣∣∣
k=1
− 2 (λ + µ) X(2)

2

∣∣∣∣
k=m

.
(62)
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In order to obtain the third conservation law, we apply a similar approach. With this
aim, we multiply Equation (53) by q∗t and Equation (54) by qt and then add these equations.
As a result, we obtain the following equality:

a (qxx q∗t + q∗xx qt) + b |q|4 (q q∗t + q∗ qt) + i c (q2 q∗x q∗t − q∗2 qx qt) =

= i [α (qx q∗t − q∗x qt) + λ ((|q|2m q)x q∗t − (|q|2m q∗)x qt)+

+µ (|q|2m)x (q q∗t − q∗ qt)].

(63)

In the case µ = −λ,

a (qxx q∗t + q∗xx qt) + b |q|4 (q q∗t + q∗ qt) + i c (q2 q∗x q∗t − q∗2 qx qt) =

= i [α (qx q∗t − q∗x qt) + λ |q|2m (qx q∗t − q∗x qt)].
(64)

At the next step, we obtain

∂

∂x
(a (qx q∗t + q∗x qt))−

∂

∂t
(a |qx|2) +

∂

∂t
(

b |q|6
3

) +
∂

∂x
(

i c
2
(q2 q∗ q∗t−

−q∗2 q qt)) +
∂

∂t
(

i c
2
(q2 q∗ q∗x − q∗2 q qx)) + i c |q|2 (q∗ qx t − q q∗x t) =

∂

∂x
(

i α

2
(q q∗t − q∗ qt)) +

∂

∂t
(

i α

2
(qx q∗ − q∗x q)+

+
∂

∂x
(

i λ

2 (m + 1)2 (qm+1 ((q∗)m+1)t − (q∗)m+1 (qm+1)t))+

+
∂

∂t
(

i λ

2 (m + 1)2 ((qm+1)x (q∗)m+1 − ((q∗)m+1)x qm+1)).

(65)

As a result, we obtain the following equality:

∂T(1)
3

∂t
+ i c |q|2 (q∗ qx t − q q∗x t) +

∂X(1)
3

∂x
= 0, (66)

where T(1)
3 and X(1)

3 are as follows:

T(1)
3 =

b |q|6
3
− a |qx|2 −

i c |q|2
2

(q∗ qx − q q∗x)−
i α

2
(q∗ qx − q q∗x)−

− i λ |q|2 m

2 (m + 1)
(q∗ qx − q q∗x),

X(1)
3 = a (qx q∗t + q∗x qt) +

i c |q|2
2

(q q∗t − q∗ qt)−
i α

2
(q q∗t − q∗ qt)−

− i λ |q|2 m

2 (m + 1)
(q q∗t − q∗ qt).

(67)

Differentiating Equations (53) and (54) with respect to x and then multiplying the first
equation by c |q|2 q∗ and the second equation by c |q|2 q, we have

i c |q|2 (q∗ qx t − q q∗x t) + a c |q|2 (q∗ q3,x + q q∗3,x) +
5
4

b c
∂

∂x
(|q|8)+

+i c2 |q|4 ∂

∂x
(q q∗x − q∗ qx) = i α c |q|2 ∂

∂x
(q∗ qx − q q∗x)+

+
i λ c |q|2 (m+1)

m + 1
∂

∂x
(q∗ qx − q q∗x) +

i λ c m
m + 1

∂

∂x
(|q|2 (m+1) (q∗ qx − q q∗x)).

(68)
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Further, we take into account the following equality:

a c |q|2 (q∗ q3,x + q q∗3,x) = a c |q|2 ∂

∂x
(q∗ qxx + q q∗xx − qx q∗x) =

= a c |q|2 ∂

∂x
(q∗ qxx + q q∗xx + 2 qx q∗x − 3 qx q∗x) = a c |q|2 ∂3

∂x3 (|q|2)−

−3 a c |q|2 ∂

∂x
(qx q∗x) =

∂

∂x
(a c |q|2 (|q|2)xx)− a c (|q|2)x (|q|2)xx−

−3 a c |q|2 ∂

∂x
(qx q∗x) =

∂

∂x
(a c |q|2 (|q|2)xx)−

∂

∂x
(

a c
2
((|q|2)x)

2)−

−3 a c |q|2 ∂

∂x
(qx q∗x).

(69)

We transform Expression (68), using Equation (59):

i c |q|2 (q∗ qx t − q q∗x t) = −
∂

∂x
(a c |q|2 (|q|2)xx) +

∂

∂x
(

a c
2
((|q|2)x)

2)+

+3 a c |q|2 ∂

∂x
(qx q∗x)−

∂

∂x
(

5
4

b c |q|8) + ∂

∂t
(

c2

3 a
|q|6)− ∂

∂x
(

i c2

a
X(2)

2 )

∣∣∣∣
k=2

+

+
∂

∂t
(

α c
2 a
|q|4)− ∂

∂x
(

i α c
a

X(2)
2 )

∣∣∣∣
k=1

+
∂

∂t
(

λ c
a (m + 1) (m + 2)

|q|2 (m+2))−

− ∂

∂x
(

i λ c
a (m + 1)

X(2)
2 )

∣∣∣∣
k=m+1

+
∂

∂x
(

i λ c m
m + 1

|q|2 (m+1) (q∗ qx − q q∗x)).

(70)

Multiplying Equation (53) by 3 c |q|2 q∗x, Equation (54) by 3 c |q|2 qx, and then adding
the resulting expressions yields

3 i c |q|2 (qt q∗x − qx q∗t ) + 3 a c |q|2 ∂

∂x
(qx q∗x) +

∂

∂x
(

3
4

b c |q|8)+

+
3
2

i c2 |q|4 ∂

∂x
(q∗ qx − q q∗x)−

∂

∂x
(

3 i c2

2
|q|4 (q∗ qx − q q∗x)) = 0

(71)

We transform Expression (71) using Equation (59):

3 a c |q|2 ∂

∂x
(qx q∗x) =

∂

∂t
(

3
4

i c |q|2 (q∗ qx − q q∗x)) +
∂

∂x
(

3
4

i c |q|2 (q q∗t−

−q∗ qt))−
∂

∂x
(

3
4

b c |q|8)− ∂

∂t
(

c2

2 a
|q|6) + ∂

∂x
(

3 i c2

2 a
X(2)

2 )

∣∣∣∣
k=2

+

+
∂

∂x
(

3 i c2

2
|q|4 (q∗ qx − q q∗x))

(72)

Substituting Equation (72) into Equation (70) yields

i c |q|2 (q∗ qx t − q q∗x t) =
∂T(2)

3
∂t

+
∂X(2)

3
∂x

, (73)
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where T(2)
3 and X(2)

3 are as follows:

T(2)
3 = − c2

6 a
|q|6 + α c

2 a
|q|4 + λ c

a (m + 1) (m + 2)
|q|2 (m+2)+

+
3
4

i c |q|2 (q∗ qx − q q∗x),

X(2)
3 = −a c |q|2 (|q|2)xx +

a c
2
((|q|2)x)

2 − 2 b c |q|8 + 1
2

i c2

a
X(2)

2

∣∣∣∣
k=2
−

− i α c
a

X(2)
2

∣∣∣∣
k=1
− i λ c

a (m + 1)
X(2)

2

∣∣∣∣
k=m+1

+
i λ c m
m + 1

|q|2 (m+1) (q∗ qx − q q∗x)+

+
3
4

i c |q|2 (q q∗t − q∗ qt) +
3 i c2

2
|q|4 (q∗ qx − q q∗x).

(74)

Substituting Equation (73) and using Equation (66), we obtain

∂T3

∂t
+

∂X3

∂x
= 0, (75)

where T(2)
3 and X(2)

3 are as follows:

T3 = − c2

6 a
|q|6 + α c

2 a
|q|4 + λ c

a (m + 1) (m + 2)
|q|2 (m+2)+

+
1
4

i c |q|2 (q∗ qx − q q∗x) +
b |q|6

3
− a |qx|2−

− i α

2
(q∗ qx − q q∗x)−

i λ |q|2 m

2 (m + 1)
(q∗ qx − q q∗x),

X3 = X(1)
3 + X(2)

3 .

(76)

8. Conservation Quantities

Let us consider Solution (26) and find conservation quantities for it.
Let us consider the following integrals:

L1 =
∫ ∞

−∞
y2

1 dx =
∫ ∞

−∞

4 E1 e
√

E1(x−C0 t−z0)

4 A1 E1 +
(

B1 + e
√

E1(x−C0 t−z0)
)2 dx =

=
2√
A1

(π

2
− arctan γ

)
,

(77)

L2 =
∫ ∞

−∞
y4

1 dx =
∫ ∞

−∞

 4 E1 e
√

E1(x−C0 t−z0)

4 A1 E1 +
(

B1 + e
√

E1(x−C0 t−z0)
)2


2

dx =

=

√
E1

A1
(−π γ + 2 γ arctan γ + 2),

(78)

L3 =
∫ ∞

−∞
y6

1 dx =
∫ ∞

−∞

 4 E1 e
√

E1(x−C0 t−z0)

4 A1 E1 +
(

B1 + e
√

E1(x−C0 t−z0)
)2


3

dx =

=
E1

2 A1
√

A1
(−2 (3 γ2 + 1) arctan γ + 3 γ (π γ− 2) + π),

(79)
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L =
∫ ∞

−∞
y2

1x dx =
∫ ∞

−∞

E2
1 e
√

E1(x−C0 t−z0)

4 A1 E1 +
(

B1 + e
√

E1(x−C0 t−z0)
)2 (1−

−2 (B1 e
√

E1(x−C0 t−z0) + e2
√

E1(x−C0 t−z0))

4 A1 E1 +
(

B1 + e
√

E1(x−C0 t−z0)
)2 )2dx =

=
1

32 A1
√

A1
(−2 (γ2 + 1) arctan γ + γ (π γ− 2) + π),

(80)

where γ =
B1

2
√

A1 E1
.

The density T1 gives the conservative quantity for the first solution (26) of the form

I(1)1 =
∫ ∞

−∞
Re(T1) dx =

∫ ∞

−∞
|q1|2 dx =

∫ ∞

−∞
y2

1 dx = L1. (81)

The density T2 gives the conservative quantity for the first solution (26) of the form

I(1)2 =
∫ ∞

−∞
Im(T2) dx =

=
∫ ∞

−∞
(−i a (q∗1 q1x − q1 q∗1x) + c |q1|4 − (λ + µ) |q1|4)dx =

= 2 a
∫ ∞

−∞
y2

1 ψxdx + (c− λ− µ)
∫ ∞

−∞
y4

1dx = (C0 + α)
∫ ∞

−∞
y2

1dx+

+
c + λ

2

∫ ∞

−∞
y4

1dx = (C0 + α) L1 +
c + λ

2
L2,

(82)

where expression (5) is taken into account.
The density T3 gives the conservative quantity for the first solution (26)

I(1)3 =
∫ ∞

−∞
Re(a T3) dx =

∫ ∞

−∞

(
− c2

6
|q1|6 +

α c
2
|q1|4 +

λ c
6
|q1|6+

+
i a c

4
|q1|2 (q∗1 q1x − q1 q∗1x) +

b a |q1|6
3

− a2 |q1x|2 −
i α a

2
(q∗1 q1x − q1 q∗1x)−

− i λ a |q1|2
4

(q∗1 q1x − q1 q∗1x)

)
dx =

(
α2 − C2

0
4

) ∫ ∞

−∞
y2

1dx +

(
α (λ + c)

4
−

−C0 (λ + µ)

2

) ∫ ∞

−∞
y4

1dx +

(
λ c
24

+
b a
3
− 3 λ2

16
− µ λ

2
− µ2

4
−

−5 c2

48

) ∫ ∞

−∞
y6

1dx− a2
∫ ∞

−∞
y2

1xdx =

(
α2 − C2

0
4

)
L1 +

(
α (λ + c)

4
−

−C0 (λ + µ)

2

)
L2 +

(
λ c
24

+
b a
3
− 3 λ2

16
− µ λ

2
− µ2

4
− 5 c2

48

)
L3 − a2 L,

(83)

where expression (5) is taken into account.
Let us consider solution (52) and find the conservation quantities for it. Let us consider

the following integral

Ωk =
∫ ∞

−∞
(y5)

2 kdx =
∫ ∞

−∞

(
4 M e

√
M ((x−C0 t)−z0)

4 M N + e2
√

M ((x−C0 t)−z0)

) k
m

dx =

∣∣∣∣ k
m

= p
∣∣∣∣ = (

√
4 M N)p

Np
√

M

∫ ∞

0

ϕp−1

(1 + ϕ2)pdϕ =
(
√

M)p−1

(
√

N)p

√
π Γ( p

2 )

Γ( p+1
2 )

.

(84)
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Ω =
∫ ∞

−∞
(y5x)

2dx =

=
M

4 m2

∫ ∞

−∞

(4 M e
√

M ((x−C0 t)−z0))
1
m (4 M N − e2

√
M ((x−C0 t)−z0))2

(4 M N + e2
√

M ((x−C0 t)−z0))
1
m +2

dx =

=

√
M

8 m3 (

√
4 M
N

)
1
m

Γ2( 1
2 m )

Γ( 1
m + 2)

.

(85)

The density T1 gives the conservative quantity for solution (52) of the form

I(2)1 =
∫ ∞

−∞
Re(T1) dx =

∫ ∞

−∞
|q5|2dx =

∫ ∞

−∞
(y5)

2dx = Ω1. (86)

The density T2 gives the conservative quantity for solution (52)

I(2)2 =
∫ ∞

−∞
Im(T2) dx =

∫ ∞

−∞
(−i a (q∗5 q5x − q q∗x) + c |q|4−

−2 (λ + µ)

m + 1
|q|2m+2)dx = 2 a

∫ ∞

−∞
y2 ψxdx + c

∫ ∞

−∞
y4dx−

− λ (m− 2)
3 m (m + 1)

∫ ∞

−∞
y2 (m+1)dx =

λ (m2 + 2)
3 (m2 + m)

∫ ∞

−∞
y2 (m+1)dx+

+
c
2

∫ ∞

−∞
y4dx =

λ (m2 + 2)
3 (m2 + m)

Ωm+1 +
c
2

Ω2.

(87)

From the condition (46), we receive µ = − 2+5 m
6 m λ, and for T3, there exists a restriction

µ = −λ. Thus, for T3, we have m = 2.
Density T3 provides the conservative quantity for solution (52) of the form

I(2)3 =
∫ ∞

−∞
Re(a T3) dx =

∫ ∞

−∞
(− c2

6
|q|6 + α c

2
|q|4 − a2 |qx|2+

+
λ c
12
|q|8 + 1

4
i c a |q|2 (q∗ qx − q q∗x) +

5 c2 |q|6
48

− i α a
2

(q∗ qx−

−q q∗x)−
i λ a |q|4

6
(q∗ qx − q q∗x)) dx =

α c
4

∫ ∞

−∞
y4 dx+

+
λ α

6

∫ ∞

−∞
y6 dx +

λ2

36

∫ ∞

−∞
y10 dx− a2

∫ ∞

−∞
y2

x dx =

=
α c
4

Ω2 +
λ α

6
Ω3 +

λ2

36
Ω5 − a2 Ω.

(88)

The conservative quantities I1, I2 and I3 correspond to the power, impulse and energy
of the solitary wave, respectively.

9. Conclusions

In this paper, we have considered the generalized Gerdjikov–Ivanov Equation (1) in
the case of arbitrary value m. Equation (1) does not pass the Painlevé test and the Cauchy
problem cannot be solved for this equation by the inverse scattering transform. Therefore,
we have studied this equation using the traveling wave reduction. We have found the first
integral of the nonlinear ordinary differential equation and have presented the classification
of the phase portraits corresponding to that equation. Taking into account the classification
results, we have obtained the periodic- and solitary-wave solutions of the differential
equation at various values m. We have constructed the conservation laws corresponding to
Equation (1) by means of direct calculations and have calculated its conserved quantities.
The three integrals of motion obtained correspond to the conservation of the power, the
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momentum and the energy of the optical soliton. These obtained theoretical results can be
useful for practical applications as they are helpful in testing whether numerical schemes
for partial differential equations are conservative.
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