
Citation: Ajani, O.S.; Hur, S.-h.;

Mallipeddi, R. Evaluating Domain

Randomization in Deep

Reinforcement Learning Locomotion

Tasks. Mathematics 2023, 11, 4744.

https://doi.org/10.3390/

math11234744

Academic Editor: Moussa Labbadi

Received: 24 October 2023

Revised: 20 November 2023

Accepted: 22 November 2023

Published: 23 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Evaluating Domain Randomization in Deep Reinforcement
Learning Locomotion Tasks
Oladayo S. Ajani , Sung-ho Hur * and Rammohan Mallipeddi *

School of Electronics Engineering, Kyungpook National University, Daegu 37224, Republic of Korea;
oladayosolomon@gmail.com
* Correspondence: shur@knu.ac.kr (S.-h.H.); mallipeddi.ram@gmail.com (R.M.)

Abstract: Domain randomization in the context of Reinforcement learning (RL) involves training
RL agents with randomized environmental properties or parameters to improve the generalization
capabilities of the resulting agents. Although domain randomization has been favorably studied in
the literature, it has been studied in terms of varying the operational characters of the associated
systems or physical dynamics rather than their environmental characteristics. This is counter-intuitive
as it is unrealistic to alter the mechanical dynamics of a system in operation. Furthermore, most
works were based on cherry-picked environments within different classes of RL tasks. Therefore, in
this work, we investigated domain randomization by varying only the properties or parameters of
the environment rather than varying the mechanical dynamics of the featured systems. Furthermore,
the analysis conducted was based on all six RL locomotion tasks. In terms of training the RL agents,
we employed two proven RL algorithms (SAC and TD3) and evaluated the generalization capabilities
of the resulting agents on several train–test scenarios that involve both in-distribution and out-
distribution evaluations as well as scenarios applicable in the real world. The results demonstrate
that, although domain randomization favors generalization, some tasks only require randomization
from low-dimensional distributions while others require randomization from high-dimensional
randomization. Hence the question of what level of randomization is optimal for any given task
becomes very important.

Keywords: generalization; deep reinforcement learning; dynamic environments; locomotion; domain
randomization

MSC: 68T01

1. Introduction

Several bio-inspired robotic applications and learning tasks often require the agents
to adapt to the uncertainties in their environment. In simulated environments, Deep
Reinforcement Learning (DRL) has proven to be successful at learning tasks across a
wide range of domains such as games [1], rehabilitation [2], locomotion [3], production
optimization [4], control [5–7], etc. However, in real-world environments, the deployment
of DRL is often limited due to changing environmental conditions, an intrinsic feature
mostly associated with real-world applications. Therefore, it is crucial that DRL agents are
able to generalize over environmental conditions that they have never encountered during
training [8]. Although training DRL agents directly in real-world environments seems to
be a probable alternative, it is rarely practiced due to issues related to safety, time, and cost.
The success of DRL in simulated environments is realized due to the advantage of time
and stability featured in simulated environments. Furthermore, during the DRL training
process, unsafe and practically impossible behaviors pertaining to real-world scenarios such
as robot singularity can be explored in simulation. Therefore, sim-to-real transfer of DRL
agents has been a major topic in the DRL community [9], where the motive is to develop

Mathematics 2023, 11, 4744. https://doi.org/10.3390/math11234744 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11234744
https://doi.org/10.3390/math11234744
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5796-3375
https://orcid.org/0000-0002-9263-1584
https://orcid.org/0000-0001-9071-1145
https://doi.org/10.3390/math11234744
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11234744?type=check_update&version=1


Mathematics 2023, 11, 4744 2 of 13

DRL agents that can generalize their performance over a range of real-world scenarios
through the knowledge gained during training [9]. In DRL, the aim of generalization
is to learn representations that are stable under dynamic environments [10–12] and/or
avoid overfitting during training [13]. The literature on generalization under dynamic
environments in DRL can be classified broadly into: (1) works that focus on developing
dedicated DRL algorithms that are robust under changing environmental conditions [14,15];
and (2) works that introduce environmental uncertainties or domain randomization during
training to realize agents that are more robust to the mismatches between simulation and
reality [10,16,17]. Domain randomization is primarily defined as the use of an environment
(source domain) with randomized properties or parameters during the training phase of an
RL agent with the expectation that the resulting agent would generalize under uncertainties
in the test environment (target domain) [18].

In the literature [8,12,19], comparative studies have shown that the use of dedicated
generalization DRL algorithms are not superior to base DRL algorithms such as PPO and
A2C in terms of generalization with the same training resources and conditions. This could
be due to the significant challenges posed to featured optimization methods by the highly
non-convex–concave nature of the objective functions employed to achieve robustness. In
game-theoretical terms, these methods search for pure Nash Equilibria (trade-off solutions)
that might not even exist [20]. According to one study [8], simply adding uncertainties
into the environments during training can yield agents that can generalize to environments
with similar uncertainties. Studies on achieving generalization by varying environmental
conditions or domain randomization during training were reported in the field of games,
where variations in the paddle and ball size were applied on selected Atari Games during
training [17]. To facilitate DRL research in areas such as sim-to-real transfer as well as
generalization, DeepRacer, an educational autonomous racing testbed, was proposed [21].
In this platform, simulation parameters such as tracks, lighting, sensor, and actuator noise
can be randomized. Consequently, agents trained based on such domain randomization
were reported to generalize in terms of multiple cars and tracks as well as to variations in
speed, background, lighting, track shape, color, and texture. Through the robot arm reacher
task in PyBullet, researchers [22] investigated the use of custom perturbations to introduce
domain randomization. A number of works have also evaluated the use of environmental
variation in robot navigation and locomotion tasks. For example, the authors of [10]
evaluated two robot locomotion tasks and introduced dynamic environmental conditions
by varying the operation parameters or characteristics of the robot body. The authors of
[8] performed an empirical study on generalization using classical control environments
(CartPole, MountainCar, and Pendulum, where features such as force, length, and Mass
were randomly varied) as well as two locomotion tasks from Roboschool (HalfCheetah
and Hopper, where robot operational features such as power, torso density, and friction
were varied).

In the above works related to generalization in navigation and locomotion environ-
ments, the focus is more on varying the robot operation to mimic the environmental changes
rather than varying the features of the environment itself, such as terrain. Furthermore,
although the authors of [8] combined changes in terrain with changes in the robot operation
and evaluated this using two locomotion environments from Roboschool, it is difficult to
reach viable conclusions based on only two cherry-picked environments. Hence, the need
for a rigorous evaluation using several complex navigation and locomotion environments
is critical. The main contribution of the current work is to provide rigorous evaluations
to analyze the generalization capabilities of base DRL algorithms where uncertainties are
only considered with respect to the environmental terrain without modifying the robot
operations for complex navigation and locomotion RL environments. So, unlike existing
works, rigorous evaluations of the generalization ability of base DRL algorithms when
trained with dynamic environmental conditions are presented for complex navigation and
locomotion environments. The evaluations are performed using six complex benchmark
PyBullet locomotion tasks [23] with varying environmental conditions. The variations



Mathematics 2023, 11, 4744 3 of 13

in the dynamics of the environment were studied under varying friction settings of the
environmental terrain. An application scenario corresponding to the above experimental
design is as follows: a robot trained to navigate a normal terrain or floor is to be deployed
in a slippery terrain. Furthermore, the evaluations were carried out using two proven
state-of-the-art DRL algorithms: (1) from the actor–critic class, Soft Actor–Critic (SAC); and
(2) from the policy gradient class, the Twin Delayed Deep Deterministic policy gradient
algorithm (TD3).

The remainder of the paper is organized as follows. Section 2 presents a detailed
overview of the existing literature on generalization in DRL. In Section 3, highlights on
the proven DRL algorithms used in this study are presented. Section 4 provides details
regarding the benchmark locomotion environments used in this study and the dynamic
changes introduced in each of the environments, while Section 5 provides details about the
experimental methodology. In Section 6, the results and discussions from the experiments
are presented, while Section 7 presents the conclusions and future directions.

2. Related Works

In the literature, several DRL approaches have been proposed to achieve generaliza-
tion in RL. One such approach is meta-learning, where the ability to adapt to unseen test
environments is achieved through the learning process performed on multiple training
tasks. Furthermore, referred to as deep metaRL, it usually involves a recurrent neural
network policy whose inputs also entail the actions selected and reward received in the
previous time step [24]. Another class of DRL algorithms developed to achieve gener-
alization are known as robust RL algorithms, where the algorithms are developed to be
able to handle perturbations in the transition dynamics of the model. In one study [25],
a robust RL algorithm known as Maximum a posteriori Policy Optimization (MPO) was
developed for continuous control. In the approach, a policy that optimizes the worst-case,
entropy-regularized, expected return objective was learned to derive a corresponding ro-
bust entropy-regularized Bellman contraction operator. Training DRL agents on a collection
of risk-averse environments was evaluated in another study [10] using four benchmark lo-
comotion environments where linear and RBF parameterizations were introduced to realize
robustness in the DRL algorithm. Recently, introducing variations or uncertainties into RL
environments during training to realize generalization has gained a lot of traction. This is
due to the fact that recent studies have proved that vanilla DRL algorithms generalize better
than their counterparts (EPOpt and RL2), dedicated Robust DRL algorithms for generaliza-
tion [8]. In an empirical study [8], four classical control tasks were evaluated with changes
in force, mass, and length introduced into the environments. In addition, this was extended
for two locomotion environments where variations in the environments were introduced
through changes in robot power, density, and ground friction. Those environments were
evaluated using PPO and A2C and their corresponding Robust DRL algorithms (EPOpt
and RL2) for the comparative analysis. The introduction of variation or uncertainties into
DRL environments is mostly achieved in control tasks through domain randomization,
where dynamic properties of either the associated system or its environment are varied. In
a recent study [26], Dexterous In-Hand Manipulation for a five-fingered robot was learned,
where environmental variations were introduced by randomly varying parameters such as
the object dimension, surface friction, robot link and object masses, etc. In addition, a case
for generalization was proven in this work by a successful sim-to-real transfer. Our work
adopts a similar approach to achieve domain randomization through environmental varia-
tion. However, rather than introducing variations in the robot dynamics or a combination
of the robot dynamics and changes in its environment, we explore randomization only by
varying the surface friction of the terrain to investigate a scenario when a robot moves from
a smooth terrain to a slippery terrain. We avoided changes in the robot dynamics because,
in the real world, such dynamics cannot be changed directly but are rather a function of the
terrain of the robot.



Mathematics 2023, 11, 4744 4 of 13

3. Algorithms

To access the effect of dynamic domains towards achieving generalization, we employ
two typical proven DRL algorithms. Specifically, we choose Soft Actor–Critic (SAC) [27]
and Twin Delayed Deep Deterministic (TD3) policy gradient [28], as they both lie be-
tween the two main families of RL algorithms (Policy Optimization and Q-learning) and
hence, provides trade-off between Policy Optimization and Q-Learning. Such a trade-off
is necessary here because, while policy optimization methods are considered stable and
reliable, Q-learning methods are significantly more sample efficient when they carry out
work because they can reuse data more efficiently. We use the stable baseline implemen-
tations of both algorithms [29] and highlight the main features of each algorithm in the
following sections.

3.1. Twin Delayed Deep Deterministic Policy Gradient (TD3)

TD3 is an off-policy algorithm that uses three crucial concepts to overcome the issue
of overestimating Q-values (policy breaking) associated with Deep Deterministic Policy
Gradient (DDPG) [30,31] as a result of overestimated Q-values. First, instead of learning a
single Q-value, TD3 learns two Q-values and employs the one with the smaller value to
estimate the target in the Bellman error loss functions. Secondly, TD3 updates the associated
learning networks (policy and target networks) less frequently in contrast with Q-function.
Lastly, by adding clipped noise to the target action as a form of regularization, TD3 makes
it difficult for the policy to navigate towards Q-function errors by smoothing out Q along
changes in action [28].

3.2. Soft Actor–Critic (SAC)

The SAC algorithm addresses a stochastic policy optimization problem in an off-policy
approach. Similar to TD3, it also takes advantage of a clipped double-Q method and entails
a unique feature of entropy regularization, which aims at maximizing the expected returns
of the actor while maximizing entropy at the same time. The advantage here is that, while
increasing entropy is associated with more exploration and hence faster learning, it can
further help to prevent the policy from premature convergence [27].

4. Environments

The environments used for evaluations in this study are modified versions of six
locomotion environments from PyBullet. The modification to the environments basically
involves variations in the surface friction of the terrain. The resulting environmental
terrains can be summarized as follows:

1. Normal Terrain (NT): The friction parameters of the environments under this terrain
are kept constant with the default implementation values d from PyBullet. This implies
that only the state variables are reset each time the environment is reset;

2. Random Terrain (RT): In this case, each time an episode is terminated, and the envi-
ronment is re-initialized (reset), the friction coefficient fc is sampled randomly from a
k-dimensional uniform distribution (box) containing the default values d;

3. Extreme Terrain (ET): Here the friction coefficient fc corresponding to the terrain is
rest every time an episode is terminated, through uniformly sampling from one of the
2k k-dimensional uniform distribution (box). Specifically, fc is sampled from the union
of two intervals that straddle the corresponding interval in RT.

The search spaces corresponding to NT, RT, and ET are illustrated schematically in
Figure 1, where k = 2, the search space of RT is indicated by the bounded white box and
those of ET are illustrated by the disconnected black boxes. The ranges of the actual friction
parameter values corresponding to each environment are presented in Table 1.



Mathematics 2023, 11, 4744 5 of 13

Table 1. Range of the coefficient of friction for each environmental terrain.

Terrain NT RT ET

Friction Coefficient 0.8 [0.5, 1.1] [0.2, 0.5] ∪ [1.1, 1.4]

NT

ET

RT

.

Figure 1. Schematics of the three (3) different environmental terrains.

Based on each of these environmental terrains, six locomotion tasks with different
levels of difficulty and dynamics were trained. All the six tasks, Hopper [32,33], 2D
Walker [32,33], Ant [34], HalfCheetah [34–36], Humanoid [34,37], and Humanoid Flagrun
Harder (Flagrun) [38], were implemented based on the existing locomotion environments
in PyBullet, which are modified and more realistic versions of those from Mujoco. For
example, in the PyBullet version of the Ant environment, the ant is much heavier, thus
ensuring that it has two or more legs on the ground to sustain its weight. Figure 2 shows a
graphical illustration of each environment. The goal in all the tasks, except in Humanoid
Flagrun Harder, is to learn to move forward quickly without falling. This requires that the
humanoid move to a specific target whose position varies randomly while the humanoid
is constantly bombarded by some cubes to push it off its trajectory. The detailed features,
goal, and reward systems for each of the environments are as presented in [23].

(a) Ant (b) Walker2D (c) HalfCheetah (d) Hopper (e) Humanoid (f) Flagrun

Figure 2. Graphical illustration of the locomotion environments.

5. Experimental Design

To evaluate the effect of training based on each of the environmental terrain discussed
in Section 4, we perform a series of train–test scenarios where each agent is trained on a
specific terrain and tested on the same terrain (in-distribution), as well as all other terrains
(out-distribution). Specifically, we train on two DRL algorithms (SAC and TD3), with
NT, RT, and ET variation on six environments (Ant, 2D Walker, Hooper, HalfCheetah,
Humanoid, and Humanoid Flagrun Harder). Consequently, we tested all the resulting
agents on all the terrains (NT, RT, and ET) and compared them using three testing scenarios.
Both SAC and TD3 were trained for 1 × 106 timesteps for all the training scenarios. For
testing purposes, the best models returned during training were used and each of the
testing scenarios were performed based on 25 runs of independent episodes (with an
episode length of 1000 for each). To enable fairness, the hyperparameters used for each
algorithms were the same (for all the environments and training scenarios) and their values
were fixed as those provided in stable-baselines—a collection of improved implementations
of RL algorithms [29].



Mathematics 2023, 11, 4744 6 of 13

Performance and Evaluation Metrics

Since RL agents are defined generally as goal-seeking, in RL, performance is measured
in terms of the average cumulative reward of each Markov Decision Process (MDP) cycle
or episode achieved by an agent based on the goal of the associated task. Consequently, we
evaluate performance using the mean and dispersion (standard deviation) of the average
cumulative reward.

To evaluate generalization performance as a result of domain randomization, three test
scenarios were formulated to evaluate agents trained based on each of the aforementioned
terrains (Section 4) to be tested and compared with those from other terrains. The three test
scenarios are as follows.

1. Default: In this scenario, each agent trained on each of NT, RT, and ET, respectively,
is tested on the default environmental parameters (same as NT). This provides insight
into the effects of domain randomization when compared to agents trained on default
conditions;

2. Interpolation: This scenario is expected to evaluate the performance of each agent on
a dynamic terrain with a mild level of uncertainty. Hence, all the agents are tested
based on the conditions of RT. An insight into the effect of mild-level domain random-
ization on the agents can be obtained by comparing results with those trained with no
randomization (NT) as well as with a relatively high level of randomization (ET);

3. Extrapolation: In extrapolation, ET conditions are used for the testing environment.
In this test scenario, insight into the generalization effect of domain randomization
to totally unseen conditions (NT) as well as partially unseen conditions (RT) during
training are evaluated and compared with those trained on similar terrain conditions
as the test-bed (ET).

For each of the three test scenarios, the mean and dispersion (standard deviation) of
the cumulative reward as well as the episode length for each of the corresponding agents
on the associated test conditions are detailed in Section 6.

Finally, we perform evaluations based on a real-world applicable scenario in which a
legged robot trained for operation under default environmental conditions as well as those
trained with domain randomization are deployed for use in a slippery surface or terrain.
This presents a case for performance in terms of generalization in unseen conditions during
training. From the literature [39,40], the generally recommended Coefficient of Friction
(CoF) for walking is 0.5 and above. Hence a CoF value below 0.5 implies that the surface is
slippery. To evaluate how agents trained with or without randomization will generalize
over such a scenario, we tested each of the resulting agents from NT, RT, and ET on an
environment with a constant CoF value of 0.4.

6. Results and Discussion

Based on the train–test scenarios presented in Section 5 above, training and testing
performance are presented in this Section. First, the performance during training using
SAC and TD3 based on each of NT, RT, and ET are presented. Subsequently, we provide
results and analysis for all the test scenarios.

6.1. Training

The accumulated rewards during training each of the respective agents based on the as-
sociated environmental terrain for all the six locomotion tasks are shown in Figures 3 and 4
for SAC and TD3, respectively. Although it can be observed that NT-based agents show
slightly superior performance in instances such as Figures 3a and 4d,f, while RT-based
agents show a slightly better training progression in Figures 3b and 4a,c. It is clear that
all the agents are competitive in terms of the accumulated return irrespective of their
environmental situations. This means that the agents were able to learn policies to adapt to
the changes in their environmental conditions for all the tasks.



Mathematics 2023, 11, 4744 7 of 13

Figure 3. Performance comparison of SAC in terms of accumulated reward during training for all six
locomotion tasks and associated environmental terrains.

Figure 4. Performance comparison of TD3 in terms of accumulated reward during training for all six
locomotion tasks and associated environmental terrains.

6.2. Testing
6.2.1. Default

The test performance of each resulting agent for both algorithms and all six locomotion
tasks based on the NT are presented in Table 2. The presented data summarize the mean
and standard deviation of the reward as well as the episode length. The expectation is that
agents trained on NT will outperform other agents since they were trained on conditions
similar to the test conditions. However, in terms of average returns over all the problem
instances, NT only shows superior performance in five cases, while RT proves competitive
by showing a superior performance on five instances. ET, however, outperforms NT and
RT in only two cases.



Mathematics 2023, 11, 4744 8 of 13

It is clear that even on NT, domain randomization during training is both comparable
and advantageous. In other words, domain randomization does not degrade the results
when compared with those agents trained and tested on default conditions, instead it even
results in a better performance as observed in seven instances (RT and ET combined).

Table 2. Performance of the implemented agents for each of the locomotion tasks on the NT testbed
in terms of mean and standard deviation of the accumulated reward.

Environment Algorithm
Reward (Mean & Std Dev)

NT RT ET

Ant TD3 2773.37 ± 14.18 3009.35 ± 17.24 2536.21 ± 19.20
SAC 3231.36 ± 12.40 2960.18 ± 22.17 2857.20 ± 6.23

Walker2D TD3 1871.02 ± 23.89 1788.12 ± 7.51 1790.57 ± 6.77
SAC 2011.16 ± 375.79 2130.09 ± 23.60 1930.08 ± 8.25

HalfCheetah TD3 2353.24 ± 30.40 2408.77 ± 32.01 985.74 ± 8.71
SAC 2772.90 ± 25.19 2696.64 ± 13.90 2349.12 ± 26.31

Hopper TD3 2741.39 ± 11.00 2526.66 ± 8.97 1793.55 ± 18.34
SAC 2404.11 ± 714.35 2526.22 ± 261.19 1831.47 ± 546.80

Humanoid TD3 149.85 ± 62.51 139.39 ± 38.69 171.96 ± 43.16
SAC 205.75 ± 91.88 180.90 ± 96.46 157.68 ± 82.71

Humanoid Flagrun Harder TD3 −53.25 ± 46.76 18.06 ± 20.81 −28.83 ± 15.84
SAC −0.37 ± 18.79 −0.70 ± 24.30 4.54 ± 26.59

Best values are highlighted.

6.2.2. Interpolation

Here, the testbed is based on the same environmental conditions as in RT. Table 3
shows the average reward and episode length when testing each of the resulting agents
for both algorithms and all six locomotion tasks based on RT. In all 12 instances, agents
trained based on the ET conditions were the worst performing with only one instance
where they outperformed those from RT and NT. The results from both NT and RT were
rather competitive, with NT winning in six instances and RT in five instances.

Table 3. Performance of the implemented agents for each of the locomotion tasks on the RT testbed
in terms of the mean and standard deviation of the accumulated reward.

Environment Algorithm
Reward (Mean & Std Dev)

NT RT ET

Ant TD3 1633.09 ± 45.25 2999.95 ± 27.32 2549.26 ± 33.37
SAC 3209.12 ± 31.24 2952.29 ± 65.89 2849.54 ± 26.08

Walker2D TD3 1861.79 ± 20.29 1792.21 ± 9.12 1791.41 ± 19.56
SAC 1540.25 ± 304.29 2005.30 ± 400.97 1942.19 ± 28.44

HalfCheetah TD3 2285.24 ± 80.77 2378.99 ± 28.36 993.48 ± 13.68
SAC 2710.21 ± 122.65 2676.58 ± 80.08 2349.11 ± 32.35

Hopper TD3 2554.05 ± 498.93 2420.55 ± 294.21 1786.45 ± 20.95
SAC 1535.22 ± 1164.44 1820.26 ± 952.38 1552.99 ± 705.53

Humanoid TD3 169.09 ± 74.05 146.93 ± 55.99 158.35 ± 67.99
SAC 232.37 ± 105.32 165.46 ± 114.43 164.74 ± 98.91

Humanoid Flagrun Harder TD3 −50.36 ± 41.57 −5.75 ± 22.64 −25.36 ± 20.42
SAC −42.96 ± 31.91 −2.59 ± 13.05 7.59 ± 20.38

Best values are highlighted.



Mathematics 2023, 11, 4744 9 of 13

6.2.3. Extrapolation

The results of testing agents on environments with the same conditions as ET are
presented in Table 4. Relative to the average return, ET shows a superior performance in
six problem instances, while those trained on RT also showed superior performance on
four problem instances. NT-based agents, however, only outperformed ET and RT in two
problem instances. This shows that, generally, agents trained with domain randomization
are able to generalize more in dynamic environments or environments with varying condi-
tions irrespective of whether they had seen similar conditions during training (ET) or not
(RT), compared with those trained without any form of randomization (NT). Furthermore,
it is clear that ET-trained agents proved to be more stable than other agents in terms of their
dispersion as they were trained on similar conditions to the testbed.

Table 4. Performance of the implemented agents for each of the locomotion tasks on the ET testbed
in terms of mean and standard deviation of the accumulated reward.

Environment Algorithm
Reward (Mean & Std Dev)

NT RT ET

Ant TD3 1383.20 ± 429.61 2838.00 ± 232.40 2480.66 ± 131.91
SAC 2599.88 ± 872.06 2114.00 ± 1073.54 2797.41 ± 90.80

Walker2D TD3 1117.09 ± 75.48 1486.92 ± 600.37 1741.68 ± 269.48
SAC 896.93 ± 664.27 1224.27 ± 849.52 1685.02 ± 484.83

HalfCheetah TD3 1897.13 ± 309.04 2262.60 ± 92.93 1004 ± 20.63
SAC 1950.22 ± 797.80 2332.00 ± 203.63 2295.29 ± 114.13

Hopper TD3 1571.73 ± 1283.61 1501.59 ± 1159.81 1780.24 ± 32.79
SAC 1613.85 ± 1234.47 1316.51 ± 1213.35 1250.74 ± 876.91

Humanoid TD3 135.01 ± 62.76 104.25 ± 47.94 134.65 ± 63.33
SAC 175.89 ± 54.27 141.20 ± 56.02 199.88 ± 70.61

Humanoid Flagrun Harder TD3 −55.41 ± 40.60 5.54 ± 23.26 −32.42 ± 25.68
SAC −44.01 ± 24.48 −13.49 ± 15.31 12.94 ± 24.94

Best values are highlighted.

In Table 5, we present a summary of the deductions from all the test instances, showing
the number of wins and losses for each of the associated agents under all testing conditions.
From the results, it can be observed that there are 13 instances of the train–test scenarios
where NT outperforms both RT and ET. This implies that there are instances where agents
trained with domain randomization do not always outperform those trained without
domain randomization. For example, in Tables 2–4, ET fails on the HalfCheetah task. This
usually occurs because the associated agents could not capture the varying dynamics of
the environment effectively, hence, the agent was not able to learn the task appropriately.

Table 5. Summary of Performance of testing all agents on NT, RT, and ET testbeds.

Metric
Reward

NT RT ET

Win (+) 13 14 9
Loss (−) 23 22 27
Draw (≈) – – –

6.2.4. Comparison between SAC and TD3

Although both SAC and TD3 are high-performing, state-of-the-art DRL algorithms,
their performance has not been widely studied in the context of domain randomization. In
order to investigate their performance in the context of domain randomization, we compare
the cumulative rewards featured by each algorithm on each of the 18 train–test scenarios



Mathematics 2023, 11, 4744 10 of 13

presented in Tables 2–4. From the 18 instances, it can be observed that SAC obtained the
best cumulative reward on 13 instances while TD3 obtained the best cumulative reward
on only 5 instances. This implies that SAC functions better than TD3 in the context of
domain randomization. This can generally be attributed to the featured stochastic policy
optimization in SAC [27].

6.2.5. Real-World Scenario

Although the advantages of domain randomization during training for reinforcement
learning is illustrated from the aforementioned testing scenario, we present yet another
scenario that is applicable in the real world. Here, we assume that the terrain is slippery,
and hence, the testing CoF of the testbed is set at 0.4. Figures 5 and 6 show the box plots
for all the locomotion tasks based on SAC and TD3, respectively. For each of the agents
(NT, RT, and ET), we also show the average returns for each of the tasks. The superiority
of the agents trained with domain randomization is clearly demonstrated in this scenario.
For instance, in Figure 5, agents trained with domain randomization (RT and ET) had
higher average returns in all the tasks than those trained on default conditions (NT), except
for the humanoid environment (Figure 5e) where NT outperformed ET by a relatively
small margin. Similarly, in Figure 6, one of the domain-randomization-based agents (either
RT or ET) always outperforms the NT-based agents, and in most of the cases where NT-
based agents outperform one of either RT or ET (Figure 6d–f), the margin is always very
small. In Table 6, we present a summary of the results for all the instances evaluated
based on the real-world scenario. It is clear that domain randomization (as in RT or ET)
facilitates generalization; however, it is not exactly clear what type or what level of domain
randomization is required for a certain task because, while RT-trained agents were superior
in some task instances, ET-trained agents were superior in others.

Figure 5. Box plots showing the performance results of each NT-, RT-, and ET-trained agent on the
real-world testbed with mean reward values highlighted using SAC.



Mathematics 2023, 11, 4744 11 of 13

Table 6. Summary of Performance of testing all agents on the real-world-scenario testbeds.

Metric
Reward

NT RT ET

Win (+) 0 6 6
Loss (−) 12 6 6
Draw (≈) – – –

Figure 6. Box plots showing the performance results of each NT-, RT-, and ET-trained agent on the
real-world testbed with mean reward values highlighted using TD3.

7. Conclusions and Future Work

An assessment of domain randomization in DRL for locomotion tasks is presented
in this work. Specifically, we evaluated two state-of-the-art deep RL algorithms (SAC and
TD3) on six locomotion tasks based on three different terrain conditions (NT, RT, and ET).
The adopted framework is motivated by previous studies on generalizations from the
OpenAI Retro contest [19] as well as the CoinRun benchmark [12], which concluded that
vanilla deep RL algorithms trained with environmental stochasticity may be more effective
for generalization than specialized algorithm. Similar to the authors of [8], we introduced a
system of testbeds and experimental protocol to evaluate the capability of DRL algorithms
trained with or without domain randomization to generalize to environments both similar
to and different from those seen during training. Furthermore, we introduce a real-world
scenario where the performance of all the trained DRL agents are compared on a common
real-world scenario (slippery terrain).

Overall, agents trained with domain randomization have better generalization per-
formance than those trained without any form of domain randomization in terms of the
accumulated returns. However, the question of what type and what level of domain
randomization is necessary and sufficient for a specific task is outstanding. Therefore, in
the future, we plan to introduce an optimization framework that incorporates a range of
parameters for domain randomization as hyperparameters. This is important because, as
demonstrated by the results, different environments or tasks benefit from different levels
of domain randomization, and the optimal setting of domain randomization parameters
would lead to better generalization results.



Mathematics 2023, 11, 4744 12 of 13

Author Contributions: Conceptualization, O.S.A. and R.M.; methodology, O.S.A. and R.M.; formal
analysis, O.S.A. and R.M.; data curation, O.S.A. and R.M.; writing—original draft preparation, O.S.A.
and R.M.; writing—review and editing, O.S.A., S.-h.H. and R.M.; supervision, S.-h.H. and R.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Acknowledgments: This research was supported by the Korea Electric Power Corporation (KEPCO)
(R21XO01-17).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M.A. Playing Atari with Deep

Reinforcement Learning. arXiv 2013, arXiv:1312.5602.
2. Erickson, Z.M.; Gangaram, V.; Kapusta, A.; Liu, C.; Kemp, C. Assistive Gym: A Physics Simulation Framework for Assistive

Robotics. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31
May–31 August 2020; pp. 10169–10176.

3. Peng, X.B.; Coumans, E.; Zhang, T.; Lee, T.; Tan, J.; Levine, S. Learning Agile Robotic Locomotion Skills by Imitating Animals.
arXiv 2020, arXiv:2004.00784.

4. Zhang, K.; Wang, Z.; Chen, G.; Zhang, L.; Yang, Y.; Yao, C.; Wang, J.; Yao, J. Training effective deep reinforcement learning agents
for real-time life-cycle production optimization. J. Pet. Sci. Eng. 2022, 208, 109766. [CrossRef]

5. Peng, Z.; Hu, J.; Shi, K.; Luo, R.; Huang, R.; Ghosh, B.K.; Huang, J. A novel optimal bipartite consensus control scheme for
unknown multi-agent systems via model-free reinforcement learning. Appl. Math. Comput. 2020, 369, 124821. [CrossRef]

6. Fu, Q.; Li, Z.; Ding, Z.; Chen, J.; Luo, J.; Wang, Y.; Lu, Y. ED-DQN: An event-driven deep reinforcement learning control method
for multi-zone residential buildings. Build. Environ. 2023, 242, 110546. [CrossRef]

7. Ajani, O.S.; Mallipeddi, R. Adaptive evolution strategy with ensemble of mutations for reinforcement learning. Knowl.-Based Syst.
2022, 245, 108624. [CrossRef]

8. Packer, C.; Gao, K.; Kos, J.; Krähenbühl, P.; Koltun, V.; Song, D. Assessing Generalization in Deep Reinforcement Learning. arXiv
2018, arXiv:1810.12282.

9. Zhao, W.; Queralta, J.P.; Westerlund, T. Sim-to-Real Transfer in Deep Reinforcement Learning for Robotics: A Survey. In
Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, ACT, Australia, 1–4 December
2020; pp. 737–744.

10. Rajeswaran, A.; Lowrey, K.; Todorov, E.; Kakade, S. Towards Generalization and Simplicity in Continuous Control. In Proceedings
of the 31st International Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017.

11. Zhang, A.; Ballas, N.; Pineau, J. A Dissection of Overfitting and Generalization in Continuous Reinforcement Learning. arXiv
2018, arXiv:1806.07937.

12. Cobbe, K.; Klimov, O.; Hesse, C.; Kim, T.; Schulman, J. Quantifying Generalization in Reinforcement Learning. In Proceedings of
the 2019 International Conference on Machine Learning (ICML), Long Beach, CA, USA, 10–15 June 2019.

13. Whiteson, S.; Tanner, B.; Taylor, M.E.; Stone, P. Protecting against evaluation overfitting in empirical reinforcement learning. In
Proceedings of the 2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), Paris,
France, 11–15 April 2011; pp. 120–127. [CrossRef]

14. Finn, C.; Abbeel, P.; Levine, S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. In Proceedings of the 2017
International Conference on Machine Learning (ICML), Sydney, Australia, 6–11 August 2017.

15. Duan, Y.; Schulman, J.; Chen, X.; Bartlett, P.; Sutskever, I.; Abbeel, P. RL2: Fast Reinforcement Learning via Slow Reinforcement
Learning. arXiv 2016, arXiv:1611.02779.

16. Vacaro, J.; Marques, G.; Oliveira, B.; Paz, G.; Paula, T.; Staehler, W.; Murphy, D. Sim-to-Real in Reinforcement Learning for
Everyone. In Proceedings of the 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR)
and 2019 Workshop on Robotics in Education (WRE), Rio Grande, Brazil, 23–25 October 2019; pp. 305–310. [CrossRef]

17. Kansky, K.; Silver, T.; Mély, D.A.; Eldawy, M.; Lázaro-Gredilla, M.; Lou, X.; Dorfman, N.; Sidor, S.; Phoenix, D.; George, D. Schema
Networks: Zero-shot Transfer with a Generative Causal Model of Intuitive Physics. arXiv 2017, arXiv:1706.04317.

18. Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.; Abbeel, P. Domain randomization for transferring deep neural networks
from simulation to the real world. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 23–30.

19. Nichol, A.; Pfau, V.; Hesse, C.; Klimov, O.; Schulman, J. Gotta Learn Fast: A New Benchmark for Generalization in RL. arXiv 2018,
arXiv:1804.03720.

20. Kamalaruban, P.; Huang, Y.T.; Hsieh, Y.P.; Rolland, P.; Shi, C.; Cevher, V. Robust reinforcement learning via adversarial training
with Langevin dynamics. arXiv 2020, arXiv:2002.06063.

http://doi.org/10.1016/j.petrol.2021.109766
http://dx.doi.org/10.1016/j.amc.2019.124821
http://dx.doi.org/10.1016/j.buildenv.2023.110546
http://dx.doi.org/10.1016/j.knosys.2022.108624
http://dx.doi.org/10.1109/ADPRL.2011.5967363
http://dx.doi.org/10.1109/LARS-SBR-WRE48964.2019.00060


Mathematics 2023, 11, 4744 13 of 13

21. Balaji, B.; Mallya, S.; Genc, S.; Gupta, S.; Dirac, L.; Khare, V.; Roy, G.; Sun, T.; Tao, Y.; Townsend, B.; et al. DeepRacer: Educational
Autonomous Racing Platform for Experimentation with Sim2Real Reinforcement Learning. arXiv 2019, arXiv:1911.01562.

22. Zhao, W.; Queralta, J.P.; Qingqing, L.; Westerlund, T. Towards Closing the Sim-to-Real Gap in Collaborative Multi-Robot Deep
Reinforcement Learning. In Proceedings of the 2020 5th International Conference on Robotics and Automation Engineering
(ICRAE), Singapore, 20–22 November 2020; pp. 7–12.

23. Coumans, E.; Bai, Y. PyBullet, a Python Module for Physics Simulation for Games, Robotics and Machine Learning. 2016–2021.
Available online: http://pybullet.org (accessed on 6 April 2021).

24. Wang, J.X.; Kurth-Nelson, Z.; Soyer, H.; Leibo, J.Z.; Tirumala, D.; Munos, R.; Blundell, C.; Kumaran, D.; Botvinick, M. Learning to
reinforcement learn. arXiv 2017, arXiv:1611.05763.

25. Mankowitz, D.J.; Levine, N.; Jeong, R.; Abdolmaleki, A.; Springenberg, J.T.; Mann, T.; Hester, T.; Riedmiller, M.A. Robust
Reinforcement Learning for Continuous Control with Model Misspecification. arXiv 2020, arXiv:1906.07516.

26. Andrychowicz, O.M.; Baker, B.; Chociej, M.; Józefowicz, R.; McGrew, B.; Pachocki, J.W.; Petron, A.; Plappert, M.; Powell, G.; Ray,
A.; et al. Learning dexterous in-hand manipulation. Int. J. Robot. Res. 2020, 39, 20–23. [CrossRef]

27. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with
a Stochastic Actor. In Proceedings of the 2018 International Conference on Machine Learning (ICML), Stockholm, Sweden, 10–15
July 2018.

28. Fujimoto, S.; Hoof, H.V.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. arXiv 2018, arXiv:1802.09477.
29. Hill, A.; Raffin, A.; Ernestus, M.; Gleave, A.; Kanervisto, A.; Traore, R.; Dhariwal, P.; Hesse, C.; Klimov, O.; Nichol, A.; et al. Stable

Baselines. 2018. Available online: https://github.com/hill-a/stable-baselines (accessed on 27 September 2021).
30. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M.A. Deterministic Policy Gradient Algorithms. In Proceedings

of the 2014 International Conference on Machine Learning (ICML), Beijing, China, 21–26 June 2014.
31. Lillicrap, T.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep reinforcement

learning. arXiv 2016, arXiv:1509.02971.
32. Erez, T.; Tassa, Y.; Todorov, E. Infinite-Horizon Model Predictive Control for Periodic Tasks with Contacts. In Robotics: Science and

Systems; MIT Press: Cambridge, MA, USA, 2011.
33. Levine, S.; Koltun, V. Guided Policy Search. In Proceedings of the 2013 International Conference on Machine Learning (ICML),

Atlanta, GA, USA, 17–19 June 2013.
34. Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.I.; Abbeel, P. High-Dimensional Continuous Control Using Generalized Advantage

Estimation. arXiv 2016, arXiv:1506.02438.
35. Wawrzynski, P. Learning to Control a 6-Degree-of-Freedom Walking Robot. In Proceedings of the EUROCON 2007—The

International Conference on “Computer as a Tool”, Warsaw, Poland, 9–12 September 2007; pp. 698–705. [CrossRef]
36. Heess, N.M.O.; Hunt, J.J.; Lillicrap, T.P.; Silver, D. Memory-based control with recurrent neural networks. arXiv 2015,

arXiv:1512.04455.
37. Tassa, Y.; Erez, T.; Todorov, E. Synthesis and stabilization of complex behaviors through online trajectory optimization. In

Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal,
7–12 October 2012; pp. 4906–4913. [CrossRef]

38. Liang, J.; Makoviychuk, V.; Handa, A.; Chentanez, N.; Macklin, M.; Fox, D. GPU-Accelerated Robotic Simulation for Distributed
Reinforcement Learning. In Proceedings of the 2nd Conference on Robot Learning (CoRL 2018), Zurich, Switzerland, 29–31
October 2018.

39. Miller, J.M. “Slippery” work surfaces: Towards a performance definition and quantitative coefficient of friction criteria. J. Saf. Res.
1983, 14, 145–158. [CrossRef]

40. Li, K.W.; Chang, W.R.; Leamon, T.B.; Chen, C.J. Floor slipperiness measurement: Friction coefficient, roughness of floors, and
subjective perception under spillage conditions. Saf. Sci. 2004, 42, 547–565. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://pybullet.org
http://dx.doi.org/10.1177/0278364919887447
https://github.com/hill-a/stable-baselines
http://dx.doi.org/10.1109/EURCON.2007.4400335
http://dx.doi.org/10.1109/IROS.2012.6386025
http://dx.doi.org/10.1016/0022-4375(83)90042-7
http://dx.doi.org/10.1016/j.ssci.2003.08.006

	Introduction
	Related Works
	Algorithms
	Twin Delayed Deep Deterministic Policy Gradient (TD3)
	Soft Actor–Critic (SAC)

	Environments
	Experimental Design
	Results and Discussion
	Training
	Testing
	Default
	Interpolation
	Extrapolation
	Comparison between SAC and TD3
	Real-World Scenario


	Conclusions and Future Work
	References

