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Abstract: Green scheduling that aims to enhance efficiency by optimizing resource allocation and job
sequencing concurrently has gained growing academic attention. To tackle such problems with the
consideration of scheduling and resource allocation, this paper considers a single-machine group
scheduling problem with common/slack due-date assignment and a controllable processing time.
The objective is to decide the optimized schedule of the group/job sequence, resource allocation, and
due-date assignment. To solve the generalized case, this paper proves several optimal properties
and presents a branch-and-bound algorithm and heuristic algorithms. Numerical experiments show
that the branch-and-bound algorithm is efficient and the heuristic algorithm developed based on the
analytical properties outruns the tabu search.
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1. Introduction

Due to the reflection on the balance between resource allocation costs and efficiency,
the scheduling problem with a controllable processing time (CPSP) has received a con-
siderable amount of attention. In contrast to the conventional scheduling problem with a
constant processing time, the controllable processing time varies according to the allocated
resources, especially those represented by energy. Since the essential objective of the green
scheduling problem (GSP) was to maximize the environmental benefits by deciding the
energy usage allocation and schedule, the CPSP could be extended to deal with the GSP
(Foumani and Smith [1]). Early research on the CPSP introduced the idea that the process-
ing time often varied and could be reduced with the cost of more allocations of production
resources (Shabtay and Steiner [2]; Manier and Bloch [3]; Kuntay et al. [4]). Uruk et al. [5]
considered flexible operations and resource allocation in a two-machine flowshop environ-
ment. Mor and Mosheiov [6] integrated batch scheduling into the CPSP. The jobs inside a
certain batch were modeled as identical jobs. For the CPSP with scenario-based demands,
Akhoondi and Lotfi [7] developed heuristic algorithms for master production schedul-
ing. Li and Wang [8] combined the deteriorating effects with the CPSP. The problem of
minimizing the weighted sum of the makespan and resource cost was proved to be poly-
nomially solvable. The CPSP with learning effects was considered by Sun et al. [9]. For a
two-machine flowshop CPSP with common due-date assignment and no-wait constraints,
they proved that the proposed problem could be solved in polynomial time. Sun et al. [9]
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studied the CPSP with slack due-date assignment and no-wait constraints and proved that
the irregular objective can be polynomially solvable.

Group technology and due-date assignment are concurrently integrated into the CPSP,
which is widely reflected in real manufacturing environments and attracts an increasing
amount of academic attention (Shabtay et al. [10]; Zhu et al. [11]). For green scheduling
with the consideration of carbon-emission supervision and reduction, the group of jobs
is usually divided according to periodical carbon-emission demand and endowed with
different workloads. In terms of group scheduling, Webster and Baker [12] were among
the pioneers that introduced the idea of group technology to the single-machine schedul-
ing problem. Li et al. [13] integrated the due-date assignment problem into the group
scheduling problem and proved that irregular minimization can be solved in polynomial
time. Liu et al. [14] considered a single-machine group scheduling problem with deterio-
rating effects and developed composite solution methods for the objective of makespan
minimization. The due-date assignment problem is usually proposed to integrate with
group scheduling and was recently covered by Yang et al. [15] and Yin et al. [16–19]. As for
scheduling with the combined considerations of the controllable processing time and group
technology, Shabtay et al. [10] dealed with the single-machine CPSP with group technology
and due-date assignment. Yan et al. [20] studied the integrated problem with learning
effects and a total resource limitation. For the special cases, the problem was proved to be
polynomially solvable. Liu and Wang [21] considered a new group scheduling model with
due-date assignment and a controllable processing time. They proved the special cases
where the job numbers of different groups were identical were polynomially solvable.

In light of the significance of the CPSP with group technology in real manufacturing
environments, this paper continues the study of an integrated model of group scheduling
with a controllable processing time under CON/slack due-date assignment (Liu and
Wang [21]) and extends the work to a general case where the job numbers of different
groups are variable. This paper considers an integrated solution method to tackle the
open problem of Liu and Wang [21]. The objective is to minimize the weighted earliness
and tardiness. Our main contributions include the following: (1) the incorporation of the
generality of the integrated CPSP model; (2) the proposition of optimal properties; (3) the
analysis of the lower bound strategy; and (4) composite solution algorithms to solve the
general case of the problem.

The remainder of this paper is organized as follows. Section 2 makes notations and
assumptions. Section 3 presents several preliminary properties and shows the lower bound
analysis for general cases. Section 4 proposes the solution algorithms of an exact method
and heuristics. Section 5 displays numerical experiment results. Finally, Section 6 makes
the summary.

2. Problem Formulation

In this section, notations used throughout this whole paper will first be introduced as
follows (see Abbreviation section).

Investigate a set of Ö jobs grouped into Q groups F1, F2, . . . , FQ. All the jobs are
to be processed on a single machine and are available at time zero. Let the number of
jobs in Fg be Og; it follows that O1 + O2 + . . . + OQ = Ö. A setup time sg has to be
required before the processing of jobs in group Fg. Let Gg,k denote the kth job in Fg, where
g = 1, 2, . . . , Q; k = 1, 2, . . . , Og. As in Liu and Wang [21], the processing time of Gg,k is

pA
g,k =

(
vg,k

ug,k

)σ

, (1)

where vg,k is the workload of Gg,k, σ > 0 is a constant, and ug,k is the amount of resources
allocated to Gg,k.

Let Eg,k = max{0, dg,k − Cg,k} (resp. Tg,k = max{0, Cg,k − dg,k}) be the earliness (resp.
tardiness) of Gg,k in Fg, where dg,k (resp. Cg,k) is the due date (resp. completion time)
of Gg,k. Under the CON assignment, it is assumed that dg,k = dg(g = 1, . . . , Q, k = k =
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1, 2, . . . , Og), where dg is a decision variable. Under the SLK assignment, it is assumed
that dg,k = pA

g,k + qg(g = 1, . . . , Q, k = k = 1, 2, . . . , Og), where qg denotes the common
flow allowance in group Fg and qg is a decision variable. Denote [z] as some job (or group)
scheduled in the zth position; the objective is to determine a group schedule χ and an
internal job schedule ψg within Fg, a set of d = {dg|g = 1, . . . , Q} (q = {qg|g = 1, . . . , Q})
and a set of u = {ug,k|g = 1, . . . , Q; k = 1, . . . , Og}, such that the optimization objective

ÕF(CON) =
Q

∑
g=1

Og

∑
k=1

(αg,kEg,[k] + βg,kTg,[k] + ξdg) +
Q

∑
g=1

Og

∑
k=1

vg,kug,k (2)

ÕF(SLK) =
Q

∑
g=1

Og

∑
k=1

(αg,kEg,[k] + βg,kTg,[k] + ξqg) +
Q

∑
g=1

Og

∑
k=1

vg,kug,k (3)

is minimized, where αg,k (resp. βg,k) is a position-dependent weight for the earliness (resp.
tardiness) cost, vg,k is the unit consumption cost, and ξ ≥ 0 is a given constant. As in Liu
and Wang [21], the problem can be denoted by

1

∣∣∣∣∣X, pA
g,k =

(
vg,k

ug,k

)σ

, G̃T

∣∣∣∣∣ÕF(X) (4)

where X ∈ {CON, SLK} and G̃T denotes group technology. For a special case, i.e., where
the number of jobs in Fg is identical, Liu and Wang [21] proved that the problem can
be solved in O(Ö3) time. This paper will consider how to solve the general problem

1
∣∣∣X, pA

g,k =
(

vg,k
ug,k

)σ
, G̃T

∣∣∣ ÕF(X) (X ∈ {CON, SLK}).

3. Preliminary Properties

From Liu and Wang [21], the following results are given:

Lemma 1 (Lemma 2, Liu and Wang [21]). For a given job sequence ψg within Fg (g = 1, . . . , Q),
under a CON (resp. SLK) assignment, there exists an optimal dg = Cg,[hg ] (resp. qg = Cg,[hg−1])

where hg satisfies the following inequality: ∑
Og
l=hg+1 βg,l − ∑

hg
l=1 αg,l ≤ ξOg ≤ ∑

Og
l=hg

βg,l −

∑
hg−1
l=1 αg,l .

Lemma 2 (Lemma 6, Liu and Wang [21]). Under the given group and job sequences

1

∣∣∣∣∣X, pA
g,k =

(
vg,k

ug,k

)σ

, G̃T

∣∣∣∣∣ÕF(X),

the optimal resource allocation u∗(χ, ψg|g = 1, . . . , Q) is

u∗[g],[k] =

σ
(

B[g]k + ξ ∑Q
r=g+1 O[r]

)
v[g],[k]


1

σ+1

×
(

v[g],[k]

) σ
σ+1 , (5)

where, for the CON assignment,

B[g],k =

{
∑k−1

l=1 α[g],l + ξO[g], k = 1, 2, . . . , hg,

∑
Og
l=k β[g],l , k = hg + 1, hg + 2, . . . , Og,

(6)
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and for the SLK assignment,

B[g],k =


∑k

l=1 α[g],l + ξO[g], k = 1, 2, . . . , hg − 1,

∑
Og
l=k+1 β[g],l , k = hg, hg + 1, . . . , Og − 1,

0, k = Og.
(7)

As in Liu and Wang [21], it follows that

ÕF(X)(χ, ψg|g = 1, . . . , Q, u∗)

=
(

σ
−σ
σ+1 + σ

1
σ+1

) Q

∑
g=1

O[g]

∑
k=1

(
B[g],k + ξ

Q

∑
z=g+1

O[z]

) 1
σ+1 (

v[g],[k]v[g],[k]

) σ
σ+1

(8)

+ξ
Q

∑
g=1

(
O[g] ×

g

∑
z=1

s[z]

)

Lemma 3 (Lemma 7, Liu and Wang [21]). Given group order χ, the optimal job sequence ψ∗g
(g = 1, . . . , Q) within Fg can be obtained by matching the smallest (resp. second smallest) Bg,k to
the job with the largest (resp. second largest) vg,kvg,k, and so on, where, for the CON assignment,

Bg,k =

{
∑k−1

l=1 αg,l + ξOg, k = 1, 2, . . . , hg,

∑
Og
l=k βg,l , k = hg + 1, hg + 2, . . . , Og,

(9)

and for the SLK assignment,

Bg,k =


∑k

l=1 αg,l + ξO[g], k = 1, 2, . . . , hg − 1,

∑
Og
l=k+1 βg,l , k = hg, hg + 1, . . . , Og − 1,

0, k = Og.
(10)

By using the group interchanging technique, the following results can be obtained.

Lemma 4. The term ∑Q
g=1

(
O[g] ×∑

g
z=1 s[z]

)
is minimized if

O[1]
s[1]
≥ O[2]

s[2]
≥ . . . ≥ O[Q]

s[Q]
.

Proof. This is proved using the group interchanging technique.

If the optimal job sequence ψ∗g (g = 1, . . . , Q) within Fg is given (by Lemma 3), the

term ∑Q
g=1 ∑

O[g]
k=1

(
B[g],k + ξ ∑Q

z=g+1 O[z]

) 1
σ+1
(

v[g],[k]v[g],[k]

) σ
σ+1 can not be minimized by the

non-increasing (LPT) order of Og and the non-decreasing (SPT) order of Og.

Example 1. Q = 2, O1 = 3, O2 = 2, σ = ξ = 1, B1,1 = 40, B1,2 = 42, B1,3 = 43, B2,1 = 40,
B2,2 = 50, v1,1v1,1 = 23, v1,2v1,2 = 29, v1,3v1,3 = 13, v2,1v2,1 = 13, v2,2v2,2 = 13.

According to Lemma 3, the optimal job sequence within F1 (resp. F2) is G1,1 → G1,2 → G1,3
(resp. G2,1 → G2,2). According to the LPT order of Og (i.e., F1 → F2), it follows that

Q

∑
g=1

O[g]

∑
k=1

(
B[g],k + ξ

Q

∑
z=g+1

O[z]

) 1
σ+1 (

v[g],[k]v[g],[k]

) σ
σ+1

= (40 + 2)0.5 ∗ 230.5 + (42 + 2)0.5 ∗ 290.5 + (43 + 2)0.5 ∗ 130.5 + 400.5 ∗ 130.5 + 500.5 ∗ 130.5

= 139.2871.
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If the group order is F2 → F1, the following formula can be obtained.

Q

∑
g=1

O[g]

∑
k=1

(
B[g],k + ξ

Q

∑
z=g+1

O[z]

) 1
σ+1 (

v[g],[k]v[g],[k]

) σ
σ+1

= (40 + 3)0.5 ∗ 130.5 + (50 + 3)0.5 ∗ 130.5 + 400.5 ∗ 230.5 + 420.5 ∗ 290.5 + 430.5 ∗ 130.5

= 138.7665.

Therefore, the LPT order of Og is not an optimal group schedule.

Example 2. Q = 2, O1 = 3, O2 = 2, σ = ξ = 1, B1,1 = 40, B1,2 = 42, B1,3 = 43, B2,1 = 40,
B2,2 = 50, v1,1v1,1 = 23, v1,2v1,2 = 29, v1,3v1,3 = 13, v2,1v2,1 = 33, v2,2v2,2 = 33.

According to Lemma 3, the optimal job sequence within F1 (resp. F2) is G1,1 → G1,2 → G1,3
(resp. G2,1 → G2,2). According to the SPT order of Og (i.e., F2 → F1), it follows that

Q

∑
g=1

O[g]

∑
k=1

(
B[g],k + ξ

Q

∑
z=g+1

O[z]

) 1
σ+1 (

v[g],[k]v[g],[k]

) σ
σ+1

= (40 + 3)0.5 ∗ 130.5 + (50 + 3)0.5 ∗ 130.5 + 400.5 ∗ 230.5 + 420.5 ∗ 290.5 + 430.5 ∗ 130.5

= 168.3652.

If the group order is F1 → F2, the function is given as follows:

Q

∑
g=1

O[g]

∑
k=1

(
B[g],k + ξ

Q

∑
z=g+1

O[z]

) 1
σ+1 (

v[g],[k]v[g],[k]

) σ
σ+1

= (40 + 2)0.5 ∗ 230.5 + (42 + 2)0.5 ∗ 290.5 + (43 + 2)0.5 ∗ 130.5 + 400.5 ∗ 330.5 + 500.5 ∗ 330.5

= 167.9405.

Therefore, the SPT order of Og is not an optimal group schedule.

4. Solution Methods
4.1. Lower Bound Analysis

For a special case (i.e., O1 = O2 = . . . = OQ = O), Liu and Wang [21] demonstrated

that 1
∣∣∣X, Og = O, pA

g,k =
(

vg,k
ug,k

)σ
, G̃T

∣∣∣ÕF(X) can be solved in O(Ö3) time. For the general
case of

1

∣∣∣∣∣X, pA
g,k =

(
vg,k

ug,k

)σ

, G̃T

∣∣∣∣∣ÕF,

the complexity is an open question. To solve the general case of this problem, some heuristic
and branch-and-bound (B and B) algorithms will be proposed.

From Lemma 3 (Lemma 7, Liu and Wang [21]), the optimal job sequence ψ∗g (g = 1, . . . , Q)
within Fg can be obtained. Let χ = (χs, χu) be a group sequence, where χs (resp. χu) is the
scheduled (resp. unscheduled) part, and suppose there are r groups in χs. From Equation (8),
the following formula can be obtained.
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ÕF(X)(χs, χu)

=
(

σ
−σ
σ+1 + σ

1
σ+1

) r

∑
g=1

O[g]

∑
k=1

(
B[g],k + ξ

Q

∑
z=g+1

O[z]

) 1
σ+1 (

v[g],[k]v[g],[k]

) σ
σ+1

+
(

σ
−σ

σ+1 + σ
1

σ+1

) Q

∑
g=r+1

O[g]

∑
k=1

(
B[g],k + ξ

Q

∑
z=g+1

O[z]

) 1
σ+1 (

v[g],[k]v[g],[k]

) σ
σ+1

(11)

+ξ
r

∑
g=1

(
O[g] ×

g

∑
z=1

s[z]

)
+ ξ

Q

∑
g=r+1

(
O[g] ×

(
r

∑
z=1

s[z] +
g

∑
z=r+1

s[z]

))

From Equation (11), the terms ξ ∑r
g=1

(
O[g] ×∑

g
z=1 s[z]

)
, ∑r

z=1 s[z], and(
σ
−σ

σ+1 + σ
1

σ+1

)
∑r

g=1 ∑
O[g]
k=1

(
B[g],k + ξ ∑Q

z=g+1 O[z]

) 1
σ+1 ×

(
v[g],[k]v[g],[k]

) σ
σ+1 are constants.

ξ ∑Q
g=r+1

(
O[g] ×

(
∑r

z=1 s[z] + ∑
g
z=r+1 s[z]

))
can be minimized by Lemma 4. Then the fol-

lowing inequality can be obtained:
(

σ
−σ
σ+1 + σ

1
σ+1

)
∑Q

g=r+1 ∑
O[g]
k=1

(
B[g],k + ξ ∑Q

z=g+1 O[z]

) 1
σ+1(

v[g],[k]v[g],[k]

) σ
σ+1 ≥

(
σ
−σ
σ+1 + σ

1
σ+1

)
∑Q

g=r+1 ∑
O[g]
k=1

(
B[g],k

) 1
σ+1
(

v[g],[k]v[g],[k]

) σ
σ+1 . Hence, the

lower bound is given as follows:

LB(ÕF)

=
(

σ
−σ

σ+1 + σ
1

σ+1

) r

∑
g=1

O[g]

∑
k=1

(
B[g],k + ξ

Q

∑
z=g+1

O[z]

) 1
σ+1 (

v[g],[k]v[g],[k]

) σ
σ+1

+
(

σ
−σ

σ+1 + σ
1

σ+1

) Q

∑
g=r+1

O<g>

∑
k=1

(
B[g],k

) 1
σ+1
(

v[g],[k]v[g],[k]

) σ
σ+1

(12)

+ξ
r

∑
g=1

(
O[g] ×

g

∑
z=1

s[z]

)
+ ξ

Q

∑
g=r+1

(
O<g> ×

(
r

∑
z=1

s[z] +
g

∑
z=r+1

s<z>

))

where O<r+1>
s<r+1>

≥ O<r+2>
s<r+2>

≥ . . . ≥ O<Q>
s<Q>

.

4.2. Upper Bound Algorithms

Algorithm 1: Upper bound
From the above analysis and Nawaz et al. [22], the following Algorithm 1 can be

proposed as an upper bound for 1
∣∣∣X, pA

g,k =
(

vg,k
ug,k

)σ
, G̃T

∣∣∣ÕF(X).
Phase 1
Step (a1). Sequence groups in non-decreasing order of sg.

Step (a2). Sequence groups in non-increasing order of Og
sg

.
Step (a3). Sequence groups in non-increasing order of Og.
Step (a4). Choose the better solution from Steps (a1), (a2), and (a3).
Phase 2
Step (b1). Let χ0 be the group sequence obtained from Phase 1.
Step (b2). Set λ = 2. Select the first two groups from the sorted list and select the

better of the two possible sequences. Do not change the relative positions of these two jobs
with respect to each other in the remaining steps of the algorithm. Set λ = 3.

Step (b3). Pick the job in the λth position of the list generated in Step (b1) and find the
best group sequence by placing it at all possible λ positions in the partial sequence found
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in the previous step, without changing the relative positions to each other of the already
assigned groups. The number of enumerations at this step equals λ.

Step (b4). If λ = Q, STOP; otherwise, set λ = λ + 1 and go to Step (b3).
Algorithm 2: Tabu search
As in Noman et al. [23], a tabu search (TS) algorithm is an effective method for the diffi-

cult scheduling problems; hence, the TS algorithm incorporating the analytical properties of

the CPSP is designed to reach the near-optimal solution of 1
∣∣∣X, pA

g,k =
(

vg,k
ug,k

)σ
, G̃T

∣∣∣ÕF(X).
The initial group sequence of the TS algorithm is decided in the non-decreasing order
of si, and the maximum number of iterations for the TS algorithm is set at 200Q (as in
Yan et al. [24], in general, the maximum number of iterations is 2000; here, it is set to 200Q).

Step (1). Let the tabu list be empty and the iteration number be zero.
Step (2). Set the initial group sequence of the TS algorithm, calculate its objective cost

(by Equation (8)), and set the current group sequence as the best solution χ∗.
Step (3). Search the associated neighborhood of the current group sequence and

resolve if there is a group sequence χ∗∗ with the smallest objective cost in the associated
neighborhood and it is not in the tabu list.

Step (4). If χ∗∗ is better than χ∗, then let χ∗ = χ∗∗. Update the tabu list and the
iteration number.

Step (5). If there is not a group sequence in the associated neighborhood but it is not
in the tabu list or the maximum number of iterations is reached (i.e., 200Q), then output the
final group sequence. Otherwise, update the tabu list and go to Step (3).

4.3. Exact Method

From the lower bound (see Equation (10)) and upper bound (see Algorithm 1), the fol-

lowing branch-and-bound (B and B) algorithm can be proposed to solve 1
∣∣∣X, pA

g,k =
(

vg,k
ug,k

)σ
,

G̃T
∣∣∣ÕF(X) optimally.

Algorithm 3: B and B algorithm
Step (1) (find the upper bound). Obtain an initial solution (upper bound) using

Algorithm 1.
Step (2) (bounding). Calculate the lower bound (see Equation (10)) for the node. If the

lower bound for an unfathomed partial group sequence is larger than or equal to the
objective value of the initial solution (see Equation (8)), eliminate the node and all the
nodes following it in the branch. Calculate the objective value of the completed group
sequence (see Equation (8)). If it is less than the initial solution, replace it as the new
solution; otherwise, eliminate it.

Step (3) (termination). Continue until all nodes have been explored.

Remark 1. For small-sized instances, the B and B algorithm (i.e., Algorithm 3) is an exact
algorithm and Algorithms 1 and 2 are heuristic algorithms. For large-sized instances, the B and B
algorithm is disabled.

5. Numerical Study

The algorithms (i.e., Algorithms 1, 2, and 3) were executed in Microsoft Visual Studio
Professional 2019 (6.11.24) and carried out on a HUAWEI PC with an Inter core i5-8250U
1.4 GHz CPU and 8.00 GB of RAM. This section considers the CON assignment, where
ξ=10, and other parameters are given as follows:

(1) Ö = 100, 120, 140, 160, 180, 200;
(2) Q= 10, 12, 14, 16 (each group must contain at least one job);
(3) sg were drawn from a discrete uniform distribution in [1, 10];
(4) vg,kvg,k were drawn from a discrete uniform distribution in [1, 50], [50, 100], and [1, 100];
(5) αg,k and βg,k were drawn from a discrete uniform distribution in [1, 50];
(6) σ = 1, 3, 5.
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To avoid the contingency, each problem instance is conducted 15 times. To analyze
the effectiveness of Algorithms 1 and 2, they are compared with the B and B algorithm.
The error of the solution produced by Algorithms 1 and 2 is calculated as

ÕF(H)− ÕF
∗

ÕF
∗ × 100%, (13)

where H ∈ {Algorithm 1, Algorithm 2}, ÕF
∗

is the optimal objective value (see Equa-
tion (8)) generated by Algorithm 3. The running time (ms) of Algorithms 1-3 is defined.
The results are summarized in Tables 1–3.

From Tables 1–3, it is found that Algorithm 1 based on the analytical properties of
the problem apparently performs better than Algorithm 2 for each scale of the numerical
experiments, and the maximum relative error percentage of Algorithm 1 is less than 0.214%
with Ö ≤ 200. The performance of the B and B algorithm is shown to be efficient, leading to
the optimal solvency in terms of the cases with a large job number scale. It is also presented
that the coefficient of σ has a noticeable impact on the complexity of the problem, implying
that the smaller σ tends to generate more complex cases. For the smaller σ, the B and B
algorithm needs more CPU time. However, for any σ, the gap in the CPU time between
Algorithms 1 and 2 is not too big.

In Table 4, statistical hypothesis tests are conducted to compare the mean percentage
errors of Algorithm 1 and Algorithm 2. For a representative display, the instances where
Ö = 100, 120, 140, 160, 180, 200, σ = 3, and vg,k ∈ [1, 100] are examined. The t−test is used
for the tests:

t =
ErrorAlgorithm1 − ErrorAlgorithm2

Sw

√
1/nAlgorithm1 + 1/nAlgorithm2

,

where S2
w =

(nAlgorithm1−1)S2
Algorithm1+(nAlgorithm2−1)S2

Algorithm2
nAlgorithm1+nAlgorithm2−2 and Error denotes the mean error

percentage. As the results in Tables 1–3 potentially show that the effectiveness performances
of the two algorithms are ranked as Algorithm1>Algorithm3, the corresponding statistical
hypothesis test is set as H0 : µAlgorithm2 > µAlgorithm1, H1 : µAlgorithm2 ≤ µAlgorithm1. Type I
error of 1% is used, and thus tcritical = 2.5. Further experiment results in Table 4 show that
for all instances the hypothesis that H0 : µAlgorithm2 > µAlgorithm1 with a type I error of 1%
is supported.

Table 1. Results for vg,kvg,k ∈ [1, 50] .

CPU Time (ms) of Node Number of CPU Time (ms) of Error of CPU Time (ms) of Error of
Algorithm 3 Algorithm 3 Algorithm 1 Algorithm 1 Algorithm 2 Algorithm 2

Ö Q σ Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

1 175.83 257 10,627.67 14,886 3.67 5 0 0 2272.83 2295 6.22 8.71
100 10 3 7.9 22 482.7 1384 3.6 4 0 0 2203.5 2352 9.89 26.39

5 10.17 20 598.5 1298 3.67 5 0 0 2499.17 2530 8.09 13.147

1 2037.17 6671 119,460.33 401,171 5.5 7 0.01 0.037 4291.5 4319 9.29 12.55
100 12 3 88.5 386 4671.33 19,941 5.83 7 0 0 4773.5 4835 10.94 15.38

5 30 84 1530.5 4356 5.5 6 0 0 4596.33 4768 10.1 21.27

1 64,659.4 269,953 3,365,621.6 14,105,756 8.4 10 0.00035 0.0017 8621.8 8693 9.15 16.2
100 14 3 1536 2981 78,535 152,347 9 10 0 0 8639.8 8846 10.26 18.78

5 338.4 973 16,728.4 48,324 8.4 9 0.0002 0.0007 8313.2 8723 13.66 19.14

1 199,804.1 1,210,619 9,729,114.6 59,289,573 12.2 14 0.002 0.013 69,604.5 70,978 9.8 14.32
100 16 3 5518 21,077 296,168.8 1,051,335 11.6 13 0.004 0.03 69,253.5 70,416 13.09 17.76

5 401.8 967 18,365.5 43,727 12.2 14 0.00008 0.0008 71,538.2 75,239 15.98 25.17

1 216.17 563 11,452.5 29,391 4 4 0.008 0.048 2450.83 2488 3.35 7.59
120 10 3 13.8 54 729.6 2843 3.8 4 0 0 2348.9 2385 8.51 12.64

5 11 34 582.17 1695 4.17 6 0 0 2683.17 2756 6.12 9.39

1 2899.67 7265 147,748.5 375,004 6.33 7 0.024 0.122 4651.5 4690 8.66 9.96
120 12 3 68.5 132 3220.17 6246 6.67 8 0 0 5039.67 5143 9.82 16.13

5 31.17 59 1550.5 3073 6.83 8 0.0008 0.0053 5054.83 5122 10.64 19.2
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Table 1. Cont.

CPU Time (ms) of Node Number of CPU Time (ms) of Error of CPU Time (ms) of Error of
Algorithm 3 Algorithm 3 Algorithm 1 Algorithm 1 Algorithm 2 Algorithm 2

Ö Q σ Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

1 10,006.6 19,412 435,290.8 835,108 9.2 10 0.0008 0.0042 9323.2 9437 8.26 12.21
120 14 3 530.2 977 22,433.6 41,005 9.4 10 0 0 9080.8 9165 11.89 18.96

5 66.4 98 3012.6 4404 9.6 11 0.0024 0.0121 8774 8883 14.31 24.01

1 843,894.25 2,883,886 35,433,283.5 121,153,291 14.5 17 0 0 15,476 15,622 9.848 14.03
120 16 3 61,141.5 142,735 1,644,191.5 3,843,414 19.5 20 0.0021 0.0084 19,312.75 19,635 14.45 18.35

5 271.08 419 10,762.33 17,094 14.5 17 0.0007 0.002 15,875.83 15,895 20.06 23.59

1 455.5 1599 20,615.5 71,768 4.83 5 0.0004 0.0021 2682 2718 4.01 7.83
140 10 3 10.6 28 502.1 1323 4.3 5 0 0 2545.1 2600 8.12 13.45

5 15 32 650.5 1561 4.67 5 0 0 2094.67 2962 8.16 17.48

1 4105.83 10,490 180,284.5 465,705 7.33 8 0.003 0.016 4979.33 4999 4.8 8.7
140 12 3 47.67 73 1968 2973 7.67 9 0 0 5411.83 5548 9.9 19.9

5 23.83 30 964 1217 7.33 8 0 0 5429 5556 10.24 13.75

1 50,553.4 117,757 1,993,660 4,706,960 10.8 11 0.007 0.034 9784.2 9811 6.26 10.17
140 14 3 1339.6 3279 52,678 134,425 10.6 11 0 0 9811.4 10,039 14.3 17.4

5 64 142 2457.2 5792 10 11 0 0 9349.4 9740 15.43 20.12

1 166,960 447,424 6,116,255 16,383,293 16.75 20 0.006 0.023 16,496.25 16,766 12.31 22.12
140 16 3 2232.5 5255 60,607 144,116 18.75 20 0 0 18,515.75 18,790 19.1 22.83

5 332.25 499 11,752 18,263 15.25 16 0 0 16,794 16,983 15.8 19.51

1 227.33 373 9236.33 15,118 5.17 6 0.003 0.01 2878 2913 5.02 6.32
160 10 3 11 34 453.9 1416 5.7 9 0 0 2717.8 2789 9.23 14.22

5 9.67 26 365.67 912 4.83 5 0 0 3078.17 3138 6.68 14

1 17,965.17 94,241 675,544 3,524,123 8 8 0.02 0.12 5342.83 5488 7.17 13.31
160 12 3 159.67 384 5693.5 13,875 8 9 0 0 5705.33 5751 10.51 22

5 110.17 524 3884.5 18,778 7.67 8 0 0 5776.5 5833 7.26 10.37

1 79,640 251,562 2,795,280 8,997,594 12 14 0.0005 0.0029 10,322.4 10,453 9.68 12.55
160 14 3 4694 17,685 156,976 597,877 11.8 13 0 0 10,389 10,577 10 12.36

5 138.8 281 5010 10,482 11 12 0 0 9447 9533 12.26 14.11

1 570,198 1,476,613 18,462,293 47,409,312 17 18 0.0006 0.0027 16,597 17,459 9.05 11.94
160 16 3 5860.75 11,937 180,292 351,636 18.25 19 0 0 17,415 17,824 14.37 22.25

5 328.75 601 10,467 19,738 18.25 19 0 0 17,673 17,814 19.79 30.48

1 356.17 806 12,843.67 28,269 5.5 7 0.006 0.03 3068.17 3112 4.58 12.58
180 10 3 12.6 45 462.5 1699 5.3 6 0 0 2920.6 2964 7.87 13.99

5 24 30 797 1018 5.5 6 0 0 3288.5 3334 5.7 9.44

1 6426.33 12,934 237,213 500,166 8.67 9 0.009 0.05 5354.9 5658 5.45 6.72
180 12 3 332.5 563 10,763 16,754 9 10 0 0 6104.1 6217 9.6 16.2

5 39.33 90 1274.33 2982 9 10 0 0 6089.3 6179 13.81 18.33

1 74,008.6 157,651 2,211,136 4,730,406 14 16 0 0 10,878 11,003 6.23 10.57
180 14 3 1262 2,338 39,928.2 74,721 13.8 15 0.003 0.016 11,011 11,450 13.76 23.6

5 248.8 542 7692.6 17,820 13.6 15 0 0 10,355.8 10,860 13.38 20.15

1 1,874,526 6,582,648 57,396,522 202,311,764 19.5 20 0.0004 0.0019 17,192 17,441 10.04 16.74
180 16 3 6445.75 21,324 221,697 727,407 15.75 17 0.01 0.038 16,556 16,671 15.83 18.75

5 3281 10,783 94,828 313,272 19.5 22 0 0 18,737 18,926 14.1 17.05

1 481.83 766 16,095.5 25,248 6.5 8 0 0 3227.67 3288 3.49 6.01
200 10 3 12 25 407.5 810 5.9 6 0 0 3123.5 3190 6.92 13.73

5 11.17 16 354.33 541 5.83 6 0 0 3481.5 3580 8.09 12.45

1 14,715 34,002 505,003 1,171,235 8.83 9 0 0 5663.5 5829 4.39 6.4
200 12 3 114.67 337 3510.67 10,782 9.83 12 0 0 6272 6485 10.68 15.74

5 53.67 99 1612.83 2969 9.5 11 0 0 6431.17 6513 13.89 21.51

1 68,228 106,308 1,988,507 3,107,931 14.75 16 0.001 0.0059 28,108 28,783 10.1 12.3
200 14 3 1867 10,405 63,026 298,133 15.33 19 0 0 28,039 28,709 12.93 22.43

5 334.8 1466 9071.7 40,078 15 16 0 0 11,087 11,404 13.58 23.88

1 1,033,181 2,735,173 29,163,754 77,121,970 20 21 0.005 0.02 17,884 18,201 10.65 12.97
200 16 3 2709.5 7421 114,889 314,102 13.25 15 0 0 14,930 15,927 20.5 28.3

5 1232.5 2125 32,467.25 55,554 20.25 22 0 0 18,227 18,930 18.34 21.67
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Table 2. Results for vg,kvg,k ∈ [50, 100].

CPU Time (ms) of Node Number of CPU Time (ms) of Error of CPU Time (ms) of Error of
Algorithm 3 Algorithm 3 Algorithm 1 Algorithm 1 Algorithm 2 Algorithm 2

Ö Q σ Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

1 692.67 1837 42,941 112,869 3.67 6 0 0 2101.5 2215 2.36 4.05
100 10 3 68.67 121 3997.17 6986 4 5 0.0009 0.0052 2299.7 2471 5.66 10.47

5 52.67 148 3078.33 8766 3.93 5 0 0 2258.5 2281 3 5.6

1 12,155.6 29,096 668,219 1,584,498 5.6 6 0 0 4658 4756 5.37 8.94
100 12 3 1421.2 4734 80,143 269,116 5.8 8 0 0 4449.2 4704 8.84 15.5

5 210.25 390 11,495.75 21,383 6.25 8 0 0 4640.75 4745 5.79 6.78

1 212,081 609,272 10,779,171 30,865,791 8.2 9 0.005 0.0235 8636 8692 8.02 15.15
100 14 3 9621.6 27,407 502,216.5 1,471,563 8.2 9 0.0011 0.0057 7882 7917 7.33 11.5

5 1211.4 2583 59,440 128,597 8.4 10 0 0 8769 8898 9.06 15.87

1 11,344,238 52,809,989 88,471,297 1,302,004,209 12.6 14 0.0003 0.003 72,779 74,104 7.88 14.96
100 16 3 29,703.8 97,818 1,337,187 4,463,297 11.6 14 0 0 71,341.5 72,994 11.69 17.82

5 14,915.4 55,930 687,413.2 2,532,746 12.1 14 0 0 69,521.8 72,567 12.2 18

1 493.67 920 26,844 50,616 4.5 5 0 0 2316.17 2352 3.28 4.89
120 10 3 133 358 6781 18,100 4.16 5 0.001 0.006 2499 2525 4.37 9.34

5 21.33 52 973.17 2250 4.17 5 0 0 2456.67 2495 5.8 8.99

1 28,551.8 99,908 1,381,873.4 4,948,904 6.4 7 0 0 4937.2 5128 3.99 6.77
120 12 3 701 1224 32,003.2 54,431 6 7 0.0009 0.0045 4897.6 4949 5.69 7.61

5 177.75 454 7831 19,741 6 6 0 0 5006 5072 10.1 12.13

1 366,480 716,135 15,927,240 31,275,408 9.8 11 0.004 0.02 9311 9465 4.68 5.58
120 14 3 30,233.2 89,204 1,372,230 3,969,285 8.6 10 0 0 8449 8514 7.35 15.97

5 2044.6 5891 85,747 245,514 9.8 11 0 0 9380 9481 10.2 14.2

1 7,572,497 24,249,379 317,472,513 1,018,104,727 13.6 17 0.008 0.055 77,026 79,544 8.38 20
120 16 3 60,707.88 246,895 2,504,289 10,502,543 16 28 0 0 77,911 79,407 12.43 14.86

5 12,429.25 44,304 504,877 1,753,666 14 16 0 0 76,225.13 78,184 14.9 27.9

1 966.33 2528 45,752.67 121,293 4.83 5 0 0 2503 2538 2.38 3.7
140 10 3 63 106 2868 4721 4.83 5 0 0 2715.5 2793 5.56 10.62

5 71.5 164 3162.17 7601 4.5 5 0 0 2642.33 2801 6.43 10.78

1 20,983.8 36,950 890,651 1,586,799 6.8 8 0.002 0.01 5433 5555 4.65 6.52
140 12 3 866.2 2444 35,304 99,934 7.2 8 0.015 0.06 5303.8 5337 6.78 9.16

5 219.75 373 8811.25 14,336 7.5 9 0 0 5328 5414 5.6 11.43

1 180,479 337,237 7,144,871 13,413,322 10 11 0 0 9954 10,115 4.92 7.12
140 14 3 2341.8 6683 97,818 285,987 9.8 11 0 0 8392.4 8412 10.44 14.15

5 1285.2 2532 46,758.6 93,674 10.6 11 0 0 9893.2 10,008 10.01 13.25

1 3,116,283 6,214,264 113,724,235 226,772,280 16.13 18 0.008 0.053 79,908 80,898 6.44 8.4
140 16 3 79,115.5 236,950 2,675,645 8,194,853 16 17 0 0 82,224 83,284 11.66 18.9

5 10,535.9 30,773 370,875 1,088,717 15.6 16 0 0 81,393 82,736 11.6 14.28

1 1662.5 3989 69,675.5 164,478 5.33 6 0 0 2697.3 2783 2.72 4.29
160 10 3 432.67 1462 17,212.17 58,095 5.33 6 0 0 2899.67 2939 3.17 6.14

5 52.67 73 2060.67 2822 5.16 6 0 0 2833.17 2872 5.4 7.4

1 4559.6 10,545 172,079.8 392,283 8.2 9 0 0 5778 5934 4.09 5.44
160 12 3 1515.4 4496 56,064.8 166,260 7.6 8 0 0 5632.8 5690 5.7 10.22

5 271.25 742 9671.25 26,713 7.75 8 0 0 5712.5 5893 7.08 9.25

1 358,318 872,836 12,219,505 29,222,800 12 13 0.006 0.032 10,410 10,566 7.72 10.92
160 14 3 6759.2 16,794 259,990 637,153 11 12 0 0 8906.2 8921 9.29 17.04

5 1621.4 3155 52,268.6 100,539 11.6 13 0 0 10,228.8 10,369 10.72 14.66

1 15,875,052 25,972,880 533,903,012 852,604,283 18 19 0 0 80,650 81,123 7.23 7.9
160 16 3 169,494 541,659 5,628,651 18,430,108 17 18 0 0 79,216 80,004 10.2 14.3

5 77,583.5 351,324 2,594,059 11,773,483 17.6 20 0 0 82,318.4 87,191 14.7 26.25

1 2453.67 5127 93,880 194,697 5.33 6 0 0 2882.5 2991 3.23 6.79
180 10 3 217.83 364 7643 12,718 5.33 6 0 0 3111 3135 4.07 5.68

5 112.83 328 4174.3 12,325 5.16 6 0 0 3046.67 3094 5.74 10.89

1 8435 24,694 284,680 828,457 9 10 0 0 6147.6 6210 4.65 6.66
180 12 3 3219.8 9641 105,989 315,723 8.8 9 0 0 5991 6107 4.44 7.73

5 135.75 319 4632 11,256 8.75 9 0 0 5980.75 6040 10.71 12.35

1 245,846 629,740 7,714,735 19,988,982 13.8 15 0 0 10,770 11,037 7.24 11.34
180 14 3 6039.5 11,594 213,514 422,817 12.8 14 0 0 9421.4 9513 7.45 8.65

5 12,808.6 44,504 355,851 1,181,280 14.8 19 0.0014 0.0071 10,937 11,120 9.94 17.94

1 1,005,534 8,958,852 30,089,268 88,896,652 20 22 0 0 88,412.2 89,852 10.5 16.5
180 16 3 112,166.7 282,983 3,613,833 9,101,955 18.25 19 0 0 81,956 82,750 14.37 23.7

5 19,860.2 76,605 575,351 2,151,625 18.8 21 0 0 83,174 84,424 11.8 16.78

1 1900 3525 66,931 123,429 6.3 7 0 0 3035.5 3088 2.75 4
200 10 3 108.83 222 3596.5 7678 6.17 7 0 0 3286.5 3349 5.73 9.48

5 58.17 134 1959.5 4291 6 7 0 0 3219 3280 6.17 15
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Table 2. Cont.

CPU Time (ms) of Node Number of CPU Time (ms) of Error of CPU Time (ms) of Error of
Algorithm 3 Algorithm 3 Algorithm 1 Algorithm 1 Algorithm 2 Algorithm 2

Ö Q σ Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

1 64,804.8 169,620 1,967,479 5,081,959 9.6 10 0.002 0.012 6421 6476 3.78 7.52
200 12 3 3398.4 7321 102,159 217,628 9.8 10 0.003 0.014 6310 6420 7.36 12.5

5 132.5 384 4049.75 11,995 9.75 10 0 0 6311.75 6399 6.04 9.76

1 220,451 293,846 6,409,273 9,303,055 15.5 17 0 0 11,524 11,638 5 5.63
200 14 3 10,268.8 25,866 319,452 811,783 13.4 14 0 0 9965.2 10,025 6.24 13.62

5 2007.6 7062 16,010 196,268 14.8 16 0.001 0.006 11,582 11,649 11.38 18.63

1 842,391 1,058,692 24,820,918 156,925,987 24 25 0 0 87,907 90,125 10.64 15.69
200 16 3 78,060 163,149 2,026,217 4,221,889 20.25 21 0 0 93,710.5 95,524 10.99 13.41

5 28,925 48,010 785,538 1,310,844 20.5 21 0 0 93,008 93,784 15 20.1

Table 3. Results for vg,kvg,k ∈ [1, 100].

CPU Time (ms) of Node Number of CPU Time (ms) of Error of CPU Time (ms) of Error of
Algorithm 3 Algorithm 3 Algorithm 1 Algorithm 1 Algorithm 2 Algorithm 2

Ö Q σ Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

1 329.83 824 19,328.17 48,734 3.67 4 0.014 0.079 2140.17 2155 4.64 8.26
100 10 3 50.83 87 2968.5 4918 3.67 4 0 0 2264.33 2319 4.5 8.02

5 18.83 58 1096 3502 3.5 4 0 0 2118 2138 3.78 6.28

1 4367.67 9686 240,672.33 540,128 6 7 0.01 0.043 4705 4762 5.76 9.03
100 12 3 181.67 399 9496.83 21,206 5.67 6 0.007 0.044 4523.33 4734 7.16 11.97

5 46.83 107 2435.5 5610 5.83 6 0 0 4713.33 4818 8.31 14.59

1 24,737.4 35,572 1,209,171.6 1,698,917 8.4 9 0.005 0.023 8615.4 8775 8.7 14.28
100 14 3 1625.2 4206 81,509.4 211,300 8.4 9 0 0 8503.4 8703 10.47 16.5

5 526.4 1020 27,985 55,886 8 9 0 0 8060 8116 11.05 16.53

1 2,222,533 9,200,131 112,623,096 468,724,389 11.8 14 0.0005 0.005 68,698 72,010 8.86 19
100 16 3 13,294.2 37,569 614,326 17,99,811 12.7 18 0 0 71,314 73,597 11.68 16.17

5 6338 25,535 291,936 1,145,754 11.4 12 0.002 0.03 71,188.5 72,424 11.87 19

1 247.67 500 13,054.5 26,234 4 4 0 0 2326.67 2343 3.32 6.8
120 10 3 41.5 70 2202 3779 4.17 5 0 0 2482.5 2515 4.64 10

5 21 45 1114.83 2544 4.33 5 0 0 2289 2302 5.96 9.2

1 4983 9675 237,658 461,795 6.83 8 0.029 0.178 5083 5122 4.73 7.49
120 12 3 720.67 2898 33,675.3 137,482 6.5 7 0.06 0.214 5122 5197 9.36 13.12

5 256 1165 12,260.17 56,351 6.5 7 0 0 5074.67 5144 8.92 14.35

1 164,821 704,140 7,320,790 31,318,766 9.6 10 0.013 0.027 9125.2 9352 12.13 16.22
120 14 3 2159.2 5882 94,720 262,132 10 11 0.001 0.005 9187.6 9385 9.3 12

5 408 964 18,181.2 42,851 9 9 0.001 0.007 8608 8656 12.1 14.18

1 4,849,519 9,598,825 52,989,654 112,559,558 13.2 15 0 0 15,865 15,997 10.56 16.98
120 16 3 12,306.25 29,416 490,665 1,151,196 13.5 15 0 0 15,620.2 15,761 12.65 16.87

5 3802.5 10,468 162,910 448,843 13.25 14 0.001 0.004 14,382 15,439 16.78 18.53

1 481 685 22,047 31,800 5 5 0.004 0.023 2540 2632 3.43 4.68
140 10 3 130.5 416 5846.33 18,224 4.66 5 0 0 3694.83 2770 4.7 7.76

5 17.17 29 765.67 1227 4.5 5 0 0 2483 2479 6.23 11

1 17,779.17 53,234 745,586.17 2,239,041 7.17 8 0.008 0.029 5417.67 5509 4.4 6.71
140 12 3 518 1222 20,120 48,454 7.67 9 0.01 0.06 5590.17 5694 7.55 8.36

5 101.5 165 4229.83 6889 7.5 8 0 0 5413.67 5487 7.8 11.7

1 230,487 820,439 9,048,553.6 32,169,283 11.4 12 0 0 9604 9685 6.29 9.28
140 14 3 5087 18,172 194,122.4 689,592 10 11 0 0 9630.2 9722 12.6 16.74

5 683 2720 28,079.2 112,672 10.6 12 0 0 9117 9288 11.35 16.13

1 2,052,347 3,993,328 73,874,865 143,687,994 17 18 0.0239 0.236 16,395 16,818 7.53 17.59
140 16 3 23,583 34,352 894,455 1,202,496 15 16 0.003 0.01 16,495 16,802 14.85 17.4

5 4328.75 8953 147,934 302,143 16 17 0.004 0.015 16,214 16,248 13.43 24.17

1 399.83 851 16,425.17 34,669 5.17 6 0 0 2703 2722 2.7 3.95
160 10 3 162.67 363 6408.5 14,658 5.17 6 0 0 2895.5 2974 4.48 9

5 34.83 58 1443.5 2365 5 5 0 0 2654.67 2674 4.32 9.49

1 17,007.5 68,790 623,283 2,495,037 7.83 9 0.002 0.01 5767.83 5854 3.84 5.61
160 12 3 809.17 1142 28,503.83 41,524 8.17 9 0 0 5939.17 6082 6.15 7.21

5 296.5 559 10,005.83 18,744 8.17 9 0.001 0.003 5753.13 5836 6.53 11.7

1 141,663 343,831 4,923,899.6 11,776,362 11.8 13 0.025 0.057 10,320.4 10,385 6.9 8.52
160 14 3 6089.8 20,396 205,664 688,699 12.2 15 0 0 10,127.4 10,591 9.83 14.82

5 563 2003 19,840.8 71,533 12.2 13 0.001 0.006 10,234.6 10,594 11.36 17.32

1 625,439 881,041 19,927,201 28,658,146 17.67 18 0.01 0.034 16,658 17,092 9.39 10.53
160 16 3 241,470 923,629 7,816,964 29,922,040 18 19 0 0 41,347 42,603 11.1 13.48

5 2321.75 3659 75,544.45 112,519 17.5 19 0 0 41,609 42,607 14.47 18.46
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Table 3. Cont.

CPU Time (ms) of Node Number of CPU Time (ms) of Error of CPU Time (ms) of Error of
Algorithm 3 Algorithm 3 Algorithm 1 Algorithm 1 Algorithm 2 Algorithm 2

Ö Q σ Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

1 2058.17 7629 76,555.33 280,949 6 7 0.03 0.126 2883.17 2934 3.58 6.44
180 10 3 56.33 97 2013.5 3024 5.83 6 0 0 3072.17 3147 7.15 11.33

5 92.5 201 3590.33 7950 5.67 7 0 0 2850.5 2883 5 12.26

1 34,678.17 100,101 1,148,668.8 3,279,576 9.17 11 0.001 0.009 6053 6124 6.16 9.66
180 12 3 3099.83 10,978 98,262.5 353,058 9 10 0 0 6273.5 6361 7.39 11

5 172.33 551 5601.33 17,282 8.5 9 0 0 6116.5 6171 11.02 17.11

1 361,279 1,297,340 11,276,602 4,020,950 13.6 15 0.005 0.03 10,951 11,032 7.1 11.2
180 14 3 4352.2 10,639 131,942 306,106 15.4 20 0.002 0.012 10,404 10,446 8.76 10.35

5 386.4 726 11,725 22,077 13.2 14 0 0 11,059.2 11,221 12.17 17.82

1 482,350.67 668,148 15,140,423 21,101,587 20 21 0 0 44,180 44,475 15.4 20.13
180 16 3 44,507.75 164,236 1,305,440.7 4,818,838 18.75 20 0 0 44,716 45,632 13.57 18.81

5 3550.75 4468 104,111.7 125,232 21 24 0.003 0.0122 43,519 44,053 12.5 20.78

1 1318.5 3141 44,526.17 106,290 5.83 6 0 0 2991.5 3067 2.94 5.53
200 10 3 204.67 528 6627 17,212 5.83 6 0 0 3170.33 3215 6.33 12.04

5 56.83 152 1995.83 5488 6 7 0 0 3042.83 3055 5.8 13.07

1 95,516.3 182,438 2,935,710 5,581,330 9.17 10 0.01 0.063 6344 6468 3.64 6.82
200 12 3 2094.17 7031 62,325.67 208,191 10 11 0 0 6470.33 6530 7.08 13.13

5 400 1214 12,172.17 36,799 10.83 15 0.003 0.02 6039 6144 8.21 14.75

1 122,358.4 388,192 3,518,271 11,078,822 15.6 16 0.004 0.02 11,509 11,714 8.18 11.7
200 14 3 21,235.6 68,264 601,329 1,945,511 14.8 16 0 0 11,224.8 11,480 9.91 13.44

5 652.4 1653 18,068.6 45,031 14.8 17 0 0 11,560.4 11,717 11.29 18.83

1 3,835,773 7,916,941 116,880,870 236,468,665 20 22 0.025 0.055 40,431 40,872 10.61 12.29
200 16 3 3614.75 4964 96,473.25 129,904 20.25 22 0 0 47,094.75 48,138 14.26 16.92

5 2333.5 3668 60,853 98,033 22 23 0 0 46,873 47,311 14.06 18.6

Table 4. t−values for vg,kvg,k ∈ [1, 100].

Ö Q σ t

100 10 3 4.5484
100 12 3 5.2164
100 14 3 5.0474
100 16 3 4.5728

120 10 3 4.9150
120 12 3 5.2457
120 14 3 4.7943
120 16 3 4.5306

140 10 3 4.6981
140 12 3 4.8486
140 14 3 4.5247
140 16 3 5.1256

160 10 3 4.7880
160 12 3 4.7529
160 14 3 5.0211
160 16 3 4.8972

180 10 3 4.7066
180 12 3 4.9331
180 14 3 4.6207
180 16 3 4.8987

200 10 3 4.9730
200 12 3 5.2078
200 14 3 4.8210
200 16 3 5.1509

6. Conclusions

A group scheduling problem with common/slack due-date assignment and resource
allocation was investigated in this paper. Under the generalization of CON/SLK as-
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signments and the job numbers of each group, this paper was intended to decide the
job/group sequence, resource allocation, and due-date assignment. To build systematic
solution algorithms, heuristics and a branch-and-bound method incorporating the op-
timal properties and lower and upper bounds are proposed. Numerical experiments
showed that the lower bound developed in this paper is efficient and Algorithm 1 out-
runs Algorithm 2. As for future study, a general case of a multi-objective flowshop will be
introduced. For tackling the complexity, a well-designed solution framework incorporating
an upper bound and lower bound strategy will also be explored.
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Abbreviations
The following abbreviations are used in this manuscript:

Q the number of groups (Q ≥ 2)
Ö the number of jobs
Fg gth group ( g = 1, 2, . . . , Q)
Og the number of jobs in Fg (i.e., O1 + O2 + . . . + OQ = Ö)
sg setup time in group Fg
Gg,k the kth job in Fg (k = 1, 2, . . . , Og)
vg,k the workload of Gg,k
ug,k the amount of resources allocated to Gg,k
Eg,k (resp. Tg,k) the earliness (resp. tardiness) of Gg,k in Fg
dg,k (resp. Cg,k) the due date (resp. completion time) of Gg,k
χ a group schedule within Fg
ψg an internal job schedule within Fg
σ (ξ) the given constant
vg,k the unit consumption cost
αg,k (resp. βg,k) a position-dependent weight for the earliness (resp. tardiness) cost
CON (resp. SLK) the common (resp. slack) due date
dg the common due date in group Fg
qg the common flow allowance in group Fg
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