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Abstract: Since their introduction, Chebyshev polynomials of the first kind have been extensively
investigated, especially in the context of approximation and interpolation. Although standard interpo-
lation methods usually employ equally spaced points, this is not the case in Chebyshev interpolation.
Instead of equally spaced points along a line, Chebyshev interpolation involves the roots of Cheby-
shev polynomials, known as Chebyshev nodes, corresponding to equally spaced points along the unit
semicircle. By reviewing prior research on the applications of Chebyshev interpolation, it becomes ap-
parent that this interpolation is rather impractical for medical imaging. Especially in clinical positron
emission tomography (PET) and in single-photon emission computerized tomography (SPECT),
the so-called sinogram is always calculated at equally spaced points, since the detectors are almost
always uniformly distributed. We have been able to overcome this difficulty as follows. Suppose
that the function to be interpolated has compact support and is known at q equally spaced points in
[−1, 1]. We extend the domain to [−a, a], a > 1, and select a sufficiently large value of a, such that
exactly q Chebyshev nodes are included in [−1, 1], which are almost equally spaced. This construction
provides a generalization of the concept of standard Chebyshev interpolation to almost equally
spaced points. Our preliminary results indicate that our modification of the Chebyshev method
provides comparable, or, in several cases including Runge’s phenomenon, superior interpolation
over the standard Chebyshev interpolation. In terms of the L∞ norm of the interpolation error, a
decrease of up to 75% was observed. Furthermore, our approach opens the way for using Chebyshev
polynomials in the solution of the inverse problems arising in PET and SPECT image reconstruction.

Keywords: Chebyshev polynomials; Chebyshev nodes; polynomial interpolation; medical image
reconstruction; emission tomography; PET; SPECT

MSC: 65D05; 65T40; 65R10; 44A12; 92C55

1. Introduction

Chebyshev polynomials of the first kind have been extensively employed in the
context of polynomial interpolation. Since their introduction by the renowned Russian
mathematician Pafnuty Chebyshev [1], these orthogonal polynomials have played a pivotal
role in approximation theory [2], providing an invaluable tool in numerical analysis [3].
Furthermore, Chebyshev polynomials are widely used in several fields including scientific
computing [4], matrix theory [5], integral transforms [6], and image processing [7], as
well as engineering [8,9], machine learning [10], quantum computing [11], and medical
imaging [12,13].

Chebyshev interpolation is a numerical method that involves the approximation of an
arbitrary function via a polynomial that passes through a set of given data points [14]. In
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particular, it is known that Chebyshev polynomials of the first kind have proved particularly
useful. In the interval [−1, 1] they are orthogonal, i.e., pairwise perpendicular, in the L2-
sense. This specific property renders them particularly useful for the efficient calculation of
the coefficients of the interpolating polynomial. In addition, Chebyshev polynomials of the
first kind converge rapidly to the function being interpolated, especially near the endpoints
of the interval; this fact is important when approximating functions with singularities [15].
Another benefit of Chebyshev interpolation is its ability to achieve high accuracy with
relatively few data points, making it particularly useful in cases of limited data [16]. This
is the result not only of the intrinsic properties of Chebyshev polynomials but also of the
choice of interpolation points, referred to as nodes.

Although standard polynomial interpolation methods usually employ equally spaced
points, Chebyshev interpolation, rather than equally spaced points along a line, instead uses
the roots of Chebyshev polynomials, known as Chebyshev nodes, corresponding to equally
spaced points along the unit semicircle (see Figure 1). It is well known (e.g., [16]) that
Chebyshev nodes tend to minimize certain interpolation errors and are thus preferred over
equidistant nodes, which may suffer from the so-called Runge phenomenon [17,18], mani-
fested as large oscillations near the endpoints of the interpolation interval. Furthermore,
Chebyshev polynomials are known to provide the best, in the L∞-norm sense, polynomial
approximation to a function [19].

-1 0 1

0

1

Figure 1. Chebyshev nodes (red) depicted as equally spaced points along the unit semicircle (blue).

It should be noted that in medical imaging applications, common practice dictates that
data should be stored at uniformly spaced intervals. Especially in clinical positron emission
tomography (PET) and in single-photon emission computerized tomography (SPECT),
the so-called sinogram data are always calculated at equally spaced points. Because of the
many advantages of Chebyshev polynomials, despite this difficulty, several attempts have
been made to incorporate Chebyshev interpolation in a tomographic setting employing
Chebyshev nodes, both in PET [20–23] and in magnetic particle imaging (MPI) [24,25].

In this work, we attempt to overcome the difficulty imposed by the non-uniform
nature of Chebyshev nodes as follows. Suppose that the function to be interpolated has
compact support, as commonly attributed to emission tomography [26–28], and is known
at q equally spaced points in [−1, 1]. We extend the domain to [−a, a], a > 1, and select a
sufficiently large value of a, such that exactly q Chebyshev nodes are included in [−1, 1],
which are almost equally spaced. In this way, we provide a generalization of the concept of
standard Chebyshev interpolation to almost equally spaced points. Our preliminary results
indicate that our modification of the Chebyshev interpolation provides comparable, or, in
several cases including Runge’s phenomenon, superior interpolation over the standard
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Chebyshev and Lagrangian techniques. Furthermore, our approach opens the way for
using Chebyshev polynomials in the solution of the inverse problems arising in PET and
SPECT image reconstruction.

2. Chebyshev Polynomials of the First Kind
2.1. The Case of [−1, 1]

We consider Chebyshev polynomials of the first kind and of degree n ∈ N, denoted by
Tn(x), namely

Tn(x) = cos (n arccos x), x ∈ [−1, 1], n ∈ N. (1)

It is straightforward to see that

T0(x) = 1, and T1(x) = x. (2a)

Furthermore, it is well known [29] that the following recursive relation is valid for Cheby-
shev polynomials of the first kind:

Tn+1(x) = 2xTn(x)− Tn−1(x), n > 1. (2b)

It is worth noting that Tn(x) is a polynomial of degree n,

Tn(x) =
n

∑
i=0

aixi, with an = 2n−1, (3)

and that {T`(x)}n
`=0 form a basis for Pn, i.e., the set of polynomials with degree up to n.

The zero set of the polynomials Tn(x) is defined as follows:

x ∈ ker (Tn) :=
{

x ∈ [−1, 1]
∣∣∣ Tn(x) = 0

}
. (4)

The definition of Tn(x) given in Equation (1) implies that its roots, denoted by x(n)k , are
located in

x(n)k = cos
[(

2k− 1
n

)
π

2

]
, k = 1, 2, . . . , n. (5)

Equation (5), along with the fact that Chebyshev polynomials of the first kind are poly-

nomials of degree n, imply that Tn(x) has n distinct roots, namely
{

x(n)k

}n

k=1
, hence

| ker (Tn)| = n. Furthermore, Equation (3) implies that

Tn(x) = 2n−1
n

∏
k=1

(x− x(n)k ). (6)

Let f (x) denote an arbitrary function on the interval [−1, 1], and cj denote a set of n
coefficients, for j = 0, 1, . . . , n− 1, defined as follows:

cj =
2
n

n

∑
k=1

f (x(n)k )Tj(x(n)k ) =
2
n

n

∑
k=1

f (x(n)k ) cos
[(

(2k− 1)j
n

)
π

2

]
, (7)

where x(n)k ∈ ker Tn(x), given in Equation (5). It follows that the approximation formula

f (x) ≈ 1
2

c0 +
n−1

∑
k=1

ckTk(x) (8)

is exact for all n roots of the Chebyshev polynomial Tn(x), see Theorem 6.7 of [14].
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2.2. Extending the Domain: The Case of [−a, a]

In Equation (1), if we extend the domain [−1, 1] to [c, d], with c < d, then the definition
of a Chebyshev polynomial of the first kind of degree n is modified in the following manner:

T̂n(x) = Tn(s), where s =
2x− (c + d)

d− c
, c 6= d, (9)

as in [14]. In the special case of [−a, a], with a > 1,

T̂n(x) = Tn

( x
a

)
. (10)

Equation (10), via Equation (1), may be rewritten as:

T̂n(x) = cos
[
n arccos

( x
a

)]
, x ∈ [−a, a], a > 1, n ∈ N. (11)

Equation (11) yields

T̂0(x) = 1, and T̂1(x) =
x
a

, (12a)

whereas the recursive Relations (2b) imply

T̂n+1(x) =
2x
a

T̂n(x)− T̂n−1(x), n > 1. (12b)

The roots of T̂n(x) are located in

x̂(n)k = a cos
[(

2k− 1
n

)
π

2

]
, k = 1, 2, . . . , n. (13)

Defining the n coefficients {ĉj}n−1
j=0 as

ĉj =
2
n

n

∑
k=1

f (x̂(n)k )T̂j(x̂(n)k ) =
2
n

n

∑
k=1

f (x̂(n)k ) cos
[(

(2k− 1)j
n

)
π

2

]
(14)

for the domain [−a, a], Equation (8) becomes

f (x) ≈ 1
2

ĉ0 +
n−1

∑
k=1

ĉkT̂k(x). (15)

3. Chebyshev Interpolation with Almost Equally Spaced Points

We aim to approximate an unknown function f (x), defined in [−1, 1], via a polynomial
of degree of at most q− 1, given that the values of f (x) are known at the following q equally
space points:

x̃m = 1− 2(m− 1)
q− 1

=
q + 1− 2m

q− 1
, m = 1, 2, . . . , q, q > 1. (16)

Hence,

x̃1 = 1, x̃2 = 1− 2
q− 1

, x̃3 = 1− 4
q− 1

, . . . , x̃q = −1. (17)

In Equation (16), the equally spaced points are in descending order, following the trend of
the roots of the Chebyshev polynomial, as in Equations (5) and (13). Clearly, in this case,
we cannot apply Chebyshev interpolation since the values of f (x) in the roots of Tq(x) are
unknown.

To overcome this difficulty, we extend the domain from [−1, 1] to [−a, a], a > 1, as in
Section 2.2. Let n denote the number of roots of the corresponding Chebyshev polynomial
T̂n(x) in [−a, a] (see Equation (13)). We require that exactly q of the n Chebyshev roots
in [−a, a] are included in [−1, 1]. It is worth mentioning that the roots of Tn(x), defined
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in (5), and of T̂n(x), defined in Equation (13), are not equally spaced in the standard sense;
however, they are equally spaced along the unit semicircle and a semicircle with radius
a, respectively, (see Figure 1). In the following proposition, we provide a criterion for the
choice of a, so that the q Chebyshev roots included in [−1, 1] are almost equally spaced.

Proposition 1. Let a > 1 be such that exactly q > 1 of the n Chebyshev roots in [−a, a], defined
in Equation (13), are included in [−1, 1], and let ` be an odd integer, such that n = `q. Then,
for n sufficiently large, the equidistant points defined in Equation (16) are almost equal to the q
Chebyshev nodes.

Proof. Since a is such that q of the n Chebyshev roots in [−a, a], defined in Equation (13),
are included in [−1, 1], it follows that there exists an integer λ > 1, such that the number of
Chebyshev roots in [−a,−1), and similarly for (1, a], is exactly λ (see Figure 2). Hence, λ is
such that

2λ + q = n λ, q > 1. (18)

Taking into account Equation (18), the q Chebyshev roots in [−1, 1] via Equation (13) may
be rewritten as

x̂(q)m = a cos
[(

2(λ + m)− 1
n

)
π

2

]
, m = 1, 2, . . . , q, q > 1. (19)

Given that n = `q, where ` is an odd integer, Equation (18) yields

λ =
(`− 1)

2
q, ` odd, ` > 1, (20)

i.e., λ is a multiple of q. Inserting Equation (20) in Equation (19) implies

x̂(q)m = a cos
[(

(`− 1)q + 2m− 1
`q

)
π

2

]
= a sin

[(
q + 1− 2m

`q

)
π

2

]
, m = 1, 2, . . . , q. (21)

Since q of the n roots x̂(n)k are included in [−1, 1], x̃1 = −x̃q = 1 and x̂(q)1 = −x̂(q)q , it is

reasonable to require that x̂(q)1 ≈ x̃1 = 1. Thus, Equation (21) implies

a ≈ 1

sin
[(

q− 1
`q

)
π

2

] . (22)

Furthermore, taking into account Equation (22), we may rewrite Equation (21) in the
following form:

x̂(q)m ≈
sin
[(

q + 1− 2m
`q

)
π

2

]
sin
[(

q− 1
`q

)
π

2

] . (23)

Taking the corresponding Taylor series yields

x̂(q)m =

sin
[(

q + 1− 2m
`q

)
π

2

]
sin
[(

q− 1
`q

)
π

2

] =
q + 1− 2m

q− 1
+ O

(
1
`2

)
. (24)

Hence, for ` (and therefore n) sufficiently large, the Chebyshev nodes are almost equally
spaced, since x̂(q)m ≈ x̃m, for all m, as implied by Equations (16) and (24).
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Figure 2. Chebyshev roots distribution in the extended domain [−a, a] ⊃ [−1, 1], a > 1.

Since the approximation of the unknown function f (x) involves the interval [−1, 1],
and not [−a, a], we may assume that f (x) has compact support, namely f (x) = 0, for
|x| > 1. Thus, we may employ Chebyshev interpolation in [−1, 1], as in Equation (15),
utilizing Equation (14), assuming f (x̂(q)m ) = f (x̃m), for m = 1, . . . , q, and f (x) = 0, for any
other root of T̂n(x). A step-by-step explanation of our modified Chebyshev interpolation
method, including the procedure for extending the domain, is presented in Algorithm 1.

Algorithm 1 Computational steps of the proposed Chebyshev-based interpolation.
Input: q, `, f (x) given at x̃m with m = 1, . . . , q
Compute: a via Equation (22)

Assume: f (x̂(q)m ) = f (x̃m), for m = 1, . . . , q, and f (x) = 0, for any other root of T̂n(x)
Compute: ĉj via Equation (14)
Output: approximation of f (x) via Equation (15)

4. Examples of Chebyshev Interpolation with Almost Equally Spaced Points

We implemented and evaluated the efficacy of our methodology by considering
two interpolation examples, namely, an exponential function and a rational function. In
particular, we considered the exponential function

f (x) = e−5x2
, (25)

and the rational function

f (x) =
1

1 + 16x2 , (26)

which is well known regarding the so-called Runge’s phenomenon.
In order to approximate f (x) defined on the interval [−1, 1], we employed three

different polynomial interpolation schemes, namely,

1. Lagrange interpolation with equally spaced points on [−1, 1] (e.g., [19]);
2. Chebyshev interpolation with Chebyshev nodes on [−1, 1], according to Equations (7)

and (8);
3. Chebyshev interpolation with almost equally spaced points, according to Proposition 1

and Equations (14) and (15).

For the first two interpolation methodologies, we considered q = 11 interpolation
points on [−1, 1]. For the third, we further assumed an extended interval of the form [−a, a],
a > 1. This interval is such that exactly q = 11 almost equally spaced Chebyshev nodes are
included in [−1, 1]. Furthermore, according to Proposition 1, we assumed n = `q, ` odd. In
the case of the exponential function, we chose ` = 15, hence n = 165 Chebyshev nodes are
lying on [−a, a], which, according to Equation (22), implies that a ≈ 10.52. In the case of the
rational function, choosing ` = 5 implies that n = 55 Chebyshev nodes are lying on [−a, a],
which, in turn, implies that a ≈ 3.55 (see Equation (22)). We then performed Chebyshev
interpolation on the interval [−a, a] via Equations (14) and (15). It is worth mentioning
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that in Equation (14) we assumed f (x̂(11)
m ) = f (x̃m), m = 1, . . . , 11, and f (x̂(n)k ) = 0, for all

other n− q = 2λ roots of T̂n(x) on [−a,−1) ∪ (1, a] (see Equation (18) and Figure 2). All
methods of interpolation investigated for both examples of f (x) are shown in Figures 3
and 4, respectively, where blue represents the function itself, and red corresponds to its
approximation.

We calculated the L∞ norm of the error of the equally spaced points x̃, defined in
Equation (16), and of the almost equally spaced Chebyshev points x̂(11), defined in (19), i.e.,

Exponential : ‖x̃− x̂(11)‖∞ = max
(
|x̃1 − x̂(11)

1 |, . . . , |x̃11 − x̂(11)
11 |

)
≈ 0.0006,

Rational : ‖x̃− x̂(11)‖∞ = max
(
|x̃1 − x̂(11)

1 |, . . . , |x̃11 − x̂(11)
11 |

)
≈ 0.0053.

Upon designating the new Chebyshev nodes as “almost equally spaced”, it is evident, from
the above L∞ norms of their difference from uniformly spaced points, that their spacing
is indeed nearly uniform. This is also apparent due to the fact that the L∞ norm of the
difference is 0.03% and 0.265% of the length of the integral [−1, 1] for the exponential and
rational functions, respectively.

We calculated the L∞ norm of the interpolation error, namely ‖ f − p‖∞, where p
denotes the interpolating polynomial, with p ∈ Pq−1 for the Lagrange and standard
Chebyshev cases, and p ∈ Pn−1 for the almost equally spaced points Chebyshev case.
This error norm was computed by taking 10,000 points along the interval [−1, 1]. The
results of our investigation are presented in Table 1. For both examples investigated, the
results demonstrate that the novel Chebyshev-based method consistently outperforms
the traditional approach with respect to the L∞ norm. In particular, for the case of the
exponential function, the decrease in the L∞ norm of the interpolation error from the
traditional Chebyshev method to the modified Chebyshev approach was 50%. Similarly,
for the case of the rational function, the corresponding decrease was 75%.

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Lagrange interpolation with equally spaced points

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Chebyshev interpolation with Chebyshev points

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Chebyshev interpolation with almost equally spaced points

Figure 3. Interpolation of the exponential function f (x) = exp (−5x2) on the interval [−1, 1], with
q=11, `=15 and a = 10.52.
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-1.0 -0.5 0.5 1.0
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0.4

0.6
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1.2

Lagrange interpolation with equally spaced points

-1.0 -0.5 0.5 1.0

0.2

0.4
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0.8

1.0

Chebyshev interpolation with Chebyshev points

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Chebyshev interpolation with almost equally spaced points

Figure 4. Interpolation of the rational function f (x) = 1/(1 + 16x2) on the interval [−1, 1], highlight-
ing the occurrence of the Runge phenomenon, with q=11, `=5, and a = 3.55.

It must be emphasized that our analysis is, at this stage, preliminary. Furthermore, the
limitations of global versus local or piecewise (splines) polynomial interpolation remain
the same, since both the traditional and modified Chebyshev approaches are special cases
of Lagrange interpolation. Specifically, the Chebyshev approach consists of a Lagrange
polynomial interpolation employed at the Chebyshev nodes.

Table 1. Interpolation error results.

‖ f − p‖∞ Lagrange [−1, 1] Chebyshev [−1, 1] Chebyshev [−a, a]

Exponential 0.0237 0.0018 0.0009
Rational 1.1769 0.0588 0.0206

5. Application to Emission Tomography

It is well known [27] that the inversion of the Radon transform in two dimensions is
given by

f (x1, x2) = −
1

4π2

∫ 2π

0

∂H(ρ, θ)

∂ρ
dθ, ρ = x2 cos θ − x1 sin θ, (27)

where H denotes the Hilbert transform of the sinogram, f̂ , i.e.,

H(ρ, θ) =
∮ ∞

−∞

f̂ (ρ′, θ)

ρ′ − ρ
dρ′ =

∮ 1

−1

f̂ (ρ′, θ)

ρ′ − ρ
dρ′, (28)

where, as commonly attributed to medical imaging (see for example [26]), we assume that
f̂ has compact support on [−1, 1], and that f̂ (−1, θ) = f̂ (1, θ) = 0 [27,28].
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In order to apply our method, we consider an extension of the usual sinogram ( f̂ ). Let
f̃ denote the extension of f̂ from [−1, 1] to [−a, a], a > 1, defined as follows:

f̃ (ρ, θ) =

{
f̂ (ρ, θ), ρ ∈ [−1, 1],
0, ρ ∈ [−a, 1) ∪ (1, a], a > 1.

(29)

Then, according to Equation (15), the Chebyshev-type expansion of the first-kind f̃ is
given by

f̃ (ρ, θ) =
1
2

ĉ0(θ) +
n−1

∑
k=1

ĉk(θ)T̂k(ρ), (30)

where T̂n(ρ) are defined in Equation (11). Hence, the Hilbert transform of f̂ via Equation (28)
may be rewritten in terms of f̃ as follows:

H(ρ, θ) =
∮ ∞

−∞

f̃ (ρ′, θ)

ρ′ − ρ
dρ′ =

∮ 1

−1

f̃ (ρ′, θ)

ρ′ − ρ
dρ′

=
∮ 1

−1

f̃ (ρ′, θ)− f̃ (ρ, θ)

ρ′ − ρ
dρ′ +

∮ 1

−1

f̃ (ρ, θ)

ρ′ − ρ
dρ′

= f̃ (ρ, θ) ln
(

1− ρ

1 + ρ

)
+

n−1

∑
k=1

ĉk(θ)
∮ 1

−1

T̂k(ρ
′)− T̂k(ρ)

ρ′ − ρ
dρ′

=

(
1
2

ĉ0(θ) +
n−1

∑
k=1

ĉk(θ)T̂k(ρ)

)
ln
(

1− ρ

1 + ρ

)
+

n−1

∑
k=1

ĉk(θ)
∮ 1

−1

T̂k(ρ
′)− T̂k(ρ)

ρ′ − ρ
dρ′. (31)

We denote the integral of the last line of Equation (31) by Ik(ρ), namely,

Ik(ρ) =
∮ 1

−1

T̂k(ρ
′)− T̂k(ρ)

ρ′ − ρ
dρ′. (32)

Taking into account Equation (12a), it is easy to establish that

I0(ρ) = 0, and I1(ρ) =
2
a

. (33)

Inserting the recursive Relation (12b) in Equation (32) yields

Ik+1(ρ) =
2
a

Jk(ρ)− Ik−1(ρ), (34)

where

Jk(ρ) =
∮ 1

−1

ρ′T̂k(ρ
′)− ρT̂k(ρ)

ρ′ − ρ
dρ′. (35)

We modify Jk(ρ) by adding and subtracting the term ρT̂k(ρ
′) on the numerator inside the

integral, as follows:

Jk(ρ) = Ak + ρIk(ρ), (36)

where Ak denotes the following definite integral

Ak =
∫ 1

−1
T̂k(ρ

′)dρ′. (37)

Inserting Equation (36) in Equation (34) yields the following recursive relation:

Ik+1(ρ) =
2ρ

a
Ik(ρ)− Ik−1(ρ) +

2
a

Ak. (38)
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We note that it can be shown that

Ak =


2

1− k2

[
cos

(
k sec−1 a

)
+ k
√

a2 − 1 sin
(
k sec−1 a

)]
, k even,

0, k odd.
(39)

By differentiating Equation (38) with respect to ρ, we obtain

I′k+1(ρ) =
2
a

Ik(ρ) +
2ρ

a
I′k(ρ)− I′k−1(ρ), (40)

where prime denotes differentiation. Equation (33) implies that I′k(ρ) vanishes for k = 0
and k = 1, i.e.,

I′0(ρ) = I′1(ρ) = 0. (41)

Taking into account all of the above, the derivative of the Hilbert transform of the
sinogram may be written as

∂H(ρ, θ)

∂ρ
=

ĉ0(θ)

ρ2 − 1
+

n−1

∑
k=1

ĉk(θ)

(
ln
(

1− ρ

1 + ρ

)
T̂′k(ρ) +

2T̂k(ρ)

ρ2 − 1
+ I′k(ρ)

)
, (42)

where T̂′k(ρ) denotes the derivative of T̂k(ρ) with respect to ρ, and I′k(ρ) is defined in
Equations (40) and (41).

6. Numerical Implementation for PET Image Reconstruction

For the numerical implementation of the new, Chebyshev-based image reconstruction
technique, we considered the function

f (x1, x2) =

{
1, x2

1 + x2
2 <

1
4

,

0, otherwise,
(43)

i.e., a uniform circular phantom. This phantom and its line profile for x2 = 0 are shown on
the right and left side of the upper row of Figure 5, respectively.

The corresponding sinogram of the uniform phantom f , defined in Equation (43),
involves its Radon transformR, and is denoted by f̂ , namely,

f̂ (ρ, θ) = R{ f (x1, x2)} =
∫
L

f (x1(s, ρ, θ), x2(s, ρ, θ))ds, (44)

where (x1, x2) are the usual Cartesian coordinates, ρ represents the signed distance from
the origin, i.e.,

ρ := ρ(x1, x2; θ) = x2 cos θ − x1 sin θ, (45)

ds denotes an arc length differential along parallel lines L for all angles θ, and s represents
a parameter along the line L. We note that the Radon transform of f can be analytically
calculated, i.e.,

f̂ (ρ, θ) =

 2

√
1
4
− ρ2, |ρ| < 1

2 ,

0, otherwise.
(46)

By appropriately approximating the sinogram in the variable ρ for all θ, we applied two
different reconstruction techniques, namely:

1. The Chebyshev-based reconstruction technique with Chebyshev nodes for ρ ∈ [−1, 1],
following the inversion formula described in Algorithm 1 of [22];

2. Our novel Chebyshev-based reconstruction technique with almost equally spaced
points, according to Proposition 1 and the inversion approach described in Section 5.
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Figure 5. Uniform phantom line profiles and reconstructions. (Upper row) uniform phantom
(ground truth). (Middle row) Chebyshev reconstruction with Chebyshev nodes, as in [22]. (Lower
row) Chebyshev reconstruction with almost equally spaced points.

For both reconstruction techniques, we evaluated the sinogram for 90 equally spaced
angles θ in [0, π). Furthermore, for the case of standard Chebyshev approximation of
the sinogram where ρ ∈ [−1, 1], we considered q=119 values of ρ, at the roots of the
corresponding Chebyshev polynomials of degree q, Tq(ρ). For the case of the Chebyshev
approximation with q almost equally spaced points on [−1, 1], we assumed an interval of
the form [−a, a] for the sinogram, thus extending its domain of definition as in Equation (29).
Then, based on the relation n = `q and the fact that q = 119 points are required to lie on the
interval [−1, 1], we chose ` = 27, thus n = 3213, which, via Equation (22), implies a ≈ 17.34.
The reconstruction results for the standard Chebyshev approximation with Chebyshev
nodes in [−1, 1], and for the Chebyshev with almost equally spaced points in [−1, 1] are
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shown in the middle and lower rows of Figure 5, respectively. It is worth mentioning that in
Figure 5, instead of [−1, 1], we employed the set of pixel indices from 1 to q in both x1 and
x2 directions, i.e., a mapping of the q Chebyshev roots in [−1, 1] onto their corresponding
pixel index, iq = 1, 2, . . . , q.

Regarding the error analysis of our reconstructions, we calculated the L∞-norm of the
difference (error) of the equally spaced points ρ̃ = (ρ̃1, . . . , ρ̃119)

T, defined in Equation (16),

and of the almost equally spaced Chebyshev points ρ̂(119) =
(

ρ̂
(119)
1 , . . . , ρ̂

(119)
119

)T
, defined

in Equation (19), as follows:

‖ρ̃− ρ̂(119)‖∞ = max
(∣∣∣ρ̃1 − ρ̂

(119)
1

∣∣∣, . . . ,
∣∣∣ρ̃119 − ρ̂

(119)
119

∣∣∣) ≈ 0.0002, for all θ.

We also calculated the L∞ norm of the pixel-by-pixel interpolation error of the reconstruction
line profile at x2 = x∗2 , i.e.,

‖ fx∗2
− rx∗2

‖∞ := max
(
| f (x1,1, x∗2)− r(x1,1, x∗2)|, . . . ,

∣∣ f (x1,q, x∗2)− r(x1,q, x∗2)
∣∣), (47)

where r(x1, x2) denotes the reconstruction, fx∗2
and rx∗2

denote the tabulated line profile of
the phantom and its corresponding reconstruction at the fixed x2 = x∗2 , respectively, in the
sense that

fx∗2
=
(

f (x1,1, x∗2), . . . , f
(
x1,q, x∗2

))T, and rx∗2
=
(
r(x1,1, x∗2), . . . , r

(
x1,q, x∗2

))T. (48)

For the purposes of our analysis, given that q = 119, we set x∗2 in the middle of the
x2-direction, i.e., x∗2 = 60. Furthermore, we calculated the entrywise L1 norm of the
reconstruction error matrix, as in [30],

‖ f − r‖1 :=
q

∑
i=1

q

∑
j=1

∣∣ f (x1,i, x2,j)− r(x1,i, x2,j)
∣∣ = q

∑
i=1

q

∑
j=1

∣∣ fij − rij
∣∣, (49)

as well as its corresponding entrywise L2 norm , also known as the Frobenius norm [31],
usually denoted by ‖ · ‖F,

‖ f − r‖2 = ‖ f − r‖F :=

√√√√ q

∑
i=1

q

∑
j=1

(
f (x1,i, x2,j)− rij(x1,i, x2,j)

)2
=

√√√√ q

∑
i=1

q

∑
j=1

( fij − rij)2, (50)

where we employed square q × q reconstructions, e.g., the tabulated forms of both the
phantom ( f ) and its corresponding reconstructions (r) were considered as square matrices{

fij
}q

i,j=1 and
{

rij
}q

i,j=1, respectively.
The results of our reconstruction error investigation are presented in Table 2. For the

uniform phantom investigated, the results demonstrate that the reconstruction provided
by the novel Chebyshev-based method outperforms the traditional approach with respect
to both the L1 and L2 norms. Furthermore, it outperforms the standard Chebyshev method
with respect to the L∞ norm for the line profile at the middle row (x∗2) of the phantom. In
particular, the decrease in the L∞, L1, and L2 norms of the interpolation error from the
traditional Chebyshev method to the modified Chebyshev approach was 18%, 49%, and
19%, respectively.

Table 2. Reconstruction error results.

Chebyshev [−1, 1] Chebyshev [−a, a]

‖ fx∗2 − rx∗2 ‖∞ 0.184 0.151
‖ f − r‖1 302.121 153.160
‖ f − r‖2 5.651 4.597
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7. Conclusions

In the present work we have introduced a novel method for the polynomial inter-
polation of the Chebyshev type in almost equally spaced Chebyshev nodes. Although
standard polynomial interpolation methods usually employ equally spaced points on an
interval, in Chebyshev interpolation, this is not the case. Instead of equally spaced points
along a line, Chebyshev interpolation, by definition, involves the Chebyshev nodes, i.e.,
the roots of Chebyshev polynomials, corresponding to equally spaced points along the unit
semicircle. Given the non-uniform nature of the Chebyshev nodes and the fact that in most
medical imaging modalities, the domain is uniformly partitioned, we extended the usual
domain from [−1, 1], where the function to be interpolated is known at q points, to [−a, a],
a > 1. The selection of a is such that not only exactly q Chebyshev nodes are included
in [−1, 1] but also these Chebyshev nodes are almost equally spaced. Our preliminary
results indicate that our novel Chebyshev-based method consistently outperforms the
traditional approach with respect to the L∞ norm. Our approach opens the way for using
Chebyshev polynomials in the solution of the inverse problems arising in PET and SPECT
image reconstruction.

The results of our phantom study demonstrate that the reconstruction provided by
the novel Chebyshev-based method are superior to the traditional approach, with respect
to the L1, L2, and L∞ norms. In future studies, we aim to investigate the performance of
our interpolation technique in clinical PET and SPECT studies, where specific potential
limitations and challenges will be analyzed and discussed.
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