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Abstract: The axially symmetric solutions to the Navier–Stokes equations are considered in a bounded
cylinder Ω ⊂ R3 with the axis of symmetry. S1 is the boundary of the cylinder parallel to the axis
of symmetry and S2 is perpendicular to it. We have two parts of S2. For simplicity, we assume the
periodic boundary conditions on S2. On S1, we impose the vanishing of the normal component of
velocity, the angular component of velocity, and the angular component of vorticity. We prove the
existence of global regular solutions. To prove this, it is necessary that the coordinate of velocity along
the axis of symmetry vanishes on it. We have to emphasize that the technique of weighted spaces
applied to the stream function plays a crucial role in the proof of global regular axially symmetric
solutions. The weighted spaces used are such that the stream function divided by the radius must
vanish on the axis of symmetry. Currently, we do not know how to relax this restriction. In part 2
of this topic, the periodic boundary conditions on S2 are replaced by the conditions that both the
normal component of velocity and the angular component of vorticity must vanish. Moreover, it
is assumed that the normal derivative of the angular component of velocity also vanishes on S2. A
transformation from part 1 to part 2 is not trivial because it needs new boundary value problems, so
new estimates must be derived.

Keywords: Navier–Stokes equations; axially symmetric solutions; cylindrical domain; existence of
global regular solutions

MSC: 35A01; 35B01; 35B65; 35Q30; 76D03; 76D05

1. Introduction

The regularity problem for axially symmetric solutions to the Navier–Stokes equations
has a long history. However, there are only two results where the global regular axially sym-
metric solutions are proved, assuming the vanishing of the angular component of velocity
(see papers [1] by O.A. Ladyzhenskaya and [2] by M.R. Ukhovskii and V.I. Yudovich).

Other results (see the papers cited in [3–7]) describe the existence of global regular
axially symmetric solutions imposing different Serrin-type conditions. The conditions are
such that certain coordinates, either of velocity or of derivatives of velocity or vorticity,
belong to Lq(0T; Lp(Ω)) spaces for appropriately chosen parameters p and q.

This paper closely aligns with the results presented by O.A. Ladyzhenskaya, M.R.
Ukhovskii, and V.I. Yudovich, as the vanishing of the stream function divided by the radius
implies the existence of global regular axially symmetric solutions. The aim of this paper is
to provide a proof of the global estimate (24).

The estimate can imply any global regularity of solutions to problem (6), assuming
appropriate regularity of data.

We must emphasize that the methods and proofs presented in this paper are completely
new. The proofs and results in Sections 3, 5, and 6 are original.

Before the formal introduction starts, we outline the main steps of the proof of Theorem 1.
The main difficulty in the regularity theory of the Navier–Stokes equations lies in handling
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the nonlinear terms. We need to transform them in such a way that they can be absorbed
by the main linear terms. In this paper, we consider problems (17)–(20) for functions Φ and
Γ defined by (16). Applying the energy method, we derive inequality (111) with a strongly
nonlinear term denoted by I3.

The main task of this paper is to estimate I3 by quantities that can be absorbed by the
terms from the l.h.s. of (111).

I3 is estimated in (122). Using notation (132), we derive from (111) and (122) the
inequality (see (134))

(∗) X2 ≤ φ1X2−δ + φ(data),

where φ1 depends on |vϕ|d,∞,Ωt , |vϕ|∞,Ωt and d > 3, δ > 0.
For δ > 0, the Young inequality can be applied, so (133) holds. The existence of such a

positive δ follows from inequality (173), which can be written in the following form:

(∗∗) |Φ|22,Ωt ≤ φ2‖Γ‖1,2,Ωt + φ(data),

where φ2 depends on |vϕ|∞,Ωt .
Inequality (∗∗) implies the existence of the positive δ. For δ = 0, we were not able to

apply the Young inequality in (∗), so we could not prove Theorem 1.
Hence, (∗∗) is probably the most important inequality in this paper. It is a totally new

result.
In the next step, we eliminate |vϕ|d,∞,Ωt , d = 12. To show this, we need to delve into

the proof of Lemma 13. To derive (141) from (140), we need the estimate

(∗ ∗ ∗)
∫
Ω

ψ2
1

r6′ dx ≤ c‖Γ‖2
1,Ω.

The Hardy inequality implies that (∗ ∗ ∗) does not hold for 6 but holds for any number less
than 6. It is denoted by 6′. Inequality (∗ ∗ ∗) follows from (202).

Then, we derive (145). Using (133) in (145) yields the following inequality:

(∗ ∗ ∗ ∗) |vϕ|6
′

12,∞,Ωt ≤ c|vϕ|
4ε
θ

12,∞,Ωt + φ(data).

To apply the Young inequality in (∗ ∗ ∗∗), we require that 6′ > 4ε
θ . It is shown in Remark 4

that the inequality holds. We need 6′ to be close to 6. Then, (∗ ∗ ∗∗) implies (137).
Moreover, to prove (137), we need the existence of such solutions to problem (6), where

vϕ is not small. The existence of such solutions is proven in Appendix A. Hence, for such
local solutions, we prove global estimate (24). Once we have (24), we can extend the local
solution incrementally over time.

Finally, we can easily derive estimate (152) because |vϕ|∞,.Ωt appears in (137) with
arbitrarily small power.

Using estimates (137) and (152) in (133) implies (24) and proves Theorem 1.
In this paper, we prove the existence of global regular axially symmetric solutions to

the Navier–Stokes equations in a cylindrical domain Ω ⊂ R3:

Ω = {x ∈ R3 : x2
1 + x2

2 < R2, |x3| < a},

where a and R are the given positive numbers. We denote by x = (x1, x2, x3) the Cartesian
coordinates. It is assumed that the x3-axis is the axis of symmetry of Ω.
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Moreover,

S1 = {x ∈ R3 :
√

x2
1 + x2

2 = R, x3 ∈ (−a, a)},

S2 = S2(−a) ∪ S2(a) and

S2(a0) = {x ∈ R3 :
√

x2
1 + x2

2 < R, x3 = a0 ∈ {−a, a}},

where S1 is parallel to the axis of symmetry and S2(a0) is perpendicular to it. S2(a0) meets
the axis of symmetry at a0.

To describe the considered problem, we introduce cylindrical coordinates r, ϕ, and z
by the relations

x1 = r cos ϕ, x2 = r sin ϕ, x3 = z. (1)

The following orthonormal system

ēr = (cos ϕ, sin ϕ, 0), ēϕ = (− sin ϕ, cos ϕ, 0), ēz = (0, 0, 1) (2)

is connected to the cylindrical coordinates.
Any vector, u, for the axially symmetric motions can be decomposed as follows:

u = ur(r, z, t)ēr + uϕ(r, z, t)ēϕ + uz(r, z, t)ēz, (3)

where ur, uϕ, and uz are cylindrical coordinates of u.
Therefore, velocity v and vorticity ω = rot v are decomposed in the form

v = vr(r, z, t)ēr + vϕ(r, z, t)ēϕ + vz(r, z, t)ēz (4)

and
ω = ωr(r, z, t)ēr + ωϕ(r, z, t)ēϕ + ωz(r, z, t)ēz. (5)

The paper is devoted to the proof of global regular axially symmetric solutions to the
problem

v,t + v · ∇v− ν∆v +∇p = f in ΩT = Ω× (0, T),

div v = 0 in ΩT ,

v satisfies periodic boundary conditions on ST
2 = S2 × (0, T),

v · n̄|S1 = 0, ωϕ|S1 = 0, vϕ|S1 = 0 on ST
1 = S1 × (0, T),

v|t=0 = v(0) in Ω,

(6)

where v = (v1(x, t), v2(x, t), v3(x, t)) ∈ R3 is the velocity of the fluid,
p = p(x, t) ∈ R is the pressure, f = ( f1(x, t), f2(x, t), f3(x, t)) ∈ R3 is the external force
field, and ν > 0 is the constant viscosity coefficient.

Expressing problem (6) in the cylindrical coordinates of velocity yields

vr,t + v · ∇vr −
v2

ϕ

r
− ν∆vr + ν

vr

r2 = −p,r + fr,

vϕ,t + v · ∇vϕ +
vr

r
vϕ − ν∆vϕ + ν

vϕ

r2 = fϕ,

vz,t + v · ∇vz − ν∆vz = −p,z + fz,

(rvr),r + (rvz),z = 0

vr|S1 = 0, vϕ|S1 = 0, vr,z − vz,r|S1 = 0,

vr|t=0 = vr(0), vϕ|t=0 = vϕ(0), vz|t=0 = vz(0),

(7)
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where we have the periodic boundary conditions on S2 and

v · ∇ = (vr ēr + vz ēz) · ∇ = vr∂r + vz∂z,

∆u =
1
r
(ru,r),r + u,zz.

(8)

Formulating problem (6) in terms of the cylindrical coordinates of vorticity implies

ωr,t + v · ∇ωr − ν∆ωr + ν
ωr

r2 = ωrvr,r + ωzvr,z + Fr,

ωϕ,t + v · ∇ωϕ −
vr

r
ωϕ − ν∆ωϕ + ν

ωϕ

r2 =
2
r

vϕvϕ,z + Fϕ,

ωz,t + v · ∇ωz − ν∆ωz = ωrvz,r + ωzvz,z + Fz,

ωr|t=0 = ωr(0), ωϕ|t=0 = ωϕ(0), ωz|t=0 = ω(0)

(9)

and we have boundary conditions (7)5 on S1 and the periodic boundary conditions on S2,
where F = rot f and

F = Fr(r, z, t)ēr + Fϕ(r, z, t)ēϕ + Fz(r, z, t)ēz. (10)

The function
u = rvϕ (11)

is called swirl. It is a solution to the problem

u,t + v · ∇u− ν∆u +
2ν

r
u,r = r fϕ ≡ f0,

u|S1 = 0 and u satisfies periodic boundary conditions on S2,

u|t=0 = u(0).

(12)

The cylindrical components of vorticity can be described in terms of the cylindrical compo-
nents of the velocity and swirl in the following form

ωr = −vϕ,z = −
1
r

u,z,

ωϕ = vr,z − vz,r,

ωz =
1
r
(rvϕ),r = vϕ,r +

vϕ

r
=

1
r

u,r.

(13)

Equation (7)4 implies the existence of the stream function ψ, which is a solution to the
problem

− ∆ψ +
ψ

r2 = ωϕ,

ψ|S1 = 0,

ψ satisfies periodic boundary conditions on S2.

(14)

Moreover, cylindrical components of velocity can be expressed in terms of the stream
function in the following way

vr = −ψ,z, vz =
1
r
(rψ),r = ψ,r +

ψ

r
,

vr,r = −ψ,zr, vr,z = −ψ,zz,

vz,z = ψ,rz +
ψ,z

r
, vz,r = ψ,rr +

1
r

ψ,r −
ψ

r2 .

(15)

Introduce the pair
(Φ, Γ) = (ωr/r, ωϕ/r). (16)
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Formula (6) from [8] implies that quantities (16) satisfy the following equations

Φ,t + v · ∇Φ− ν

(
∆ +

2
r

∂r

)
Φ− (ωr∂r + ωz∂z)

vr

r
= Fr/r ≡ F̄r (17)

and

Γ,t + v · ∇Γ− ν

(
∆ +

2
r

∂r

)
Γ + 2

vϕ

r
Φ = Fϕ/r ≡ F̄ϕ. (18)

We add the following initial and boundary conditions to solutions of (17) and (18)

Φ|S1 = 0, Γ|S1 = 0, Φ, Γ satisfy the periodic

boundary conditions on S2,
(19)

Φ|t=0 = Φ(0), Γ|t=0 = Γ(0). (20)

Next, we express cylindrical coordinates of velocity in terms of ψ1 = ψ/r

vr = −rψ1,z, vz = (rψ1),r + ψ1 = rψ1,r + 2ψ1,

vr,r = −ψ1,z − rψ1,rz, vr,z = −rψ1,zz,

vz,z = rψ1,rz + 2ψ1,z, vz,r = 3ψ1,r + rψ1,rr.

(21)

The aim of this paper is to prove the existence of global regular axially symmetric solutions
to problem (6). For this purpose, we have to find a global estimate that guarantees the
existence of global regular solutions.

Function ψ1 is a solution to the problem

− ∆ψ1 −
2
r

ψ1,r = ω1 in Ω = (0, R)× (−a, a),

ψ1|r=R = 0,

ψ1 satisfies the periodic boundary conditions on S2,

(22)

where
ω1 = ωϕ/r. (23)

We have ω1 = Γ.
To state the main result, we first introduce the necessary assumptions.

Assumption 1. Assume that the following quantities are finite:

D1 = ‖ f ‖L2(Ωt) + ‖v(0)‖L2(Ω),

D2 = ‖ f0‖L∞,1(Ωt) + ‖u(0)‖L∞(Ω),

f0 = r fϕ, u = rvϕ,

D2
3 = D2

1D2
2 + ‖u,z(0)‖2

L2(Ω) + ‖ f0‖2
L2(Ωt),

D2
4 = D2

1(1 + D2) + ‖u,r(0)‖2
L2(Ω) + ‖ f0‖2

L2(Ωt) + ‖ f0‖L2(0,t;L4/3(S1))
,

where D1 and D2 are introduced in (46) and (52), respectively, and D3 and D4 are introduced in
(159) and (160), respectively. Let

D5 = D2(D1 + D2 + D3),

D6 = D1−ε0
2 D3,
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where ε0 is an arbitrarily small positive number. Moreover,

D7 = ‖Fr‖2
L2(0,t;L6/5(Ω)) + ‖Fz‖2

L2(0,t;L6/5(Ω))

+ ‖ωr(0)‖2
L2(Ω) + ‖ωz(0)‖2

L2(Ω)

is defined in Lemma 16.
Next,

D8 = φ(D2)(‖F̄r‖2
L2(0,t;L6/5(Ω)) + ‖F̄ϕ‖2

L2(0,t;L6/5(Ω)))

+ ‖Φ(0)‖2
L2(Ω) + ‖Γ(0)‖

2
L2(Ω),

where F̄r = Fr/r, F̄ϕ = Fϕ/r, Φ = ωr
r , Γ =

ωϕ

r and D8 appear in (111).

In Lemma 13, the following quantity is defined

D9(12) = 12‖ fϕ‖L12(0,t;L36/25(Ω)) + ‖vϕ(0)‖L12(Ω).

Finally, in Lemma 14, we introduce the quantity

D10 = ‖ fϕ/r‖L1(0,t;L∞(Ω)) + ‖vϕ(0)‖L∞(Ω).

The main result is as follows:

Theorem 1. Assume that Assumption 1 holds. Then, there exists an increasing positive function
φ, such that

‖Φ‖V(Ωt) + ‖Γ‖V(Ωt) ≤ φ(D1, · · · , D10). (24)

Remark 1. Estimate (24) implies any regularity of solutions to problem (6), assuming sufficient
regularity of data.

To prove (24), we require that ψ1 and vz vanish on the axis of symmetry.

Proof of Theorem 1. Inequality (113) in the form

d
dt
|Φ|22,Ω + |∇Φ|22,Ω ≤ I +

∫
Ω

F̄rΦdx (25)

is the first step of the proof of (24), where Φ = − vϕ,z
r , F̄r =

Fr
r and

I ≤
∫
Ω

∣∣∣∣vϕ∂r
vr

r
Φ,z

∣∣∣∣dx +
∫
Ω

∣∣∣∣vϕ∂z
vr

r
Φ,r

∣∣∣∣dx ≡ I1 + I2.

Our aim is to estimate I1 and I2 by a product of norms ‖Φ‖V(Ωt), ‖Γ‖V(Ωt).
Since the L∞-estimate of swirl rvϕ is bounded by D2 (see Lemma 2) and vr

r = −ψ1,z,
we obtain the estimates

I1 ≤ D2

∣∣∣∣ψ1,rz

r

∣∣∣∣
2,Ω
|Φ,z|2,Ω,

I2 ≤ D2

∣∣∣∣ψ1,zz

r

∣∣∣∣
2,Ω
|Φ,r|2,Ω.

(26)

To examine estimate (26), we recall that ψ1 is a solution to problem (22).
In Lemma 4, we prove the existence of weak solutions to problem (22) and derive the

estimate (56)
‖ψ1‖1,Ω ≤ c|w1|6/5,Ω. (27)

In Section 3, we increase the regularity of weak solutions by deriving estimates for higher
derivatives.
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From (82), we have ∣∣∣∣ψ1,rz

r

∣∣∣∣
2,Ω
≤ c|Γ,z|2,Ω. (28)

The estimate holds for the weak solutions to problem (22) because [9] yields the expansion
of ψ1 near the axis of symmetry

ψ1 = a1(z, t) + a2(z, t)r2 + a3(z, t)r4 + · · · (29)

Hence, ψ1,r = 2a2(z, t)r and the norm
∣∣ψ1,rz

r

∣∣
2,Ω can be finite.

To estimate I2, we need ∣∣∣∣ψ1,zz

r

∣∣∣∣
2,Ω
≤ c|Γ,z|2,Ω. (30)

The estimate holds for such a class of regularized weak solutions to problem (22), where

ψ1|r=0 = 0. (31)

This means that in expansion (29), we have a1(z, t) = 0.
The existence of solutions to problem (22) (also see (61)), satisfying restriction (31)

and estimate (30), follows from the theory developed by Kondratiev (see [10]) for elliptic
boundary value problems in domains with cones in weighted Sobolev spaces.

In this paper, the existence is proven in Lemmas 8 and 17. From [10], it also follows
that we can prove the existence of different solutions to problem (22) belonging to different
weighted Sobolev spaces.

The difference between such two distinct solutions is equal to the expression derived
from the Cauchy theorem for complex functions related to contour integration. This is
described in more detail in [11].

Restriction (31) means that we have to work with a very restricted class of weak
solutions to (22). This also means that vz must vanish on the axis of symmetry.

Using estimates (28) and (30) in (25) yields

d
dt
|Φ|22,Ω + |∇Φ|22,Ω ≤ cD2|Γ,z|2,Ω|∇Φ|2,Ω +

∫
Ω

F̄rΦdx. (32)

We have to emphasize that we are not able to prove estimate (24) without restriction (31).
Now, we integrate (120) with respect to time. Then, we obtain

|Γ|22,Ω + ‖Γ‖2
1,2,Ωt ≤ 2

∣∣∣∣ ∫
Ωt

vϕ

r
ΦΓdxdt′

∣∣∣∣
+ c|F̄ϕ|26/5,2,Ωt + c|Γ(0)|22,Ω.

(33)

Integrating (32) with respect to time and adding to (33) yields

‖Φ‖2
V(Ωt) + ‖Γ‖

2
V(Ωt) ≤ c(D2)

∣∣∣∣ ∫
Ωt

vϕ

r
ΦΓdxdt′

∣∣∣∣
+ c(D2)(|F̄r|26/5,2,Ωt + |F̄ϕ|26/5,2,Ωt) + c(D2)(|Φ(0)|22,Ω + |Γ(0)|22,Ω).

(34)

Now, we have to estimate the first term on the r.h.s. of (34).
Introducing the quantity (see (132))

X(t) = ‖Φ‖V(Ωt) + ‖Γ‖V(Ωt) (35)
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and recalling that constant D8 is introduced in Assumption 1, inequality (34) takes the form

X2(t) ≤ c(D2)

∣∣∣∣ ∫
Ωt

vϕ

r
ΦΓdxdt′

∣∣∣∣+ cD2
8, (36)

where the first integral is called I3.
Using estimate (123) and estimate of L2

1 in the proof of Lemma 11, we obtain from (36)
the inequality

X2(t) = c(D2)|vϕ|εd,∞,Ωt |Φ|θ2,Ωt |∇Φ|1−θ
2,Ωt |∇Γ|2,Ωt + cD2

8, (37)

where θ =
(
1− 3

d
)
ε1 − 3

d ε2, d > 3, ε = ε1 + ε2 < 1.
To derive any estimate from (37), we use (173) in the form

|Φ|22,Ω ≤ c(D5 + D6|vϕ|ε0
∞,Ωt)‖Γ‖1,2,Ωt + cD7, (38)

where ε0 can be assumed to be an arbitrarily small positive number and D5, D6, and D7 are
defined in Assumption 1. This is a very important estimate because the square of |Φ|2,Ωt

depends linearly on ‖Γ‖1,2,Ωt .
Using (38) in (37) yields the following (the estimate of I3 is described in (122)):

X2(t) ≤ c|vϕ|εd,∞,Ωt [c1(1 + |vϕ|
1
2 θε0
∞,Ωt)X

1
2 θ + c2]X2−θ + cD2

8, (39)

where c1 and c2 depend on D5, D6, and D7.
Since 2− 1

2 θ, 2− θ are less than 2 Lemma 12 yields the inequality

X2 ≤ c0|vϕ|
4ε
θ

d,∞,Ωt(1 + |vϕ|2ε0
∞,Ωt) + c0|vϕ|

2ε
θ

d,∞,Ωt + cD2
8, (40)

where c0 = φ(D2, D5, D6, D7).
Setting d = 12 and assuming that vϕ is not small, we derive (137) in the form

|vϕ|6
′

12,∞,Ωt ≤ c|vϕ|b0ε0
∞,Ωt + φ(D2, D5, D6, D7, D8, D9), (41)

where b0 is a positive number.
The smallness of vϕ, which must be excluded in the proof of (41), is described in

Appendix A.
To prove (41), we have to pass from (140) to (141). Therefore, we need the following

estimate: ∫
Ωt

ψ2
1

r6′ dxdt′ ≤ c‖Γ‖2
1,2,Ωt , (42)

where 6′ < 6 and 6′ are very close to 6. Moreover, 6′ is such a number where (42) holds
(also see Remark 8).

Estimate (42) is crucial to the proof of (141), which is very important in deriving (151).
Inequalities (151) and (152) imply the main result of this paper: estimate (24).
Replacing 6′ with 6 estimate (42) takes the form

t∫
0

∫
Ω

ψ2
1

r6 dxdt′ ≤ c
t∫

0

‖Γ‖2
H1

0 (Ω)
dt′, (43)

where the r.h.s. cannot be estimated by ‖Γ‖V(Ωt).
Estimate (42) follows from Lemma 18 and imposes the following additional restrictions

on ψ1:
ψ1|r=0 = 0, ψ1,r|r=0 = 0. (44)
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However, the theory developed in [9] implies that ψ1,r|r=0 = 0.
Exploiting (41) in (40) yields

X ≤ c(1 + |vϕ|d1ε0
∞,Ωt)|vϕ|d2ε0

∞,Ωt + φ(D2, D5, D6, D7, D8, D9), (45)

where d1 and d2 are positive finite numbers.
Finally, we find the estimate for |vϕ|∞,Ωt (see (152)). Using (152) in (45) yields (24).

This ends the proof of Theorem 1.

The problem of regularity of axially symmetric solutions to the Navier–Stokes equa-
tions has a long history. The first regularity results in the case of vanishing swirl were
independently derived by O. A. Ladyzhenskaya and Ukhovskii-Yudovich, as referenced
in [1,2]. Many references concerning the nonvanishing swirl case can be found in [3].

We have to emphasize that we were able to prove Theorem 1 because the theory of
weighted Sobolev spaces developed in [11] was used.

2. Notation and Auxiliary Results

First, we introduce some notations

Definition 1. We use the following notation for Lebesgue and Sobolev spaces

‖u‖Lp(Ω) = |u|p,Ω, ‖u‖Lp(Ωt) = |u|p,Ωt ,

‖u‖Lp,q(Ωt) = ‖u‖Lq(0,t;Lp(Ω)) = |u|p,q,Ωt ,

where p, q ∈ [1, ∞]. Next,

‖u‖Hs(Ω) = ‖u‖s,Ω, ‖u‖Ws
p(Ω) = ‖u‖s,p,Ω,

‖u‖Lq(0,t;Wk
p(Ω)) = ‖u‖k,p,q,Ωt , ‖u‖k,p,p,Ωt = ‖u‖k,p,Ωt ,

where s, k ∈ N∪ {0}, Hs(Ω) = Ws
2(Ω).

We need energy-type space V(Ωt), which is appropriate for the description of weak
solutions to the Navier–Stokes equations

‖u‖V(Ωt) = |u|2,∞,Ωt + |∇u|2,Ωt .

We recall weighted Sobolev spaces, defined by

‖ f ‖Hk
µ(R+)

=

( ∫
R+

k

∑
j=0
|∂j

r f |2r2(µ+j−k)rdr
)1/2

and

‖ f ‖Hk
µ(Ω) =

( ∫
Ω

k

∑
|α|=0
|Dα

r,z f |2r2(µ+|α|−k)rdrdz
)1/2

,

where Ω contains the axis of symmetry, Dα
r,z = ∂α1

r ∂α2
z , |α| = α1 + α2, αi ∈ N∪ {0}, i = 1, 2,

k ∈ N∪ {0}, and µ ∈ R+. Moreover, we have

H0
0(Ω) = L2,0(Ω) = L2(Ω),

H0
µ(Ω) = L2,µ(Ω)

and
‖ f ‖L2,µ(Ω) = | f |2,µ,Ω.
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Lemma 1. Let f ∈ L2,1(Ωt), v(0) ∈ L2(Ω). Then, solutions to (7) satisfy the estimate

‖v(t)‖2
L2(Ω) + ν

∫
Ωt

(|∇vr|2 + |∇vϕ|2 + |∇vz|2)dxdt′

+ ν
∫

Ωt

(
v2

r
r2 +

v2
ϕ

r2

)
dxdt′ ≤ 3‖ f ‖2

L2,1(Ωt) + 2‖v(0)‖2
L2(Ω) ≡ D2

1.
(46)

Proof. Multiplying (7)1 by vr, (7)2 by vϕ, (7)3 by vz, adding the results, and integrating
over Ω yield

1
2

d
dt

∫
Ω

(v2
r + v2

ϕ + v2
z)dx + ν

∫
Ω

(|∇vr|2 + |∇vϕ|2 + |∇vz|2)dx

+ ν
∫
Ω

(
v2

r
r2 +

v2
ϕ

r2

)
dx +

∫
Ω

(p,rvr + p,zvz)dx

=
∫
Ω

( frvr + fϕvϕ + fzvz)dx.

(47)

The last term on the l.h.s. of (47) vanishes in virtue of the equation of continuity (7)4 and
the boundary conditions.

Using v2 = v2
r + v2

ϕ + v2
z , (47) takes the form

1
2

d
dt
‖v‖2

L2(Ω) + ν
∫
Ω

(|∇vr|2 + |∇vϕ|2 + |∇vz|2)dx

+ ν
∫
Ω

(
v2

r
r2 +

v2
ϕ

r2

)
dx =

∫
Ω

( frvr + fϕvϕ + fzvz)dx.
(48)

Applying the Hölder inequality to the r.h.s. of (48) yields

d
dt
‖v‖L2(Ω) ≤ ‖ f ‖L2(Ω), (49)

where f 2 = f 2
r + f 2

ϕ + f 2
z .

Integrating (49) with respect to time gives

‖v‖L2(Ω) ≤ ‖ f ‖L2,1(Ωt) + ‖v(0)‖L2(Ω). (50)

Integrating (48) with respect to time, using the Hölder inequality on the r.h.s. of (48), and
exploiting (50), we obtain

1
2
‖v(t)‖2

L2(Ω) + ν
∫

Ωt

(|∇vr|2 + |∇vϕ|2 + |∇vz|2)dxdt′

+ ν
∫

Ωt

(
v2

r
r2 +

v2
ϕ

r2

)
dxdt′ ≤ ‖ f ‖L2,1(Ωt)(‖ f ‖L2,1(Ωt)

+ ‖v(0)‖L2(Ω)) +
1
2
‖v(0)‖2

L2(Ω).

(51)

The above inequality implies (46). This concludes the proof.

Lemma 2. Consider problem (12). Assume that f0 ∈ L∞,1(Ωt) and u(0) ∈ L∞(Ω). Then,

‖u(t)‖L∞(Ω) ≤ ‖ f0‖L∞,1(Ωt) + ‖u(0)‖L∞(Ω) ≡ D2. (52)
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Proof. Multiplying (12)1 by u|u|s−2, s > 2, integrating over Ω and by parts, we obtain

1
s

d
dt
‖u‖s

Ls(Ω) +
4ν(s− 1)

s2 ‖∇|u|s/2‖2
L2(Ω) +

ν

s

∫
Ω

(|u|s),rdrdz

=
∫
Ω

f0u|u|s−2dx.
(53)

From [9], it follows that u|r=0 = 0. Moreover, using boundary conditions, (53) implies

d
dt
‖u‖Ls(Ω) ≤ ‖ f0‖Ls(Ω). (54)

Integrating (54) with respect to time and passing with s→ ∞, we derive (52). This ends the
proof.

Lemma 3. Let estimates (46) and (52) hold. Then,

‖vϕ‖L4(Ωt) ≤ D1/2
1 D1/2

2 . (55)

Proof. We have∫
Ωt

|vϕ|4dxdt′ =
∫

Ωt

r2v2
ϕ

v2
ϕ

r2 dxdt′ ≤ ‖rvϕ‖2
L∞(Ωt)

∫
(Ωt)

v2
ϕ

r2 dxdt′ ≤ D2
2D2

1.

This implies (55) and concludes the proof.

Lemma 4. Consider problem (22). Assume that ω1 ∈ L6/5(Ω), where Ω = (0, R)× (−a, a).
Then, there exists a weak solution to problem (22), such that ψ1 ∈ H1(Ω) and the estimate

‖ψ1‖1,Ω ≤ c|ω1|6/5,Ω (56)

holds.

Proof. Multiplying (22)1 by ψ1 and using the boundary conditions, we obtain

‖ψ1‖2
1,Ω +

a∫
−a

ψ2
1 |r=0dz =

∫
Ω

ω1ψ1dx.

Applying the Hölder and Young inequalities to the r.h.s. implies (56). The Fredholm
theorem gives existence. This ends the proof.

Remark 2. We have to emphasize that the weak solution ψ1 of (22) does not vanish on the axis of
symmetry. It also follows from [9].

From Lemma 2.4 in [8], we also have

Lemma 5. Let f ∈ C∞((0, R) × (−a, a)), f |r≥R = 0. Let 1 < r ≤ 3, 0 ≤ s ≤ r, s ≤ 2,
q ∈

[
r, r(3−s)

3−r
]
. Then, there exists a positive constant c = c(s, r), such that

( ∫
Ω

| f |q
rs dx

)1/q

≤ c| f |
3−s

q −
3
r +1

r,Ω |∇ f |
3
r−

3−s
q

r,Ω , (57)

where f does not depend on ϕ.
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Notation 1 (see [11]). First, we introduce the Fourier transform. Let f ∈ S(R), where S(R) is
the Schwartz space of all complex-valued rapidly decreasing and infinitely differentiable functions
on R. Then, the Fourier transform of f and its inverse are defined by

f̂ (λ) =
1√
2π

∫
R

e−iλτ f (τ)dτ, ˆ̌f (τ) = f (τ) =
1√
2π

∫
R

eiλτ f̂ (λ)dλ (58)

and ˇ̂f = ˆ̌f = f .
By Hk

µ(R+), we denote a weighted space with the norm

‖u‖2
Hk

µ(R+)
=

k

∑
i=0

∫
R+

|∂i
ru|2r2(µ−k+i)rdr.

In view of transformation τ = − ln r, r = e−τ , dr = −e−τdτ, we have the equivalence

k

∑
i=0

∫
R+

|∂i
ru|2r2(µ−k+i)rdr ∼

k

∑
i=0

∫
R

|∂i
τu′|2e2hτdτ (59)

which holds for u′(τ) = u′(− ln r) = u(r), h = k− 1− µ.

In view of the Fourier transform (58) and the Parseval identity, we have

+∞+ih∫
−∞+ih

k

∑
j=0
|λ|2j|û(λ)|2dλ =

∫
R

k

∑
j=0
|∂j

τu|2e2hτdτ. (60)

3. Estimates for the Stream Function ψ1

In this section, we derive many estimates for ψ1 = ψ/r, where ψ is the stream function,
in terms of ‖Γ‖1,2,Ωt + |Γ|2,∞,Ωt (recall that Γ = ω1). Function ψ1 was introduced by Thomas
Hou in [12]. Lemma 6 is proved by applying the energy-type method. Inequalities (85) and
(93) are proved by applying the technique of Kondratiev (see [10]) to problem (61). We
need the inequalities to prove inequality (173), so they are very important.

To prove (85) and (93), we require that ψ1|r=0 = 0; however, the theory developed
by [9] does not imply the restriction.

Recall that ψ1 is a solution to the problem

− ψ1,rr − ψ1,zz −
3
r

ψ1,r = ω1 in Ω = (0, R)× (−a, a),

ψ1|r=R = 0,

ψ1 satisfies the periodic boundary conditions on S2.

(61)

Lemma 6. For sufficiently regular solutions to (61), the following estimates hold

∫
Ω

(ψ2
1,rr + ψ2

1,rz + ψ2
1,zz)dx +

∫
Ω

1
r2 ψ2

1,rdx +

a∫
−a

ψ2
1,z|r=0dz

+

a∫
−a

ψ2
1,r|r=Rdz ≤ c|ω1|22,Ω

(62)

and ∫
Ω

(ψ2
1,zzr + ψ2

1,zzz)dx +

a∫
−a

ψ2
1,zz|r=0dz ≤ c|ω1,z|22,Ω (63)



Mathematics 2023, 11, 4731 13 of 46

and ∫
Ω

(ψ2
1,rrz + ψ2

1,rzz + ψ2
1,zzz)dx +

a∫
−a

ψ2
1,zz|r=0dz

+

a∫
−a

ψ2
1,rz|r=Rdz ≤ c|ω1,z|22,Ω.

(64)

Proof. First, we prove (62). Multiplying (61)1 by ψ1,zz and integrating over Ω yields

−
∫
Ω

ψ1,rrψ1,zzdx−
∫
Ω

ψ2
1,zzdx− 3

∫
Ω

1
r

ψ1,rψ1,zzdx =
∫
Ω

ω1ψ1,zzdx. (65)

Integrating by parts with respect to r in the first term implies

−
∫
Ω

(ψ1,rψ1,zzr),rdrdz +
∫
Ω

ψ1,rψ1,zzrdx +
∫
Ω

ψ1,rψ1,zzdrdz

−
∫
Ω

ψ2
1,zzdx− 3

∫
Ω

ψ1,rψ1,zzdrdz =
∫
Ω

ω1ψ1,zzdx.

Continuing, we have

−
a∫
−a

ψ1,rψ1,zzr
∣∣∣∣r=R

r=0
dz +

∫
Ω

ψ1,rψ1,zzrdx−
∫
Ω

ψ2
1,zzdx

− 2
∫
Ω

ψ1,rψ1,zzdrdz =
∫
Ω

ω1ψ1,zzdx.

(66)

The first integral in (66) vanishes because ψ1,rr|r=0 = 0, ψ1,zz|r=R = 0. Integrating by parts
with respect to z in the last term on the l.h.s. of (66), and using the periodic boundary
conditions on S2, we obtain∫

Ω

ψ1,rψ1,zzrdx−
∫
Ω

ψ2
1,zzdx + 2

∫
Ω

ψ1,rzψ1,zdrdz =
∫
Ω

ω1ψ1,zzdx. (67)

Integrating by parts with respect to z in the first term in (67) and using the boundary
conditions on S2, we have∫

Ω

(ψ2
1,zr + ψ2

1,zz)dx−
∫
Ω

(ψ2
1,z),rdrdz = −

∫
Ω

ω1ψ1,zzdx, (68)

where the last term on the l.h.s. equals

−
a∫
−a

ψ2
1,z

∣∣∣∣r=R

r=0
dz =

a∫
−a

ψ2
1,z

∣∣∣∣
r=0

dz

because ψ1,z|r=R = 0. Using this in (68) and applying the Hölder and Young inequalities to
the r.h.s. of (68) yield

∫
Ω

(ψ2
1,rz + ψ2

1,zz)dx +

a∫
−a

ψ2
1,z|r=0dz ≤ c|ω1|22,Ω. (69)
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We multiply (61)1 by 1
r ψ1,r and integrate over Ω. Then, we have

3
∫
Ω

∣∣∣∣1r ψ1,r

∣∣∣∣2dx = −
∫
Ω

ψ1,rr
1
r

ψ1,rdx−
∫
Ω

ψ1,zz
1
r

ψ1,rdx−
∫
Ω

ω1
1
r

ψ1,rdx. (70)

The first term on the r.h.s. of (70) equals

−1
2

∫
Ω

∂rψ2
1,rdrdz = −1

2

a∫
−a

ψ2
1,r

∣∣∣∣r=R

r=0
dz = −1

2

a∫
−a

ψ2
1,r|r=Rdz,

because ψ1,r|r=0 = 0 (see [9]). Applying the Hölder and Young inequalities to the last two
terms on the r.h.s. of (70) implies

∫
Ω

∣∣∣∣1r ψ1,r

∣∣∣∣2dx +
1
2

a∫
−a

ψ2
1,r

∣∣∣∣
r=R

dz ≤ c(|ψ1,zz|22,Ω + |ω1|22,Ω). (71)

Inequalities (69) and (71) imply the estimate

∫
Ω

(ψ2
1,rz + ψ2

1,zz)dx +
∫
Ω

∣∣∣∣1r ψ1,r

∣∣∣∣2dx +

a∫
−a

ψ2
1,z

∣∣∣∣
r=0

dz

+

a∫
−a

ψ2
1,r

∣∣∣∣
r=R

dz ≤ c|ω1|21,Ω.

(72)

From (61)1, we have

|ψ1,rr|22,Ω ≤ |ψ1,zz|22,Ω + 3
∣∣∣∣1r ψ1,r

∣∣∣∣2
2,Ω

+ |ω1|22,Ω. (73)

Inequalities (72) and (73) imply (62).
Now, we show (63). We differentiate (61)1 with respect to z, multiply by −ψ1,zzz, and

integrate over Ω. Then, we obtain∫
Ω

ψ1,rrzψ1,zzzdx +
∫
Ω

ψ2
1,zzzdx + 3

∫
Ω

1
r
ψ1,rzψ1,zzzdx = −

∫
Ω

ω1,zψ1,zzzdx. (74)

Integrating by parts with respect to z yields∫
Ω

ψ1,rrzψ1,zzzdx =
∫
Ω

(ψ1,rrzψ1,zz),zdx−
∫
Ω

ψ1,rrzzψ1,zzdx, (75)

where the first integral vanishes in view of periodic boundary conditions on S2. Integrating
by parts with respect to r in the second integral in (75) gives

−
∫
Ω

(ψ1,rzzψ1,zzr),rdrdz +
∫
Ω

ψ2
1,rzzdx +

∫
Ω

ψ1,rzzψ1,zzdrdz,

where the first integral vanishes because

ψ1,rzzr|r=0 = 0, ψ1,zz|r=R = 0.
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In view of the above considerations, (74) takes the form∫
Ω

(ψ2
1,rzz + ψ2

1,zzz)dx +
∫
Ω

ψ1,rzzψ1,zzdrdz

+ 3
∫
Ω

ψ1,rzψ1,zzzdrdz = −
∫
Ω

ω1,zψ1,zzzdx.
(76)

Integrating by parts with respect to z in the last term on the l.h.s. of (76) and using the
periodic boundary conditions on S2, we have∫

Ω

(ψ2
1,rzz + ψ2

1,zzz)dx−
∫
Ω

∂rψ2
1,zzdrdz

= −
∫
Ω

ω1,zψ1,zzzdx.
(77)

Applying the Hölder and Young inequalities to the r.h.s. of (77) yields

∫
Ω

(ψ2
1,rzz + ψ2

1,zzz)dx +

a∫
−a

ψ2
1,zz

∣∣∣∣
r=0

dz ≤ c|ω1,z|22,Ω,

where we used that ψ1,zz|r=R = 0.
The above inequality implies (63).
Finally, we show (64). We differentiate (61)1 with respect to z, multiply by ψ1,rrz, and

integrate over Ω. Then, we have

−
∫
Ω

ψ2
1,rrzdx−

∫
Ω

ψ1,zzzψ1,rrzdx− 3
∫
Ω

1
r

ψ1,rzψ1,rrzdx

=
∫
Ω

ω1,zψ1,rrzdx.
(78)

Integrating by parts with respect to z in the second term in (78) implies

−
∫
Ω

ψ1,zzzψ1,rrzdx =
∫
Ω

ψ1,zzψ1,rrzzdx =
∫
Ω

(ψ1,zzψ1,rzzr)rdrdz

−
∫
Ω

ψ2
1,rzzdx−

∫
Ω

ψ1,zzψ1,rzzdrdz,

where the first term vanishes because

ψ1,rzzr|r=0 = 0, ψ1,zz|r=R = 0.

Then, (78) takes the form∫
Ω

(ψ2
1,rrz + ψ2

1,rzz)dx +
∫
Ω

ψ1,zzψ1,rzzdrdz

+ 3
∫
Ω

ψ1,rzψ1,rrzdrdz = −
∫
Ω

ω1,zψ1,rrzdx.
(79)

The second term in (79) equals

1
2

a∫
−a

ψ2
1,zz

∣∣∣∣r=R

r=0
dz = −1

2

a∫
−a

ψ2
1,zz

∣∣∣∣
r=0

dz
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because ψ1,zz|r=R = 0, and the last term on the l.h.s. of (79) has the form

3
2

∫
Ω

∂rψ2
1,rzdrdz =

3
2

a∫
−a

ψ2
1,rz

∣∣∣∣r=R

r=0
dz =

3
2

a∫
−a

ψ2
1,rz

∣∣∣∣
r=R

dz

because ψ1,rz|r=0 = 0.
Using the above expressions in (79) implies the equality

∫
Ω

(ψ2
1,rrz + ψ2

1,rzz)dx− 1
2

a∫
−a

ψ2
1,zz

∣∣∣∣
r=0

dz +
3
2

a∫
−a

ψ2
1,rz

∣∣∣∣
r=R

dz

= −
∫
Ω

ω1,zψ1,rrzdx.

(80)

Applying the Hölder and Young inequalities on the r.h.s. of (80) gives

∫
Ω

(ψ2
1,rrz + ψ2

1,rzz)dx− 1
2

a∫
−a

ψ2
1,zz

∣∣∣∣
r=0

dz

+
3
2

a∫
−a

ψ2
1,rz

∣∣∣∣
r=R

dz ≤ c|ω1,z|22,Ω.

(81)

Inequalities (81) and (63) imply (64). This ends the proof.

Lemma 7. For sufficiently regular solutions to (61), the following inequality∣∣∣∣1r ψ1,rz

∣∣∣∣
2,Ω
≤ c|ω1,z|2,Ω (82)

holds.

Proof. Differentiating (61) with respect to z implies

−ψ1,rrz − ψ1,zzz −
3
r

ψ1,rz = ω1,z. (83)

From (83), we have ∣∣∣∣1r ψ1,rz

∣∣∣∣
2,Ω
≤ c(|ψ1,rrz|2,Ω + |ψ1,zzz|2,Ω + |ω1,z|2,Ω). (84)

Using (64) in (84) yields (82). This concludes the proof.

Now, we estimate
∣∣ψ1,zz

r

∣∣
2,Ω.

Lemma 8. Let ψ1 be a weak solution to problem (61), which vanishes on the axis of symmetry.
Then, such sufficiently regular solutions to problem (61) satisfy the following estimate:

∫
Ω

ψ2
1,zz

r2 dx +
∫
Ω

(
ψ2

1,zrr +
ψ2

1,zr

r2 +
ψ2

1,z

r4

)
dx ≤ c|ω1,z|22,Ω. (85)
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Proof. Differentiating (61) with respect to z yields

− ∆ψ1,z −
2
r

ψ1,zr = ω1,z,

ψ1,z|S1 = 0,

ψ1,z satisfies periodic boundary conditions on S2.

(86)

Applying Lemma 17 (also see Lemma 3.1 from [11]) to problem (86) gives

∫
Ω

(
ψ2

1,zrr +
ψ2

1,zr

r2 +
ψ2

1,z

r4

)
dx ≤ c(|ω1,z|22,Ω + |ψ1,zzz|22,Ω) ≤ c|ω1,z|22,Ω, (87)

where (63) is used in the last inequality.
To examine solutions to (86) we use the notation

u = ψ1,z. (88)

Then, (86) takes the form

− ∆u− 2
r

u,r = ω1,z,

u|S1 = 0,

u satisfies periodic boundary conditions on S2.

(89)

We multiply (88)1 by ur−2, integrate over Ω, and express the Laplacian operator in cylin-
drical coordinates. Then, we have

−
∫
Ω

(
u,rr +

1
r

u,r + u,zz

)
ur−2dx− 2

∫
Ω

1
r

u,rur−2dx =
∫
Ω

ω1,zur−2dx. (90)

Integrating by parts with respect to z in the third term under the first integral, we obtain

∫
Ω

u2
,z

r2 dx =
∫
Ω

(
u,rr +

3
r

u,r

)
ur−2dx +

∫
Ω

ω1,zur−2dx. (91)

Applying the Hölder and Young inequalities to the r.h.s. integrals, using u = ψ1,z and (87),
we derive ∫

Ω

ψ2
1,zz

r2 dx ≤ c
∫
Ω

(
ψ2

1,zrr +
ψ2

1,zr

r2 +
ψ2

1,z

r4

)
dx + c|ω1,z|22,Ω. (92)

Using (87) in (92) implies (85). This concludes the proof.

Remark 3. Lemma 8 is necessary in the proof of global regular axially symmetric solutions to
problem (6). However, it imposes strong restrictions on the solutions to (6) because the condition
ψ1|r=0 = 0 implies vz|r=0 = 0. We do not know how to omit this restriction in the proof presented
in this paper.

Lemma 9. Let µ > 0 and ω1 ∈ H1
µ(Ω). Then, for sufficiently smooth solutions to (61), the

following estimate is valid

∫
Ω

(
ψ2

1,rrr +
ψ2

1,rr

r2 +
ψ2

1,r

r4

)
r2µdx ≤ cR2µ‖ω1‖2

1,Ω. (93)
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Proof. To prove the lemma, we introduce a partition of unity {ζ(i)(r)}i=1,2, such that

2

∑
i=1

ζ(i)(r) = 1

and

ζ(1)(r) =

{
1 r ≤ r0,
0 r ≥ r0 + λ,

ζ(2)(r) =

{
0 r ≤ r0,
1 r ≥ r0 + λ,

where r0 < R and ζ(i)(r), i = 1, 2, are smooth functions.
We introduce the notation

ψ
(i)
1 = ψ1ζ(i), ω

(i)
1 = ω1ζ(i), i = 1, 2. (94)

Then, function (94) satisfies the equations

− ψ
(i)
1,rr − ψ

(i)
1,zz −

3
r

ψ
(i)
1,r = −2ψ1,r ζ̇(i) − ψ1ζ̈(i) − 3

r
ψ1ζ̇(i)

+ ω
(i)
1 ≡ g(i), i = 1, 2,

(95)

where the dot denotes the derivative with respect to r.
First, we consider the case i = 1. Differentiating (95) for i = 1 with respect to r yields

−ψ
(1)
1,rrr − ψ

(1)
1,rzz −

3
r

ψ
(1)
1,rr +

3
r2 ψ

(1)
1,r = g(1),r . (96)

We introduce the notation
v = ψ

(1)
1,r , f = g(1),r . (97)

Then, (96) takes the form

− v,rr − v,zz −
3
r

v,r +
3
r

v = f in Ωr0 ,

v|r=r0 = 0,

v|S2 satisfies periodic boundary conditions,

(98)

where Ωr0 = {x ∈ Ω : r ∈ (0, r0), z ∈ (−a, a)} and r0 < R.
Multiplying (98)1 by r2 yields

−r2v,rr − 3rv,r + 3v = r2( f + v,zz) ≡ g(r, z)

or equivalently
−r∂r(r∂rv)− 2r∂rv + 3v = g(r, z). (99)

We introduce the new variable

τ = − ln r, r = e−τ .

Since r∂r = −∂τ , Equation (99) takes the form

−∂2
τv + 2∂τv + 3v = g(e−τ , z) ≡ g′(τ, z). (100)

Applying the Fourier transform (58) to (100) gives

λ2v̂ + 2iλv̂ + 3v̂ = ĝ′. (101)



Mathematics 2023, 11, 4731 19 of 46

Looking for solutions to the algebraic equation

λ2 + 2iλ + 3 = 0

we see that it has two solutions

λ1 = −3i, λ2 = i.

For λ 6∈ {−3i, i}, we can write solutions to (101) in the form

v̂ =
1

λ2 + 2iλ + 3
ĝ′ ≡ R(λ)ĝ′. (102)

Since R(λ) does not have poles on the line Im λ = 1− µ = h, µ ∈ (0, 1), we can use
Lemma 3.1 from [11]. Then, we obtain

∞+ih∫
−∞+ih

2

∑
j=0
|λ|2(2−j)|v̂|2dλ ≤ c

+∞+ih∫
−∞+ih

2

∑
j=0
|λ|2(2−j)|R(λ)ĝ′|2dλ

≤ c
+∞+ih∫
−∞+ih

|ĝ′|2dλ.

(103)

By applying the Parseval identity, inequality (103) becomes

∫
R

2

∑
j=0
|∂j

τv|2e2hτdτ ≤ c
∫
R

|g′|2e2hτdτ.

Passing to variable r yields

2

∑
j=0

∫
R+

|∂j
rv|2r2(µ+j−2)rdr ≤ c

∫
R+

|g|2r2(µ−2)rdr.

Using that g = r2( f + v,zz), we have

2

∑
j=0

∫
R+

|∂j
rv|2r2(µ+j−2)rdr ≤ c

∫
R+

| f + v,zz|2r2µrdr. (104)

Recalling notation (97), we derive from (104) the inequality

2

∑
j=0

∫
Ω

|∂j
rψ

(1)
1,r |

2r2(µ+j−2)dx ≤ c
∫
Ω

|g(1),r |2r2µdx

+ c
∫
Ω

|ψ1,rzz|2r2µdx.
(105)

In view of (63),
|ψ1,rzz|2,Ω ≤ c|ω1,z|2,Ω. (106)

The first term on the r.h.s. of (105) can be estimated by

|g(1),r |2,µ,Ω ≤ c(|ψ1,rr|2,Ω + |ψ1,r|2,Ω + |ψ1|2,Ω + |ω1,r|2,Ω + |ω1|2,Ω). (107)
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Lemma 6 and inequalities (105), (106), and (107) imply

∫
Ω

(
|ψ(1)

1,rrr|
2 +
|ψ(1)

,rr |2
r2 +

|ψ(1)
,r |2
r4

)
r2µrdrdz

+
∫
Ω

|ψ1,rzz|2dx ≤ c(|ω1,r|22,Ω + |ω1|22,Ω).
(108)

Function ψ
(2)
1 is a solution to the problem

− ∆ψ
(2)
1 = −2ψ1,r ζ̇(2) − ψ1ζ̈(2) +

2
r

ψ
(2)
1,r

− 3
r

ψ1ζ̇(2) + ω
(2)
1 in Ω̄r0 ,

ψ
(2)
1 |r=R = 0, ψ(2) = 0 for r ≤ r0,

ψ(2) satisfies periodic boundary conditions on S2,

(109)

where Ω̄r0 = {x ∈ R3 : r0 ≤ r ≤ R, z ∈ (−a, a)} and the dot denotes the derivative with
respect to r.

For solutions to (109), the following estimate holds

‖ψ(2)
1 ‖3,Ω ≤ c(‖ψ1,r‖1,Ω + ‖ψ1‖1,Ω + ‖ω(2)

1 ‖1,Ω) ≤ c‖ω1‖1,Ω. (110)

From (56), (108), and (110), inequality (93) follows. This ends the proof.

4. Estimates for Φ and Γ

Let Ω = {(r, z) : r ∈ (0, R), z ∈ (−a, a)}. Let Φ = ωr/r, Γ = ωϕ/r and Φ, Γ are
solutions to problems (17)–(20).

Lemma 10. Assume that Φ(0), Γ(0) ∈ L2(Ω), F̄r, F̄ϕ ∈ L2(0, t; L6/5(Ω)). Let D2 be defined by
(52) and let

I3 =
∫

Ωt

∣∣∣∣vϕ

r
ΦΓ
∣∣∣∣dxdt′ < ∞.

Then
|Φ(t)|22,Ω + |Γ(t)|22,Ω + ν(‖Φ‖2

1,2,Ωt + ‖Γ‖2
1,2,Ωt)

≤ φ(D2)

∣∣∣∣ ∫
Ωt

vϕ

r
ΦΓdxdt′

∣∣∣∣+ φ(D2)(|F̄r|26/5,2,Ωt

+ |F̄ϕ|26/5,2,Ωt) + |Φ(0)|22,Ω + |Γ(0)|22,Ω

≡ φ(D2)I3 + D8.

(111)

Proof. Multiplying (17) by Φ and integrating over Ω yields

1
2

d
dt
|Φ|22,Ω + |∇Φ|22,Ω −

a∫
−a

Φ
∣∣∣∣r=R

r=0
dz

=
∫
Ω

(ωr∂r + ωz∂z)
vr

r
Φdx +

∫
Ω

F̄rΦdx.
(112)

To derive the second term on the l.h.s. of (112), we consider (17) in

Ω̄ = {x ∈ R3 : r < R, z ∈ (−a, a), ϕ ∈ (0, 2π)}.



Mathematics 2023, 11, 4731 21 of 46

Then, by applying the Green theorem and the boundary conditions, we obtain the second
term on the l.h.s. of (112) on Ω̄. Considering that all quantities in (112) do not depend on ϕ,
we can omit the integration with respect to ϕ and obtain (112).

Using Φ|r=R = 0 and (13), we have

1
2

d
dt
|Φ|22,Ω + |∇Φ|22,Ω ≤

∫
Ω

(ωr∂r + ωz∂z)
vr

r
Φdx +

∫
Ω

F̄rΦdx

≤
∫
Ω

(
− vϕ,z∂r

vr

r
+

∂r(rvϕ)

r
∂z

vr

r

)
Φrdrdz +

∫
Ω

F̄rΦdx

=
∫
Ω

vϕ

((
∂z∂r

vr

r

)
Φ + ∂r

vr

r
∂zΦ

)
dx

+
∫
Ω

∂r

(
rvϕ∂z

vr

r
Φ
)

drdz−
∫
Ω

vϕ

((
∂z∂r

vr

r

)
Φ + ∂z

vr

r
∂rΦ

)
dx

+
∫
Ω

F̄rΦdx =

a∫
−a

rvϕ∂z
vr

r
Φ
∣∣∣∣r=R

r=0
dz +

∫
Ω

vϕ

(
∂r

vr

r
∂zΦ− ∂z

vr

r
∂rΦ

)
dx

+
∫
Ω

F̄rΦdx ≡
a∫
−a

rvϕ∂z
vr

r
Φ
∣∣∣∣r=R

r=0
dz + I +

∫
Ω

F̄rΦdx,

(113)

Using the periodic boundary conditions on S2, the boundary term vanishes because
vϕ|r=R = 0, vr|r=R = 0, Φ|r=R = 0, and

a∫
−a

rvϕ∂z
vr

r
Φ
∣∣∣∣
r=0

dz = 0

because [9] implies the following expansions near the axis of symmetry

vϕ = a1(z, t)r + a2(z, t)r3 + · · · ,

vr = ā1(z, t)r + ā2(z, t)r3 + · · ·

and Φ = − vϕ,z
r .

Finally, I ≤ I1 + I2, where

I1 ≤
∫
Ω

∣∣∣∣vϕ∂r
vr

r
Φ,z

∣∣∣∣dx,

I2 ≤
∫
Ω

∣∣∣∣vϕ∂z
vr

r
Φ,r

∣∣∣∣dx.
(114)

Now, we estimate I1 and I2. Recall that vr
r = −ψ1,z. Then,

I1 ≤
∫
Ω

|vϕψ1,rzΦ,z|dx =
∫
Ω

∣∣∣∣rvϕ
ψ1,rz

r
Φ,z

∣∣∣∣dx

≤ |rvϕ|∞,Ω

∣∣∣∣ψ1,rz

r

∣∣∣∣
2,Ω
|Φ,z|2,Ω ≡ I1

1 .

From (52) and (82), we have (recall that Γ = ω1):

I1
1 ≤ cD2|Γ,z|2,Ω|Φ,z|2,Ω. (115)
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Similarly, we calculate

I2 ≤
∫
Ω

|vϕψ1,zzΦ,r|dx ≤ |rvϕ|∞,Ω

∣∣∣∣ψ1,zz

r

∣∣∣∣
2,Ω
|Φ,r|2,Ω

≤ cD2|Γ,z|2,Ω|Φ,r|2,Ω,

(116)

where (85) is used.
Finally, the last term on the r.h.s. of (113) is bounded by

ε|Φ|26,Ω + c(1/ε)|F̄r|26/5,Ω. (117)

Using estimates (115)–(117) in (113), assuming that ε is sufficiently small and applying the
Poincaré inequality, we obtain

d
dt
|Φ|22,Ω + ‖Φ‖2

1,Ω ≤ cD2|Γ,z|2,Ω|∇Φ|2,Ω + c|F̄r|26/5,Ω. (118)

Multiplying (18) by Γ, integrating over Ω, using the boundary conditions and explanations
about applying the Green theorem appeared below (112), we obtain

1
2

d
dt
|Γ|22,Ω + |∇Γ|22,Ω −

a∫
−a

Γ2
∣∣∣∣r=R

r=0
dz

≤ 2
∣∣∣∣ ∫

Ω

vϕ

r
ΦΓdx

∣∣∣∣+ ∫
Ω

F̄ϕΓdx.

(119)

Using Γ|r=R = 0, applying the Hölder and Young inequalities to the last term on the r.h.s.
of (119) and using the Poincaré inequality, we derive

d
dt
|Γ|22,Ω + ‖Γ‖2

1,Ω ≤ 2
∫
Ω

vϕ

r
ΦΓdx + c|F̄ϕ|26/5,Ω. (120)

From (118) and (120), we have

d
dt
(|Φ|22,Ω + |Γ|22,Ω) + ‖Φ‖2

1,Ω + ‖Γ‖2
1,Ω ≤ φ(D2)

∣∣∣∣ ∫
Ω

vϕ

r
ΦΓdxdt′

∣∣∣∣
+ φ(D2)(|F̄r|26/5,Ω + |F̄ϕ|26/5,Ω),

(121)

where φ is an increasing positive function. Integrating (121) with respect to time yields (111).
This ends the proof.

Lemma 11. Let the assumptions of Lemma 16 hold.
Let vϕ ∈ L∞(0, t; Ld(Ω)), d > 3. Let θ =

(
1− 3

d
)
ε1 − 3

d ε2 > 0, ε = ε1 + ε2. Let ε0 > 0 be
arbitrarily small.

Then,

I3 ≤ c|vϕ|εd,∞,Ωt [c1(1 + |vϕ|
1
2 θε0
∞,Ωt)‖Γ‖

1
2 θ

1,2,Ωt

+ c2]|∇Φ|1−θ
2,Ωt |∇Γ|2,Ωt ,

(122)

where c1 and c2, depending on D5, D6, and D7, are introduced in L4
1 below.
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Proof. We examine

I3 =
∫

Ωt

∣∣∣∣rvϕ
Φ
r

Γ
r

∣∣∣∣dxdt′

≤
∫

Ωt

|rvϕ|1−ε|vϕ|ε
∣∣∣∣ Φ
r1−ε1

∣∣∣∣∣∣∣∣ Γ
r1−ε2

∣∣∣∣dxdt′ = I1
3 ,

where ε = ε1 + ε2 and εi, for i = 1, 2, are positive numbers.
Using (52) and applying the Hölder inequality in I1

3 yields

I1
3 ≤ D1−ε

2

( ∫
Ωt

|vϕ|2ε

∣∣∣∣ Φ
r1−ε1

∣∣∣∣2dxdt′
)1/2∣∣∣∣ Γ

r1−ε2

∣∣∣∣
2,Ωt

≡ D1−ε
2 L|Γ/r1−ε2 |2,Ωt ≡ I2

3 .

By the Hardy inequality, we obtain∥∥∥∥Γ
r

∥∥∥∥
L2,ε2 (Ω

t)

≤ c‖∇Γ‖L2,ε2 (Ω
t) ≤ cRε2 |∇Γ|2,Ωt . (123)

Now, we estimate L,

L =

( t∫
0

∫
Ω

|vϕ|2ε

∣∣∣∣ Φ
r1−ε1

∣∣∣∣2dxdt′
)1/2

≤
[ t∫

0

|vϕ|2ε
2εσ,Ω

( ∫
Ω

∣∣∣∣ Φ
r1−ε1

∣∣∣∣qdx
)2/q

dt′
]1/2

≡ L1,

where 1/σ + 1/σ′ = 1, q = 2σ′. Let d = 2εσ. Then,

σ′ =
d

d− 2ε
so q =

2d
d− 2ε

.

Continuing,

L1 ≤ sup
t
|vϕ|εd,Ω

( t∫
0

∣∣∣∣ Φ
r1−ε1

∣∣∣∣2
q,Ω

dt′
)1/2

≡ L1
1L2

1.

Now, we estimate the second factor L2
1.

For this purpose, we use Lemma 5 for r = 2. Let s
q = 1− ε1. Then, q ∈ [2, 2(3− s)].

Since s = (1− ε1)q we have the restriction 2 ≤ q ≤ 6− 2s = 6− 2(1− ε1)q. Then,

2 ≤ q ≤ 6
3− 2ε1

(124)

and 6
3−2ε1

> 2 for any ε1 ∈ (0, 1).
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Hence, Lemma 5 implies

L2
1 =

( t∫
0

∣∣∣∣ Φ
r1−ε1

∣∣∣∣2
q,Ω

dt′
)1/2

≤ c
( t∫

0

|Φ|
2( 3−s

q −
1
2 )

2,Ω |∇Φ|
2( 3

2−
3−s

q )

2,Ω dt′
)1/2

≤ c|Φ|
3−s

q −
1
2

2,Ωt |∇Φ|
3
2−

3−s
q

2,Ωt ≡ L3
1,

where we used that for θ = 3−s
q −

1
2 , 1− θ = 3

2 −
3−s

q so the Hölder inequality can be
applied.

Using (173) in L3
1, we have

L3
1 ≤ c(D

1
2 θ
5 |∇Γ|

1
2 θ

2,Ωt + D
1
2 θ
6 |vϕ|

1
2 θε0
∞,Ωt‖Γ‖

1
2 θ

1,2,Ωt + D
1
2 θ
7 ) · |∇Φ|1−θ

2,Ωt

≡ [c1(1 + |vϕ|
1
2 θε0
∞,Ωt)‖Γ‖

1
2 θ

1,2,Ωt + c2]|∇Φ|1−θ
2,Ωt ≡ L4

1,

where c1 and c2 depend on D5, D6, and D7.
To justify the above inequality, we have to know that the following inequalities hold:

θ =
3− s

q
− 1

2
> 0 (125)

and
1− θ =

3
2
− 3− s

q
> 0. (126)

Consider (125). Using the form of q and s
q , we have

3
q
− s

q
− 1

2
> 0 so

3(d− 2ε)

2d
− (1− ε1)−

1
2
> 0.

Hence
3
2
− 3

d
ε− 1 + ε1 −

1
2
> 0 so ε1 −

3
d
(ε1 + ε2) > 0.

Therefore, the following inequality(
1− 3

d

)
ε1 −

3
d

ε2 > 0 (127)

holds for d > 3, and ε2 is sufficiently small. Moreover, (127) implies

ε1 >
3
d

d
d− 3

ε2 =
3

d− 3
ε2. (128)

To examine (126), we calculate

3
2
− 3(d− 2ε)

2d
+ 1− ε1 = 1 +

3
d

ε− ε1 = 1−
(

1− 3
d

)
ε1 +

3
d

ε2. (129)

Since (129) must be positive, we have the restriction

1 +
3
d

ε2 >

(
1− 3

d

)
ε1 (130)
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Using (128) in (130) implies

1 +
3
d

ε2 >
3
d

ε2

so there is no contradiction.
Hence, we have

θ =

(
1− 3

d

)
ε1 −

3
d

ε2,

1− θ = 1−
(

1− 3
d

)
ε1 +

3
d

ε2,
(131)

where d > 3.
Finally,

I3 ≤ c|vϕ|εd,∞,Ωt [c1(1 + |vϕ|
1
2 θε0
∞,Ωt)‖Γ‖

1
2 θ

1,2,Ωt + c2]|∇Φ|1−θ
2,Ωt · |∇Γ|2,Ωt .

This implies (122) and ends the proof.

We introduce the quantity

X(t) = ‖Φ‖V(Ωt) + ‖Γ‖V(Ωt). (132)

Lemma 12. Let the assumptions of Lemmas 10 and 11 hold. Let θ =
(
1− 3

d
)
ε1− 3

d ε2, ε = ε1 + ε2.
Then

X2 ≤ c0|vϕ|
4ε
θ

d,∞,Ωt(1 + |vϕ|2ε0
∞,Ωt) + c0|vϕ|

2ε
θ

d,∞,Ωt + D2
8, (133)

where c0 = φ(D5, D6, D7).

Proof. In view of notation (132), inequalities (111) and (122) imply

X2 ≤ c|vϕ|εd,∞,Ωt [c1(1 + |vϕ|
1
2 θε0
∞,Ωt)X1− 1

2 θ

+ c2X1−θ ]X + D8 ≡ α1X2− 1
2 θ + α2X2−θ + D2

8.
(134)

Applying the Young inequality in (134) implies

X2 ≤ cα
4
θ
1 + cα

2
θ
2 + D2

8.

This yields (133) and concludes the proof.

Remark 4. Consider exponents in (133). Then,

δ =
4ε

θ
=

4ε

(1− 3
d )ε1 − 3

d ε2
, δ0 =

2ε

(1− 3
d )ε1 − 3

d ε2
. (135)

For ε2 small, we have

δ =
4

1− 3
d
+ ε∗, δ0 =

2
1− 3

d
+ ε0∗,

where ε∗ and ε0∗ are positive numbers that can be chosen to be very small.
For d = 12, it follows that

δ =
16
3

+ ε∗, δ0 =
8
3
+ ε0∗. (136)

This ends the remark.
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Lemma 13. Assume that ε1 > aε2, s > 1, a = 16+6′
3·6′−16 , b = 2·6′(3ε1−ε2)

(6′ ·3−16)(ε1−aε2)
, and we choose 6′ to

be arbitrarily close to 6, and

Ds
9(s) = s2| fϕ|s 3s

2s+1 ,s,Ωt + |vϕ(0)|ss,Ω < ∞.

Then, excluding cases where either vϕ = 0 or vϕ is small, we have

|vϕ|6
′

12,∞,Ωt ≤ c|vϕ|bε0
∞,Ωt + φ(D5, D6, D7) + c(D8 + D12

9 ) (137)

Proof. We multiply (7)2 by vϕ|vϕ|s−2, integrate over Ω, and exploit the relation vr
r = −ψ1,z.

Then, we obtain

1
s

d
dt
|vϕ|ss,Ω +

4ν(s− 1)
s2 |∇|vϕ|s/2|22,Ω =

∫
Ω

ψ1,z|vϕ|sdx

+
∫
Ω

fϕvϕ|vϕ|s−2dx.
(138)

Integrating by parts in the first term on the r.h.s. of (138) and applying the Hölder and
Young inequalities yield∣∣∣∣ ∫

Ω

ψ1,z|vϕ|sdx
∣∣∣∣ ≤ ε

∣∣∂z|vϕ|s/2∣∣2
2,Ω + c(1/ε)

∫
Ω

ψ2
1 |vϕ|sdx.

By the Poincaré inequality,
|∇|vϕ|s/2|22,Ω ≥ c|vϕ|s3s,Ω

we can estimate the second term on the r.h.s. of (138) by

| fϕ| 3s
2s+1 ,Ω|vϕ|s−1

3s,Ω ≤ ε1|vϕ|s3s,Ω + c(1/ε1)| fϕ|s 3s
2s+1 ,Ω.

Using the above estimates with sufficiently small ε, ε1 in (138) we derive the inequality

1
s

d
dt
|vϕ|ss,Ω +

1
s
|∇|vϕ|s/2|22,Ω +

1
s
|vϕ|s3s,Ω

≤ cs
∫
Ω

ψ2
1 |vϕ|sdx + cs| fϕ|s 3s

2s+1 ,Ω.
(139)

In view of Lemma 2, the first term on the r.h.s. of (139) is bounded by

cs|u|6′∞,Ωt

∫
Ω

ψ2
1

r6′ |vϕ|s−6′dx ≤ csD6′
2 |vϕ|s−6′

∞,Ω

∫
Ω

ψ2
1

r6′ dx,

where 6′ < 6 but 6′ may be assumed arbitrarily close to 6.
Using the estimate in (139) yields

1
s

d
dt
|vϕ|ss,Ω ≤ csD6′

2 |vϕ|s−6′
∞,Ω

∫
Ω

ψ2
1

r6′ dx + cs| fϕ|s 3s
2s+1 ,Ω. (140)

Integrating (140) with respect to time and using Lemma 18, we obtain

|vϕ|ss,Ω ≤ c1s2D6′
2 |vϕ|s−6′

∞,Ωt‖Γ‖2
1,2,Ωt

+ cs2| fϕ|s 3s
2s+1 ,s,Ωt + |vϕ(0)|ss,Ω

≡ c1s2D6′
2 |vϕ|s−6′

∞,Ωt‖Γ‖2
1,2,Ωt + cDs

9(s),

(141)
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c1 = cR2µ
(
1 + 4

(6−6′)2

)
.

Dividing (141) by |vϕ|s−6′
∞,Ωt implies

∣∣∣∣ |vϕ|s,∞,Ωt

|vϕ|∞,Ωt

∣∣∣∣s−6′

|vϕ|6
′

s,Ω ≤ c1s2D6′
2 ‖Γ‖2

1,2,Ωt +
c

|vϕ|s−6′
∞,Ωt

Ds
9(s). (142)

The dividing by |vϕ|∞,Ωt is justified because the following two cases are excluded from this
paper:

Case 1: In the case, vϕ = 0 the existence of global regular solutions to problem (6) is
proven in [1,2,13].

Case 2: The existence of global regular solutions to problem (6) for vϕ sufficiently
small is proven in Appendix A .

Since Cases 1 and 2 are not considered in this paper, we can show the existence of
positive constants c0 and c1, such that∣∣∣∣ |vϕ|s,∞,Ωt

|vϕ|∞,Ωt

∣∣∣∣s−6′

≥ c̄0 (143)

and
1

|vϕ|s−6′
∞,Ωt

≤ c̄1. (144)

In view of (143) and (144), inequality (142) takes the form

c̄0|vϕ|6
′

s,∞,Ωt ≤ c1s2‖Γ‖2
1,2,Ωt + cc̄1Ds

9(s). (145)

Let d = 12. Then, θ = 1
4 (3ε1 − ε2) and (133) for d = 12 takes the form

X2 ≤ c0|vϕ|
16ε

3ε1−ε2
12,∞,Ωt(1 + |vϕ|2ε0

∞,Ωt) + c0|vϕ|
8ε

3ε1−ε2
12,∞,Ωt + D8. (146)

Taking (145) for s = 12 and using (146) yield

|vϕ|6
′

12,∞,Ωt ≤ c2|vϕ|
16ε

3ε1−ε2
12,∞,Ωt(1 + |vϕ|2ε0

∞,Ωt)

+ c2|vϕ|
8ε

3ε1−ε2
12,∞,Ωt + cD8 + cD12

9 ,
(147)

where C2 = 144c1c0
c̄0

.
To derive any estimate from (147), we need

16ε

3ε1 − ε2
< 6′ (148)

We see that (148) holds for

ε1 >
16 + 6′

3 · 6′ − 16
ε2 ≡ aε2, (149)

where a > 11.
In view of the Young inequality, (147) implies

|vϕ|6
′

12,∞,Ωt ≤ c|vϕ|bε0
∞,Ωt + c + c(D8 + D12

9 ), (150)

where b = 2·6′(3ε1−ε2)
(6′ ·3−16)(ε1−aε2)

. The above inequality implies (137) and concludes the proof.
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Remark 5. Exploiting (150) in (146) implies the inequality

X2 ≤ c(1 + |vϕ|2ε0
∞,Ωt)|vϕ|dε0

∞,Ωt + φ(D5, D7, D8, D9), (151)

where d = 16bε
3ε1−ε2

and X is introduced in (132).

To prove Theorem 1, we need an estimate for |vϕ|∞,Ωt . For this purpose, we need the
result

Lemma 14. Assume that quantities D2, D5, D7, D8, and D9 are bounded. Assume that fϕ/r ∈
L1(0, t; L∞(Ω)), vϕ(0) ∈ L∞(Ω).

Then, there exists an increasing positive function φ, such that

|vϕ|∞,Ωt ≤ φ(D2, D5, D7, D8, D9, ‖ fϕ/r‖L1(0,t;L∞(Ω)), |vϕ(0)|∞,Ω). (152)

Proof. Recall Equation (7)2 for vϕ

vϕ,t + v · ∇vϕ − ν

(
∆vϕ −

1
r2 vϕ

)
= ψ1,zvϕ + fϕ, (153)

where vr
r = −ψ1,z.

Multiplying (153) by vϕ|vϕ|s−2 and integrating over Ω yields

1
s

d
dt
|vϕ|ss,Ω +

4ν(s− 1)
s2 |∇|vϕ|s/2|22,Ω + ν

∫
Ω

|vϕ|s

r2 dx

=
∫
Ω

ψ1,zv2
ϕ|vϕ|s−2dx +

∫
Ω

fϕvϕ|vϕ|s−2dx.
(154)

The first term on the r.h.s. of (154) is bounded by

∫
Ω

|ψ,z| |vϕ|s/2 |vϕ|s/2

r
dx ≤ ε

∫
Ω

|vϕ|s

r2 dx + c(1/ε)
∫
Ω

ψ2
,z|vϕ|sdx,

where the second integral is bounded by

|rvϕ|2∞,Ω

∫
Ω

|ψ1,z|2|vϕ|s−2dx ≤ D2
2 |ψ1,z|2s,Ω|vϕ|s−2

s,Ω .

The second term on the r.h.s. of (154) is estimated by

∫
Ω

| fϕ| |vϕ|s−1dx =
∫
Ω

∣∣∣∣ fϕ

r

∣∣∣∣r|vϕ|s−1dx

≤ |rvϕ|∞,Ω

∫
Ω

∣∣∣∣ fϕ

r

∣∣∣∣ |vϕ|s−2dx ≤ D2

∣∣∣∣ fϕ

r

∣∣∣∣
s/2,Ω
|vϕ|s−2

s,Ω .

Using the above estimates in (154) and assuming that ε is sufficiently small, we obtain the
inequality

1
s

d
dt
|vϕ|ss,Ω ≤ D2

2

(
|ψ1,z|2s,Ω|vϕ|s−2

s,Ω +

∣∣∣∣ fϕ

r

∣∣∣∣
s/2,Ω
|vϕ|s−2

s,Ω

)
.

Simplifying, we have

1
2

d
dt
|vϕ|2s,Ω ≤ D2

2

(
|ψ1,z|2s,Ω +

∣∣∣∣ fϕ

r

∣∣∣∣
s/2,Ω

)
.
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Integrating with respect to time and passing with s→ ∞, we derive

|vϕ(t)|2∞,Ω ≤ D2
2

( t∫
0

|ψ1,z|2∞,Ωdt′ +
t∫

0

∣∣∣∣ fϕ

r

∣∣∣∣
∞,Ω

dt′
)
+ |vϕ(0)|2∞,Ω. (155)

Since
∫ t

0 |ψ1,z|2∞,Ωdt′ ≤ X2, we can apply (151). Then (155) takes the form

|vϕ|2∞,Ωt ≤ D2
2(1 + |vϕ|2ε0

∞,Ωt)|vϕ|
96ε

ε1−11ε2
ε0

∞,Ωt + D2φ(D5, D7, D8, D9)

+ D2
2

t∫
0

∣∣∣∣ fϕ

r

∣∣∣∣
∞,Ω

dt′ + |vϕ(0)|2∞,Ω.
(156)

Hence, for ε0 sufficiently small, we derive (152). This ends the proof.

Remark 6. Inequalities (151) and (152) imply

X ≤ φ(D2, D5, D7, D8, D9, | fϕ/r|∞,1,Ωt , |vϕ(0)|∞,Ω) (157)

The above inequality proves Theorem 1.

5. Estimates for the Swirl

Applying the energy method and using the estimate for the weak solution (see
Lemma 1) and L∞-estimate for swirl (see Lemma 2), we derive the estimate

‖u‖L∞(0,t;H1(Ω)) + ‖u‖L2(0,T;H2(Ω)) ≤ φ(data).

This is a new result. It is necessary in the proof of (173).
In this section, we find estimates for solutions to the problem

u,t + v · ∇u− ν∆u + 2ν
u,r

r
= r fϕ ≡ f0 in Ωt,

u|S1 = 0, in Ωt,

u|S2 − periodic boundary conditions,

u|t=0 = u(0) in Ω.

(158)

Lemma 15. Assume that D1 and D2 are described by (46) and (52), respectively. Let u,z(0), u,r(0) ∈
L2(Ω), f0 ∈ L2(Ωt).

Then, solutions to (158) satisfy the estimates

|u,z(t)|22,Ω + ν|∇u,z|22,Ωt ≤ c(D2
1D2

2 + |u,z(0)|22,Ω + | f0|22,Ωt) ≡ cD2
3, (159)

|u,r(t)|22,Ω + ν(|u,rr|22,Ωt + |u,rz|22,Ωt) ≤ cD2
1(1 + D2

2)

+ |u,r(0)|22,Ω + | f0|22,Ωt + | f0|24/3,2,St
1
≡ cD2

4.
(160)

Proof. We differentiate (158) with respect to z, multiply by u,z, and integrate over Ω. To ap-
ply the Green theorem, we have to consider problem (158) in domain Ω̄ = {x ∈ R3 : r < R,
z ∈ (−a, a), ϕ ∈ (0, 2π)}. Then, we obtain

1
2

d
dt
|u,z|22,Ω̄ − ν

∫
Ω̄

div (∇u,zu,z)dx̄ + ν
∫
Ω̄

|∇u,z|2dx̄

= −
∫
Ω̄

v,z · ∇u · u,zdx̄ +
∫
Ω̄

f0,zu,zdx̄,
(161)
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where dx̄ = dxdϕ. The second term on the l.h.s. implies a boundary term, which vanishes
due to boundary conditions. Since all functions in (161) do not depend on ϕ, any integral
with respect to ϕ can be omitted.

Integrating by parts with respect to z in the term from the r.h.s. of (161) and using the
boundary conditions on S2, we obtain

1
2

d
dt
|u,z|22,Ω + ν|∇u,z|22,Ω −

ν

2

a∫
−a

u2
,z

∣∣∣∣r=R

r=0
dz

=
∫
Ω

v,zz · ∇uudx +
∫
Ω

v,z · ∇u,z · udx−
∫
Ω

f0u,zzdx.
(162)

The last term on the l.h.s. of (162) vanishes and the first term on the r.h.s. equals

1
2

∫
Ω

v,zz · ∇u2dx =
1
2

∫
S1

v,zz · n̄u2dS1 = 0.

Applying the Hölder and Young inequalities to the other terms from the r.h.s. of (162) yields

d
dt
|u,z|22,Ω + ν|∇u,z|22,Ω ≤ c|u|2∞,Ω|v,z|22,Ω + c| f0|22,Ω. (163)

Integrating (163) with respect to time gives

|u,z(t)|22,Ω + ν|∇u,z|22,Ω ≤ c|u|2∞,Ωt |v,z|22,Ωt + |u,z(0)|22,Ω

+ c| f0|22,Ωt ≤ cD2
1D2

2 + |u,z(0)|22,Ω + c| f0|22,Ωt .
(164)

The above inequality implies (159).
Differentiating (158) with respect to r gives

u,rt + v · ∇u,r + v,r · ∇u− ν(∆u),r +
2ν

r
u,rr −

2ν

r2 u,r = f0,r. (165)

Multiplying (165) by u,r and integrating over Ω yields

1
2

d
dt
|u,r|22,Ω +

∫
Ω

v,r · ∇uu,rdx− ν
∫
Ω

(∆u),ru,rdx

+ 2ν
∫
Ω

1
r

u,rru,rdx− 2ν
∫
Ω

u2
,r

r2 dx =
∫
Ω

f0,ru,rdx.
(166)

Now, we examine the particular terms in (166). The second term equals∫
Ω

v,r · ∇uu,rrdrdz =
∫
Ω

(vr,r∂ru + vz,r∂zu)u,rrdrdz

=
∫
Ω

(rvr,ru,r + rvz,ru,z)u,rdrdz

=
∫
Ω

(rvr,ru,ru,r + rvz,ru,ru,z)drdz

= −
∫
Ω

[(rvr,ru,r),r + (rvz,ru,r),z]udrdz ≡ I,
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where we use rvr,ru,ru|r=0 = 0 (see [9]). Continuing, we write I in the following form:

I = −
∫
Ω

[(rvr,r),r + (rvz,r),z]u,rudrdz

−
∫
Ω

[rvr,ru,rr + rvz,ru,rz]udrdz ≡ I1 + I2.

To estimate I1, we calculate

I1
1 = (rvr,r),r + (rvz,r),z = rvr,rr + vr,r + rvz,rz.

Since v = vr ēr + vz ēz is divergence free, we have

vr,r + vz,z +
vr

r
= 0. (167)

Since Equation (167) is satisfied identically in Ω, we can differentiate (167) with respect to r.
Then, we have

vr,rr + vz,zr +
vr,r

r
− vr

r2 = 0.

Hence,
I1
1 =

vr

r
.

Then, I1 equals

I1 = −
∫
Ω

vr

r
u,rudrdz.

Therefore, ∣∣∣∣ t∫
0

I1dt′
∣∣∣∣ ≤ ∣∣∣∣vr

r

∣∣∣∣
2,Ωt

∣∣∣∣u,r

r

∣∣∣∣
2,Ωt
|u|∞,Ωt . (168)

Next,
|I2| ≤ ε(|u,rr|22,Ω + |u,rz|22,Ω) + c(1/ε)|u|2∞,Ω(|vr,r|22,Ω + |vz,r|22,Ω).

The third integral in (166) equals

J = −ν
∫
Ω

(∆u),ru,rdx = −ν
∫
Ω

(
u,rrr +

(
1
r

u,r

)
,r
+ u,rzz

)
u,rrdrdz

= −ν
∫
Ω

[(
u,rr +

1
r

u,r

)
u,rr
]

,r
drdz + ν

∫
Ω

u,rr(u,rr),rdrdz

+ ν
∫
Ω

1
r

u,r(u,rr),rdrdz +
∫
Ω

u2
,rzdx = −ν

a∫
−a

(
u,rr +

1
r

u,r

)
u,rr
∣∣∣∣r=R

r=0
dz

+ ν
∫
Ω

(u2
,rr + u2

,rz)dx + ν
∫
Ω

u2
,r

r2 dx + 2ν
∫
Ω

u,rru,rdrdz,

where the last term equals

ν
∫
Ω

(u2
,r),rdrdz = ν

a∫
−a

u2
,r

∣∣∣∣r=R

r=0
dz = ν

a∫
−a

u2
,r

∣∣∣∣
r=R

dz (169)

because u,r|r=0 = (vϕ + vϕ,rr)|r=0 = 0.
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To examine the boundary term in J, we recall the expansion of vϕ near the axis of
symmetry (see [9])

vϕ = a1(z, t)r + a2(z, t)r3 + · · · ,

so
u = a1(z, t)r2 + a2(z, t)r4 + · · ·

Then,
(
u,rr +

1
r u,r

)
u,rr|r=0 = 0, and we have to emphasize that all calculations in this paper

are performed for sufficiently regular solutions.
Therefore, the boundary term in J equals

J1 = −ν

a∫
−a

(
u,rr +

1
r

u,r

)
u,rr
∣∣∣∣
r=R

dz.

Projecting (158)1 on S1 yields

−ν

(
u,rr +

1
r

u,r

)
+ 2ν

u,r

r
= f0 on S1.

Hence,

u,rr|S1 =

(
u,r

r
− 1

ν
f0

)∣∣∣∣
S1

.

Using the expression in J1 gives

J1 = −2ν

a∫
−a

u2
,r

∣∣∣∣
r=R

dz +
a∫
−a

f0u,rr
∣∣∣∣
r=R

dz.

The fourth term in (166) equals (169).
Using the above estimates and expressions in (166) yields

1
2

d
dt
|u,r|22,Ω + ν

∫
Ω

(u2
,rr + u2

,rz)dx + ν
∫
Ω

u2
,r

r2 dx

− 2ν
∫
Ω

u2
,r

r2 dx ≤
∫
Ω

∣∣∣∣vr

r
u,ru

∣∣∣∣drdz

+ ε(|u,rr|22,Ω + |u,rz|22,Ω) + c(1/ε)|u|2∞,Ω(|vr,r|22,Ω + |vz,r|22,Ω)

+ c(1/ε)| f0|22,Ω +

∣∣∣∣ a∫
−a

f0u,rr
∣∣∣∣
r=R

dz.

(170)

Integrating (170) with respect to time and assuming that ε is sufficiently small, we obtain

|u,r(t)|22,Ω + ν(|u,rr|22,Ωt + |u,rz|22,Ωt) ≤ ν

∣∣∣∣u,r

r

∣∣∣∣2
2,Ωt

+ c
∣∣∣∣vr

r

∣∣∣∣
2,Ωt

∣∣∣∣u,r

r

∣∣∣∣
2,Ωt
|u|∞,Ωt + c|u|2∞,Ωt(|vr,r|22,Ωt + |vz,r|22,Ωt)

+ c| f0|22,Ωt + |u,r(0)|22,Ω + ν

t∫
0

a∫
−a

u2
,r

∣∣∣∣
r=R

dxdt′

+

∣∣∣∣ t∫
0

a∫
−a

f0u,rr
∣∣∣∣
r=R

dxdt′
∣∣∣∣.

(171)
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Using ∫
Ωt

∣∣∣∣u,r

r

∣∣∣∣2dxdt′ ≤
∫

Ωt

(
|vϕ,r|2 +

v2
ϕ

r2

)
dxdt′ ≤ cD2

1

and
t∫

0

a∫
−a

u2
,r

∣∣∣∣
r=R

dxdt′ ≤ ε|∇u,r|22,Ωt + c(1/ε)|u,r|22,Ωt ,

∣∣∣∣ t∫
0

a∫
−a

f0u,r

∣∣∣∣
r=R

dxdt′ ≤ ε1|u,r|24,2,St
1
+ c(1/ε1)| f0|24/3,2,St

1

≤ ε1(|u,rr|22,Ωt + |u,rz|22,Ωt) + c(1/ε1)| f0|24/3,2,St
1

and Lemmas 1, 2, we have

|u,r(t)|22,Ω + ν(|u,rr|22,Ωt + |u,rz|22,Ωt) ≤ c(D2
1 + D2

1D2 + D2
1D2

2)

+ c| f0|22,Ωt + c| f0|24/3,2,St
1
+ |u,r(0)|22,Ω.

(172)

This inequality implies (160) and concludes the proof.

6. Estimates for ωr , ωz

Inequality (173) is the most important inequality in this paper. To prove it, we need
results from Sections 3 and 5 as well as Lemma 2. By the energy method, we derive (174),
where the first term on the r.h.s. is nonlinear. The aim of the proof of Lemma 16 is to show
that

(∗) J ≤ c|u|∞,Ωt(D1 + ‖u‖L2(0,t;H2(Ω)))‖Γ‖L2(0,t;H1(Ω))

To show (∗), we replace ωr, ωz in J by derivatives of u described by (13) and express
components of velocities vr and vz by derivatives of ψ using (15). We perform such
calculations in J, where we are able to extract the norm |u|∞,Ωt . Then, J becomes bilinear.
Then, estimates (46), (159), and (160) imply (∗) by the Hölder inequality. Hence, J is
bounded by the quantity, which is linear with respect to the norm of Γ. This implies that
the main Theorem 1 can be proved.

Lemma 16. Assume that D5 = D2(D1 + D3 + D4) and D6 = D1−ε0
2 D3, where D1, and D2 are

introduced in (46) and (52), and D3 and D4 are introduced in (159) and (160), respectively. Let

D7 = |Fr|26/5,2,Ωt + |Fz|26/5,2,Ωt + |ωr(0)|22,Ω + |ωz(0)|22,Ω

+ | fϕ|2,St
1
(D3 + D4) < ∞.

Let ε0 be an arbitrarily small positive number and let vϕ ∈ L∞(Ωt).
Let Γ ∈ L2(0, t; H1(Ω)).
Then,

‖ωr‖2
V(Ωt) + ‖ωz‖2

V(Ωt) + |Φ|
2
2,Ωt ≤ cD5|Γ,z|2,Ωt

+ cD6|vϕ|ε0
∞,Ωt‖Γ‖1,2,Ωt + cD7.

(173)
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Proof. Multiplying (9)1 by ωr, (9)3 by ωz, integrating over Ωt, and adding yield

1
2
(|ωr(t)|22,Ω + |ωz(t)|22,Ω) + ν(|∇ωr|22,Ωt + |∇ωz|22,Ωt)

+ ν

∣∣∣∣ωr

r

∣∣∣∣2
2,Ωt
− ν

∫
St

1

n̄ · ∇ωrωrdS1dt′ − ν
∫
St

1

n̄ · ∇ωzωzdS1dt′

=
∫

Ωt

[vr,rω2
r + vz,zω2

z + (vr,z + vz,r)ωrωz]dxdt′

+
∫

Ωt

(Frωr + Fzωz)dxdt′ +
1
2
(|ωr(0)|22,Ω + |ωz(0)|22,Ω)

≡ J +
∫

Ωt

(Frωr + Fzωz)dxdt′ +
1
2
(|ωr(0)|22,Ω + |ωz(0)|22,Ω).

(174)

Since ωr = −vϕ,z and vϕ|r=R = 0, we obtain

−
∫
S1

n̄ · ∇ωrωrdS1 = 0.

Using ωz = vϕ,r +
vϕ

r , we derive

−ν
∫
St

1

n̄ · ∇ωzωzdS1dt′ = −ν

t∫
0

a∫
−a

∂r

(
vϕ,r +

vϕ

r

)(
vϕ,r +

vϕ

r

)∣∣∣∣
r=R

Rdzdt′ ≡ I1.

Since vϕ|r=R = 0 I1 takes the form

I1 = −ν

t∫
0

a∫
−a

(
vϕ,rr +

vϕ,r

r

)
vϕ,r

∣∣∣∣
r=R

Rdzdt′.

Projecting (7)2 on S1 yields

−ν

(
vϕ,rr +

1
r

vϕ,r

)
= fϕ on S1.

Hence,

I1 = R
t∫

0

a∫
−a

fϕvϕ,r

∣∣∣∣
r=R

dzdt′ =
t∫

0

a∫
−a

fϕ

(
u,r −

1
R

u
)∣∣∣∣

r=R
dzdt′. (175)

Using (13) and (21) in J implies

J =
∫

Ωt

[
− 1

r2 u2
,z(ψ1,z + rψ1,rz) +

(
1
r

u,r

)2

(rψ1,zr + 2ψ1,z)

− 1
r2 u,ru,z(−rψ1,zz + 3ψ1,r + rψ1,rr)

]
dxdt′ ≡ J1 + J2 + J3.

We integrate by parts in J1 and use the boundary conditions on S2. Then, we have

J1 =
∫

Ωt

1
r2 uu,zz(ψ1,z + rψ1,rz)dxdt′ +

∫
Ωt

1
r2 uu,z(ψ1,zz + rψ1,rzz)dxdt′.
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Now, we estimate the particular terms in J1,

J11 =

∣∣∣∣ ∫
Ωt

uu,zz
1
r

ψ1,rzdxdt′
∣∣∣∣ ≤ |u|∞,Ωt |u,zz|2,Ωt

∣∣∣∣1r ψ1,rz

∣∣∣∣
2,Ωt

,

J12 =

∣∣∣∣ ∫
Ωt

u
u,z

r
ψ1,rzzdxdt′

∣∣∣∣ ≤ |u|∞,Ωt

∣∣∣∣u,z

r

∣∣∣∣
2,Ωt
|ψ1,rzz|2,Ωt ,

J13 =

∣∣∣∣ ∫
Ωt

u
u,z

r
ψ1,zz

r
dxdt′

∣∣∣∣ ≤ |u|∞,Ωt

∣∣∣∣u,z

r

∣∣∣∣
2,Ωt

∣∣∣∣ψ1,zz

r

∣∣∣∣
2,Ωt

,

J14 =

∣∣∣∣ ∫
Ωt

1
r2 uu,zzψ1,zdxdt′

∣∣∣∣ = ∣∣∣∣ ∫
Ωt

uu,zz
ψ1,z

r2 dxdt′
∣∣∣∣

≤ |u|∞,Ωt |u,zz|2,Ωt

∣∣∣∣ψ1,z

r2

∣∣∣∣
2,Ωt

,

where integration by parts can be performed in view of periodic boundary conditions
on S2.

Next, we consider J2,

J2 =
∫

Ωt

1
r2 u2

,r(rψ1,zr + 2ψ1,z)rdrdzdt′ =
∫

Ωt

1
r

u2
,r(rψ1,zr + 2ψ1,z)drdzdt′

=

t∫
0

a∫
−a

[
1
r

uu,r(rψ1,zr + 2ψ1,z)

]∣∣∣∣r=R

r=0
dzdt′

−
∫

Ωt

uu,rr

(
1
r

ψ1,zr +
2
r2 ψ1,z

)
dxdt′

−
∫

Ωt

uu,r

(
ψ1,zrr −

2
r2 ψ1,z +

2
r

ψ1,zr

)
drdzdt′,

where the boundary term for r = R vanishes because u|r=R = 0. To examine the boundary
term at r = 0, we recall from [9] the expressions near the axis of symmetry

u = a1(z, t)r2 + a2(z, t)r4 + · · · ,

so
u,r = 2a1(z, t)r + 4a2(z, t)r3 + · · ·

Then,
1
r

uu,r(rψ1,zr + 2ψ1,z) ∼ cr2(rψ1,zr + 2ψ1,z).

The above expression vanishes for r = 0 because ψ1,z is bounded near the axis of symmetry.
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Now, we estimate the particular terms in J2,

J21 =

∣∣∣∣ ∫
Ωt

uu,rr
1
r

ψ1,rzdxdt′
∣∣∣∣ ≤ |u|∞,Ωt |u,rr|2,Ωt

∣∣∣∣1r ψ1,zr

∣∣∣∣
2,Ωt

,

J22 =

∣∣∣∣ ∫
Ωt

uu,rr
1
r2 ψ1,zdxdt′

∣∣∣∣ ≤ |u|∞,Ωt |u,rr|2,Ωt

∣∣∣∣ 1
r2 ψ1,z

∣∣∣∣
2,Ωt

,

J23 =

∣∣∣∣ ∫
Ωt

u
u,r

r
ψ1,zrrdxdt′

∣∣∣∣ ≤ |u|∞,Ωt

∣∣∣∣u,r

r

∣∣∣∣
2,Ωt
|ψ1,zrr|2,Ωt ,

J24 =

∣∣∣∣ ∫
Ωt

u
u,r

r
1
r2 ψ1,zdxdt′

∣∣∣∣ ≤ |u|∞,Ωt

∣∣∣∣u,r

r

∣∣∣∣
2,Ωt

∣∣∣∣ 1
r2 ψ1,z

∣∣∣∣
2,Ωt

,

J25 =

∣∣∣∣ ∫
Ωt

u
u,r

r
1
r

ψ1,zrdxdt′
∣∣∣∣ ≤ |u|∞,Ωt

∣∣∣∣u,r

r

∣∣∣∣
2,Ωt

∣∣∣∣1r ψ1,zr

∣∣∣∣
2,Ωt

.

Finally, we examine J3. Integrating by parts with respect to z, and using the periodic
boundary conditions on S2, we have

J3 =
∫

Ωt

u
1
r2 u,rz(−rψ1,zz + 3ψ1,r + rψ1,rr)dxdt′

+
∫

Ωt

u
1
r2 u,r(−rψ1,zzz + 3ψ1,rz + rψ1,rrz)dxdt′.

Now, we estimate the particular terms in J3,

J31 =

∣∣∣∣ ∫
Ωt

uu,rz
1
r

ψ1,zzdxdt′
∣∣∣∣ ≤ |u|∞,Ωt |u,rz|2,Ωt

∣∣∣∣ψ1,zz

r

∣∣∣∣
2,Ωt

,

J32 =

∣∣∣∣ ∫
Ωt

u
1
r2 u,rzψ1,rdxdt′

∣∣∣∣ = ∣∣∣∣ ∫
Ωt

u
rε0

u,rz
ψ1,r

r2−ε0
dxdt′

∣∣∣∣
≤ |u|1−ε0

∞,Ωt |vϕ|ε0
∞,Ωt |u,rz|2,Ωt

∣∣∣∣ψ1,r

r2

∣∣∣∣
L2(0,t;L2,ε0 (Ω))

,

where ε0 > 0 can be as small as we want. Thus,

J33 =

∣∣∣∣ ∫
Ωt

u
rε0

u,rz
1

r1−ε0
ψ1,rrdxdt′

∣∣∣∣
≤ |u|1−ε0

∞,Ωt |vϕ|ε0
∞,Ωt |u,rz|2,Ωt

∣∣∣∣ ψ1,rr

r1−ε0

∣∣∣∣
2,Ωt

,

J34 =

∣∣∣∣ ∫
Ωt

u
u,r

r
ψ1,zzzdxdt′

∣∣∣∣ ≤ |u|∞,Ωt

∣∣∣∣u,r

r

∣∣∣∣
2,Ωt
|ψ1,zzz|2,Ωt ,

J35 =

∣∣∣∣ ∫
Ωt

u
u,r

r
1
r

ψ1,rzdxdt′
∣∣∣∣ ≤ |u|∞,Ωt

∣∣∣∣u,r

r

∣∣∣∣
2,Ωt

∣∣∣∣ψ1,rz

r

∣∣∣∣
2,Ωt

,

J36 =

∣∣∣∣ ∫
Ωt

u
u,r

r
ψ1,rrzdxdt′

∣∣∣∣ ≤ |u|∞,Ωt

∣∣∣∣u,r

r

∣∣∣∣
2,Ωt
|ψ1,rrz|2,Ωt .
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Summarizing the above estimates, we obtain

|J| ≤ c|u|∞,Ωt

[
(|u,zz|2,Ωt + |u,zr|2,Ωt + |u,rr|2,Ωt)·

·
(∣∣∣∣1r ψ1,rz

∣∣∣∣
2,Ωt

+

∣∣∣∣1r ψ1,zz

∣∣∣∣
2,Ωt

+

∣∣∣∣ 1
r2 ψ1,z

∣∣∣∣
2,Ωt

)
+

(∣∣∣∣u,r

r

∣∣∣∣
2,Ωt

+

∣∣∣∣u,z

r

∣∣∣∣
2,Ωt

)(
|ψ1,rzz|2,Ωt + |ψ1,zrr|2,Ωt

+ |ψ1,zzz|2,Ωt +

∣∣∣∣1r ψ1,zz

∣∣∣∣
2,Ωt

+

∣∣∣∣1r ψ1,zr

∣∣∣∣
2,Ωt

+

∣∣∣∣ 1
r2 ψ1,z

∣∣∣∣
2,Ωt

)]
+ c|u|1−ε0

∞,Ωt |vϕ|ε0
∞,Ωt |u,rz|2,Ωt

(∣∣∣∣ψ1,rr

r

∣∣∣∣
L2(0,t;L2,ε0 (Ω))

+

∣∣∣∣ψ1,r

r2

∣∣∣∣
L2(0,t;L2,ε0 (Ω))

)
.

Using (52), (159), (160), and the estimates from (46)∣∣∣∣u,r

r

∣∣∣∣
2,Ωt
≤
∣∣∣∣vϕ

r

∣∣∣∣
2,Ωt

+ |vϕ,r|2,Ωt ≤ cD1,∣∣∣∣u,z

r

∣∣∣∣
2,Ωt
≤ |vϕ,z|2,Ωt ≤ cD1

we obtain the following estimate for J,

|J| ≤ c[D2(D3 + D4) + D1D2]

(
|ψ1,rrz|2,Ωt + |ψ1,rzz|2,Ωt

+ |ψ1,zzz|2,Ωt +

∣∣∣∣1r ψ1,rz

∣∣∣∣
2,Ωt

+

∣∣∣∣1r ψ1,zz

∣∣∣∣
2,Ωt

+

∣∣∣∣ 1
r2 ψ1,z

∣∣∣∣
2,Ωt

)
+ cD1−ε0

2 D3|vϕ|ε0
∞,Ωt

(∣∣∣∣1r ψ1,rr

∣∣∣∣
L2(0,t;L2,ε0 (Ω))

+

∣∣∣∣ 1
r2 ψ1,r

∣∣∣∣
L2(0,t;L2,ε0 (Ω))

)
≡ J′.

From (64), we have the following (recall that ω1 = Γ):

|ψ1,rrz|2,Ωt + |ψ1,rzz|2,Ωt + |ψ1,zzz|2,Ωt ≤ c|Γ,z|2,Ωt . (176)

estimates (82) and (85) imply∣∣∣∣ψ1,rz

r

∣∣∣∣
2,Ωt

+

∣∣∣∣ψ1,zz

r

∣∣∣∣
2,Ωt

+

∣∣∣∣ψ1,z

r2

∣∣∣∣
2,Ωt
≤ c|Γ,z|2,Ωt . (177)

Finally, (93) yields∣∣∣∣1r ψ1,rr

∣∣∣∣
L2(0,t;L2,ε0 (Ω))

+

∣∣∣∣ 1
r2 ψ1,r

∣∣∣∣
L2(0,t;L2,ε0 (Ω))

≤ cRε0‖Γ‖1,2,Ωt (178)

Recall that (177) is valid for ψ1|r=0 = 0.
This restriction implies that vz|r=0 = 0, so it is a strong restriction on solutions proved

in this paper.
Using (176)–(178) in J′ yields

J′ ≤ cD2(D1 + D3 + D4)|Γ,z|2,Ωt + cD1−ε0
2 D3|vϕ|ε0

∞,Ωt‖Γ‖1,2,Ωt .

In view of Lemma 15, the term I1 introduced in (175) is bounded by

I ≤ c| fϕ|2,St
1
‖u‖2,2,Ωt ≤ c| fϕ|2,St

1
(D3 + D4).
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Using the estimates in (174), we obtain

‖ωr‖2
V(Ωt) + ‖ωz‖2

V(Ωt) + |Φ|
2
2,Ωt

≤ cD2(D1 + D3 + D4)|Γ,z|2,Ωt + cD1−ε0
2 D3|vϕ|ε0

∞,Ωt‖Γ‖1,2,Ωt

+ c(|Fr|26/5,2,Ωt + |Fz|26/5,2,Ωt) + c(|ωr(0)|22,Ω

+ |ωz(0)|22,Ω) + c| fϕ|2,St
1
(D3 + D4),

(179)

where we used ∣∣∣∣ ∫
Ω

(Frωr + Fzωz)dxdt′
∣∣∣∣ ≤ ε(|ωr|26,Ω + |ωz|26,Ω)

+ c(1/ε)(|Fr|26/5,Ω + |Fz|26/5,Ω).

Hence, (179) implies (173) and concludes the proof.

7. Estimates for the Stream Function in Weighted Sobolev Spaces

Recall that the stream function ψ1 is a solution to problem (22). To increase the
regularity of weak solutions, we need appropriate estimates for ψ1, assuming sufficient
regularity of the vorticity ω1.

Remark 7. In Lemma 4, the existence of weak solutions to problem (22) satisfying estimate (56) is
proven. Inequality (62) implies that the weak solution belongs to H2(Ω) and the estimate holds

‖ψ1‖2,Ω ≤ c|ω1|2,Ω. (180)

Assuming that ω1,z ∈ L2(Ω), estimates (63) and (64) increase the regularity of ψ1, such that
ψ1,z ∈ H2(Ω) and the estimate holds

‖ψ1,z‖H2(Ω) ≤ c(|ω1,z|2,Ω + |ω1|2,Ω). (181)

Estimate (181) is derived using the technique of the energy method. However, this method is not
sufficiently robust to derive an estimate for |ψ1,rrr|2,Ω.

Moreover, estimate (181) is not sufficient to prove estimate (24) of Theorem 1. To prove
Theorem 1 we need estimates (85) and (93). To prove the estimates, we need the theory of
weighted Sobolev spaces developed by Kondratiev [10], which is used to examine elliptic
boundary value problems in domains with cones.

Unfortunately, estimates (85) and (93) hold for weak solutions where ψ1 vanishes on
the axis of symmetry. This implies that the vz coordinate of velocity must also vanish on
the axis of symmetry. Therefore, Theorem 1 is applicable to a smaller class than the class of
weak solutions. This indicates that the regularity problem for axially symmetric solutions
to the Navier–Stokes equations is only partially solved.

Now, we show the existence of solutions to problem (22) in weighted Sobolev spaces.

Lemma 17. Assume that ψ1 is a solution to (61). Assume that ω1,z, ω1 ∈ L2(Ω).
Then, ∫

Ω

(
ψ2

1,zrr +
1
r2 ψ2

1,zr +
1
r4 ψ2

1,z

)
dx +

∫
Ω

ψ2
1,zzzdx

≤ c
∫
Ω

(|ω1,z|2 + |ω1|2)dx.
(182)

Proof. To prove the lemma, we need weighted Sobolev spaces defined by Fourier trans-
form (58) and introduced in (59) and (60). Therefore, to examine problem (22) in weighted
Sobolev spaces, we have to derive estimates with respect to r and z, separately. To derive
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an estimate with respect to r, we have to examine solutions to (22) independently, as well
in a neighborhood of the axis of symmetry, such as in a neighborhood located in a positive
distance from it. To perform such considerations, we treat z as a parameter and introduce a
partition of unity {ζ(1)(r), ζ(2)(r)}, such that

2

∑
i=1

ζ(i)(r) = 1

and

ζ(1)(r) =

{
1 for r ≤ r0

0 for r ≥ 2r0
, ζ2)(r) =

{
0 for r ≤ r0

1 for r ≥ 2r0,

where 0 < r0 is fixed in such a way that 2r0 < R.
Let ψ

(i)
1 = ψ1ζ(i), ω

(i)
1 = ω1ζ(i) and ζ̇(i) = d

dr ζ(i), ζ̈(i) = d2

dr2 ζ(i), i = 1, 2. Moreover,
functions ζ(1) and ζ(2) are smooth.

Then, we obtain from (22) the following two problems
− ∆ψ

(1)
1 −

2
r

ψ
(1)
1 = ω

(1)
1 − 2ψ1,r ζ̇(1) − ψ1ζ̈(1)

− 2
r

ψ1ζ̇(1) in Ω(1),

ψ
(1)
1 satisfies periodic boundary conditions on S(1)

2 ,

(183)

where
Ω(1) = {(r, z) : r > 0, z ∈ (−a, a)},

S(1)
2 = {(r, z) : r > 0, z ∈ {−a, a}}

and 

− ∆ψ
(2)
1 −

2
r

ψ
(2)
1 = ω

(2)
1 − 2ψ1,r ζ̇(2) − ψ1ζ̈(2)

− 2
r

ψ1ζ̇(2) in Ω(2)

ψ
(2)
1 = 0 on S1,

ψ
(2)
1 satisfies periodic boundary conditions on S(2)

2 ,

(184)

where
Ω(2) = {(r, z) : r0 < r < R, z ∈ (−a, a)},

S(2)
2 = {(r, z) : r0 < r < R, z ∈ {−a, a}}.

We temporarily simplify the notation using

u = ψ
(1)
1 , w = ψ

(2)
1 ,

f = ω
(1)
1 − 2ψ1,r ζ̇(1) − ψ1ζ̈(1) − 2

r
ψ1ζ̇(1),

b = ω
(2)
1 − 2ψ1,r ζ̇(2) − ψ1ζ̈(2) − 2

r
ψ1ζ̇(2).

(185)

Then, (183) and (184) become

− ∆u− 2
r

u,r = f in Ω(1),

u − satisfies periodic boundary conditions on S(1)
2

(186)
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and
− ∆w− 2

r
w,r = b in Ω(2),

w = 0 on S1,

w satisfies periodic boundary conditions on S(2)
2 .

(187)

Next, we use the simplified notation

pbc – periodic boundary conditions. (188)

First, we consider problem (186). We rewrite it in the form

− u,rr −
3
r

u,r = f + u,zz in Ω(1),

u satisfies pbc on S1
2.

(189)

For a fixed z ∈ (−a, a), we treat (189) as

−u,rr −
3
r

u,r = f + u,zz in R+. (190)

Multiplying (190) by r2 yields

−r2u,rr − 3ru,r = r2( f + u,zz) ≡ g(r, z)

or equivalently
−r∂r(r∂ru)− 2r∂ru = g(r, z). (191)

Introduce the new variable
τ = − ln r, r = e−τ . (192)

Since r∂r = −∂τ , we see that (191) takes the form

−∂2
τu + 2∂τu = g(e−τ , z) = g′(τ, z). (193)

Utilizing the Fourier transform (58) to (193), we have

λ2û + 2iλû = ĝ′.

For λ 6∈ {0,−2i} we have

û =
1

λ(λ + 2i)
ĝ′ ≡ R(λ)ĝ′. (194)

We introduce the quantity
h(k, µ) = 1 + k− µ. (195)

Consider the case where k = 0 and µ = 0. Then, h(0, 0) = 1. Theorem 1.1 from Section 1
in [10] (also see Lemma 3.1 from [11]) yields the following:

Let f + u,zz ∈ L2(R+), and R(λ) does not have poles on the line Im λ = 1.
Then, we have

+∞+ih(0,0)∫
−∞+ih(0,0)

2

∑
j=0
|λ|2(2−j)|û|2dλ ≤ c

+∞+ih(0,0)∫
−∞+ih(0,0)

|ĝ′|2dλ. (196)

Using (60) and h(0, 0) = 1, we obtain

∫
R

2

∑
j=0
|∂j

τu|2e2τdτ ≤ c
∫
R

|g′|2e2τdτ.
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Passing to variable r yields

∫
R+

(
|u,rr|2 +

1
r2 |u,r|2 +

1
r4 |u|

2
)

rdr ≤ c
∫
R+

| f + u,zz|2rdr. (197)

Using notation (185) and the estimate for the weak solutions, we obtain from (197) the
inequality ∫

R+∩supp ζ(1)

(
ψ2

1,rr +
1
r2 ψ2

1,r +
1
r4 ψ2

1

)
rdr

≤ c
∫

R+∩supp ζ(1)

|ω1|2rdr + c
∫

R+∩supp ζ(1)

(|ψ1,r|2 + |ψ1|2)rdr

+ c
∫

R+∩supp ζ(1)

|ψ1,zz|2rdr.

(198)

For solutions to (187), we have the estimate

‖w‖H2((0,R)∩supp ζ(2)) ≤ c‖b‖L2((0,R)∩supp ζ(2))

+ c‖w,r‖L2((0,R)∩supp ζ(2)).
(199)

In view of notation (185) we obtain∫
(0,R)∩supp ζ(2)

(|ψ1,rr|2 + |ψ1,r|2 + |ψ1|2)rdr

≤ c
∫

(0,R)supp ζ(2)

(|ω1|2 + |ψ1,zz|2 + |ψ1,r|2 + |ψ1|2)rdr.
(200)

Adding (198) and (200), integrating the result with respect to z, and using (56) yield

∫
Ω

(
ψ2

1,rr +
1
r2 ψ2

1,r +
1
r4 ψ2

1

)
dx

≤ c
∫
Ω

(|ω1|2 + |ψ1,zz|2)dx.
(201)

Replacing ψ1 with ψ1,z, and ω1 with ω1,z, we obtain estimate (182) from (201) and (63). This
ends the proof.

Lemma 18. Assume that ψ1 is a solution to (61). Assume that µ ∈ (0, 1), ω1 ∈ H1(Ω),
Ω = (0, R)× (−a, a).

Then, ∫
Ω

(
ψ2

1,rrr +
1
r2 ψ2

1,rr +
1
r4 ψ2

1,r +
1
r6 ψ2

1

)
r2µdx + ‖ψ1‖2

H2(Ω)

+
∫
Ω

(ψ2
1,zrr + ψ2

1,zzr + ψ2
1,zzz)dx ≤ c

(
1 +

1
µ2

)
‖ω1‖2

H1(Ω).
(202)

Proof. Recall the partition of unity introduced in the proof of Lemma 17. Also recall the
local problems (183) and (184), as well as notation (185). Then, we can examine problems
(186) and (187). First, we examine problem (186).

Applying the Mellin transform, any solution to (190) can be expressed in the form (194).
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In this case, we introduce the following quantity:

h(1, µ) = 2− µ. (203)

Since operator R(λ) does not have poles on the line Im λ = h(1, µ), we have (see Theorem 1.1
from Section 1 in [10])

+∞+ih(1,µ)∫
−∞+ih(1,µ)

3

∑
j=0
|λ|2(3−j)|û|2dλ

≤ c

+∞+ih(1,µ)∫
−∞+ih(1,µ)

1

∑
j=0
|λ|2(1−j)|ĝ′|2dλ.

(204)

Using (60) for h(1, µ) = 2− µ, we obtain

∫
R

3

∑
j=0
|∂j

τu|2e2(3−j)τdτ

≤ c
∫
R

1

∑
j=0
|∂j

τ g′|2e2(1−j)τdτ.

(205)

In view of equivalence (59), inequality (205) takes the form

∫
R+

(
|urrr|2 +

1
r2 |urr|2 +

1
r4 |ur|2 +

1
r6 |u|

2
)

r2µrdr

≤ c
∫
R+

|( f + uzz),r|2r2µrdr + c
∫
R+

| f + uzz|2r2µ−2rdr,
(206)

where z ∈ (−a, a) and µ ∈ (0, 1).
Integrating (206) with respect to z, and exploiting notation (185), yield

a∫
−a

dz
∫

R+∩supp ζ(1)

(
ψ2

1,rrr +
1
r2 ψ2

1,rr +
1
r4 ψ2

1,r +
1
r6 ψ2

1

)
r2µrdr

≤ c
a∫
−a

dz
∫

R+∩supp ζ(1)

(|∂r(ω1 + ψ1,zz)|2 + |ω1 + ψ1,zz|r−2)r2µrdr.

(207)

For solutions to problem (187) and notation (185), we obtain

a∫
−a

dz‖ψ1‖2
H3

µ(R+∩supp ζ(2)

≤ c
a∫
−a

dz(‖ω1‖2
H1(R+∩supp ζ(2))

+ ‖ψ1,zz‖2
H1(R+∩supp ζ(2))

).

(208)

From (207) and (208), as well as the Hardy inequality (see [14] (Chapter 1, Section 2.16)):∫
R+

|ω1 + ψ1,zz|2r2µ−2rdr ≤ 1
µ2

∫
R+

|(ω1 + ψ1,zz),r|2r2µrdr (209)
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we obtain ∫
Ω

(
ψ2

1,rrr +
1
r2 ψ2

1,rr +
1
r4 ψ2

1,r +
1
r6 ψ2

1

)
r2µdx

≤ c
(

1 +
1

µ2

)[
‖ω1‖2

H1(Ω) +
∫
Ω

(ψ2
1,zzr + ψ2

1,zzz)dx
]

.
(210)

Using estimates (56), (62), (63) in (210) implies (202) and ends the proof.

Remark 8. Since µ > 0, the Hardy inequality (209) does not need ω1 + ψ1,zz|r=0 = 0.

8. Conclusions

The main result of this paper is the proof of (24). Since Γ = ωϕ/r, we obtain from (24)
the estimate

‖ωϕ‖V(Ωt) ≤ φ(data), (211)

where we used the fact that r < R and R is finite. This means that (211) does not hold for
the Cauchy problem.

Using problem (14) and relation (15), we obtain

‖v′‖L∞(0,t;L6(Ω)) ≤ c‖ψ‖L∞(0,t;H2(Ω))

≤ c‖ωϕ‖L∞(0,t;L2(Ω)) ≤ φ(data),
(212)

where v′ = (vr, vz).
Consider the Stokes problem, which follows from (6)

vt − ν∆v +∇p = −v′ · ∇v + f in ΩT ,

div v = 0 in ΩT ,

v · n̄|S1 = 0, ωϕ|S1 = 0, vϕ|S1 = 0 on ST
1 ,

v − satisfies periodic boundary conditions on ST
2 ,

v|t=0 = v(0) in Ω.

(213)

Using (212) and the energy estimate (46), we have

‖v′ · ∇v‖L2(0,t;L3/2(Ω)) ≤ φ(data). (214)

Assuming more regularity on data than in the proof of Theorem 1, and using the result
from [15], we obtain the following estimate for solutions to (213)

‖v‖W2,1
3/2,2(Ω

t)
≤ φ(data). (215)

Anisotropic weighted spaces can be found in [16].
The above inequality implies

‖∇v‖L5/2(Ωt) ≤ φ(data) (216)

thus, the increase in regularity holds because in (46) we have ‖∇v‖L2(Ωt) ≤ φ(data).
Continuing the considerations, we derive the estimate

‖v‖W2,1
2 (Ωt)

+ ‖∇p‖L2(Ωt) ≤ φ(data). (217)

The existence of solutions to problem (6) follows from appropriately choosing a fixed point
theorem.
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W2,1
p,q(Ωt) is the Sobolev space with mixed norm. We have

‖u‖W2,1
p,q (Ωt)

= ‖u‖Lq(0,t;Lp(Ω)) + ‖∂2
xu‖Lq(0,t;Lp(Ω)) + ‖∂tu‖Lq(0,t;Lp(Ω)).
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Appendix A. Existence of Regular Solutions to (1) for Small Data

Recall the quantities

u1 =
vϕ

r
, ω1 =

ωϕ

r
, ψ1 =

ψ

r
, f1 =

fϕ

r
, F1 =

Fϕ

r
. (A1)

In view of [12] system (1) is equivalent to the following one

u1,t + v · ∇u1 − ν

(
∆u1 +

2
r

u1,r

)
= 2u1ψ1,z + f1,

ω1,t + v · ∇ω1 − ν

(
∆ω1 +

2
r

ω1,r

)
= 2u1u1,z + F1,

− ∆ψ1 −
2
r

ψ1,r = ω1,

periodic boundary conditions on S2,

u1|t=0 = u1(0),

ω1|t=0 = ω1(0).

(A2)

Functions u1, ω1, ψ1 have compact support with respect to variable r.
We multiply (A2)1 by u1|u1|2, integrate over Ω, and use boundary conditions to yield

the following:
d
dt
|u1|44,Ω + ν|u1|44,Ω ≤ c|ω1|22,Ω|u1|44,Ω + c| f1|44,Ω. (A3)

We multiply (A2)2 by ω1, integrate over Ω, and exploit boundary conditions. Then, we
have

d
dt
|ω1|22,Ω + ν|ω1|22,Ω ≤ c|u1|44,Ω + c|F1|22,Ω. (A4)

We introduce the quantity

X(t) = |u1(t)|44,Ω + |ω1(t)|22,Ω. (A5)

Then, (A3) and (A4) imply
d
dt

X + νX ≤ c0X2 + G(t), (A6)

where
G(t) = c(| f1(t)|44,Ω + |F1(t)|22,Ω). (A7)

We consider (A6) on the time interval (0, T). We assume that for t ∈ (0, T), the following
inequality holds

G(t) ≤ c0k0. (A8)

Then, (A6) takes the form
d
dt

X ≤ c0k0

(
1
k0

X2 + 1
)

. (A9)
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Let X = αX′. Then,
d
dt

X′ ≤ c0k0

α

(
α2

k0
X′2 + 1

)
.

Setting α2 = k0 yields
d
dt

X′ ≤ c0
√

k0(X′2 + 1). (A10)

Integrating (A10) with respect to time implies

arctg X′(t)− arctg X′(0) ≤ c0
√

k0t.

Hence,

X′(t) ≤ tg (c0
√

k0t) + X′(0)
1− X′(0)tg (c0

√
k0t)

.

Recalling that X′(0) = X(0)√
k0

and setting y = c0
√

k0t, we obtain

X(t) ≤
(tg y + X(0)√

k0
)
√

k0

1− X(0)c0t tg y
y

≤ β(T), (A11)

where t ≤ T. Hence, for large T, (A11) holds for sufficiently small X(0) and k0.
Consider (A6) in the interval (0, T). Using (A11), we can write (A6) in the form

d
dt

X + ν∗X ≤ G(t), (A12)

where ν∗ = ν− c0β.
Integrating (A12) with respect to time yields

X(t) ≤ e−ν∗t
t∫

0

G(t′)eν∗t′dt′ + e−ν8tX(0). (A13)

Setting t = T implies

X(T) ≤
T∫

0

G(t)dt + e−ν∗TX(0). (A14)

For sufficiently small X(0) and k0, the time interval (0, T) can be chosen to be large. Then,
(A14) can imply that

X(T) ≤ X(0). (A15)

Therefore, the previous considerations can be performed for any time interval (kT, (k+ 1)T),
k ∈ N.
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