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Abstract: The present work focused on the development of soft sensors for single-input single-output
(SISO) nonlinear dynamic systems with unknown physical parameters using a switching observer
design. Toward the development of more accurate soft sensors, as compared with hard sensors, an
extended design methodology for the determination of a bank of operating points satisfying the
dense web principle was proposed, where for the determination of the bank of operating points
and the observer parameters, a metaheuristic procedure was developed. To validate the results of
the metaheuristic algorithm, the case of an alcoholic fermentation process was studied as a special
case of the present approach. For the nonlinear model of the process, an observer-based soft sensor
was developed using the metaheuristic procedure. First, the accuracy of the linear approximant
of the process with respect to the original nonlinear model was investigated. Second, the I/O
reconstructability of the linear approximant was verified. Third, based on the linear approximant, an
observer was designed for the estimation of the non-measurable variable. Fourth, considering that
the observer is designed upon the linear approximant, the linear approximant model parameters are
derived through identification, for different operating points, upon the nonlinear model. Fifth, the
observers corresponding to the different operating points, constitute a bank of observers. The design
was completed using a data-driven rule-based system, performing stepwise switching between the
observers of the bank. The efficiency of the proposed metaheuristic algorithm and the performance
of the switching scheme were demonstrated through a series of computational experiments, where
it was observed that the herein-proposed approach was more than two orders of magnitude more
accurate than traditional single-step approaches of transition from one operating point to another.

Keywords: metaheuristic algorithms; alcoholic fermentation; soft sensors; switching observers

MSC: 93C41

1. Introduction

Despite the multitude of advantages of the use of soft sensing schemes, one of the
major issues toward their design and implementation is the highly nonlinear nature of
the modes of the process or, in several cases, the inherent switching nature of the systems.
Toward alleviating these types of difficulties, several approaches have been proposed
in the literature for either the observer design or the familiar controller design problem.
Indicatively, see [1–7] and the references therein. Switching observers are particularly useful
in systems where mode changes or nonlinear variations significantly impact the system’s
behavior. In such systems, it is essential to have accurate state estimation that contributes
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to maintaining control and stability. By using switching observers, control systems can
adapt to changing conditions and better handle systems with multiple operating modes
or discrete state changes. Therefore, switching sensors form a valuable tool in various
applications, including aerospace, automotive control, nonlinear processes and robotics,
where systems often switch between different operating regimes.

The design of soft sensors for single input and single output nonlinear systems was
introduced and solved in [1], where a switching observer approach was developed. The
approach is based on identifying linear approximants for different operating conditions
of the original nonlinear model of the process and the development of a bank of linear
observers. Also, it is based on the definition of observer-oriented target operating areas and
the introduction of the dense web principle. Finally, a data-driven rule-based procedure
was proposed to orchestrate the operation and the switching of the bank of observers.
The performance of the approach was illustrated in [1] via its application to a nonlinear
chemostat model.

In the present paper, following the set of assumptions in [1], the development of
an extended soft sensor design approach that includes AI procedures is proposed. The
inclusion of these procedures aims toward the improvement of the performance of soft
sensors using switching observers. Two metaheuristic procedures were developed. The
procedures were based on the linear approximants of the nonlinear dynamic SISO system
and a set of linear full-order observers, which were computed using system identification
data. Based on these two procedures, the switching procedure between observers in the
bank of the observers was accomplished by increasing the width of the target operating
areas. The cost criteria proposed in [1] were appropriately extended and modified in
order to offer greater flexibility with respect to the selection of the observer parameters.
It is important to mention that the switching observer design was complemented by a
metaheuristic algorithm that was used for the specification of the observer parameters.
The use of this algorithm facilitated the observer parameter selection, as well as selecting
the width of the corresponding target operating areas. The development of the algorithm
was imposed by the highly nonlinear and multi-cost minimization under the constraints
goal of the problem at hand, where the analytic solution of the problem of determining the
observer parameters did not seem to be possible.

The main results of the study are presented in Sections 3–8. In Section 2, the general
framework for the design of soft sensors using switching observers is presented. The
general form, as well as the basic assumptions of the structure of nonlinear SISO systems, is
initially presented. Based on the general structure of the model, its linear approximant was
computed, and a full-order state observer of a specific structure was designed. The observer
matrices depended upon the identified model parameters of the linear approximant and
the operating point of the process. In Section 3, new criteria for the determination of the
observer parameters and the corresponding target operating areas are proposed. Due to
the highly nonlinear nature of the newly proposed criteria, in Section 4, a metaheuristic
algorithm of the type in [8,9] is proposed for both the determination of the necessary
number of operating points and the evaluation of the observer parameters. The basic
idea of the algorithm is to define an initial search area for the observer parameters and,
after several loops, to converge to a suboptimal solution that satisfies the design goals. To
validate the metaheuristic procedure, the problem of the development of soft sensors using
switching observers for the case of an alcoholic fermentation process is investigated in
Sections 5–8.

Industrial alcoholic fermentation processes are typical industrial processes with an es-
sential impact on various industrial units, primarily for the production of ethanol (alcohol)
and other valuable products. These processes rely on the metabolic activities of microor-
ganisms, typically yeasts or bacteria, to convert sugars into alcohol and carbon dioxide.
Alcoholic fermentation is a well-established and economically important process with
applications in a range of industries and contributing to the production of fuel, beverages
and various chemical products. Indicatively, see [10–12] for alcoholic fermentation tech-
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nologies, [13–16] for alcoholic fermentation modeling, [17–19] for alcoholic fermentation
optimization techniques and [20–22] for controller design.

Typically, in fermentation processes, not all system variables can be measured in real
time. Also, the structure of the nonlinear dynamic model of the processes is available, but
the physical parameters of the process are basically unknown to the designer. Consequently,
the design of an observer/soft sensor scheme may be a critical component of process control
and monitoring systems. See [23] for fault detection schemes, [24] for a bank-of-observer
design, [25] for sliding mode observers, and [26–30] for other estimation and/or control
aspects. The main advantages of the use of such soft sensing schemes lie in their cost-
efficiency, non-invasiveness and flexibility, as well as the reduction in downtime that may
be required compared with traditional sensors in the case of calibration or replacement.
Specifically, for the alcoholic fermentation processes, the problem of fault detection and iso-
lation using a combined parameter and state adaptive observer scheme was studied in [23].
A bank of local linear observers was designed for an alcoholic fermentation process in [24],
where the design was based on the respective linear approximants of the mathematical
description of the nonlinear process around operating points. A comparative analysis of
the real-time performance of a family of sliding-mode observers for reconstructing key vari-
ables in a batch bioreactor for fermentative ethanol production was performed in [25]. The
problem of estimation and control for alcoholic fermentation processes was investigated
in [26] using adaptive controllers designed together with nonlinear estimation algorithms
for unknown inputs and kinetics. The problem of designing online estimation strategies
for imprecisely known kinetics of an alcoholic fermentation bioprocess was investigated
in [27,28]. Toward this goal, an observer-based estimator, a regressive estimator and a high-
gain observer were implemented. The behavior of the estimation scheme was investigated
through computational experiments. The application of an observer scheme for state and
parameter estimation of alcoholic processes was proposed in [29]. Finally, the problem of
the simultaneous estimation of states and unknown inputs through high-gain nonlinear
observers was investigated in [30] and the theoretical results were applied to an alcoholic
fermentation process in a chemical semi-continuous fed-batch reactor.

With respect to the application of the present scheme to the alcoholic fermentation
process, initially, the accuracy of the linear approximant of the process with respect to its
nonlinear model was investigated. Second, the system property of I/O reconstructability
of the state space linear approximant of the process was verified. Third, based on the linear
approximant, a linear observer was designed for the estimation of the non-measurable
variable of the process, where its parameters were derived through the identification of
different operating points of the nonlinear model. Fourth, the operating points upon which
identification was performed were determined using a metaheuristic algorithm so that the
dense web principle was satisfied. The observers corresponding to the different operating
points constituted a bank of observers. Fifth, the efficiency of the proposed scheme was
verified through a series of computational experiments for both the switching observer
scheme and the metaheuristic algorithm.

2. Preliminaries

In the present section, the general framework for the design of soft sensors using
switching observers that was developed in [1] is presented. This framework is appropriately
extended in the following sections. In the first subsection, the general form of nonlinear
SISO systems and the basic assumptions/constraints on its form are presented. Then,
based on the nonlinear model, the general form of its linear approximant is presented.
Finally, based on the linear approximant, a full-order state observer is proposed, whose
form depends not upon the true linear approximant parameters but upon identified linear
approximant parameters.

2.1. A General Form of Nonlinear SISO Systems

A general form of nonlinear SISO dynamic systems is the following:
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dx̃(t)
dt

= fNL(x̃, u); x(0−) = x0, y(t) = cNL(x̃) (1)

where x̃(t) ∈ Rn×1 denotes the state vector of the system, y(t) ∈ R denotes the vector of
the measurable outputs of the system, u(t) ∈ R denotes the actuatable input of the system,
fNL(•, •)

(
: Rn+1 → Rn) is an n × 1 nonlinear vector function and cNL(•) (: Rn → R)

is a nonlinear function. Regarding the mathematical description in (1), the following
considerations (see [1]) are assumed to hold:

i The nonlinear dynamic system (1) is globally stable.
ii The structure of fNL(•, •) is known. This structure depends on physical parameters.
iii The physical parameters in fNL(•, •) are in general not known to the designer. The

parameters, being known, are those that are independent of the current operation
conditions of the process.

iv The output and input variables of the process are measured in real time.
v The operating trajectory of the nonlinear process in an appropriate operation domain

is known.

To present the operating trajectory, the nominal values of the state vector and the input
and output variables are denoted as X̃, U and Y, respectively. The operating trajectory
is defined to be the set of all X̃, U and Y so that fNL

(
X̃, U

)
= 0 and Y = cNL

(
X̃
)

.
Following [1], the following is also assumed:

vi For every U, there exists a unique Y, i.e., Y = hNL(U), where hNL(•) (: R→ R) is
an appropriate function, which is known by the points l = (Y, U) in R2, or a dense
enough sample of them.

Under the above assumptions, the I/O operating trajectory of the nonlinear process
is defined to be a graphical representation of the formula Y = hNL(U). The practical
importance of the operating trajectory and the I/O operating trajectory is based on the
stability of (1). According to the industrial practice (indicatively, see [3,4]), the system
transitions are preserved around the I/O operational trajectory, where ∆x̃(t) = x̃(t)− X̃,
∆u(t) = u(t)−U and ∆y(t) = y(t)−Y are the variations of the system variables around
the nominal values.

Mainly for presentation purposes and, secondarily, for analytic purposes, it was
considered that the map of the vector of the state variables to the output variable was linear,
i.e., cNL(x̃) = cx̃ and the output matrix c ∈ R1×n is independent of the unknown physical
parameters of the nonlinear system.

2.2. The Linear Approximant of the Nonlinear Dynamic System

The linear approximant of the dynamic system (1) is determined around X̃, U and Y,
corresponding to constant operating conditions for all system variables. The general form
of the linear approximant of the model (1) is

ℵ :
d∆xL(t)

dt = A∆xL(t) + b∆u(t), ∆yL(t) = c∆xL(t),
∆xL(0−) = ∆xL,0 = x̃0 − X̃,

(2)

where ∆yL(t) and ∆xL(t) aim to be the approximants of the deviations ∆y(t) and ∆x̃(t),
respectively, and where ∆u(t) = u(t)−U. The response of the approximant is an accurate
description of the nonlinear system response around the operating point o(t) = o, where
o(t) = (u(t), x̃(t), y(t)) and o = (U, X, Y). The system matrices in (2) are evaluated using
the formulas A = ∂ fNL(x̃, u)/∂x̃|o=o and b = ∂ fNL(x, u)/∂u|o=o. Clearly, it holds that
A ∈ Rn×n and b ∈ Rn×1.

Regarding the linear approximant, the following assumptions used in [1] are also
considered to hold:
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i The form of the linear approximant system matrices is known and depends upon
independent physical parameters, which are considered to be unknown, as well as
the nominal values of the system variables.

ii The linear approximant (2) is observable, independently of the nominal values of the
system variables.

iii The state space linear approximant is asymptotically stable, independently of the
nominal values of the system variables.

iv The nonlinear model of the process belongs to the class of systems with state space
linear approximants that are I/O reconstructable using their respective I/O
linear approximants.

For the definition of I/O reconstructability, see [1].
The I/O approximant of the system (2) is the following differential equation:

S : ∆y(nc)
L (t) + h



∆y(nc−1)
L (t)

...
∆y(0)L (t)

−∆u(nc−1)(t)
...

−∆u(0)(t)


= 0, (3)

where
h =

[
hD | hN

]
= [hD,1 . . . hD,nc | hN,1 . . . hN,nc ] ∈ R1×2nc ,

and where hD,j and hN,j (j = 1, . . . , nc) are the real coefficients of the I/O approximant, with
nc being the rank of the controllability matrix of the linear approximant.

Defining H as the set of all admissible h and defining HL as the set of all admissible
l, under assumption (vi) in Section 2.1, the system matrices of (2) can be expressed as
functions of l (or equivalently of U) and h, i.e.,

A = A(h, U) ∈ Rn×n, b = b(h, U) ∈ Rn×1, c = c(h, U) ∈ R1×n. (4)

In practice, the I/O approximant can be determined through data-driven approaches,
like the identification of the coefficients of the I/O approximant in (3), using measurements
of the input and output of the system. The I/O linear approximant dynamic system relating
the variations of the outputs to the variations of the inputs is of the following form:

SI : ∆y(nc)(t) + ĥ



∆y(nc−1)(t)
...

∆y(0)(t)
−∆u(nc−1)(t)

...
−∆u(0)(t)


+ ε I(t) = 0, (5)

where
ĥ =

[
ĥD

∣∣∣ ĥN

]
=
[

ĥD,1 . . . ĥD,nc | ĥN,1 . . . ĥN,nc

]
∈ R1×2nc , (6)

ĥD,j and ĥN,j are the identified parameters, and ε I(t) is the modeling error resulting from
the identification. The present type of identification can be accomplished through several
methods; indicatively, see the methods in [31–37].

The linear approximant system matrices corresponding to the above parameter esti-
mation are expressed using the following formulae:

A = A
(

ĥ, U
)
∈ Rn×n, b = b

(
ĥ, U

)
∈ Rn×1, c = c

(
ĥ, U

)
∈ R1×n. (7)
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For the above system matrix, it is required to remain stable.

2.3. The Proposed Full-Order State Observer Design

A full-order observer, which depends on the identified parameters of the I/O linear
approximant system where ĥ, U and Y are known, was proposed in [1]. The observer is

= : ∆
.
z(t) = F

(
ĥ, U

)
∆z(t) + g

(
ĥ, U

)
∆y(t) + m

(
ĥ, U

)
∆u(t), ∆z(0−) = ∆z0, (8)

where ∆z is the estimation of ∆x̃, and F
(

ĥ, U
)
∈ Rn×n, m

(
ĥ, U

)
∈ Rn×1 and

g(ĥ, U) ∈ R1×n are appropriate observer matrices to be selected by the designer. The
matrices F and m are

F
(

ĥ, U
)
= A

(
ĥ, U

)
− g
(

ĥ, U
)

c
(

ĥ, U
)

. (9)

m
(

ĥ, U
)
= b

(
ĥ, U

)
. (10)

The elements of g
(

ĥ, U
)

are selected such that the eigenvalues of F
(

ĥ, U
)

are appropriately

adjusted. Let C−a = {s ∈ C : Re{s} < −a}, where a ≥ 0. Here, the design goal is for the
eigenvalues of F

(
ĥ, U

)
to a-regional stable, real and distinct, i.e., they belong in C−a and

are ordered as follows:

0 ≤ a < ρF,1

(
ĥ, U

)
< · · · < ρF,n

(
ĥ, U

)
. (11)

Similarly to [1], the linear approximant derived after substituting the parameters of the
I/O approximant using the respective identified parameters and involving the variations
of the real variables of the nonlinear system is expressed as follows:

∆
.
x̃(t) = A

(
ĥ, U

)
∆x̃(t) + b

(
ĥ, U

)
∆u(t) + εx(t), ∆x̃(0−) = x̃(0−)− X̃. (12)

where εx(t) is the modeling error between the nonlinear model (1) and the above linear
approximant. From (8) and (12), the observer estimation error is

.
eO(t) = F

(
ĥ, U

)
eO(t) + εx(t), eO(0−) = eO,0. (13)

The solution of the above system of differential equations is

eO(t) = eO,A(t) + eO,B(t), (14)

where
.
eO,A(t) = F

(
ĥ, U

)
eO,A(t), eO,A(0−) = eO,0, (15)

.
eO,B(t) = F

(
ĥ, U

)
eO,B(t) + εx(t), eO,B(0−) = 0n×1. (16)

In order to express the solution of (15) and since the eigenvalues of F
(

ĥ, U
)

are
constrained to be a-regional stable, it can be verified that (see also [1])

eO,A(t) =

[
n

∑
k=1

exp
(
−ρF,k

(
ĥ, U

)
t
)

Φk

(
ĥ, U

)]
eO,0; k = 1, . . . , n, (17)

where

Φk

(
ĥ, U

)
= lim

s→ρF,k(ĥ,U)

[(
s + ρF,k

(
ĥ, U

))(
sIn − F

(
ĥ, U

))−1
]

. (18)
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In order to express the steady-state values of the solution of (16), similarly to [1], the
case of stepwise responses will be considered, i.e., the input of the system will be considered
to be of the step form

u(t) = U + uwus(t). (19)

where us(t) is the unit step signal and uw is a positive real number, denoting the amplitude
of the input. From (12), it can be verified that the steady-state value of the modeling error
is of the form

εx,SS

(
ĥ, U, uw

)
= lim

t→+∞
εx(t) = −A

(
ĥ, U

)(
X̃w − X̃

)
− b
(

ĥ, U
)

uw, (20)

where X̃w is the vector of the steady-state values of the state variables after the application of
the step input signal. From (16) and (20), it can be verified that the vector of the steady-state
values of the elements of the estimation error is of the form

eO,SS

(
ĥ, U, uw

)
=
(

A(ĥ, U)− g
(

ĥ, U
)

c
)−1

εx,SS

(
ĥ, U, uw

)
. (21)

The above analysis is used in the following section to produce a new type of criterion
for the determination of the observer parameters.

3. A New Criteria for the Determination of the Observer Parameters

In the present section, based on the results presented in Section 2, new criteria for
the determination of the observer parameters and the corresponding target operating
areas are proposed. In particular, the design criteria are based on the transient response
of the observer, as well as the resulting steady-state error. With respect to the transient
response part, the approach presented in [1] is used. With respect to the steady state
error, a multimetric scheme, which appears to offer increased flexibility on the resulting
observer performance, is proposed. The present section concludes with the presentation of
an observer-switching scheme between different operating points.

3.1. Design Requirements

From (17) and (18), it can be observed that

‖eO,A(t)‖α < exp(−at)

[
n

∑
k=1

∥∥∥Φk

(
ĥ, U

)∥∥∥
α

]
‖eO,0‖α, ∀t ≥ 0. (22)

To guarantee that ‖eO,A(t)‖α is enough small for all initial conditions, it is required that the
following cost function (see also [1]) is enough small, i.e.,

J∗e,A

(
ĥ, U, ρF

)
= exp(−a)

[
n

∑
k=1

∥∥∥Φk

(
ĥ, U

)∥∥∥
α

]
≤ ζe, (23)

where ζe ∈ R+ is a positive real number set by the designer.
Regarding the steady-state error, an extension of the design goal in [1] is proposed.

Here, a set of cost criteria, where each criterion refers to only one state variable, is proposed.
In particular, the ratio of the steady-state estimation error to the steady state of the variation
of the state vector is required to be appropriately bounded. These cost criteria requirements
are the following:

(
J∗e,O
)

j

(
ĥ, U, ρF, uw

)
=

∣∣∣∣∣∣∣
(eO,SS)j

(
ĥ, U, uw

)
(

X̃w

)
j
− X̃j

∣∣∣∣∣∣∣ ≤ ζSS,j; ∀j ∈ {1, . . . , n}, (24)
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where
(

X̃w

)
j
, X̃j and (eO,SS)j

(
ĥ, U, uw

)
are the jth elements of X̃w, X̃ and eO,SS

(
ĥ, U, uw

)
,

respectively, and (ζSS)j are small enough positive real numbers set by the designer. It is
important to mention that the inequality constraint in (24) is different than that proposed
in [1], as the constraint in [1] is an overall Euclidean norm type of steady-state error metric.
The herein-proposed multimetric scheme more accurately represents the different physical
characteristics of each state variable and offers increased flexibility on the resulting observer
performance.

The observer design procedure is completed by determining the elements of ρF so
that |uw| is maximized under the constraints in (23) and (24). Clearly, this is a quite
complex nonlinear maximization problem under constraints. Its analytic solution is hard
to determine. Toward solving this maximization problem under inequality constraints,
a metaheuristic algorithm of the type in [8,9] is proposed in Section 4. The goal of the
algorithm is the numerical determination of ρF, resulting in a suboptimal solution satisfying
the inequality constraints.

In the following subsection, the consequences of the herein-proposed multimetric
criterion to the switching scheme are presented.

3.2. Switching Scheme

According to [1] and the above analysis, the observer matrices depend upon the
operating point of the system belonging to a prespecified set of operating points of the
systems denoted as L =

{
l1,l2, . . . ,lµ

}
, where li = (Yi, Ui) and where Yi and Ui denote

the respective nominal output and input values of li, where i ∈ {1, . . . , µ}. This set is called
the set of nominal operating points. Around each nominal operating point li, the nonlinear
system is approximated using a respective linear state space approximant denoted as
ℵi = (Ai, bi, ci) and evaluated using (7), where ĥi are the respective identified I/O linear
approximant coefficients. Thus, for each nominal operating point, the respective observer
matrices are of the form F

(
ĥi, Ui

)
, g
(

ĥi, Ui

)
and m

(
ĥi, Ui

)
. For each nominal operating

point set, the corresponding set of observer parameters is denoted by iρF

(
ĥi, Ui

)
. Clearly,

a bank of observers, with one per operating point, is designed. The bank of observers
includes the observers =1, . . . ,=µ and is coordinated using a switching mechanism that
appropriately enables the operation of appropriately chosen observers of the bank.

The presentation of the cost function introduced in the previous subsection is com-
pleted by presenting its influence on the determination of the target operating areas. To
this end, the primary module of the stepwise safe transition, namely, the transition from an
initial operating point, denoted by lI = (YI , UI), to a destination operating point, denoted
by lD = (YD, UD), is necessary. The nominal value of the state vector at the initial oper-
ating point is denoted by X̃I and the nominal value of the state vector at the destination
operating point is denoted by X̃D. The observer used during this transition is determined
by the nominal operating point li = (Yi, Ui) and the respective identified data ĥi. For
the observer to be applied to the nonlinear system, the nominal value of the state vector,
denoted by X̃i and corresponding to li = (Yi, Ui), is added to the estimated state vector
produced by the linear observer. Following [1] and using (23) and (24), the target operating
area of each operating point is determined in terms of the new cost function as follows:

T(Ui) = [Ui − ui,max, Ui + ui,max] ⊆ iTO

(
ĥi, Ui, iζe, iζSS,j

)
,

ui,max = max
{

ui ∈ R+ : [Ui − ui, Ui + ui] ⊆ iTO

(
ĥi, Ui, iζe, iζSS,j

)}
,

(25)

where

iTO(ĥi, Ui, a, χO,A, χO,B) =
{
(UI , UD) ∈ R×R :

(
i J∗e,A

(
ĥi, Ui, iρF

)
≤ iζe

)
∧(

i
(

J∗e,O

)
j

(
ĥi, Ui, ai, UD −Ui

)
≤ iζSS,j, ∀j ∈ {1, . . . , n}

)
; u(t) = (UD −Ui)us(t) + UI

}
.

(26)
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According to [1] and assuming that

if µ > 1 and Ui < Ui+1, ∀i ∈ {1, . . . , µ− 1}, (27)

then the dense web principle is expressed as

T(Ui) ∩T(Ui+1) 6= ∅, ∀i ∈ {1, . . . , µ− 1}. (28)

The stepwise transitions are safe if the transition from one initial operating point
lI = (YI , UI) to a destination operating point lD = (YD, UD), where UI ≤ UD is divided
to create appropriate individual transitions. To define these transitions, let UI ∈ T(Ui) and
UD ∈ T(Ui+ν), where i ∈ {1, . . . , µ} and ν ∈ {0, . . . , µ− i}. Let

νσ = max
{

k ∈ {i + σ− 1, . . . , ν} : T(Ui+νσ−1) ∩T(Uk) 6= ∅
}

, σ ∈ {0, . . . , ν}. (29)

The first transition is from lI = (YI , UI) to the intermediate destination point
lD,1 = (YD,1, UD,1), where UD,1 ∈ T(Ui) ∩ T

(
Ui+ν1

)
. The second transition is from

lD,1 = (YD,1, UD,1) to lD,2 = (YD,2, UD,2), where UD,2 ∈ T
(
Ui+ν1

)
∩ T

(
Ui+ν2

)
. The tran-

sitions continue till the final destination point, denoted as lD, f =
(

YD, f , UD, f

)
, where

UD, f ∈ T
(

Ui+ν f−1

)
∩ T

(
Ui+ν f

)
and ν f = ν. lD, f = lD = (YD, UD) and f is the total

number of the transitions. The transition from lD = (YD, UD) to lI = (YI , UI) is the
reverse sequence of steps.

Due to the highly nonlinear nature of the inequalities in (23) and (24), as well as the
definition of the target operating areas, the analytic determination of the observer parame-
ters and the target operating areas is a daunting task. In order to derive a solution to this
problem despite its complexity, a metaheuristic algorithm is proposed in the next section.

4. A Metaheuristic Algorithm toward Determination of the Target Operating Areas

In the present section, taking advantage of the property that the unknown quantities
are real numbers, a metaheuristic algorithm of the type in [8,9] is proposed for both
the determination of the necessary number of operating points and the evaluation of
the observer parameters. The basic idea of the algorithm is to compute a suboptimal
solution that satisfies the design goals upon first defining an initial search area for the
observer parameters ρF. After the execution of several loops, the algorithm converges to
the suboptimal solution. For the execution of the algorithm, an appropriate cost function
that is minimized by the algorithm under all necessary constraints is defined.

Let Ui (i = 1, . . . , µ) be the nominal value of the input around which the target
operating area must be determined and ĥi be the identified I/O parameters of the linear
approximant of the system corresponding to Ui. In what follows, it is assumed that Ui
and ĥi were previously determined. Let iρF be the corresponding observer parameters and
iuw be the half-width of the target operating area. Here, the performance criterion to be
minimized is selected to be of the form

Q
(

ĥi, Ui,
iρF, iuw

)
= γe,A J∗e,A

(
ĥi, Ui,

iρF

)2
+

n

∑
j=1

(γe,O)j
(

J∗e,O
)

j

(
ĥi, Ui,

iρF, iuw

)2
+

n

∑
j=1

(γF)jρF,j

(
ĥi, Ui

)2
+ γw

(
iuw

)−2
(30)

where γe,A, (γe,O)j, (γF)j and γw (j = 1, . . . , n) are non-negative real weight factors con-
strained to satisfy the equality

γe,A +
n

∑
j=1

(γe,O)j +
n

∑
j=1

(γF)j + γw = 1. (31)

Clearly, the weight factors can be used to adjust the influence/importance of each term to
the performance criterion. Furthermore, considering that the performance criterion in (30)
incorporates quantities of different natures that are expressed in different units and of dif-
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ferent orders of magnitude, the weight factors serve as the normalization coefficients of the
various quantities. Note that the positive exponent in the first three terms implies improved
performance for smaller values of the respective metrics, while the negative exponent in
the last term leads to improved performance for larger values of iuw, corresponding to a
larger operating area. Minimization of the performance criterion in (30) and (31) must be
made under the constraints in (11), (23) and (24) by appropriately selecting iρF and iuw. Let
nloop, nrep and ntotal be the number of loops, the number of loop repetitions and the total
allowable number of computations, respectively. Also, let σ ∈ R+ be a convergence metric
of the search algorithm, and

(
ρ̃F,j
)(

ĥi, Ui

)
,
(
_
ρ F,j

)(
ĥi, Ui

)
, iũw and i_u w be the bounds of

the observer parameters, defining a search area for each parameter being of the form(
ρ̃F,j
)(

ĥi, Ui

)
≤ ρF,j

(
ĥi, Ui

)
≤
(
_
ρ F,j

)(
ĥi, Ui

)
(32)

iũw ≤ iuw ≤ i_u w (33)

From the bounds in (32) and (33), the respective half-widths and the center value can be
evaluated using (

ρF,j
)

w

(
ĥi, Ui

)
=
(
_
ρ F,j

)(
ĥi, Ui

)
−
(
ρ̃F,j
)(

ĥi, Ui

)
(34)

(
ρF,j
)

c

(
ĥi, Ui

)
=
[(

_
ρ F,j

)(
ĥi, Ui

)
+
(
ρ̃F,j
)(

ĥi, Ui

)]
/2 (35)

(
iuw

)
w
= i_u w − iũw (36)

(
iuw

)
c
=
(

i_u w + iũw

)
/2 (37)

In each cycle of the metaheuristic algorithm, a superset of nloop sets of observer
parameters is determined that satisfy the constraints in (11), (23) and (24). For each set
of observer parameters belonging to the superset, the cost criterion in (30) and (31) is
evaluated and the optimal value is extracted. This procedure is repeated for a total number
of nrep, producing a new superset containing the nrep optimal observer parameters, which
are determined in each repetition. From the second superset, the optimal set of observer
parameters defines the new center values of observer parameters. The updated half-
widths are evaluated as the difference between the maximum and minimum values of
each parameter in the second superset. The above procedure is repeated until all observer
parameters converge to a certain value, i.e., when∣∣∣∣∣∣

(
ρF,j
)

w

(
ĥi, Ui

)
(
ρF,j
)

c

(
ĥi, Ui

)
∣∣∣∣∣∣ < σ ∀j ∈ {1, . . . , n} and

∣∣∣∣∣
(iuw

)
w(

iuw
)

c

∣∣∣∣∣ < σ (38)

The algorithm aborts unsuccessfully if a total number of ntotal sets of observer parameters
are generated.

The analytic form of the metaheuristic algorithm is given as Algorithm 1.
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Algorithm 1 Metaheuristic Algorithm

Inputs

• The nominal value Ui and the respective identified model parameters ĥi.

• The performance criterion Q
(

ĥi, Ui, iρF, iuw

)
.

• The bounds ζe and ζSS,j (j = 1, . . . , n).

• Center values and half-widths for the initial search area of the parameters
(

ρF,j

)
w

(
ĥi, Ui

)
and

(
ρF,j

)
c

(
ĥi, Ui

)
(j = 1, . . . , n), as well as

(
iuw

)
w

and
(

iuw

)
c
.

• The stability margin ai.
• The iteration parameters nloop, nrep, ntotal ∈ N.
• The convergence threshold σ.

Outputs

• The observer poles ρF,j

(
ĥi, Ui

)
(j = 1, . . . , n).

Algorithm
1: Set the numbering index imax = 0.
2: Determine a search area = for the observer parameters according to the inequalities in (27).
3: for i1 = 1, . . . , nrep.
4: for i2 = 1, . . . , nloop
5: Set the numbering index imax = imax + 1.
6: if imax > ntotal
7: Go to 22.
8: end if
9: Randomly select a set of observer parameters within the search area =, let

ρF,j

(
ĥi, Ui

)
=
(

ρF,j

)
i2

(
ĥi, Ui

)
(j = 1, . . . , n) and iuw =

(
iuw

)
i2

.

10: if the conditions in (11), (23) and (24) are not satisfied
11: Go to 9.
12: end if

13: Evaluate Qi2 = Q
(

ĥi, Ui,
(

iρF

)
i2

,
(

iuw

)
i2

)
.

14: end for
15: Find Qi1,min = min

{
Qi2 , i2 = 1, . . . , nloop

}
, as well as the corresponding observer

parameters; let
(

ρF,j

)
i1

(
ĥi, Ui

)
(j = 1, . . . , n) and

(
iuw

)
i1

.

16: end for
17: Find the parameters

(
ρF,j

)
min

(
ĥi, Ui

)
and

(
iuw

)
min

corresponding to

Qmin = min
{

Qi1,min, i1 = 1, . . . , nrep
}

, as well as the ranges

δρF,j

(
ĥi, Ui

)
= max

{(
ρF,j

)
i1

(
ĥi, Ui

)
, i1 = 1, . . . , nrep

}
−min

{(
ρF,j

)
i1

(
ĥi, Ui

)
, i1 = 1, . . . , nrep

}
(j =1, . . . , n) and iδuw = max

{(
iuw

)
i1

, i1 = 1, . . . , nrep

}
−min

{(
iuw

)
i1

, i1 = 1, . . . , nrep

}
.

18: Define (
ρF,j

)
c

(
ĥi, Ui

)
=
(

ρF,j

)
min

(
ĥi, Ui

)
(j = 1, . . . , n),(

ρ̃F,j

)(
ĥi, Ui

)
=
(

ρF,j

)
c

(
ĥi, Ui

)
− δρF,j

(
ĥi, Ui

)
(j = 1, . . . , n),(

_
ρ F,j

)(
ĥi, Ui

)
=
(

ρF,j

)
c

(
ĥi, Ui

)
+ δρF,j

(
ĥi, Ui

)
(j = 1, . . . , n),(

iuw

)
c
=
(

iuw

)
min

, iũw =
(

iuw

)
c
− iδuw, i_u w =

(
iuw

)
c
+ iδuw,

and evaluate
(

ρF,j

)
w

(
ĥi, Ui

)
(j = 1, . . . , n) and

(
iuw

)
w

using (34) and (36).
19: if the inequalities in (38) are not satisfied
20: Go to 2.
21: end if
22: Set ρF,j

(
ĥi, Ui

)
=
(

ρF,j

)
min

(
ĥi, Ui

)
(j = 1, . . . , n) and iuw =

(
iuw

)
min

.



Mathematics 2023, 11, 4733 12 of 42

It is important to mention that the above algorithm determines the target area for a
given nominal value of the input. Clearly, this procedure must be repeated for a large
enough number of points so that a desired area is covered through target operating areas
satisfying the dense web principle. Let U∗min and U∗max be the minimum and maximum
values of the area that needs to be covered through target operating areas satisfying the
dense web principle. Furthermore, let np be an initial number of points of nominal values
of the input to be selected within U∗min and U∗max, i.e., U∗min < Ui < U∗max for i = 1, . . . , np.
In what follows, it is assumed that these points are uniformly distributed and, without
loss of generality, that U∗min < U1 < U2 < . . . < Unp < U∗max. Toward determination of the
total number of points needed to cover all the area between U∗min and U∗max, the following
Algorithm 2 is proposed.

Algorithm 2 Determination of the number of input nominal value points

Inputs

• The minimum and maximum values U∗min and U∗max.
• The initial number of points np.

Outputs

• The set of target operating areas

Algorithm
1: Create a uniform grid of np nominal values of the input so that U∗min < Ui < U∗max
(i = 1, . . . , np).
2: for i = 1, . . . , np

3: Identify the unknown I/O system parameters ĥi.
4: Evaluate the target operating areas corresponding to the nominal value of the input.
5: end for
6: Examine whether the dense web principle is satisfied.
7: if the dense web principle is satisfied
8: Go to 15.
9: else
10: Find the areas that remain uncovered and select additional points in the middle of the
uncovered areas.
11: Identify the unknown I/O system parameters for the additional points.
12: Evaluate the target operating areas of each additional point
13: end if
14: Go to 6.
15: Eliminate the superfluous points corresponding to target areas covered by other ones.

The two algorithms constitute a unified approach toward determining both the target
operating areas satisfying the dense web principle and the observer parameters correspond-
ing to these areas.

5. Applications to Alcoholic Fermentation Dynamics

In Sections 5 and 6, the theoretical tools presented in Sections 2–4 are shown to be
validated through the application of the tools to the mathematical model of an alcoholic
fermentation process. In the present section, after presenting the nonlinear model of
the process, the respective linear approximant is derived. The accuracy of the linear
approximant compared with the original nonlinear model is examined through a series of
computational experiments.

5.1. Nonlinear System Model

The dynamics of the process are described using a nonlinear system of equations of
the form (1) (see [23,24]), where

x̃(t) =
[
x̃1(t) x̃2(t)

]T
=
[
C(t) S(t)

]T , fNL(x̃, u) =
[
( fNL)1(x̃, u) ( fNL)2(x̃, u)

]T , (39)
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( fNL)1(x̃, u) = (µ(t)− u(t))x̃1(t), ( fNL)2(x̃, u) = − 1
Yc/s

µ(t)x̃1(t) + (Sa − x̃2(t))u(t), (40)

µb(t) = µm x̃2(t)/(Ks + x̃2(t)), cNL(x̃) = x̃2 (41)

and where C and S are the biomass and substrate concentrations in the bioreactor, respec-
tively; u is the dilution rate (actuatable input); Sa is the influent substrate concentration;
µb is biomass growth rate; µm is the maximum growth rate; Ks is the saturation constant;
and Yc/s is the yield coefficient. Note that the influent substrate concentration is considered
herein to be constant. From the form of cNL(x̃), it can readily be observed that the output
of the system can be rewritten in the form y(t) = cx(t), where c =

[
0 1

]
. Finally, let

x(0−) = x0 be the initial conditions of the nonlinear model (39)–(41).

5.2. Linear Approximant

From (39)–(41), it can be proved that there exist two types of operating points. These
two types of operating points are

X̃ =

[
X̃1
X̃2

]
=

[
Yc/s(Sa − Ks/(µmU−1 − 1))

Ks/(µmU−1 − 1)

]
, (42)

X̃ =

[
X̃1
X̃2

]
=

[
0
Sa

]
. (43)

Clearly, the second type of operating points corresponds to the washout conditions (see [38,39]),
which is undesirable. By applying a series of computations and considering that the
dilution rate is positive, as is expected, it can be proven that (31a) is a stable operating point
if and only if

U ∈ (0, Umax), (44)

where Umax = Saµm/(Ks + Sa). If U ∈ [Umax,+∞), then the only feasible operating point
is (43). Hence, in order to guarantee normal operating conditions, the nominal value of the
state vector will be considered to satisfy (42). Using (44), the ranges of the nominal values
of the state variables are computed to be

X̃1 ∈
(

X̃1,min, X̃1,max

)
; X̃1,min = 0, X̃1,max = SaYc/s, (45)

X̃2 ∈
(

X̃2,min, X̃2,max

)
; X̃2,min = 0, X̃2,max = Sa. (46)

Using (42), the linear approximant of the process around X̃ in (42) is computed to be of the
form (2), where

A =

 0 Yc/s(U−µm)[(Ks+Sa)U−Saµm ]
Ksµm

− U
Yc/s

−KsU2+Sa(U−µm)2

Ksµm

, b =

[
Yc/s

(
KsU

µm−U − Sa

)
Sa − KsU

µm−U

]
. (47)

From (47) it can be verified that the characteristic polynomial of ℵL is of the form

p(s) = s2 + s
KsU2 + Sa(U − µm)

2

Ksµm
+

U(U − µm)[(Ks + Sa)U − Saµm]

Ksµm
, (48)

while its roots are computed to be

r1 = −U, r2 = − (U − µm)[(Ks + Sa)U − Saµm]

Ksµm
. (49)
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Applying elementary manipulations, the I/O description of the linear approximant of the
process takes on the form

S : ∆L
.
y(t) + hD∆Ly(t) = hN∆u(t), (50)

where
hD = −r2, hN = Sa + KsU/(U − µm). (51)

Clearly, the transfer function is H(s) = hN/(s + hD). Note that by using the definitions in
(51), the linear approximant system matrices in (47) can be rewritten as

A =

[
0 Yc/shD

−U/Yc/s −(hD + U)

]
, b =

[
−Yc/shN

hN

]
. (52)

5.3. Accuracy of the Linear Approximant

The accuracy of the response (forced response plus free response) of the linear ap-
proximant compared with the respective response of the nonlinear process is investigated
through the following norm-type cost functions (see also [1,2]):

J∞ =

max
j=1,2

 sup
t∈[t0,(Tmax)j ]

∣∣∣x̃j(t)− ∆L x̃j(t)− X̃j

∣∣∣


max
j=1,2

 sup
t∈[t0,(Tmax)j ]

∣∣∆L x̃j(t)
∣∣

× 100%, (53)

J1 =


2
∑

j=1

[
lim

t→+∞

∣∣∣x̃j(t)− ∆L x̃j(t)− X̃j

∣∣∣]2

2
∑

j=1

[
lim

t→+∞

∣∣∆L x̃j(t)
∣∣]2


1
2

× 100%, (54)

J2 =


2
∑

j=1

(Tmax)j∫
t0−

[
x̃j(t)− ∆L x̃j(t)− X̃j

]2
dt

2
∑

j=1

(Tmax)j∫
t0−

[
∆L x̃j(t)

]2dt



1
2

× 100%. (55)

where (Tmax)j is the upper limit of the integration. This upper limit is equal to the settling
time of xj(t), which is a measurable variable that is around 2% of its steady-state value.
The input in this computational experiment was selected to be of the following step form,
which depends on the input operating value

u(t) = U(1 + puus(t− t0)), (56)

where pu ∈ [(pu)min, (pu)max] and where

−1 < (pu)min < (pu)max < (Umax/U)− 1. (57)

All cost functions in (53)–(55) are evaluated for various step amplitudes in (56) and
initial conditions of the nonlinear model and compatible conditions of its linear approx-
imant. The initial values of the nonlinear system are of the form x̃j(t0−) =

(
1 + pj

)
X̃j,

where pj ∈
((

pj
)

min,
(

pj
)

max

)
,
(

pj
)

min,
(

pj
)

max ∈ R, j ∈ {1, 2} and

−1 <
(

pj
)

min <
(

pj
)

max <
(

X̃j,max/X̃j

)
− 1. (58)
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For a given set of initial conditions and input signal, the linear approximant is declared
as an accurate representation of the original nonlinear model (1) if

(J1 < ε1) ∧ (J2 < ε2) ∧ (J∞ < ε∞). (59)

where ε∞, ε1, ε2 ∈ R+ are desirable upper bounds for the metrics in (53)–(55) to be set by
the designer.

Clearly, both nonlinear model (1) and linear approximant (2) are asymptotically stable.
Hence, the metric J1 defined in (54) does not depend upon the initial conditions but only
upon the steady-state value of the actuatable input. After applying a series of algebraic
manipulations, the metric J1 is determined to have the following analytic form:

J1 = 100
∣∣∣∣ puU
U(1 + pu)− µm

∣∣∣∣. (60)

The computational experiments used to examine the accuracy of (2) compared with
(1) were accomplished using the following values of the fermentation process (see [23,24]):
Yc/s = 0.07, Sa = 100 g/L, µm = 0.38 h−1 and Ks = 0.5 g/L. With respect to the metric
bounds, without loss of generality, let ε∞ = 5 %, ε1 = 5 % and ε2 = 5 %. The computational
experiments were executed for different operating conditions and various values of pu,
p1 and p2. In particular, 37 scenarios of nominal conditions of the input were tested
(see Table 1). Clearly, the above physical parameters and input nominal values uniquely
determined the respective nominal values of the state variables using (42).

Table 1. Scenarios for the nominal values of the input.

n/n U n/n U n/n U n/n U

1 0.0185 11 0.1827 21 0.2702 31 0.3213
2 0.0495 12 0.1936 22 0.2775 32 0.3249
3 0.0714 13 0.2046 23 0.2830 33 0.3286
4 0.0878 14 0.2137 24 0.2885 34 0.3322
5 0.1042 15 0.2228 25 0.2939 35 0.3359
6 0.1188 16 0.2319 26 0.2994 36 0.3395
7 0.1334 17 0.2410 27 0.3049 37 0.3432
8 0.1462 18 0.2483 28 0.3104
9 0.1590 19 0.2556 29 0.3140
10 0.1717 20 0.2629 30 0.3176

The result of the computation experiment was the derivation of the areas satisfying
the conditions in (59) for all 37 scenarios. Indicatively, in Figure 1, the accuracy areas for
pj = 0 (j = 1, 2) are presented. For each operating point, there existed a range of inputs
and initial conditions that satisfied the conditions in (59). The overlapping depended upon
the distance of input nominal values of adjacent scenarios. Note that as the nominal value
of the input approached Umax, the width of the accuracy areas decreased.

The derivation of the operating point scenarios was carried out through a series of
computational experiments, verifying that the inequality constraints in (59) were satisfied
for each operating point while there was minimal overlapping of the areas covering the
entire area of nominal values of the input. Clearly, the determination of the operating
points was not unique and depended upon the desired degree of overlapping. The linear
approximant derived in the following sections was used to develop the switching bank
of observers.
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6. Full-Order Observer Design Based on the Linear Approximant of the Alcoholic
Fermentation Nonlinear Model

In the present section, using the linear approximant of the alcoholic fermentation
process presented in Section 5, a full-state observer is designed by expressing the general
form of the observer matrices as functions of the linear approximant parameters and the
degrees of freedom of the observer, satisfying appropriate nonlinear inequality constraints.
The performance of the estimation results was illustrated through simulations.

6.1. Observer Design

In the present section, full-order observers for the estimation of ∆Lx(t) is designed. By
applying elementary computations, it can be verified that the observability matrix of ℵL is
of the form

O =

[
0 1
− U

Yc/s
−hD −U

]
. (61)

Considering that the nominal value of the input is constrained to satisfy (44), it can readily
be observed that det{O} 6= 0 and hence ℵL is observable. The general form of the full-order
observer of the linear approximant of the system is of the form

=L : ∆L
.
x̂(t) = F∆L x̂(t) + g∆Ly(t) + m∆u(t)

∆L x̂(0−) = ∆L x̂0
, (62)

where ∆L x̂(t) is the estimation of the state vector of ℵL. The general forms of the observer
matrices are

F =

[
0 hDYc/s − g1
− U

Yc/s
−hD −U − g2

]
, g =

[
g1
g2

]
, m = b, (63)

where g1, g2 ∈ R. Clearly, the error dynamics of the observer are described by (13). The
parameters g1 and g2 are to be selected by the designer under the constraint to satisfy the
stability and desired error response characteristics of the error dynamics of the observer.
From (63), it can be observed that the observer characteristic polynomial is of the form

po(s) = s2 + a f ,1s + a f ,0, (64)

where a f ,1 = g2 + hD + U and a f ,0 = u(hD − g1/Yc/s). To achieve a small enough esti-
mation error and desirable transient response characteristics, the regional stability of the
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observer characteristic polynomial (64) is imposed. In particular, consider the a− regional
stability requirement presented in Section 2. This property is satisfied if and only if

(g2 > 2a− hD −U) ∧
(

g1 < U−1Yc/s

[
a2 + hdU − a(g2 + hD + U)

])
. (65)

From (65), it can be observed that the general solutions of the observer gains g1 and g2 are

g1 = Yc/s

[
hD − aU−1(a + γ1)− γ2

]
, (66)

g2 = 2a− hD −U + γ1, (67)

where γ1, γ2 ∈ R+ are free parameters. In addition to the requirement for regional stability,
the requirement of real and distinct roots of the characteristic polynomial of F is also
imposed. This additional requirement is satisfied if and only if 0 < γ2 < γ2

1/4U. Clearly,
the eigenvalues of F belong to C−a and are real and distinct if and only if

(γ1 > 0) ∧
(

0 < γ2 <
γ2

1
4U

)
. (68)

Assuming that the inequalities in (48) hold, the observer matrix F takes on the form

F = F(γ1, γ2) =

[
0 Yc/s

[
aU−1(a + γ1) + γ2

]
−U/Yc/s −2a− γ1

]
, (69)

while the coefficients of the polynomial in (64) become a f ,1 = 2a+γ1 and a f ,0 = a(a + γ1)+
Uγ2. Using (18) and applying a series of computations, it can be observed that

Φ1 =

−2a−γ1+
√

γ2
1−4Uγ2

2
√

γ2
1−4Uγ2

−Yc/s [a(a+γ1)+Uγ2]

U
√

γ2
1−4Uγ2

U
Yc/s
√

γ2
1−4Uγ2

2a+γ1+
√

γ2
1−4Uγ2

2
√

γ2
1−4Uγ2

, Φ2 = I2 −Φ1 (70)

In what follows, it is assumed that α = 2. Also, after applying appropriate manipulations,
it can be verified that

‖Φ1‖2
2 = ‖Φ2‖2

2 =
{(

U2 + a2Y2
c/s

)[
U2 + Y2

c/s(a + γ1)
2
]
− 2U3Y2

c/sγ2 + 2aUY4
c/s(a + γ1)γ2 + U2Y4

c/sγ2
2

}
/
[
U2Y2

c/s

(
γ2

1 − 4Uγ2

)]
. (71)

Furthermore, it can be observed that(
J∗e,O
)

1 = J̃SS,1|uw| (72)(
J∗e,O
)

2 = J̃SS,2|uw| (73)

where

J̃SS,1 =

∣∣∣∣∣∣
[
a2 + a(γ1 − 2U) + U(γ2 − γ1)

]
[(Ks + Sa)U − Saµm]

U
{

SaU(U − µm)
2 + Ks[U3 −U2µm + a(a + γ1)µm + U(γ2 − hd)µm]

}
∣∣∣∣∣∣ (74)

J̃SS,2 =

∣∣∣∣∣ U[(Ks + Sa)U − Saµm]

SaU(U − µm)
2 + Ks[U3 −U2µm + a(a + γ1)µm + U(γ2 − hd)µm]

∣∣∣∣∣ (75)

From (72) and (75), it can be observed that(
J∗e,O

)
1(

J∗e,O

)
2

=
J̃SS,1

J̃SS,2
=

1
U2

∣∣∣a2 + a(γ1 − 2U) + U(γ2 − γ1)
∣∣∣ (76)
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For observer design purposes, it is desirable that the inequalities in (23) and (24) hold. The
parameter uw can be considered known a priori. Hence, the design inequalities in (23) and
(24) can be restated as (

J̃SS,1 ≤ ζ̃SS,1

)
∧
(

J̃SS,2 ≤ ζ̃SS,2

)
∧ (Je ≤ ζe) (77)

where ζ̃SS,1, ζ̃SS,2 ∈ R+ are to be selected by the designer.
Assuming that the inequalities in (68) hold and setting

γ1 = −2a + ρF,1 + ρF,2, γ2 = (a− ρF,1)(a− ρF,2)/U, (78)

the observer matrices are rewritten in terms of the observer poles as

F = F(ρF,1, ρF,2) =

[
0 Yc/sρF,1ρF,2/U
−U/Yc/s −(ρF,1 + ρF,2)

]
, (79)

g = g(ρF,1, ρF,2) =

Yc/s[SaU(U−µm)2+Ks(U3−U2µm−µmρF,1ρF,2)]
KsUµm

−U2

µm
− Sa(U−µm)2

Ksµm
+ ρF,1 + ρF,2

. (80)

Furthermore, the two norms of Φ1 and Φ2, as well as J̃SS,1 and J̃SS,2, take on the form

‖Φ1‖2
2 = ‖Φ2‖2

2 =

(
U2 + Y2

c/sρ2
F,1

)(
U2 + Y2

c/sρ2
F,2

)
U2Y2

c/s(ρF,1 − ρF,2)
2 , (81)

J̃SS,1 =
(Ks + Sa)U − Saµm

KsUµmρF,1ρF,2
|U(ρF,1 + ρF,2)− ρF,1ρF,2|, (82)

J̃SS,2 =
U[(Ks + Sa)U − Saµm]

KsµmρF,1ρF,2
. (83)

Using (51), the relations in (80), (82) and (83) take on the form

g = g(ρF,1, ρF,2) =

[
Yc/s

(
hD −

ρF,1ρF,2
U

)
ρF,1 + ρF,2 − hD −U

]
, (84)

J̃SS,1 =
hD

U(µm −U)ρF,1ρF,2
|U(ρF,1 + ρF,2)− ρF,1ρF,2|, (85)

J̃SS,2 =
hDU

(µm −U)ρF,1ρF,2
. (86)

Using (81), (85) and (86), it can be verified that the conditions in (77) are satisfied if
and only if(

ζ̃SS,1 ≥
(

ζ̃SS,1

)
min

(hD, ρF,1, ρF,2)
)
∧
(

ζ̃SS,2 ≥
(

ζ̃SS,2

)
min

(hD, ρF,1, ρF,2)
)
∧ (ζe ≥ (ζe)min(ρF,1, ρF,2)). (87)

where (
ζ̃SS,1

)
min

(hD, ρF,1, ρF,2) = hD
U(ρF,1 + ρF,2)− ρF,1ρF,2

U(U − µm)ρF,1ρF,2
, (88)

(
ζ̃SS,2

)
min

(hD, ρF,1, ρF,2) =
hDU

(µm −U)ρF,1ρF,2
, (89)

(ζe)min(ρF,1, ρF,2) = 2

√√√√√ e−2a
(

U2 + Y2
c/sρ2

F,1

)(
U2 + Y2

c/sρ2
F,2

)
U2Y2

c/s(ρF,1 − ρF,2)
2 . (90)
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Without loss of generality, let ρF,2 = λρF,1, where λ > 1. By applying a series of computa-
tions to (88), it can be verified that

inf
ρF,1 ∈ (a, ∞)
λ ∈ (1, ∞)

(
ζ̃SS,1

)
min

(hD, ρF,1, ρF,2) =

{ hD(a−2U)
aU(µm−U)

if a ∈ (2U,+∞)

0 if a ∈ (0, 2U]
. (91)

It can also be verified that the minimum value of the upper branch of (91) is achieved as
ρF,1 tends to a and λ tends to unity, i.e., it holds that

lim
ρF,1 → a
λ→ 1

(
ζ̃SS,1

)
min

(hD, ρF,1, ρF,2) =
hD(a− 2U)

aU(µm −U)
, (92)

while the lower branch of (91) is achieved for

ρF,1 = U(1 + λ)/λ, (93)

In a similar manner, from (89), it can be verified that

inf
ρF,1 ∈ (a, ∞)
λ ∈ (1, ∞)

(
ζ̃SS,2

)
min

(hd, ρF,1, ρF,2) = 0. (94)

while the minimum value of (89) is achieved for λρ2
F,1 tending to infinity.

Finally, applying a series of computations to (90), it can be observed that

inf
ρF,1 ∈ (a, ∞)
λ ∈ (1, ∞)

(ζe)min(ρF,1, ρF,2) = 2e−a λ + 1
λ− 1

(95)

if (
1 < λ ≤ U2

a2Y2
c/s

)
∧
(

0 < a <
U

Yc/s

)
(96)

or

inf
ρF,1 ∈ (a, ∞)
λ ∈ (1, ∞)

(ζe)min(ρF,1, ρF,2) =
2e−a

aUYc/s(λ− 1)

√(
U2 + a2Y2

c/s

)(
U2 + a2Y2

c/sλ2
)

(97)

if [(
λ >

U2

a2Y2
c/s

)
∧
(

0 < a <
U

Yc/s

)]
∨
[
(λ > 1) ∧

(
a ≥ U

Yc/s

)]
(98)

With respect to the stability margin of the observer poles, three distinct cases are
examined. In the first case, the observer poles are considered to depend upon the operating
point, namely, it is required that the stability margin is greater than the linear approximant
system poles corresponding to the operating point at hand, while it is not necessary to
simultaneously cover all scenarios of nominal values of the input. In this case, the respective
stability margin is chosen to satisfy the following inequality

ai > max{Ui, hD(Ui)}. (99)
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Note that

max{Ui, hD(Ui)} =

 hD(Ui) if Ui < µm

(
1−

√
Ks

Ks+Sa

)
Ui if µm

(
1−

√
Ks

Ks+Sa

)
< Ui < µm

. (100)

Considering that the system poles depend upon the nominal value of the input, in
order to cover all valid scenarios of the nominal value of the input, it suffices to set the
stability margin to satisfy the inequality

a > sup
U∈(0,Umax)

{max{U, hD(U)}}. (101)

This is the second scenario for the stability margin. By applying a series of computations, it
can be verified that

sup
U∈(0,Umax)

{max{U, hD(U)}} = Saµm

Ks
. (102)

In the third stability margin scenario, which is of particular interest, the observer poles
are determined such that the steady-state error between the biomass concentration and the
estimation of biomass concentration for step input changes equals zero, i.e.,

JSS,1 = 0. (103)

Applying elementary computations, it can be verified that the condition in (103) can be
satisfied if and only if

ρF,1 = Ui(1 + λ)/λ. (104)

Considering that λ > 1, it can readily be verified that ρF,1 > Ui. Assuming that
max{Ui, hD(Ui)} = Ui, using an appropriate choice of λ, the inequality in (99) can be
satisfied under the constraint

ai ∈ (Ui, 2Ui). (105)

Assuming that max{Ui, hD(Ui)} = hD(Ui), two cases can be distinguished. By applying a
series of computations, it can be observed that if

(Ui < hD(Ui) < 2Ui) ∧
(

1 < λ <
Ui

hD(Ui)−Ui

)
. (106)

then the inequality in (99) is satisfied. Note that the first inequality in (106) is satisfied if
and only if

µm

2(Ks + Sa)

[
3Ks + 2Sa −

√
Ks(9Ks + 8Sa)

]
< Ui < µm

(
1−

√
Ks

Ks + Sa

)
. (107)

Assuming that the constraints in (106) are not satisfied, then the inequality in (99) cannot
be satisfied by any choice of λ. Nevertheless, if[

(Ui < hD(Ui) ≤ 2Ui) ∧
(

λ >
Ui

hD(Ui)−Ui

)]
∨
[
(hD(Ui) > 2Ui) ∧

(
λ >

hD(Ui)−Ui
Ui

)]
, (108)

it can be verified that
(ρF,1 > Ui) ∧ (λρF,1 > hD(Ui)). (109)

Clearly, since λ > 1, it can be verified that ai = Ui(1 + λ)/λ.

6.2. Determination of the Observer Parameters

From Section 6.1, it is observed that the analytic determination of λ and ρF,1 is compli-
cated, as JSS,1, JSS,2 and Je are nonlinear functions of the observer parameters. Consequently,
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the problem of determining observer parameters so that the inequalities in (77) are simulta-
neously satisfied can be studied using a heuristic type of algorithm.

As already mentioned in Section 6.1, of particular interest is the case where the steady-
state error between the biomass concentration and the estimation of biomass concentration
for step input changes equals zero, which is achieved using (104). For observer design
purposes, it remains to determine λ so that the second and third inequalities in (77) are
satisfied. To avoid numerical errors in the implementation of the observer, the value of
λ must be as small as possible. By applying a series of computations upon the second
inequality in (77), it can be observed that

|uw| ≤ Q2(λ). (110)

where

Q2(λ) =
ζSS,2Ui(1 + λ)2(µm −Ui)

hdλ
. (111)

Using elementary manipulations, it can be observed that its first derivative is

Q(1)
2 (λ) =

dQ2(λ)

dλ
=

Ui
(
λ2 − 1

)
ζSS,2(µm −Ui)

hdλ2 . (112)

From (112) it can be verified that Q(1)
2 (λ) is strictly increasing for all λ ∈ (1, ∞). Similarly,

the third inequality in (77) can be rewritten as

Q3(λ) ≤ ζe (113)

where

Q3(λ) =
2 exp

[
−Ui

(
1 + 1

λ

)]
Yc/s(λ2 − 1)

√[
1 + Y2

c/s(1 + λ)2
][

λ2 + Y2
c/s(1 + λ)2

]
(114)

Applying elementary computations to (114), it can be observed that

Q(1)
3 (λ) =

dQ3(λ)

dλ
=

2U
(
λ2 − 1

)[
1 + Y2

c/s(1 + λ)2
][

λ2 + Y2
c/s(1 + λ)2

]
− 2λ2

[
λ + Y2

c/s(1 + λ)2
][

1 + λ2 + 2Y2
c/s(1 + λ)2

]
Yc/sλ2(λ2 − 1)2

√[
1 + Y2

c/s(1 + λ)2
][

λ2 + Y2
c/s(1 + λ)2

] e−Ui(1+ 1
λ ) (115)

From (115), it can be verified that Q(1)
3 (λ) is strictly decreasing for all λ ∈ (1, ∞).

For observer design purposes, it is desirable for Q2(λ) to be greater than or equal to a
desired value so that the bounds of uw also increase. Let u∗w be the desired upper bound
of uw. Considering that Q2(λ) is strictly increasing and that lim

λ→∞
Q2(λ) = ∞, the desired

bound is achieved for λ = λ∗2 so that Q2(λ
∗
2) = u∗w or equivalently that

λ∗2 =
hDu∗w +

√
hd
√

u∗w
√

hdu∗w + 4UiζSS,2(Ui − µm) + 2UζSS,2(Ui − µm)

2UζSS,2(µm −Ui)
(116)

Similarly, it is desirable for Q3(λ) to satisfy the third inequality in (77). Considering that

Q3(λ) is strictly decreasing and that lim
λ→∞

Q3(λ) = 2e−Ui
√

1 + Y2
c/s, the desired bound is

achieved for λ = λ∗3 so that
Q3(λ

∗
3) = ζe (117)

where ζe > lim
λ→∞

Q3(λ).
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The coefficient λ is selected to be

λi = max{λ∗2 , λ∗3} (118)

It is important to mention that setting uw and assuming that the model parameters
are perfectly known, the number of target areas that are needed to satisfy the dense web
principle can be determined a priori.

6.3. Simulation Results

In this subsection, the performance of the proposed observer scheme is demonstrated
for the 30th scenario of the nominal value of the input presented in Table 1, as well as the
model parameters presented in Section 2.3. For simulation purposes, it was assumed that
ρF,1 satisfied relation (93), while λ = 100. Regarding the initial conditions of the nonlinear

system and the observer it was assumed that x̃(0−) =
[
X̃1 X̃2

]T
, ∆Lx(0−) =

[
0 0

]T

and ∆L x̂(0−) =
[
−0.05X̃1 0

]T
. Finally, the actuatable input signal was considered to

be of the form u(t) = U(1 + 0.1us(t)). In Figures A1 and A2, the nonlinear and linear
approximant model responses are presented in comparison with the respective observer
responses, while in Figures A3 and A4, the respective estimation errors are presented. With
respect to the first state variable, i.e., the non-measurable variable, for both nonlinear and
linear approximant cases (see Figures A1 and A3), the estimation error tended to zero. With
respect to the second state variable, i.e., the measurable variable, it can be observed that
the linear approximant estimation tended to the linear approximant response, resulting in
zero steady-state error (see Figures A2 and A4). In contrast, for the nonlinear case, a small
steady-state error appeared. The steady-state error appeared due to the difference between
the nonlinear and linear approximant model responses and depended upon the selection of
the parameter λ. It can be verified that the steady-state error for the second state variable
was inversely proportional to λ (see also Figure A5). It is important to mention that having
λ equal to 100, leading to the derivation of the simulations in the present subsection, was
chosen in order to guarantee that the steady state estimation error between the observer
and the nonlinear model of the system was well below 5 %.

It is important to mention that the above simulation results were derived as if the
linear approximant parameters were known. In the following section, a full-order observer,
where its parameters are derived through identification, is presented.

7. Full-Order Observer Design Using Parameter Identification

In the present section, the full-order observer scheme proposed in Section 6 for the
estimation of the state variables of the alcoholic fermentation process is extended so that its
parameters are determined using identification. The identification of the model parameters
is carried out by appropriately exciting the process with a rich enough actuation signal. For
the procedure to be more realistic, additive noise is also considered. For all nominal point
scenarios presented in Section 5.2, the success of the identification procedure was verified.

7.1. Observer Design Using Identified Parameters

The identification is accomplished using experimental measurement data of the devia-
tions of y(t) and u(t) around an operating point (Y, U). Clearly, U is known and Y can be
derived through experimentation. Therefore, ∆y(t) and ∆u(t) are known. According to (5),
the identified I/O linear model around (Y, U) is

SI : ∆y(1)(t) + ĥD∆y(t) = ĥN∆u(t) + ε I(t). (119)

Substitution of the identified values of the coefficients in (119) to the observer matrices yields

F
(

ĥD, g1, g2

)
=

[
0 ĥDYc/s − g1
− U

Yc/s
−ĥD −U − g2

]
, m(ĥN) =

[
−Yc/s ĥN

ĥN

]
. (120)
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Following (66) and (67), the measurement output gains of the observer take on the form

g1 = Yc/s

[
ĥD − aU−1(a + γ1)− γ2

]
, (121)

g2 = 2a− ĥD −U + γ1, (122)

From (120) and (122), it can be verified that F and, consequently, the coefficients of its
characteristic polynomial are independent of the identified coefficients. Using relation
(79) and (80), the observer matrices can be rewritten in terms of the observer poles.

7.2. Alcoholic Fermentation Parameter Identification

In all scenarios of nominal values presented in Table 1, the system excitation is of
the form

u(t) = Ui + λp,i fp(t) + λO,i f0(t); i = 1, . . . , 37, (123)

where Ui is the nominal value of the input for the nominal operating point scenario i; λp,i
and λO,i are real scaling factors; fp(t) is a zero-mean periodic pulse signal with pulse period
τp and percentile pulse width wp; and f0(t) is a linear chirp signal, i.e., a sinusoidal wave
whose frequency varies linearly from an initial value fs to a final value f f from t ∈ [0, Tmax]
(indicatively see Figures A6 and A7). For all scenarios of the nominal value of the input,
it was assumed that τp = 60 h, wp = 50%, fs = 0.2 h−1, f f = 0.01 h−1 and Tmax = 300 h.
With respect to the gains λp,i and λO,i, for all scenarios of the nominal values of the input,
they were considered to be 15 % and 5 % of the half-width of the accuracy area of the
nominal value of the input, respectively.

As already mentioned, an additive measurement noise of the white Gaussian form
with a signal-to-noise ratio equal to 80 was considered to be applied. The identification
algorithm uses a combination of (a) the subspace Gauss–Newton least-squares search
algorithm, (b) the Levenberg–Marquardt least-squares search algorithm, (c) the adaptive
subspace Gauss–Newton search and (d) the steepest descent least-squares search algorithm,
where each algorithm is tried in sequence at each iteration. The first direction leading to
a reduction in estimation cost is used (see [40]). By applying a series of computational
experiments, the identification results presented in Table A1 were derived. From Table A1,
it can readily be observed that in all cases, the estimated values ĥD and ĥN were extremely
close to the respective values derived from the linear approximants. Furthermore, the
mean squared error, the final prediction error and the percentile fit of the response of the
identified model to the estimation data suggest minimal deviation between the identified
and the linear approximant models. From the numerical results presented in Table A1, it
can readily be deduced that the estimated linear approximant parameters were extremely
near the respective parameters, which were analytically determined using the linear ap-
proximant, and that the simulated results found using the identified coefficients fit the
original signals very well in the sense that they produced almost visually identical time
plots. It is important to mention that the success of the identification procedure highly
depends upon the amplitude of the actuation signal. Higher amplitudes may result in a
linear approximant not being an accurate representation of the nonlinear system, leading
to deviations in the estimated parameters.

8. Performance of the Switching Observer Scheme for the Alcoholic
Fermentation Process

In the present section, the performance of the overall switching/identification/
metaheuristic scheme for the alcoholic fermentation process is investigated. In partic-
ular, it was assumed that it was desired to at least cover an input nominal value area
U ∈ [UL, UU ], where UL = 0.083 h−1 and UU = 0.317 h−1. The area between UL and UU
was divided into seven equally distanced operating points, corresponding to the nominal
values of inputs and state variables presented in Table 2. For the determination of the
observer parameters, the following was desirable:



Mathematics 2023, 11, 4733 24 of 42

• The dense web principle between adjacent operating areas was achieved with
10% overlapping between the areas (see Figure 2).

• The steady-state error between the biomass concentration and the estimation of
biomass concentration was equal to zero.

• The convergence rate metric was bounded through the third inequality in (77) assum-
ing that ζe = 1.1 lim

λi→∞
Q3(λi), depending upon the operating point.

Considering the model parameters presented in Section 5.3, the observer parameters
were determined using relations (104) and (118).

Mathematics 2023, 11, x FOR PEER REVIEW 26 of 46 
 

 

Considering the model parameters presented in Section 5.3, the observer parameters were 
determined using relations (104) and (118). 

 
Figure 2. Target operating areas. 

Table 2. Operating points. 

n/n iU  
,1 iX  

,2 iX  

1 0.083 6.990 0.140 
2 0.116 6.984 0.222 
3 0.150 6.977 0.326 
4 0.183 6.967 0.466 
5 0.217 6.954 0.663 
6 0.250 6.933 0.962 
7 0.283 6.897 1.466 
8 0.317 6.825 2.500 

Clearly, in order to evaluate the observer matrices, for each operating point in Table 
2, the estimation of Dh  and Nh  needed to be performed for each operating point. To do 
so, the procedure described in Section 7.2 was used. For all scenarios of the nominal value 
of the input, it was assumed that τ = 60 hp , = 50 %pw , =max 300 hT , λ =, 0.005p i iU  and 

λ =, 0.0002O i iU  . Note that λ ,p i   and λ ,O i   were selected to be quite small in order to 
practically guarantee that for each operating point, the linear approximant model of the 
fermentation process was an accurate representation of the original nonlinear model 
around the respective operating point. 

With respect to the chirp signal initial and final frequencies sf  and ff , they must be 
determined such that they highlight the dynamics of the process for each operating point. 
In order to determine the meaningful frequencies for each operating point, experimental 
determination of Bode magnitude plots was carried out. The experimental procedure was 
based on actuating the nonlinear system with sinusoidal inputs around an operating point 
and determining the peak-to-peak fluctuation of the measurable output for various 
frequencies. The Bode plot amplitude for each frequency was determined through the 
ratio of the output peak-to-peak oscillation divided by the amplitude of the sinusoidal 

Figure 2. Target operating areas.

Table 2. Operating points.

n/n Ui X̃1,i X̃2,i

1 0.083 6.990 0.140
2 0.116 6.984 0.222
3 0.150 6.977 0.326
4 0.183 6.967 0.466
5 0.217 6.954 0.663
6 0.250 6.933 0.962
7 0.283 6.897 1.466
8 0.317 6.825 2.500

Clearly, in order to evaluate the observer matrices, for each operating point in Table 2,
the estimation of hD and hN needed to be performed for each operating point. To do so,
the procedure described in Section 7.2 was used. For all scenarios of the nominal value
of the input, it was assumed that τp = 60 h, wp = 50 %, Tmax = 300 h, λp,i = 0.005Ui
and λO,i = 0.0002Ui. Note that λp,i and λO,i were selected to be quite small in order to
practically guarantee that for each operating point, the linear approximant model of the
fermentation process was an accurate representation of the original nonlinear model around
the respective operating point.

With respect to the chirp signal initial and final frequencies fs and f f , they must be
determined such that they highlight the dynamics of the process for each operating point.
In order to determine the meaningful frequencies for each operating point, experimental
determination of Bode magnitude plots was carried out. The experimental procedure
was based on actuating the nonlinear system with sinusoidal inputs around an operating
point and determining the peak-to-peak fluctuation of the measurable output for various
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frequencies. The Bode plot amplitude for each frequency was determined through the
ratio of the output peak-to-peak oscillation divided by the amplitude of the sinusoidal
part of the input signal (see Figure 3). In what follows, fs was chosen to be the frequency
above which the amplitude of the output oscillation was lower than 1% of the maximum
oscillation determined for frequencies lower than fs. In Table 3, the identification results
for each operating point and the corresponding parameters λ are presented. From Table 3,
it can readily be verified that the estimations of the I/O transfer function parameters were
very near the analytically determined values and that the simulated measurable output
signals fit the measurable data extremely well. With respect to the observer parameter λ, it
can be verified that its value varied significantly between the operating points.
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Figure 3. Bode amplitude plots for all nominal input scenarios: (a) scenario 1, (b) scenario 2,
(c) scenario 3, (d) scenario 4, (e) scenario 5, (f) scenario 6, (g) scenario 7 and (h) scenario 8.

The transitions through target operating areas started from an initial operating point
lI = (YI , UI) and settled at the final operating point lD = (YD, UD), passing through the
intermediate destination points lD,j = (YD,j, UD,j) (j = 1, . . . , 6). The point lI belonged to
target area 1. The points lD,j = (YD,j, UD,j) (j = 1, . . . , 6) belonged to target areas 2 to 7,
respectively. Finally, lD,7 and lD belonged to target area 8. In all cases, the time where
each transition was triggered was chosen to be 10% greater than the settling time of the
respective linear approximant. Also, let

YI = 0.1213 g/L, YD,1 = 0.1786 g/L, YD,2 = 0.2703 g/L, YD,3 = 0.3906 g/L,
YD,4 = 0.5556 g/L, YD,5 = 0.7955 g/L, YD,6 = 1.1765 g/L, YD,7 = 1.8750 g/L,

YD = 3.0077 g/L, UI = 0.0742 h−1, UD,1 = 0.1 h−1, UD,2 = 0.1333 h−1, UD,3 = 0.1667 h−1,
UD,4 = 0.2 h−1, UD,5 = 0.2333 h−1, UD,6 = 0.2667 h−1, UD,7 = 0.3 h−1, UD = 0.3258 h−1.
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Table 3. Identified model and observer parameters.

n/n Ui hD ĥD hN ĥN PF MSE λ

1 0.083 46.26 46.42 99.86 100.20 98.43 % 1.9865 × 10−10 1719.06
2 0.117 36.42 36.50 99.78 100.00 98.61 % 4.9157 × 10−10 1086.98
3 0.150 27.75 27.79 99.67 99.81 98.79 % 1.0688 × 10−9 736.38
4 0.183 20.26 20.26 99.53 99.53 98.96 % 2.1689 × 10−9 513.09
5 0.217 13.95 13.94 99.34 99.30 99.14 % 4.3879 × 10−9 359.12
6 0.250 8.81 8.80 99.04 98.97 99.31 % 9.2627 × 10−9 246.28
7 0.283 4.85 4.84 98.53 98.43 99.49 % 2.1530 × 10−8 159.98
8 0.317 2.06 2.05 97.50 97.28 99.66 % 6.2573 × 10−8 91.79

In Figure 4a,b, the response of the nonlinear system and the switching observer scheme are
presented, while in Figure 5a,b, the respective estimation errors are presented. From Figure 4a,b, it can
readily be observed that the estimation of the biomass concentration and the substrate concentration
are visually identical to the respective nonlinear model responses, presenting small estimation errors
(see Figure 5a,b). It is important to mention that the proposed switching approach performed
significantly better than a single-step non-switching approach from lI to lD, also presented in
Figure 4a,b. It can readily be observed that the estimations of the state variables were highly
inaccurate, also presenting significant steady-state error.
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It is important to mention that the performance of the switching scheme depends upon the
number of steps from the initial to the final destination point. The smallest number of steps was 1,
where the process was driven to move from the initial to the destination point in a single step. As
already mentioned, in Figure 4, it can readily be verified that that the single-step approach failed to
provide an accurate estimation of the system variables during the transient phenomenon, as well as
in the steady state. In order to examine the influence of the number of steps, consider the observer
accuracy metric

δj

(
xj, x̂j

)
= 100%×

∥∥∥xj(t)− x̂j(t)
∥∥∥

2
/
∥∥∥xj(t)− xj(t0−)

∥∥∥
2
, j = 1, 2 (124)

where

‖δ(t)‖2
2 =

Tmax∫
t0−

δ(t)2dt; Tmax > t0−
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After a series of computational experiments, for 2 to 8 steps of transition between lI and lD, the
metrics in (124) are presented in Table 4. It can readily be observed that especially for the non-
measurable variable, as the number of steps decreased, the performance of the observer scheme
deteriorated significantly.
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Figure 5. State variable response estimation errors: (a) biomass concentration estimation error and
(b) substrate concentration estimation error.

Table 4. Accuracy metrics of the switching scheme for various numbers of steps.

Steps δ1 δ2

2 154.1738 % 1.8305 %
3 41.2932 % 1.3010 %
4 14.2551 % 0.9744 %
5 5.7663 % 0.7610 %
6 2.6250 % 0.4777 %
7 1.4388 % 0.2858 %
8 1.0209 % 0.1744 %

It is important to mention that the switching observer scheme behaved satisfactorily, even in the
presence of measurement noise for the substrate concentration. In order to demonstrate the scheme’s
resilience to the presence of noise, for the same simulation experiment presented previously (see
Figures 4 and 5), the estimated values of the state variables of the system in the presence of noise will
be compared with the noise-free response of the nonlinear system. The noise was considered to be an
additive random signal of the form

fn,i(t) = pX̃2,i f̃n,i(t)i = 1, . . . , 8 (125)

where f̃n,i(t) : R+ → [−1, 1] and where p is an appropriate scaling factor. The form of the noise
signal in (125) implied that the amplitude of the noise increased as the scheme switched to higher
nominal values of the substrate concentration. The signal f̃n,i(t) was generated using an appropriate
random discrete time signal fed to a zero-order-hold D/A and a continuous time filter. For simulation
purposes, it was assumed that the discrete time signal had a sampling period of Ts = 0.01 h, while
the filter’s transfer function was of the form

h f (s) =
1(

Tf ,1s + 1
)(

Tf ,2s + 1
) (126)
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where Tf ,1 = 0.0002 and Tf ,2 = 0.0003. In what follows, the estimations of the biomass concentra-
tion and the substrate concentration are compared with the respective noise-free nonlinear system
responses using (124). By applying a series of computations, it can be observed (see Figures 6 and 7)
that the estimations remained accurate, even in the presence of large noise signals.

Mathematics 2023, 11, x FOR PEER REVIEW 31 of 46 
 

 

It is important to mention that the switching observer scheme behaved satisfactorily, 
even in the presence of measurement noise for the substrate concentration. In order to 
demonstrate the scheme’s resilience to the presence of noise, for the same simulation 
experiment presented previously (see Figures 4 and 5), the estimated values of the state 
variables of the system in the presence of noise will be compared with the noise-free 
response of the nonlinear system. The noise was considered to be an additive random 
signal of the form 

( ) ( )= 
, 2 , ,n i i n if t pX f t  = 1, ,8i  (125)

where ( ) + → −  
 , : 1,1n if t  and where p  is an appropriate scaling factor. The form of 

the noise signal in (125) implied that the amplitude of the noise increased as the scheme 
switched to higher nominal values of the substrate concentration. The signal ( )

,n if t  was 
generated using an appropriate random discrete time signal fed to a zero-order-hold D/A 
and a continuous time filter. For simulation purposes, it was assumed that the discrete 
time signal had a sampling period of = 0.01hsT , while the filter’s transfer function was 
of the form 

( ) ( )( )=
+ +,1 ,2

1
1 1f

f f

h s
T s T s

 (126)

where =,1 0.0002fT   and =,2 0.0003fT  . In what follows, the estimations of the biomass 
concentration and the substrate concentration are compared with the respective noise-free 
nonlinear system responses using (124). By applying a series of computations, it can be 
observed (see Figures 6 and 7) that the estimations remained accurate, even in the presence 
of large noise signals. 

 
Figure 6. Biomass concentration accuracy for various amplitudes of the measurement noise. Figure 6. Biomass concentration accuracy for various amplitudes of the measurement noise.

Mathematics 2023, 11, x FOR PEER REVIEW 32 of 46 
 

 

 
Figure 7. Substrate concentration accuracy for various amplitudes of the measurement noise. 

It is important to mention that the observer parameter selection can be accomplished 
using the metaheuristic algorithm described in Section 3. Consider the nominal points of 
the input presented in Table 3, with the respective identified coefficients ˆ

Dh  and ˆ
Nh  and 

a desired = -10.0183hwu , as in the analytic approach described previously. With respect 

to the metaheuristic algorithm, it was assumed that = 200loopn  , = 20repn  , = 610totn  , 

σ = 0.001  , ( )( )ρ = ,1
ˆ ,F i i ih U U  , ( )( )ρ =

,1
ˆ , 20F i i ih U U  , ( )( )ρ = ,2

ˆ ,F i i ih U U  , ( )( )ρ =
,2

ˆ ,F i ih U

2000 iU , ζ =,1 0.02i
SS , ζ =,2 0.02i

SS  and ζ − += 2
/2.2 1iU

s
i

ce e Y . The gains in relation (26a) 
were chosen to be as shown in Table 5. 

Table 5. Performance criterion gains. 

,e Aγ  ( ), 1e Oγ  ( ), 2e Oγ  ( )1Fγ  ( )2Fγ  wγ  

0 0.95 0 0 0.05 0 

The choice of the numerical values in Table 5 suggests that the design goal of the 
metaheuristic algorithm focuses on (a) the minimization of the steady state estimation er-
ror of the non-measurable system variable, which is the main goal of the soft sensor, and 
(b) the appropriate boundness of the observer poles. Regarding (b), it is recalled that the 
observer poles are constrained such that ρ ρ< <,1 ,20 F F . Hence, for both observer poles to 
be appropriately bounded, it suffices to bound only ρ ,2F . Thus, the cost corresponding to 

an appropriate bound of ρ ,1F  can be neglected by choosing ( )γ =
1

0F . Since the ampli-
tude of the input was set a priori, the gain γ w  was chosen to be equal to zero. Clearly, the 
cost corresponding to the steady state error of the measurable output variable, which is 
important in fault detection, did not have any essential influence on the satisfactory esti-
mation of the non-measurable variable. Therefore, to reveal the value of the cost criterion 
corresponding to the steady-state error of the non-measurable variable, the weight factor 
( )γ , 2e O  was chosen to be equal to zero. The choice of the remaining gains was made using 

preliminary computational experiments using different values of the gains that revealed 
their influence on the performance criterion. Regarding the cost corresponding to the free 
response of the estimation error model, the computational experiments showed that it was 

Figure 7. Substrate concentration accuracy for various amplitudes of the measurement noise.

It is important to mention that the observer parameter selection can be accomplished using the
metaheuristic algorithm described in Section 3. Consider the nominal points of the input presented
in Table 3, with the respective identified coefficients ĥD and ĥN and a desired |uw| = 0.0183 h−1, as
in the analytic approach described previously. With respect to the metaheuristic algorithm, it was as-

sumed that nloop = 200, nrep = 20, ntot = 106, σ = 0.001,(ρ̃F,1)
(

ĥi, Ui

)
= Ui,

(
_
ρ F,1

)(
ĥi, Ui

)
= 20Ui,

(ρ̃F,2)
(

ĥi, Ui

)
= Ui,

(
_
ρ F,2

)(
ĥi, Ui

)
=2000Ui, iζSS,1 = 0.02, iζSS,2 = 0.02 and iζe = 2.2e−Ui

√
1 + Y2

c/s.
The gains in relation (26a) were chosen to be as shown in Table 5.
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Table 5. Performance criterion gains.

γe,A
(
γe,O

)
1

(
γe,O

)
2 (γF)1 (γF)2 γw

0 0.95 0 0 0.05 0

The choice of the numerical values in Table 5 suggests that the design goal of the metaheuristic
algorithm focuses on (a) the minimization of the steady state estimation error of the non-measurable
system variable, which is the main goal of the soft sensor, and (b) the appropriate boundness of
the observer poles. Regarding (b), it is recalled that the observer poles are constrained such that
0 < ρF,1 < ρF,2. Hence, for both observer poles to be appropriately bounded, it suffices to bound
only ρF,2. Thus, the cost corresponding to an appropriate bound of ρF,1 can be neglected by choosing
(γF)1 = 0. Since the amplitude of the input was set a priori, the gain γw was chosen to be equal to
zero. Clearly, the cost corresponding to the steady state error of the measurable output variable, which
is important in fault detection, did not have any essential influence on the satisfactory estimation
of the non-measurable variable. Therefore, to reveal the value of the cost criterion corresponding
to the steady-state error of the non-measurable variable, the weight factor (γe,O)2 was chosen to
be equal to zero. The choice of the remaining gains was made using preliminary computational
experiments using different values of the gains that revealed their influence on the performance
criterion. Regarding the cost corresponding to the free response of the estimation error model, the
computational experiments showed that it was neglectable. Thus, γe,A was chosen to be equal to zero.
The remaining metaheuristic algorithm parameters were evaluated by considering the computational
complexity of the algorithm and the time needed for each repetition to be completed. The bounds
iζSS,1, iζSS,2 and iζe were determined so that the steady state and transient behavior of the observer
had desirable characteristics.

In each loop of the metaheuristic algorithm, the generated observer parameter data are con-
sidered to be valid if the inequalities in (11), (23) and (24) are satisfied and (Ui < ρF,1 < ρF,2) ∧(

ĥD,i < ρF,2

)
. The results of the metaheuristic process are summarized in Table 6. Defining the

convergence metric

σ∗ = max


∣∣∣∣∣∣
(ρF,1)w

(
ĥi, Ui

)
(ρF,1)c

(
ĥi, Ui

)
∣∣∣∣∣∣,
∣∣∣∣∣∣
(ρF,2)w

(
ĥi, Ui

)
(ρF,2)c

(
ĥi, Ui

)
∣∣∣∣∣∣,
∣∣∣∣ (uw)w
(uw)c

∣∣∣∣
 (127)

it can be observed that for all nominal values of the input, the metaheuristic algorithm converged to
the observer parameters, satisfying the design requirements. The switching scheme simulation results
were also similar to those produced using the analytic determination of the observer parameters
presented earlier (see Figures 8 and 9). Note that the metaheuristic approach seemed to present
improved performance with respect to the estimation error of the non-measurable variable (see
Figures 5a and 9a), which was almost one order of magnitude smaller.

Table 6. Metaheuristic algorithm results.

n/n Ui ρF,1 ρF,2 Q
(

J∗e,O

)
1

(
J∗e,O

)
2

J∗e,A σ∗

1 0.083 0.0834289 142.998 1022.42 0.0193277 0.0199999 1.84557 0.000222579
2 0.116 0.116869 126.599 801.365 0.0175970 0.0199997 1.78558 0.000933145
3 0.150 0.150408 110.258 607.836 0.0199614 0.0199997 1.72763 0.000189896
4 0.183 0.184046 93.899 440.851 0.0197554 0.0199994 1.67182 0.000287858
5 0.217 0.217877 77.6684 301.620 0.0199265 0.0199995 1.61825 0.000434413
6 0.250 0.252035 61.4591 188.861 0.0198582 0.0199994 1.56736 0.000447879
7 0.283 0.2869 45.2447 102.355 0.0199558 0.0199989 1.52059 0.000436400
8 0.317 0.323656 29.0092 42.0772 0.0199964 0.0199999 1.48480 0.000158437

In the above parameter selection procedure, the half-width of the target operating area |uw| is
considered known and preset. Clearly, the metaheuristic algorithm presented in Section 3 can be
appropriately adjusted to also determine the half-width of the target operating area. Indicatively,
choosing the weight factors of the performance criterion in (30) as shown in Table 7, setting σ = 0.02
and keeping the remaining metaheuristic algorithm parameters as shown in the previous experiment,
the simulation results presented in Table 8 were produced using the metaheuristic algorithm. The
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first, third and fourth weight factors in (30) were chosen following Table 5, while the rest were chosen
using preliminary computational experiments. From Table 8, it can be observed that the dense web
principle was satisfied and that no superfluous points corresponding to target areas covered by other
ones existed (see Figure 10). Clearly, the widths of the first and second target areas were smaller
than those set in the previous cases, while for the remaining areas, the respective width gradually
increased to reach the last target area width, which was more than double in size. The switching
scheme simulation results were also similar to those produced using the analytic determination of the
observer parameters or the first metaheuristic scheme presented earlier (see Figures 11 and 12). Note
that the estimation of the state variables of the alcoholic fermentation process were visually identical
to the respective nonlinear model responses.
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it can be observed that for all nominal values of the input, the metaheuristic algorithm 
converged to the observer parameters, satisfying the design requirements. The switching 
scheme simulation results were also similar to those produced using the analytic determi-
nation of the observer parameters presented earlier (see Figures 8 and 9). Note that the 
metaheuristic approach seemed to present improved performance with respect to the es-
timation error of the non-measurable variable (see Figures 5a and 9a), which was almost 
one order of magnitude smaller. 

Table 6. Metaheuristic algorithm results. 

n/n iU  ,1Fρ  ,2Fρ  Q  ( )∗
, 1e OJ  ( )∗

, 2e OJ  ∗
,e AJ  ∗σ  

1 0.083 0.0834289 142.998 1022.42 0.0193277 0.0199999 1.84557 0.000222579 
2 0.116 0.116869 126.599 801.365 0.0175970 0.0199997 1.78558 0.000933145 
3 0.150 0.150408 110.258 607.836 0.0199614 0.0199997 1.72763 0.000189896 
4 0.183 0.184046 93.899 440.851 0.0197554 0.0199994 1.67182 0.000287858 
5 0.217 0.217877 77.6684 301.620 0.0199265 0.0199995 1.61825 0.000434413 
6 0.250 0.252035 61.4591 188.861 0.0198582 0.0199994 1.56736 0.000447879 
7 0.283 0.2869 45.2447 102.355 0.0199558 0.0199989 1.52059 0.000436400 
8 0.317 0.323656 29.0092 42.0772 0.0199964 0.0199999 1.48480 0.000158437 
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Figure 8. State variable response estimations: (a) biomass concentration and (b) substrate concentration.
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Table 7. Performance criterion gains.

γe,A
(
γe,O

)
1

(
γe,O

)
2 (γF)1 (γF)2 γw

0 0.45 0 0 0.01 0.45
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Table 8. Metaheuristic algorithm results.

n/n Ui ρF,1 ρF,2 |uw| Q
(

J∗e,O

)
1

(
J∗e,O

)
2

J∗e,A σ∗

1 0.083 0.083436 128.729 0.016475 3314.942 0.018047 0.019999 1.845688 0.019541
2 0.116 0.116888 120.623 0.017437 2935.03 0.01922 0.019997 1.785641 0.015009
3 0.150 0.150392 113.537 0.018841 2556.689 0.01954 0.019999 1.727569 0.016454
4 0.183 0.183974 103.767 0.020216 2177.875 0.01947 0.019999 1.67151 0.019001
5 0.217 0.217655 95.099 0.022383 1802.562 0.019967 0.019999 1.617334 0.01823
6 0.250 0.251471 84.450 0.025087 1428.219 0.019624 0.019997 1.565218 0.01912
7 0.283 0.285556 72.482 0.029176 1054.011 0.019977 0.019997 1.515246 0.017544
8 0.317 0.320105 58.3145 0.036382 680.0276 0.019772 0.019999 1.46821 0.018953
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9. Conclusions
In the present study, following a set of assumptions, the improvement of the performance of

soft sensors using switching observers was investigated through the development of an extended
soft sensor design approach, including AI procedures. In particular, two metaheuristic procedures
were developed. The procedures were based on the linear approximant of a nonlinear dynamic SISO
system, and a linear full-order observer using system identification data. The basic assumption was
the satisfaction of the property of I/O reconstructability of the state space linear approximant. Based
on these two procedures, the switching procedure between observers in a bank of observers was
accomplished, where the width of the target operating areas could be increased.

The results were successfully applied to the mathematical model of an alcoholic fermentation
process. Based on the nonlinear model of the process, a linear approximant was produced and
its accuracy compared with the original nonlinear mathematical representation was investigated
using a series of computational experiments. Based on the linear approximant of the process, the
respective observer was designed. The linear approximant model parameters were derived through
the identification of different operating points upon the nonlinear model. Through computational
experiments, it was verified that the responses of the linear identified models were near the respective
responses of the nonlinear model. With respect to the determination of the observer parameters, three
distinct cases were examined. In the first case, a purely analytic approach was used. In the second
case, the widths of the target operating areas were selected a priori and the algorithm was used to
determine the observer poles. Finally, in the third case, both observer parameters and the widths
of the target operating areas were determined using the metaheuristic algorithm. In all cases, the
switching observer scheme resulted in accurate estimations of the state variables of the system, even
in the presence of measurement noise.

The present metaheuristic approach was expected to operate satisfactorily in the complex case
of multi-input multi-output (MIMO) systems. Future perspectives of the present research include
the following:

a. The alternation of some system assumptions.
b. The cover of the cases where the actuator and sensor faults take place.
c. The investigation of alternative suboptimal minimization algorithms for the performance of the

switching observer, like simulated annealing algorithms [41–43] and genetic algorithms [44–46].
d. The development of switching observer-based controllers for the regulation of the performance

variables of the system (see [47,48]).
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Nomenclature

Symbol Definition
x̃ State vector of the nonlinear SISO system
u Nonlinear model actuatable input
y Nonlinear model measurable output
x̃0 Initial value of the nonlinear model state vector
fNL Nonlinear vector function
cNL Nonlinear function mapping the state variables to the measurable output
X̃ Nominal value of the state vector
U Nominal value of the input
Y Nominal value of the measurable output
hNL Function mapping the nominal value of the input to the nominal value of the output
l Pair of nominal values of the input and the corresponding nominal value of the output
HL The set of all admissible l values
∆x̃ Deviation of the nonlinear model state vector from its nominal value
∆u Deviation of the nonlinear model actuatable input from its nominal value
∆y Deviation of the nonlinear model measurable output from its nominal value
c Output matrix of the nonlinear model
ℵ Linear approximant of the nonlinear SISO system
∆xL Approximant of the deviation ∆x̃
∆yL Approximant of the deviation ∆y
∆xL,0 Initial value of ∆xL
A Linear approximant state matrix
b Linear approximant input matrix
S I/O approximant of the state space linear approximant
χ(k) kth derivative of χ with respect to time
nc Rank of the controllability matrix of the linear approximant
h I/O approximant coefficient vector
hD,j jth I/O approximant output signal coefficient
hN,j jth I/O approximant input signal coefficient
SI I/O linear approximant system expressed in terms of the identified coefficients
ĥ I/O approximant identified coefficient vector
ĥD Output signal identified coefficient vector
ĥN Input signal identified coefficient vector
ĥD,j jth element of ĥD
ĥN,j jth element of ĥN
ε I Modeling error through identification
= Full-order observer depending upon the identified system parameters
F Observer state matrix
m Observer input matrix
g Observer measurable output matrix
C−a Regional stability condition
s Laplace transform variable
a Stability margin
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ρF Vector of the eigenvalues of observer matrix F
ρF,j jth element of ρF
εx Modeling error between the nonlinear model and the linear approximant
eO Observer estimation error
eO,0 Initial value of the observer estimation error
eO,A Free response of the observer estimation error
eO,B Forced response of the observer estimation error
Φk Transition matrix of the observer corresponding to the kth element of ρF
us Unit step signal
uw Change of the input amplitude during stepwise transition
εx,SS Steady-state value of the modeling error
X̃w Nominal values of the state variables after the application of the step input signal
eO,SS Steady-state estimation error
‖•‖α α norm of the argument quantity
J∗e,A Free response estimation error magnitude metric
ζe Free response estimation error magnitude metric bound(

J∗e,O

)
j

Steady-state estimation error magnitude metric for the jth state variable

ζSS,j Steady-state estimation error magnitude metric bound for the jth state variable
|•| Absolute value of the argument signal
L Set of nominal operating points of the process
li ith element of L
Yi Nominal value of the measurable output corresponding to li
Ui Nominal value of the input corresponding to li
X̃i Nominal value of the state vector corresponding to li
ℵi Linear approximant around li
Ai State matrix of the linear approximant around li
bi Input matrix of the linear approximant around li
ci Output matrix of the linear approximant around li
µ Number of elements in L
ĥi Estimation of the I/O approximant coefficient vector around li
iρF Vector of the eigenvalues of observer matrix F designed around li
=i Observer designed around li
lI Initial operating point
YI Nominal value of the output corresponding to lI
UI Nominal value of the input corresponding to lI
X̃I Nominal value of the state vector corresponding to lI
lD Destination operating point
YD Nominal value of the output corresponding to lD
UD Nominal value of the input corresponding to lD
X̃D Nominal value of the state vector corresponding to lD
T Target area of an operating point

iTO
Areas of UI and UD where the free response and steady-state metrics satisfy the
respective bounds

ui,max Maximum deviation around Ui defining the target area
iζe Free response estimation error magnitude metric bound corresponding to li

iζSS,j
Steady-state estimation error magnitude metric bound for the jth state variable
corresponding to li

γe,A Non-negative real weight factor for J∗e,A
(γe,O)j Non-negative real weight factor for

(
J∗e,O

)
j

(γF)j Non-negative real weight factor for ρF,j

γw Non-negative real weight factor for iuw
iuw Half-width of the target operating area
iũw Minimum value of the search area for iuw
i_u w Maximum value of the search area for iuw(

iuw

)
w

Width of the search area for iuw



Mathematics 2023, 11, 4733 36 of 42

(
iuw

)
c

Center value of the search area for iuw(
ρ̃F,j

)
Minimum value of the search area for ρF,j(

_
ρ F,j

)
Maximum value of the search area for ρF,j(

ρF,j

)
w

Width of the search area for ρF,j(
ρF,j

)
c

Center value of the search area for ρF,j

= Search area of the observer parameters
nloop Number of loops of the metaheuristic algorithm
nrep Number of repetitions of the metaheuristic algorithm
ntotal Maximum allowable number of computations in the metaheuristic algorithm
σ Metaheuristic algorithm convergence metric
Q Metaheuristic algorithm performance criterion
δρF,j Range of suboptimal values ρF,j after a set of nrep repetitions has been performed
iδuw Range of suboptimal values iuw after a set of nrep repetitions has been performed
U∗max Maximum value of the input area that must be covered through target operating areas
U∗min Minimum value of the input area that must be covered through target operating areas
np Initial number of nominal values
C Biomass concentration
S Substrate concentration
Sa Influent substrate concentration
µb Biomass growth rate
µm Maximum growth rate
Ks Saturation constant
Yc/s Yield coefficient
J∞ Infinity-norm type accuracy metric
J1 1-norm type accuracy metric
J2 2-norm type accuracy metric
(Tmax)j Settling time of the jth state variable
pu Input percentile change
(pu)min Minimum value of pu
(pu)max Maximum value of pu
pj Deviation of the initial condition of the jth state variable from the nominal value
ε∞ J∞ bound
ε1 J1 bound
ε2 J2 bound
O Observability matrix
γj jth free observer parameter
Ij j× j identity matrix
λ Observer pole ratio
λp,i Pulse signal scaling factor
λO,i Chirp signal scaling factor
fp Zero-mean periodic pulse signal
f0 Linear chirp signal
τp Time period of fp
wp Pulse width of fp
fs Starting frequency of the chirp signal
f f Ending frequency of the chirp signal
Tmax Simulation time
PF Percentile fit
MSE Mean square error
FPE Final prediction error
δj jth variable estimation accuracy metric
fn,i Noise signal
f̃n,i Continuous time random signal of unity amplitude
p Noise signal scaling factor
h f Filter transfer function
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Tf ,j jth noise filter parameter
Ts Discrete time signal generator period

Appendix A. Simulation Results
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Table A1. Identification of the linear approximant. 

n/n ,O iλ  ,p iλ  Dh  ˆ
Dh  Nh  ˆ

Nh  PF MSE FPE 

1 0.0008930 0.0026790 68.760 68.731 99.974 99.970 99.933% 6.8930 × 10−12 6.8931 × 10−12 
2 0.0008283 0.0024848 57.441 57.416 99.925 99.920 99.826% 5.6622 × 10−11 5.6623 × 10−11 
3 0.0007734 0.0023203 50.064 50.041 99.884 99.877 99.749% 1.3502 × 10−10 1.3502 × 10−10 
4 0.0007323 0.0021968 44.864 44.832 99.850 99.819 99.692% 2.2592 × 10−10 2.2592 × 10−10 
5 0.0006911 0.0020734 39.948 39.926 99.811 99.794 99.635% 3.5680 × 10−10 3.5681 × 10−10 
6 0.0006546 0.0019637 35.818 35.795 99.773 99.747 99.583% 5.1910 × 10−10 5.1911 × 10−10 
7 0.0006180 0.0018540 31.914 31.923 99.729 99.798 99.532% 7.3435 × 10−10 7.3436 × 10−10 
8 0.0005860 0.0017580 28.682 28.666 99.687 99.670 99.488% 9.7862 × 10−10 9.7864 × 10−10 
9 0.0005540 0.0016620 25.623 25.624 99.640 99.684 99.443% 1.2934 × 10−9 1.2934 × 10−9 
10 0.0005220 0.0015660 22.736 22.719 99.588 99.552 99.397% 1.7084 × 10−9 1.7084 × 10−9 
11 0.0004946 0.0014837 20.399 20.393 99.537 99.547 99.359% 2.1451 × 10−9 2.1452 × 10−9 
12 0.0004671 0.0014014 18.189 18.190 99.481 99.525 99.321% 2.6962 × 10−9 2.6963 × 10−9 
13 0.0004397 0.0013191 16.105 16.099 99.417 99.420 99.281% 3.4144 × 10−9 3.4145 × 10−9 
14 0.0004168 0.0012505 14.466 14.463 99.358 99.379 99.251% 4.1226 × 10−9 4.1227 × 10−9 
15 0.0003940 0.0011820 12.914 12.901 99.291 99.230 99.219% 5.0136 × 10−9 5.0137 × 10−9 
16 0.0003711 0.0011134 11.451 11.441 99.217 99.174 99.184% 6.1577 × 10−9 6.1578 × 10−9 
17 0.0003483 0.0010448 10.075 10.073 99.133 99.154 99.154% 7.5082 × 10−9 7.5083 × 10−9 
18 0.0003300 0.0009900 9.038 9.034 99.057 99.062 99.127% 8.9159 × 10−9 8.9161 × 10−9 
19 0.0003117 0.0009351 8.057 8.051 98.972 98.947 99.103% 1.0533 × 10−8 1.0534 × 10−8 
20 0.0002934 0.0008802 7.133 7.129 98.877 98.878 99.077% 1.2576 × 10−8 1.2576 × 10−8 
21 0.0002751 0.0008254 6.264 6.261 98.769 98.759 99.049% 1.5155 × 10−8 1.5155 × 10−8 
22 0.0002568 0.0007705 5.453 5.449 98.646 98.625 99.023% 1.8334 × 10−8 1.8334 × 10−8 
23 0.0002431 0.0007294 4.881 4.878 98.541 98.526 99.002% 2.1292 × 10−8 2.1293 × 10−8 
24 0.0002294 0.0006882 4.340 4.338 98.424 98.406 98.983% 2.4789 × 10−8 2.4789 × 10−8 
25 0.0002157 0.0006471 3.832 3.830 98.292 98.284 98.961% 2.9195 × 10−8 2.9196 × 10−8 
26 0.0002020 0.0006059 3.355 3.354 98.142 98.151 98.943% 3.4358 × 10−8 3.4358 × 10−8 
27 0.0001883 0.0005648 2.910 2.908 97.971 97.968 98.919% 4.1220 × 10−8 4.1221 × 10−8 
28 0.0001746 0.0005237 2.496 2.495 97.772 97.761 98.898% 4.9600 × 10−8 4.9601 × 10−8 
29 0.0001654 0.0004962 2.238 2.236 97.621 97.594 98.882% 5.6621 × 10−8 5.6622 × 10−8 
30 0.0001563 0.0004688 1.994 1.993 97.453 97.442 98.866% 6.4920 × 10−8 6.4922 × 10−8 
31 0.0001471 0.0004414 1.764 1.763 97.263 97.241 98.851% 7.4750 × 10−8 7.4752 × 10−8 
32 0.0001380 0.0004139 1.548 1.547 97.049 97.021 98.832% 8.7212 × 10−8 8.7213 × 10−8 
33 0.0001288 0.0003865 1.346 1.345 96.804 96.788 98.812% 1.0255 × 10−7 1.0256 × 10−7 
34 0.0001197 0.0003591 1.159 1.157 96.522 96.463 98.790% 1.2196 × 10−7 1.2196 × 10−7 

Figure A7. Pulse signal form.
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Table A1. Identification of the linear approximant.

n/n λO,i λp,i hD ĥD hN ĥN PF MSE FPE

1 0.0008930 0.0026790 68.760 68.731 99.974 99.970 99.933% 6.8930 × 10−12 6.8931 × 10−12

2 0.0008283 0.0024848 57.441 57.416 99.925 99.920 99.826% 5.6622 × 10−11 5.6623 × 10−11

3 0.0007734 0.0023203 50.064 50.041 99.884 99.877 99.749% 1.3502 × 10−10 1.3502 × 10−10

4 0.0007323 0.0021968 44.864 44.832 99.850 99.819 99.692% 2.2592 × 10−10 2.2592 × 10−10

5 0.0006911 0.0020734 39.948 39.926 99.811 99.794 99.635% 3.5680 × 10−10 3.5681 × 10−10

6 0.0006546 0.0019637 35.818 35.795 99.773 99.747 99.583% 5.1910 × 10−10 5.1911 × 10−10

7 0.0006180 0.0018540 31.914 31.923 99.729 99.798 99.532% 7.3435 × 10−10 7.3436 × 10−10

8 0.0005860 0.0017580 28.682 28.666 99.687 99.670 99.488% 9.7862 × 10−10 9.7864 × 10−10

9 0.0005540 0.0016620 25.623 25.624 99.640 99.684 99.443% 1.2934 × 10−9 1.2934 × 10−9

10 0.0005220 0.0015660 22.736 22.719 99.588 99.552 99.397% 1.7084 × 10−9 1.7084 × 10−9

11 0.0004946 0.0014837 20.399 20.393 99.537 99.547 99.359% 2.1451 × 10−9 2.1452 × 10−9

12 0.0004671 0.0014014 18.189 18.190 99.481 99.525 99.321% 2.6962 × 10−9 2.6963 × 10−9

13 0.0004397 0.0013191 16.105 16.099 99.417 99.420 99.281% 3.4144 × 10−9 3.4145 × 10−9

14 0.0004168 0.0012505 14.466 14.463 99.358 99.379 99.251% 4.1226 × 10−9 4.1227 × 10−9

15 0.0003940 0.0011820 12.914 12.901 99.291 99.230 99.219% 5.0136 × 10−9 5.0137 × 10−9

16 0.0003711 0.0011134 11.451 11.441 99.217 99.174 99.184% 6.1577 × 10−9 6.1578 × 10−9

17 0.0003483 0.0010448 10.075 10.073 99.133 99.154 99.154% 7.5082 × 10−9 7.5083 × 10−9

18 0.0003300 0.0009900 9.038 9.034 99.057 99.062 99.127% 8.9159 × 10−9 8.9161 × 10−9

19 0.0003117 0.0009351 8.057 8.051 98.972 98.947 99.103% 1.0533 × 10−8 1.0534 × 10−8

20 0.0002934 0.0008802 7.133 7.129 98.877 98.878 99.077% 1.2576 × 10−8 1.2576 × 10−8

21 0.0002751 0.0008254 6.264 6.261 98.769 98.759 99.049% 1.5155 × 10−8 1.5155 × 10−8

22 0.0002568 0.0007705 5.453 5.449 98.646 98.625 99.023% 1.8334 × 10−8 1.8334 × 10−8

23 0.0002431 0.0007294 4.881 4.878 98.541 98.526 99.002% 2.1292 × 10−8 2.1293 × 10−8

24 0.0002294 0.0006882 4.340 4.338 98.424 98.406 98.983% 2.4789 × 10−8 2.4789 × 10−8

25 0.0002157 0.0006471 3.832 3.830 98.292 98.284 98.961% 2.9195 × 10−8 2.9196 × 10−8

26 0.0002020 0.0006059 3.355 3.354 98.142 98.151 98.943% 3.4358 × 10−8 3.4358 × 10−8

27 0.0001883 0.0005648 2.910 2.908 97.971 97.968 98.919% 4.1220 × 10−8 4.1221 × 10−8

28 0.0001746 0.0005237 2.496 2.495 97.772 97.761 98.898% 4.9600 × 10−8 4.9601 × 10−8

29 0.0001654 0.0004962 2.238 2.236 97.621 97.594 98.882% 5.6621 × 10−8 5.6622 × 10−8

30 0.0001563 0.0004688 1.994 1.993 97.453 97.442 98.866% 6.4920 × 10−8 6.4922 × 10−8

31 0.0001471 0.0004414 1.764 1.763 97.263 97.241 98.851% 7.4750 × 10−8 7.4752 × 10−8

32 0.0001380 0.0004139 1.548 1.547 97.049 97.021 98.832% 8.7212 × 10−8 8.7213 × 10−8

33 0.0001288 0.0003865 1.346 1.345 96.804 96.788 98.812% 1.0255 × 10−7 1.0256 × 10−7

34 0.0001197 0.0003591 1.159 1.157 96.522 96.463 98.790% 1.2196 × 10−7 1.2196 × 10−7

35 0.0001106 0.0003317 0.985 0.984 96.193 96.150 98.776% 1.4440 × 10−7 1.4440 × 10−7

36 0.0001014 0.0003042 0.825 0.825 95.804 95.791 98.750% 1.7597 × 10−7 1.7597 × 10−7

37 0.0000923 0.0002768 0.680 0.679 95.339 95.309 98.722% 2.1747 × 10−7 2.1747 × 10−7
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