
Citation: Khadiev, K.; Savelyev, N.;

Ziatdinov, M.; Melnikov, D. Noisy

Tree Data Structures and Quantum

Applications. Mathematics 2023, 11,

4707. https://doi.org/10.3390/

math11224707

Academic Editor: Jonathan

Blackledge

Received: 25 September 2023

Revised: 6 November 2023

Accepted: 15 November 2023

Published: 20 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Noisy Tree Data Structures and Quantum Applications
Kamil Khadiev 1,* , Nikita Savelyev 2, Mansur Ziatdinov 1 and Denis Melnikov 1

1 Institute of Computational Mathematics and Information Technologies, Kazan Federal University,
420008 Kazan, Russia; 1mansur.ziyatdinov@kpfu.ru (M.Z.); deimelnikov@stud.kpfu.ru (D.M.)

2 Intel Inc., D-81671 Munich, Germany
* Correspondence: kamil.hadiev@kpfu.ru

Abstract: We suggest a new technique for developing noisy tree data structures. We call it a “walking
tree”. As applications of the technique we present a noisy Self-Balanced Binary Search Tree (we
use a Red–Black tree as an implementation) and a noisy segment tree. The asymptotic complexity
of the main operations for the tree data structures does not change compared to the case without
noise. We apply the data structures in quantum algorithms for several problems on strings like the
string-sorting problem and auto-complete problem. For both problems, we obtain quantum speed-up.
Moreover, for the string-sorting problem, we show a quantum lower bound.

Keywords: noisy computation; self-balanced search tree; segment tree; quantum computation;
quantum algorithms; string processing; sorting

MSC: 68P05; 68W20; 68Q12

1. Introduction

Tree data structures are well-known and used in different algorithms. At the same
time, when we construct algorithms with random behavior like randomized and quantum
algorithms, we should consider error probability. We suggest a general method for updating
a tree data structure in the noisy case. We call it Walking tree. For a tree of height h, we
consider an operation for processing all nodes from a root to a target node. Suppose
the running time of the operation is O(h · T), where T is running time required to process a
node. Then, if navigation by the tree can have an error, our technique allows us to carry it
out with O(log(1/ε) + h · T) running time, where ε is the error probability for the whole
operation. Note that the standard way to handle probabilistic navigation is the success
probability boosting (repetition of the noisy action) with O(h · log(1/ε) + h · T) complexity.

Our technique is based on results for the noisy Binary search algorithm [1]. The authors
of that paper present an idea based on the random walk algorithm for a balanced binary
tree that can be constructed for the binary search algorithm. We generalize the idea for a tree
with any structure that allows us to apply the method to a wide class of tree data structures.
Different algorithms for noisy search, especially a noisy tree, and graph processing and
search were considered in [2–8]. We apply our technique to two tree data structures.
The first one is the Red–Black tree [9], which is an implementation of a self-balanced binary
search tree [9]. If the key comparing procedure has a bounded error, then our noisy self-
balanced binary search tree allows us to conduct add, remove, and search operations in
O(log(N/ε)) running time, where ε is the error probability for a whole operation and N is
the number of nodes in the tree. In the case of ε = 1/Poly(N), we have O(log N) running
time and the noisy key comparing procedure does not affect running time (asymptotically).
At the same time, if we use the success probability boosting technique, then the running
time is O((log N)2). The second one is the Segment tree [10,11]. If the indexes comparing
procedure has a bounded error, then our noisy segment tree allows us to conduct update
and request operations in O(log(N/ε)) running time, where ε is the error probability for

Mathematics 2023, 11, 4707. https://doi.org/10.3390/math11224707 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11224707
https://doi.org/10.3390/math11224707
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5151-9908
https://orcid.org/0000-0001-7415-2726
https://doi.org/10.3390/math11224707
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11224707?type=check_update&version=2

Mathematics 2023, 11, 4707 2 of 18

a whole operation and N is the number of leaves. In the case of ε = 1/Poly(N), we have
O(log N) running time. So, we obtain a similar advantage. We use these data structures
in the context of quantum computation [12] which is one of the hot topics in the last
decades. There are many problems where we can obtain a quantum speed-up. Some of
them can be found here [13,14], including graph problems [15–21] and string processing
problems [22–28]. Quantum algorithms have randomized behavior, so it is important to
use noisy data structures for this model. We use the quantum query model [29] as the main
computational model for the quantum algorithms. We apply the walking tree method for
the following problems.

The first one is the string-sorting problem. We want to sort n strings of a length l in
lexicographical order. However, quantum algorithms cannot sort arbitrary comparable
objects faster than Ω(n log n) [30,31]. At the same time, some results improve the hidden
constant [32,33]. Other researchers investigated the space-bounded case [34]. The situation
with sorting strings is a little bit different. We know that the classical Radix sort algorithm
has O(nl) running time [9] for a finite-size alphabet. That is faster than sorting algorithms
for arbitrary comparable objects. Here, the lower bound for classical (randomized or
deterministic) algorithms is Ω(nl). In the quantum case, faster algorithms with O(n(log n) ·√

l) = Õ(n
√

l) running time are known [35,36]. Here, Õ does not consider log factors.
In this paper, we suggest a simpler implementation based on a noisy red–black tree.

The second one is the Auto-Complete Problem. We have two kinds of queries: adding
a string s to the dictionary S and querying the most frequent completion of a string t from
the dictionary. We call s a completion of t if t is a prefix of s. Assume that L is the total
sum of all lengths of strings from all queries. We solve the problem using quantum string
comparing algorithm [35–39] and noisy Red–Black tree. The running time of the quantum
algorithm is O(

√
nL log n). The lower bound for quantum running time is Ω(

√
L). At the

same time, the best classical algorithm based on trie (prefix tree) [40–43] has O(L) running
time. That is also the classical (deterministic or randomized) lower bound Ω(L). So, we
obtain quantum speed-up if most of the strings have Ω((log n)2) length.

2. Preliminaries

In the paper, we use the following notation.

• log N means log2 N that is a logarithm with base 2.
• Poly(N) means a polynomial dependent on N. Formally, Poly(N) = ∑α

i=0 ai Ni for
some constants α and a0, . . . aα.

• O(f (N))means big-O notation, upper bound. Formally, g(N) = O(f (N)) if limN→∞ g(N)/
f (N) ≤ C for some C = const.

• Õ(f (N)) means big-O notation with ignoring log factor. Formally, g(N) = Õ(f (N))
if limN→∞ g(N)/ f (N) ≤ L for some L = Poly(log N).

• Ω(f (N)) means big-Omega notation, lower bound. Formally, g(N) = Ω(f (N)) if
limN→∞ g(N)/ f (N) > C for some C = const.

In the paper, for two strings s and t, the notation s < t means s precedes t in the
lexicographical order. Let |s| be the length of a string s.

2.1. Graph Theory

Let us consider a rooted tree G. Let V(G) be the set of nodes (vertices), and E(G)
be the set of edges. Let one fixed node be the root of the tree. Assume, a procedure
GETTHEROOT(G) returns it. A path P is a sequence of nodes (v1, . . . , vk) that are connected
by edges, i.e., (vi, vi+1) ∈ E for i ∈ {1, . . . , k− 1}. Note, that there are no duplicates among
v1, . . . , vk. Here, k is the length of the path. We use v ∈ P notation if there is j such that
vj = v. The notation is reasonable because there are no duplicates in a path. Because G is a
tree, the path between any two nodes u and v is unique. The distance dist(v, u) between two
nodes v and u is the length of the path between them. The height of v is the distance between
it and the root that is dist(root, v). Let h(G) = maxv∈V(G) dist(root, v) be the tree’s height.

Mathematics 2023, 11, 4707 3 of 18

For a node v, PARENT(v) is a parent node, where dist(root, PARENT(v)) + 1 = dist(root, v)
and (PARENT(v), v) ∈ E(G); a set of children is CHILDREN(v) = {u : PARENT(u) = v}.

2.2. Quantum Query Model

In Section 6 we suggest quantum algorithms as applications for our data structures.
We have only one quantum subroutine, and the rest part of the algorithm is classical. One
of the most popular computation models for quantum algorithms is the query model. We
use the standard form of the quantum query model. Let f : D → {0, 1}, D ⊆ {0, 1}M

be an M variable function. We wish to compute on an input x ∈ D. We are given oracle
access to the input x, i.e., it is implemented by a specific unitary transformation that is
usually defined as |i〉|z〉|w〉 → |i〉|z + xi (mod 2)〉|w〉 where the |i〉 register indicates the
index of the variable we are querying, |z〉 is the output register, and |w〉 is some auxiliary
work-space. The operation is implemented by the CNOT gate. An algorithm in the query
model consists of alternating applications of arbitrary unitaries independent of the input
and the query unitary, and measurement in the end. The smallest number of queries for
an algorithm that outputs f (x) with probability ≥ 2

3 on all x is called the quantum query
complexity of the function f , and Q(f) notation is used for it. We use the term running time
instead of query complexity to remove confusion with “query” in the definition of problems
in Section 6. In the paper, we use modifications of Grover’s search algorithm [44,45] as
quantum subroutines. For these subroutines, the time complexity is more than the query
complexity for additional log factor [46,47]. Note that in the general case, we can consider
a function f with non-Boolean arguments. It can be simulated by a Boolean-argument-
function case using a binary representation of arguments.

The modification of Grover’s search algorithm [48] in the case of a known number of
solutions can be used in our problems. We refer the readers to [12,29] for more details on
quantum computing.

3. Main Technique: A Walking Tree

In this section, we present a rooted tree that we call a walking tree. It is a utility
data structure for noisy computation for the main data structure. Here we use it for the
following data structures: (i) Binary Search Tree. We assume that elements comparing
procedures can have errors. (ii) Segment Tree. We assume that the indexes (borders of
segments) comparing procedure can have errors.

Note that the walking tree is a general technique, and it can be used for other tree data
structures. Let us present the general idea of the tree. The technique is motivated by [1].
Assume that G is a rooted tree. We are interested in moving from the root to a specific
(target) node operation. Assume that we have the following procedures:

• GETTHEROOT(G) returns the root node of the tree G.
• SELECTCHILD(v) returns the child of the node v ∈ V(G) that should be reached from

the node v. We assume that there is only one child that should be reached from a node.
• ISITTHETARGET(v) returns True if the node v ∈ V(G) is the last node that should be

visited in the operation; and returns False otherwise.
• PROCESSANODE(V) processes the node v ∈ V(G) in the required way.
• ISANODECORRECT(V) returns True if the node v ∈ V(G) should be visited during

the the operation; and returns False if the node is visited because of an error.

Assume that the operation has the following form (Algorithm 1).

Mathematics 2023, 11, 4707 4 of 18

Algorithm 1 An operation on the tree G

v← GETTHEROOT(G)
PROCESSANODE(v)
while ISITTHETARGET(v) = False do

v← SELECTCHILD(v)
PROCESSANODE(v)

end while

Let us consider the operation such that “navigation” procedures (that are SELECTCHILD,
ISANODECORRECT, and ISITTHETARGET) can return an answer with an error p, where
p < 0.5− δ, where 0 < δ ≤ 0.5. We assume that error events are independent. We need to
isolate p from 0.5. We cannot be sure that the algorithm works if p→ 0.5. That is why we use
p < 0.5− δ statement. Our goal is to conduct the operation with an error ε. Note that in the
general case, ε can be non-constant and depend on the number of tree nodes. Let h = h(G)
be the height of the tree. The standard technique is boosting success probability. On each
step, we repeat SELECTCHILD procedure O(log(h/ε)) times and choose the most frequent
answer. In that case, the error probability of the operation is at most ε, and the running
time of the operation is O(h log(h/ε) + h · T), where T is complexity of PROCESSANODE

procedure. Our goal is to have O(h + log(h/ε) + h · T) = O(log(h/ε) + h · T) running time.
Let us construct a rooted tree W by G such that the set of nodes of W has a one-to-one

correspondence to the nodes of G and the same with sets of edges. We call W a walking tree. Let
λW : V(W) ↔ V(G) and λG : V(G) ↔ V(W) be bijections between these two sets. For sim-
plicity, we define procedures for W similar to the procedures for G. Suppose u ∈ V(W), then
GETTHEROOT(W) = λG(GETTHEROOT(G)); SELECTCHILD(u) = λG(SELECTCHILD(λW(u)));
ISITTHETARGET(u) = ISITTHETARGET(λW(u)); ISANODECORRECT(U) = ISANODECORRECT

(λW(u)). Note that the navigation procedures are noisy (have an error). We reduce the error
probability to 0.1 by constant number of repetitions (using the boosting success probability tech-
nique). Additionally, we associate a counter c(u) with a node u ∈ V(W) that is a non-negative
integer number. Initially, values of counters are 0 for all nodes, i.e., c(u) = 0 for each u ∈ V(W).

We invoke a random walk by the walking tree W. The walk starts from the root node
GETTHEROOT(W). Let us discuss processing u ∈ V(W). Firstly, we check the counter’s
value c(u). If c(u) = 0, then we carry out steps from 1.1 to 1.3.

Step 1.1. We check the correctness of current node using ISANODECORRECT(u)
procedure. If the result is True, then we go to Step 1.2. If the result is False, then we are
here because of an error, and we go up by changing u← PARENT(u). If the node u is the
root, then we stay in u.

Step 1.2. We check whether the current node is target using ISITTHETARGET(u)
procedure. If it is True, then we increase the counter c(u)← 1. If it is False, then we go to
Step 1.3.

Step 1.3. We go to the children u← SELECTCHILD(u).
If c(u) > 0, then we carry out Step 2.1. We can say that the counter c(u) is a measure

of confidence that u is the target node. If c(u) = 0, then we should continue walking.
If c(u) > 0, then we think that u is the target node. If a bigger value of c(u) means we are
more confident that it is the target node.

Step 2.1. If ISITTHETARGET(u) = True, then we increase the counter c(u)← c(u) + 1.
Otherwise, we decrease the counter c(u)← c(u)− 1. So, we become more or less confident
in the fact that the node u is the target.

The walking process stops in s steps, where s = O(h + log(1/ε)). The stopping node
u is the target one. After that, we carry out the operation with the original tree G. We
store path in Path = (v1, . . . , vk), such that vk = λW(u), vi = PARENT(vi+1), and v1 is
the root node of G. Then, we process them using PROCESSANODE(vi) for i from 1 to k.
Let a procedure ONESTEP(u) be one step of the walking process on the walking tree W.
It accepts the current node u and returns the new node. The code representation of the
procedure is in Algorithm 2.

Mathematics 2023, 11, 4707 5 of 18

Algorithm 2 One step of the walking process, ONESTEP(u). The input is u ∈ V(W) and
the result is the node for the next step of the walking

if c(u) = 0 then
if ISANODECORRECT(u) = False then . Step 1.1

if u 6= GETTHEROOT(W) then
u← PARENT(u)

end if
else

if ISITTHETARGET(u) = True then . Step 1.2
c(u)← 1

else
u← SELECTCHILD(u) . Step 1.3

end if
end if

else
if ISITTHETARGET(u) = True then . Step 2.1

c(u)← c(u) + 1
else

c(u)← c(u)− 1
end if

end if

The whole algorithm is presented in Algorithm 3.

Algorithm 3 The walking algorithm for s = O(h + log(1/ε)) steps

u← GETTHEROOT(W)
for j ∈ {1, . . . s} do

u← ONESTEP(u)
end for
v← λW(u), Path = (v), k = 1
while v 6= GETTHEROOT(G) do

v← PARENT(v)
Path = v ◦ Path . Here ◦means the concatenation of two sequences. The line adds

the node to the beginning of the path sequence
k← k + 1 . The length of the path sequence

end while
for i ∈ {1, . . . k} do

PROCESSANODE(vi)
end for

Let us discuss the algorithm and its properties. On each node, we have two options,
we go in the direction of the target node or the opposite direction.

Assume that c(u) = 0 of the current node u. If we are in a wrong branch, then the
only correct direction is the parent node. If we are in the correct branch, then the only
correct direction is the correct child node. All other directions are wrong. Assume that
c(u) > 0. If we are in the target node, then the only correct direction is increasing the
counter, and the wrong direction is decreasing the counter. Otherwise, the only correct
direction is decreasing the counter.

Choosing the direction is based on the results of at most three invocations of navi-
gation procedures (SELECTCHILD, ISANODECORRECT, and ISITTHETARGET). Remember
that we reach 0.1 error probability using a constant number of repetitions. Due to the inde-
pendence of error events, the total error probability of choosing a direction is at most 0.3.
So, the probability of moving in correct direction is at least 2/3 and for a wrong direction
it is at most 1/3. Let us show that if s = O(h + log(1/ε)), then the error probability for

Mathematics 2023, 11, 4707 6 of 18

an operation on G is ε. Note that ε can be non-constant. In Corollarys 1 and 2, we have
ε = 1/Poly(|V(G)|).

Theorem 1. Given error probability ε ∈ (0, 0.5), Algorithm 3 completes the same action as
Algorithm 1 with a running time of O(h + log(1/ε)).

Proof. Let us consider the walking tree. We emulate the counter by replacing it with a
nodes chain of length s + 1. Formally, for a node u ∈ V(W) we add s + 1 nodes du

1 , . . . , du
s+1

such that PARENT(du
1) = u, PARENT(du

i) = du
i−1 for i ∈ {2, . . . , s + 1}. The only child of du

i
is du

i+1 for i ∈ {1, . . . , s}, and du
s+1 does not have children.

In that case, the increasing of c(u) can be emulated by moving from du
c(u) to du

c(u)+1.
The decreasing can be emulated by moving from du

c(u) to du
c(u)−1. We can assume that du

0 is
the node u itself.

Let utarget be the target node, i.e., ISITTHETARGET(utarget) = True. Let us consider
the distance L between the target node d

utarget
s+1 and the current node in the modified tree.

The distance L is a random variable. Each step of the walk increases or decreases the
distance L by 1. So, we can present L = dist(root, d

utarget
s+1)−Y, where root is the root node

of W, Y = (Y1 + · · · + Ys), and Yi ∈ {−1,+1} are independent random variables that
represent i-th step and show increasing or decreasing the distance. Let Yi = +1 if we move
in the correct direction, and Yi = −1 if we move in the wrong direction. Note that the
probability of moving to the correct direction (Yi = +1) is at least 2/3 and the probability
of moving to the wrong direction (Yi = −1) is at most 1/3. From now on, without loss of
generality, we assume that Pr[Yi = +1] = 2/3 and Pr[Yi = −1] = 1/3.

If L ≤ s, then we are in the d
utarget
i node in the modified tree and in the utarget node

in the original walking tree W. Note that dist(root, d
utarget
s+1) ≤ h + s, where h = h(W) by

the definition of the height of a tree. Therefore, L ≤ s means Y = Y1 + · · · + Ys ≥ h.
So, the probability of success of the operation is the probability of the Y ≥ h event,
i.e., Prsuccess = Pr[Y ≥ h].

Let Xi = (Yi + 1)/2 for i ∈ {1, . . . , s}. We treat X1, . . . , Xs as independent binary
random variables. Let X = ∑s

i=1 Xi. For such X and for any 0 < δ ≤ 1, the following form
of Chernoff bound [49] holds

Pr[X < (1− δ)E[X]] ≤ exp(−E[X]δ2/2). (1)

Since Pr[Xi = 1] = Pr[Yi = +1] = 2/3, we have E[X] = 2s/3 and the inequality (1)
becomes

Pr[X < 2s · (1− δ)/3] ≤ exp(−δ2s/3).

Substituting Y for X we, obtain

Pr[Y < s · (4(1− δ)/3− 1)] ≤ exp(−δ2s/3).

From now on without loss of generality, we assume that s = dc · (h + log(1/ε))e for
some c > 0. Let δ = 1

6 and c ≥ 108.
In the following steps, we relax the inequality by obtaining less tight bounds for the

target probability.
Firstly, we obtain a new lower bound

s · (4(1− δ)/3− 1) = dc · (h + log(1/ε))e/9 ≥ c · (h + log(1/ε))/9 ≥
≥ c · h/9 ≥ 108 · h/9 > h,

and hence
Pr[Y < h] ≤ Pr[Y < s · (4(1− δ)/3− 1)]

Mathematics 2023, 11, 4707 7 of 18

Secondly, we obtain a new upper bound

exp(−δ2s/3) = exp(−dc · (h + log(1/ε))e/108) ≤ exp(−c/108 · (h + log(1/ε)) <

< exp(−c/108 · log(ε−1)) ≤ exp(− log(ε−1)) = ε.

Combining the two obtained bounds we have

Pr[Y < h] ≤ Pr[Y < (
4
3
(1− δ)− 1)s] ≤ exp(−δ2s/3) < ε,

and hence
Pr[Y < h] < ε.

Considering the probability of the opposite event we finally obtain

Prsuccess = Pr[Y ≥ h] > 1− ε.

In the next section, we show several applications of the technique.

4. Noisy Tree Data Structures
4.1. Noisy Binary Search Tree

Let us consider a Self-Balanced Search Tree [9]. It is a binary rooted tree G. Let
n = |V(G)|. We associate a comparable element α(v) with a node v ∈ V(G). (i) For a node
v ∈ V(G), we have α(v′) < α(v) where v′ is from the left sub-tree of v; and α(v′′) > α(v)
where v′′ is from the right sub-tree of v. (ii) The height of the tree h(G) = O(log n).

As an implementation of Self-Balanced Search Tree, we use a Red–Black Tree [9,50].
It allows us to add and remove a node with a specific value with O(log n) running time.
Assume that the comparing procedure of two elements has an error p. Each operation
(remove and add an element) has three steps: searching, carrying out the action (removing
or adding), and re-balancing. Re-balancing does not invoke comparing operations, that is
why it does not have an error. So, the only “noisy” procedure (which can have an error) is
searching. Let us discuss it.

Let us associate β(v) and γ(v) with a node v ∈ V(G). That are left and right bounds
for α(v) with respect to the ancestor nodes. Formally, β(v) < min{α(v′) : v is an ancestor
of v′}, γ(v) > max{α(v′) : v is an ancestor of v′}. We can compute them as follows. If v
is the root, then β(v) = −∞, and γ(v) = +∞. Here, −∞ and +∞ are constants that are
a priori less and more than any α(v′) for v′ ∈ V(G). Let v be a non-root node. If v is the
left child of PARENT(v), then β(v) = β(PARENT(v)), γ(v) = α(PARENT(v)). If v is the
right one, then β(v) = α(PARENT(v)), γ(v) = γ(PARENT(v)). Assume that a comparing
function for elements COMPARE(a, b) returns −1 if a < b; +1 if a > b; 0 if a = b. An error
probability for the function is p < 0.5− δ for some 0 < δ < 0.5. Let us present each of
the required procedures for searching an object x operation. GETTHEROOT(G) is for the
root node of G. SELECTCHILD(v) returns the left child of v if COMPARE(α(v), x) = −1;
and returns the right child if COMPARE(α(v), x) = +1. ISITTHETARGET(v) returns True iff
Compare(α(v), x) = 0. PROCESSANODE(V) does nothing. ISANODECORRECT(V) returns
True iff β(v) < x < γ(v), formally, COMPARE(β(v), x) = −1 and COMPARE(x, γ(v)) = −1.
The presented operations satisfy all requirements. Let us present the complexity result that
directly follows from Theorem 1.

Theorem 2. Suppose the comparing function for elements of Red–Black Tree has an error
p < 0.5 − δ for some 0 < δ < 0.5. Then, using the walking tree, we can carry out search-
ing, adding and removing operations with O(log(n/ε)) running time and an error probability ε.

Mathematics 2023, 11, 4707 8 of 18

Remind that it is important for the proof to isolate p from 0.5. We cannot be sure that
the algorithm works if p→ 0.5. If ε = 1/Poly(n), then the “noisy” setting does not affect
asymptotic complexity.

Corollary 1. Suppose the comparing function for elements of the Red–Black Tree has an error
p < 0.5− δ for some 0 < δ < 0.5. Then, using the walking tree, we can carry out searching,
adding, and removing operations with O(log n) running time and an error probability 1/Poly(n).

4.2. Noisy Segment Tree

We consider a standard segment tree data structure [10,11] for an array b = (b1, . . . , bn)
for some integer n > 0. The segment tree is a full binary tree such that each node corre-
sponds to a segment of the array b. If a node v corresponds to a segment (ble f t, . . . , bright),
then we store a value α(v) that represents some information about the segment. Let us
consider a function f such that α(v) = f (ble f t, . . . , bright). A segment of a node is the union
of segments that correspond to its two children. Typically, the children correspond to seg-
ments (ble f t, . . . , bmid) and (bmid+1, . . . , bright), for mid = b(le f t + right)/2c. We consider
α(v) such that it can be computed by values of two children α(vl) and α(vr), where vl and
vr are left and right children of v. Leaves correspond to single elements of the array b.
As an example, we can consider integer values bi and sum α(v) = ble f t + · · ·+ bright as the
value in a node v and a corresponding segment (ble f t, . . . , bright). The data structure allows
us to invoke the following requests in O(log n) running time.

• Update. Parameters are an index i and an element x (1 ≤ i ≤ n). The procedure
assigns bi ← x. For this goal, we assign x for the leaf w that corresponds to the bi and
update ancestors of w.

• Request. Parameters are two indexes i and j (1 ≤ i ≤ j ≤ n), the procedure computes
f (bi, . . . , bj).

The main part of both operations is the following. For the given root node and an
index i, we should find the leaf node corresponding to bi. The main step is the following.
If we are in a node v with associated segment (ble f t, . . . , bright), then we compare i with a
middle element mid = b(le f t + right)/2c and choose the left or the right child. Assume
that we have a comparing function for indexes COMPARE(a, b) that returns −1 if a < b; +1
if a > b; 0 if a = b. The comparing function returns the answer with an error p < 0.5− δ
for some 0 < δ < 0.5.

Let us present each of the required procedures for searching the leaf with index
i in a segment tree G. GETTHEROOT(G) returns the root node of the segment tree G.
For mid = b(le f t + right)/2c, and the segment (ble f t, . . . , bright) associated with a node
v, the function SELECTCHILD(v) returns the left child of v if Compare(mid, i) ≤ 0; and
returns the right child otherwise. ISITTHETARGET(v) returns True if le f t = i = right,
formally, Compare(le f t, i) = 0 and Compare(right, i) = 0; and returns False otherwise.
Here the segment (ble f t, . . . , bright) is associated with v. PROCESSANODE(v) recomputes
α(v) = f (ble f t, . . . , bright) according to the values of α in the left and the right children.
ISANODECORRECT(v) returns True if le f t ≤ i ≤ right, formally, COMPARE(le f t, i) ≤ 0 and
COMPARE(x, right) ≤ 0; and returns False otherwise. Here, the segment (ble f t, . . . , bright) is
associated with v. The presented operations satisfy all requirements. Let us present the
complexity result that directly follows from Theorem 1.

Theorem 3. Suppose, the comparing function for indexes of a segment tree is noisy and has an
error p < 0.5− δ for some 0 < δ < 0.5. Then, using the walking tree, we can conduct update and
request operations with O(log(n/ε)) running time and an error probability ε.

If we take ε = 1/Poly(n), then the “noisy” setting does not affect asymptotic complexity.

Mathematics 2023, 11, 4707 9 of 18

Corollary 2. Suppose, the comparing function for indexes of a segment tree is noisy and has an
error p < 0.5− δ for some 0 < δ < 0.5. Then, using the walking tree, we can carry out update and
request operations with O(log n) running time and an error probability 1/Poly(n)

We can apply the same ideas for the segment tree with range updates [11] (examples of
applications can be found in [51,52]) or other modifications of the data structure. If we have
access to the full segment tree, including leaves, then we can complete operations without
the walking tree. We can use the noisy binary search algorithm [1] for searching the leaf
that corresponds to the index i and then process all the ancestors of the leaf. At the same
time, if we have only access to the root node or compressed case, then a noisy segment tree
is more useful.

Theorem 3 and Corollary 2 are the direct application of the main technique and results
from Theorem 1 to a specific data structure (segment tree). This is one of two applications
that are presented in this paper.

Analysis, Discussion, Modifications for Noisy Segment Tree

There are different additional operations with a segment tree. One such example is
the segment tree with range updates. In this modification, we can update the values bi
for a range i ∈ {`, . . . , r} by a value in one request. The reader can find more information
in [11] and examples of applications in [51,52]. The main operation with a noisy comparing
procedure is the same. So, we can still use the same idea for such modifications of the
segment tree.

Remark 1. If the segment tree is constructed for an array b1, . . . , bn, then we can extend it to
b1, . . . , bn, . . . , bk, where k = 2dlog2 ne that is closest to n power of 2 and bn+1, . . . , bk are neutral
element for the function f . If we have a node v and two borders le f t and right of the segment
associated with v, then we always can compute the segments for the left and the right children
that are ble f t, . . . , bmid and bmid+1, . . . , bright for mid = (le f t + right)/2. Additionally, we can
compute the segment for the parent that is ble f t, . . . , bpright, where pright = 2 · right− le f t if the
node is the left child of its parent. If the node is the right child of its parent, then the parent’s segment
is bple f t, . . . , bright, where ple f t = 2 · le f t− right. Therefore, we should not store the borders of a
segment in a node, and we can compute them during the walk on the segment tree. Additionally,
we should not construct the walking tree. We can keep it in mind and walk by the segment tree
itself using only three variables: the le f t and right borders of the current segment and a counter
if required.

If we have access to the full segment tree, including leaves, then we can conduct
operations without the walking tree. We can use the noisy binary search algorithm [1] for
searching the leaf that corresponds to the index i, and then process all the ancestors of the
leaf. There are at least two useful scenarios for a noisy segment tree.

1. We have access only to the root and have no direct access to leaves.
2. The second one is the compressed segment tree. If initially, all elements of the array

b are empty or neutral for the function f , then we can compress a subtree with one node
with a label of a segment with empty elements. On each step, we do not store any subtree
if it has only neutral elements. In that case, we store only a root of this tree and mark it
as a subtree with neutral elements. It is reasonable if n is very big and storing the whole
tree is very expensive. In that case, we can replace the noisy binary tree with the noisy
self-balanced search tree from the previous section. The search tree stores the updated
elements in leaves, and we can search the required index in this data structure. At the same
time, the noisy segment tree uses much less memory with respect to Remark 1. That is why
a noisy segment tree is more effective in this case too.

Mathematics 2023, 11, 4707 10 of 18

5. Quantum Sort Algorithm for Strings

As one of the interesting applications, we suggest applications from quantum comput-
ing [12,29]. Let us discuss the string-sorting problem as one of the applications.

Problem: There are n strings s0, . . . , sn−1 of size l for some positive integers n and
l. The problem is to find a permutation (j0, . . . , jn−1) such that sji < sji+1 , or sji = sji+1

and ji < ji+1 for each i ∈ {0, . . . , n − 2}. The Quantum sorting algorithm for strings
was presented in [35,36]. The running time of the algorithm is O(n

√
l log n). We can

present the algorithm with the same complexity but in a simpler way. Assume that we
have a noisy self-balanced binary search tree with strings as keys and a quantum string
comparing procedure.

There is a quantum algorithm for comparing two strings quadratically faster than any
classical counterparts. The algorithm is based on modifications [39,53] of Grover’s search
algorithm [44,45]. The result is the following.

Lemma 1 ([36]). There is a quantum algorithm that compares two strings s and t of lengths |s|
and |t| in the lexicographical order with O(

√
min(|s|, |t|)) running time and error probability 0.1.

We assume that the comparing procedure compares strings in lexicographical order,
and if they are equal, then it compares indexes. In fact, we store indexes of the strings
in nodes. We assume that if a node stores a key index i, then any node from the left
subtree has a key index j such that sj < si or (sj = si and j < i); and any node from
the right subtree has a key index j′ such that sj′ > si or (sj = si and j′ > i). Initially,
the tree is empty. Let ADD(i) be a function that adds a string si to the tree. Let GETMIN

be a function that returns the index of the minimal string s from the tree according to the
comparing procedure. After returning the index, the function removes it from the tree. The
algorithm is two for-loops. The first one is adding all strings one by one using ADD(i) for
i ∈ {0, . . . , n− 1}. The second one is obtaining the index of minimal strings GETMIN for
i ∈ {0, . . . , n− 1}. The code representation of the algorithm is in Appendix A. The second
For-loop can be replaced by in-order traversal (dfs) of the tree for constructing the list. This
approach has a smaller hidden constant in big-O. The full idea is presented in Appendix A
for completeness.

Theorem 4. The quantum running time for sorting n string of length l is O(n
√

l log n) and
Ω(n +

√
nl).

The upper bound is complexity of the presented algorithm and algorithm from [36].
The proof of the lower bound is presented below.

For simplicity, we assume that strings are binary, i.e., si ∈ {0, 1}l , for i ∈ {0, . . . , n− 1}.
Let us formally define the sorting function.

For positive integers n, l, let RADIXn,l : {0, 1}nl → Sn be a function that obtains
n binary strings of length l as input and returns a permutation of n integers that is a
result of sorting input strings. Here, Sn is a set of all permutations of integers from 0 to
n− 1. For s0, . . . , sn−1 ∈ {0, 1}l , we have RADIXn,l(s0, . . . , sn−1) = (j0, . . . , jn−1), where
(j0, . . . , jn−1) ∈ Sn is a permutation such that σji < σji+1 or (σji = σji+1 and ji < ji+1),
for i ∈ {0, . . . , n− 2}.

Note that in the case of l = 1, the function RADIXn,1 can be used to compute the
majority function. We use RADIXn,1 to sort strings and the n/2-th string is a value of the
majority function. Therefore, we expect that complexity of RADIXn,1 should be Ω(n) [54].
In the case of n = 2, the function RADIX2,l is similar to the OR function, so we expect that
it requires Ω(

√
l) queries [54].

Note that in the case of l = 1, the function RADIXn,1 can be used to compute the
majority function. We use RADIXn,1 to sort strings and the n/2-th string is a value of the
majority function. Therefore, we expect that complexity of RADIXn,1 should be Ω(n). In

Mathematics 2023, 11, 4707 11 of 18

the case of n = 2, the function RADIX2,l is similar to the OR function, so we expect that it
requires Ω(

√
l) queries.

Formally, we prove the following.

Lemma 2. For positive integers n, l, let MAJn : {0, 1}n → {0, 1} be a majority function,
and SEARCH1l : {0, 1}l → {1, . . . , l} be a function that returns the minimal index of one
in the input.

Q(RADIXn,1) ≥ Q(MAJn) (2)

Q(RADIX2,l) ≥ Q(ORl) (3)

Proof. Consider the input x ∈ {0, 1}n. Suppose that RADIXn,1(x) = σ = (σ1, . . . , σn).
Then the proof of (2) follows from the fact that

MAJn(x) = xσdn/2e .

Take an input y ∈ {0, 1}l . Let y′ ∈ {0, 1}2l be a pair of words~0 = 0 . . . 0 ∈ {0, 1}l and
y. Now we see that

ORl(y) =

{
1, if RADIX2,l(y′) = (10),
0, if RADIX2,l(y′) = (01).

and this completes the proof.

Note that [36] proves the lower bound of the form Q(RADIXn,l) ≥ Ω(
√

nl). Combin-
ing their result with the Lemma 2, we get the following corollary.

Corollary 3. The complexity of RADIXn,l is Q(RADIXn,l) ≥ Ω(n +
√

nl).

6. Auto-Complete Problem

In this section, we present the Auto-Complete Problem and a quantum algorithm that
is another application of the Noisy Binary Search Tree.

Problem: Assume that we use some constant-size alphabet, for example, binary, ASCII,
or Unicode. We work with a sequence of strings S = (si1 , . . . , si|S|), where |S| is the length
of the sequence; and ij are increasing indexes of strings. Here, the index ij is the index
of the query for adding this string to S . Initially, the sequence S is empty. Then, we
have n queries of two types. The first type is adding a string s to the sequence S . Let
#(u) = |{j : u = sj, j ∈ {i1, . . . , i|S|}}| be a number of occurrence (or “frequency”) of a
string u among S . The second type is querying the most frequent completion from S of a
string t. Let us define it formally. If t is a prefix of sj, then we say that sj is a completion
of t. Let D(t) = {sj : j ∈ {i1, . . . , i|S|}, sj is a completion of t} be the set of completions for
t, and let md(t) = max{#(sr) : r ∈ {i1, . . . , i|S|}, sr ∈ D(t)} be the maximal “frequency” of
strings from D(t). The problem is to find the index mi(t) = min{r : r ∈ {i1, . . . , i|S|}, sr ∈
D(t), #(sr) = md(t)}.

We use a Self-Balanced Search tree for our solution. A node v of the tree stores 4-tuple
(i, c, j, jc), where i is an index of a string si that is “stored” in the node, and c = #(si). The tree
is a Search tree by this strings si similar to storing strings in Section 5. For comparing
strings, we use a quantum procedure from Lemma 1. Therefore, our tree is noisy. The index
j is the index of the most “frequent” string in the sub-tree whose root is v, and jc = #(sj).
Formally, for any node v′ from this sub-tree if (i′, c′, j′, jc′) is associated with v′, then c′ < jc
or (c′ = jc and i′ ≥ j).

Initially, the tree is empty. Let us discuss processing the first type of query. We want to
add a string s to S . We search a node v with associated (i, c, j, jc) such that si = s. If we can
find it, then we increase c← c + 1. It means j parameter of the node v or its ancestors can
be updated. There are at most O(log n) ancestors because the height of the tree is O(log n).

Mathematics 2023, 11, 4707 12 of 18

So, for each ancestor of v that associated with (i′, c′, j′, jc′), if jc′ < c or (jc′ = c and j′ > i),
then we update j′ ← i and jc← c.

If we cannot find the string s in S , then we add a new node to the tree with associated
4-tuple (r, 1, r, 1), where r is the index of the query. Note that if we re-balance nodes in the
Red–Black tree, then we easily can recompute j and jc elements of nodes.

Assume that we have a SEARCH(s) procedure that returns a node v with associated
(i, c, j, jc) where s = si. If there is no such a node, then the procedure returns NULL. A pro-
cedure ADDASTRING(r) adding a node (r, 1, r, 1) to the tree. A procedure GETTHEROOT

returns the root of the search tree. The processing of the first type of query is presented in
Algorithm 4.

Algorithm 4 Processing a query of the first type with an argument s and a query number r

v← SEARCH(s)
if v 6= NULL then

(i, c, j, jc) is associated with v
c← c + 1
if jc < c or (jc = c and j ≥ i) then

jc← c
j← i

end if
while v 6= GETTHEROOT do

v← PARENT(v)
(i′, c′, j′, jc′) is associated with v
if jc′ < c or (jc′ = c and j′ ≥ i) then

jc′ ← c
j′ ← i

end if
end while

else
ADDASTRING(r)

end if

Let us discuss processing the second type of query. All strings si that can be a com-
pletion for t belong to the set C(t) = {sr : r ∈ {i1, . . . , i|S|}, sr ≥ t and sr < t′}. Here, we
can obtain t′ from the string t by replacing the last symbol with the next symbol from the
alphabet. Formally, if t = (t1, . . . , t|t|−1, t|t|), then t′ = (t1, . . . , t|t|−1, t′|t|), where the symbol
t′|t| succeeds t|t| in the alphabet. We can say that C(t) = D(t). The query processing consists
of three steps.

Step 1. We search for a node vRt such that t should be in the left sub-tree of v and
t′ should be in the right sub-tree of v. Formally, β(vRt) ≤ t ≤ α(vRt), and α(vRt) < t′ ≤
γ(vRt). For implementing this idea the procedure ISITTHETARGET(v) checks the following
condition: (

COMPARE(β(v), t) ≤ 0 and COMPARE(t, α(v)) ≤ 0
)

and(
COMPARE(α(v), t′) < 0 and COMPARE(t′, γ(v)) ≤ 0

)
.

The procedure SELECTCHILD(v) returns the right child if t > α(v), i.e.,

COMPARE(t, α(v)) > 0,

and returns the left child otherwise.
If we come to the null node, then there are no completions of t. If we find vRt, then

we carry out the next two steps. In those two steps, we compute the index of the required
string jans and jcans = #(sjans).

Mathematics 2023, 11, 4707 13 of 18

Step 2. Let us look to the left sub-tree with t. Let us find a node vL that con-
tains an index iL of the minimal string siL ≥ t. For implementing this idea, the pro-
cedure ISITTHETARGET(v) checks whether the current string is t. Formally, it checks
COMPARE(α(v), t) = 0. Additionally, the procedure saves the node vL ← v if α(v) ≥ t,
i.e., COMPARE(t, α(v)) ≥ 0. The procedure SELECTCHILD(v) works as for searching t. It
returns the right child if t > α(v), i.e., COMPARE(t, α(v)) > 0, and returns the left child
otherwise. In the end, the target node is stored in vL.

Then, we go up from this node. Let us consider a node v. If it is the right child
of PARENT(v), then it is bigger than the string from PARENT(v) and the left child’s sub-
tree, so we do nothing. If it is the left child of PARENT(v), then it is less than the string
from PARENT(v) and all strings from the right child’s sub-tree, so we update jans and
jcans by values from the parent node and the right child. Formally, if (ip, cp, jp, jcp) for
the PARENT(v) node and (ir, cr, jr, jcr) for the right child node, then we complete the
following actions. If cp > jcans or (cp = jcans and ip < jans), then jans ← ip and jcans ← cp.
If jcr > jcans or (jcr = jcans and jr < jans), then jans ← jr and jcans ← jcr. This idea is
presented in Algorithm 5.

Algorithm 5 Obtaining the answer of Step 2 by vL

v← vL
while v 6= PARENT(vRt) do

parent← PARENT(v)
if v = LEFTCHILD(parent) then

(ip, cp, jp, jcp) is associated with parent
if cp > jcans or (cp = jcans and ip < jans) then

jans ← ip
jcans ← cp

end if
(ir, cr, jr, jcr) is associated with RIGHTCHILD(parent)
if RIGHTCHILD(parent) 6= NULL then

if (cr > jcans or (cr = jcans and ir < jans)) then
jans ← ir
jcans ← cr

end if
end if

end if
v← parent

end while

Step 3. Let us look to the right sub-tree with t′. Let us find a node vR that contains an
index iR of the maximal string siR < t′. Then, we go up from this node and carry out the
symmetric actions as in Step 2.

Each of these three steps requires O(log n) running time because each of them ob-
serves nodes of a single branch. The complexity of the quantum algorithm is presented in
Theorem 5. Before presenting the theorem, let us present a lemma that helps us to prove
quantum and classical lower bounds.

Lemma 3. Auto-complete problem at least as hard as unstructured search 1 among O(L) bits.

Proof. Assume that the alphabet is binary. For any other case, we just consider two letters
from the alphabet. Assume that all strings from queries of the first type have length k.

Let m = b(n− 1)/2c. Let us consider the following case. We have m queries of the
first type of the next form: si = (0, 0, si

3, . . . , si
k), Here, si

j = 0 for all i ∈ {1, . . . , m} and
j ∈ {3, . . . , k} except one bit. We have two cases.

The first case is the following. There is only one pair (r, w) such that r ∈ {1, . . . , m},
w ∈ {3, . . . , k}, and sr

w = 1. In the second case, there is no such a pair.

Mathematics 2023, 11, 4707 14 of 18

Next m queries of the first type of the next form (0, 1, 0, . . . , 0).
If n− 1 is odd, then we add a query of the first type of the next form (1, . . . , 1).
The last query of the second type of the form t = (0).
If we have the first case, then #(0, 1, 0, . . . , 0) = m, #(0, 0, 0, . . . , 0) = m− 1 and the an-

swer is (0, 1, 0, . . . , 0). If we have the second case, then #(0, 1, 0, . . . , 0) = m, #(0, 0, 0, . . . , 0) =
m and (0, 0, 0, . . . , 0) has a smaller index. Therefore, the answer is (0, 0, 0, . . . , 0).

Hence, the answer for the input is at least as hard as distinguishing between these two
cases. At the same time, it requires searching 1 among O((k− 3)m) = O(L) bits.

Based on the presented lemma and the discussed algorithm, we can present quantum
lower and upper bounds for the problem in the next theorem.

Theorem 5. The quantum algorithm with a noisy Self-Balanced Search tree for the Auto-Complete
Problem has O(

√
nL log n) running time and error probability 1/3, where L is the sum of lengths

of all queries. Additionally, the lower bound for quantum running time is Ω(
√

L).

Proof. Let us start with the upper bound. Let us consider the processing of the first type of
query. Here we add a string s. Firstly, we find the target node with O(

√
|s| log n) running

time and 1/n2 error probability according to Corollary 1. Then, we consider at most
O(log n) ancestors for updating with O(log n) running time and no error. So, processing
the first type of query works with O(

√
|s| log n) running time and 1/n2 error probability.

Let us consider the processing of the second type of query. Here we search for a
completion for a string t. Searching nodes vRt, vL and vR works with O(

√
|t| log n) running

time and 1/n2 error probability according to Corollary 1. Then, we consider at most
O(log n) ancestors for updating with O(log n) running time and no error. So, processing
the second type of query works with O(

√
|t| log n) running time and 3/n2 error probability.

Let m1, . . . , mn be the lengths of strings from queries. So, the total complexity is

O(
√

m1 log n + · · ·+
√

mn log n) = O((
√

m1 + · · ·+
√

mn) log n) =

O(
√

n(m1 + · · ·+ mn) log n = O(
√

nL log n)

The last two equalities are due to Cauchy–Bunyakovsky–Schwarz inequality and
L = m1 + · · ·+ mn.

The error probability of processing a query is at most 3/n2. Therefore, the error
probability of processing n queries is at most 0.1 due to all error events are independent.

Let us discuss the lower bound. It is known [55] that the quantum running time for
the unstructured search among O(L) variables is Ω(

√
L). So, due to Lemma 3 we obtain

the required lower bound.

Let us consider the classical (deterministic or randomized) case. If we use the same
Self-balanced search tree, then the running time is O(L log n). At the same time, if we use
the Trie (prefix tree) data structure [40], then the complexity is O(L).

We store all strings of S in the trie. For each terminal node, we store the “frequency”
of the corresponding string. For each node v (even non-terminal) that corresponds to a
string u as a path from the root to v, additionally to the regular information we store the
index of the required completion for t and its frequency. When we process the first type of
query, we update the frequency in the terminal node and update additional information
in all ancestor nodes because they store all possible prefixes of the string. For processing
the query of the second type, we just find the required node and take the answer in the
additional information of the node.

We can show that it is also the lower bound for the classical case.

Lemma 4. The classical running time for the Auto-Complete Problem is Θ(L), where L is the sum
of the lengths of all queries.

Mathematics 2023, 11, 4707 15 of 18

Proof. Let us start with the upper bound. Similarly to the proof of Theorem 5, we can
show that the running time of processing a query of both types is O(|s|) or O(|t|) depends
on the type of a query. Let m1, . . . , mn be the lengths of strings from queries. So, the total
complexity is O(m1 + · · ·+ mn) = O(L).

Let us discuss the lower bound. It is known [55] that the classical running time for
the unstructured search among O(L) variables is Ω(L). So, due to Lemma 3 we obtain the
required lower bound.

If O(n) strings have a length that is at least Ω((log2 n)2), then we obtain a quan-
tum speed-up.

7. Conclusions

We suggest the Walking tree technique for noisy tree data structures. We apply the
technique to the Red–Black tree and the Segment tree. We show that the complexity of
the main operations is asymptotically equal to the complexity of standard (not noisy)
versions of the data structures. We use a noisy Red–Black tree for two problems: The string-
sorting Problem and The auto-complete problem. The considered algorithms are quantum
because they use the quantum string comparing algorithm as a subroutine. This subroutine
demonstrates quadratic speed-up, but it has a non-zero error probability. For the string-
sorting problem, we show lower and upper bounds that are the same up to a log factor.
Note that lower bounds for FSTm, SGn, and SGNn,l functions may be of independent
interest. For the auto-complete problem, we obtain quantum speed-up for the problems
if (log n)2 = o(l) where n is the number of queries and l is the size of an input string
of a query. Future work can include applying the Walking tree technique to other tree
data structures and obtaining the noisy version of them with good complexity of main
operations. Also, it is interesting to find more applications for noisy data structures. We
assume that quantum algorithms should be one of the fruitful fields for such applications.
It is interesting to meet quantum lower and upper bounds for the considered problems.

Author Contributions: The main idea of the technique, K.K.; technical proofs for the main technique,
N.S.; lower bounds, M.Z.; applications, K.K. and D.M.; constructions and concepts, K.K. and M.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This paper has been supported by the Kazan Federal University Strategic Academic
Leadership Program (PRIORITY-2030).

Data Availability Statement: There is no data for the research.

Acknowledgments: We thank Aliya Khadieva for useful discussions.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

Appendix A. Quantum Sorting Algorithm—The Second Approach

Assume that we want to construct a result list. We use list variable as a result.
We use the recursive procedure GETLISTBYTREE(v) for in-order traversal (dfs) of the

searching tree. Here, v is the processing node. Assume that we have GETTHELEFTCHILD(v)
for obtaining the left child of v, GETTHERIGHTCHILD(v) for obtaining the right child of
v; GETINDEXOFSTRING(v) for obtaining the index of the string α(v) that is stored in v.
The procedure is presented in Algorithm A1.

Mathematics 2023, 11, 4707 16 of 18

Algorithm A1 The recursive procedure GETLISTBYTREE(v) for in-order traversal (dfs) of
the searching tree

if v 6= NULL then
GETLISTBYTREE(GETTHELEFTCHILD(v))
list← list ◦ GETINDEXOFSTRING(v)
GETLISTBYTREE(GETTHERIGHTCHILD(v))

end if

The total sorting algorithm is Algorithm A2.

Algorithm A2 Quantum string-sorting algorithm

for i ∈ {0, . . . , n− 1} do
ADD(i)

end for
list← [] . Initially, the list is empty
GETLISTBYTREE(GETTHEROOT())
for i ∈ {0, . . . , n− 1} do

ji ← list[i]
end for

References
1. Feige, U.; Raghavan, P.; Peleg, D.; Upfal, E. Computing with noisy information. SIAM J. Comput. 1994, 23, 1001–1018. [CrossRef]
2. Pelc, A. Searching with known error probability. Theor. Comput. Sci. 1989, 63, 185–202. [CrossRef]
3. Karp, R.M.; Kleinberg, R. Noisy binary search and its applications. In Proceedings of the Eighteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, Philadelphia, PA, USA, 7–9 January 2007; pp. 881–890.
4. Emamjomeh-Zadeh, E.; Kempe, D.; Singhal, V. Deterministic and probabilistic binary search in graphs. In Proceedings of the

Forty-Eighth Annual ACM Symposium on Theory of Computing, Cambridge, MA, USA, 19–21 June 2016; pp. 519–532.
5. Dereniowski, D.; Łukasiewicz, A.; Uznański, P. An efficient noisy binary search in graphs via median approximation. In Proceed-

ings of the 32nd International Workshop on Combinatorial Algorithms, Ottawa, ON, Canada, 5–7 July 2021; pp. 265–281.
6. Deligkas, A.; Mertzios, G.B.; Spirakis, P.G. Binary search in graphs revisited. Algorithmica 2019, 81, 1757–1780. [CrossRef]
7. Boczkowski, L.; Korman, A.; Rodeh, Y. Searching on trees with noisy memory. arXiv 2016, arXiv:1611.01403.
8. Dereniowski, D.; Kosowski, A.; Uznanski, P.; Zou, M. Approximation Strategies for Generalized Binary Search in Weighted Trees.

In Proceedings of the 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), Warsaw, Poland,
10–14 July 2017.

9. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms; McGraw-Hill: New York, NY, USA, 2001.
10. Mark, D.B.; Otfried, C.; Marc, V.K.; Mark, O. Computational Geometry Algorithms and Applications; Spinger: Berlin/Heidelberg,

Germany, 2008.
11. Laaksonen, A. Guide to Competitive Programming; Springer: Berlin/Heidelberg, Germany, 2017.
12. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010.
13. de Wolf, R. Quantum Computing and Communication Complexity; University of Amsterdam: Amsterdam, The Netherlands, 2001.
14. Jordan, S. Quantum Algorithms Zoo. 2021. Available online: http://quantumalgorithmzoo.org/ (accessed on 20 September 2023).
15. Dürr, C.; Heiligman, M.; Høyer, P.; Mhalla, M. Quantum query complexity of some graph problems. SIAM J. Comput. 2006,

35, 1310–1328. [CrossRef]
16. Khadiev, K.; Safina, L. Quantum Algorithm for Dynamic Programming Approach for DAGs. Applications for Zhegalkin

Polynomial Evaluation and Some Problems on DAGs. In Proceedings of the International Conference on Unconventional
Computation and Natural Computation, Tokyo, Japan, 3–7 June 2019; Volume 4362, pp. 150–163.

17. Khadiev, K.; Kravchenko, D.; Serov, D. On the Quantum and Classical Complexity of Solving Subtraction Games. In Proceedings
of the 14th International Computer Science Symposium in Russia, Novosibirsk, Russia, 1–5 July 2019; Volume 11532, pp. 228–236.

18. Khadiev, K.; Safina, L. Quantum Algorithm for Dynamic Programming Approach for DAGs and Applications. Lobachevskii J.
Math. 2023, 44, 699–712. [CrossRef]

19. Lin, C.Y.Y.; Lin, H.H. Upper Bounds on Quantum Query Complexity Inspired by the Elitzur-Vaidman Bomb Tester. In Proceedings
of the 30th Conference on Computational Complexity (CCC 2015), Portland, OR, USA, 17–19 June 2015.

20. Lin, C.Y.Y.; Lin, H.H. Upper Bounds on Quantum Query Complexity Inspired by the Elitzur–Vaidman Bomb Tester. Theory
Comput. 2016, 12, 537–566. [CrossRef]

21. Beigi, S.; Taghavi, L. Quantum speedup based on classical decision trees. Quantum 2020, 4, 241. [CrossRef]
22. Ramesh, H.; Vinay, V. String matching in O(

√
n +
√

m) quantum time. J. Discret. Algorithms 2003, 1, 103–110. [CrossRef]
23. Montanaro, A. Quantum pattern matching fast on average. Algorithmica 2017, 77, 16–39. [CrossRef]

http://doi.org/10.1137/S0097539791195877
http://dx.doi.org/10.1016/0304-3975(89)90077-7
http://dx.doi.org/10.1007/s00453-018-0501-y
http://quantumalgorithmzoo.org/
http://dx.doi.org/10.1137/050644719
http://dx.doi.org/10.1134/S1995080223020191
http://dx.doi.org/10.4086/toc.2016.v012a018
http://dx.doi.org/10.22331/q-2020-03-02-241
http://dx.doi.org/10.1016/S1570-8667(03)00010-8
http://dx.doi.org/10.1007/s00453-015-0060-4

Mathematics 2023, 11, 4707 17 of 18

24. Le Gall, F.; Seddighin, S. Quantum Meets Fine-Grained Complexity: Sublinear Time Quantum Algorithms for String Problems.
In Proceedings of the 13th Innovations in Theoretical Computer Science Conference (ITCS 2022), Berkeley, CA, USA, 31 January–
3 February 2022.

25. Le Gall, F.; Seddighin, S. Quantum meets fine-grained complexity: Sublinear time quantum algorithms for string problems.
Algorithmica 2023, 85, 1251–1286. [CrossRef]

26. Akmal, S.; Jin, C. Near-optimal quantum algorithms for string problems. In Proceedings of the 2022 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), Alexandria, VA, USA, 9–12 January 2022; pp. 2791–2832.

27. Charalampopoulos, P.; Pissis, S.P.; Radoszewski, J. Longest Palindromic Substring in Sublinear Time. In Proceedings of the 33rd
Annual Symposium on Combinatorial Pattern Matching (CPM), Prague, Czech Republic, 27–29 June 2022.

28. Ablayev, F.; Ablayev, M.; Salikhova, N. Hybrid classical-quantum text search based on hashing. arXiv 2023, arXiv:2311.01213.
29. Ambainis, A. Understanding Quantum Algorithms via Query Complexity. Proc. Int. Conf. Math. 2018, 4, 3283–3304.
30. Høyer, P.; Neerbek, J.; Shi, Y. Quantum complexities of ordered searching, sorting, and element distinctness. In Proceedings of

the International Colloquium on Automata, Languages, and Programming, Crete, Greece, 8–12 July 2001; pp. 346–357.
31. Høyer, P.; Neerbek, J.; Shi, Y. Quantum complexities of ordered searching, sorting, and element distinctness. Algorithmica 2002,

34, 429–448.
32. Odeh, A.; Elleithy, K.; Almasri, M.; Alajlan, A. Sorting N elements using quantum entanglement sets. In Proceedings of the Third

International Conference on Innovative Computing Technology, London, UK, 29–31 August 2013; pp. 213–216.
33. Odeh, A.; Abdelfattah, E. Quantum sort algorithm based on entanglement qubits {00, 11}. In Proceedings of the 2016 IEEE Long

Island Systems, Applications and Technology Conference (LISAT), Farmingdale, NY, USA, 29 April 2016; pp. 1–5.
34. Klauck, H. Quantum time-space tradeoffs for sorting. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of

Computing, San Diego, CA, USA, 9–11 June 2003; pp. 69–76.
35. Khadiev, K.; Ilikaev, A. Quantum Algorithms for the Most Frequently String Search, Intersection of Two String Sequences and

Sorting of Strings Problems. In Proceedings of the International Conference on Theory and Practice of Natural Computing,
Kingston, ON, Canada, 9–11 December 2018; pp. 234–245.

36. Khadiev, K.; Ilikaev, A.; Vihrovs, J. Quantum Algorithms for Some Strings Problems Based on Quantum String Comparator.
Mathematics 2022, 10, 377. [CrossRef]

37. Babu, H.M.H.; Jamal, L.; Dibbo, S.V.; Biswas, A.K. Area and delay efficient design of a quantum bit string comparator. In Proceedings of
the 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Bochum, Germany, 3–5 July 2017; pp. 51–56.

38. Aborot, J.A. An Oracle Design for Grover’s Quantum Search Algorithm for Solving the Exact String Matching Problem. Theory
and Practice of Computation. In Proceedings of the Workshop on Computation: Theory and Practice WCTP2017, Osaka, Japan,
12–13 September 2019; pp. 36–48.

39. Kapralov, R.; Khadiev, K.; Mokut, J.; Shen, Y.; Yagafarov, M. Fast Classical and Quantum Algorithms for Online k-server Problem
on Trees. CEUR Workshop Proc. 2022, 3072, 287–301.

40. Knuth, D. The Art of Computer Programming; Sorting and Searching; Pearson Education: London, UK, 1973; Volume 3.
41. De La Briandais, R. File searching using variable length keys. In Proceedings of the Western Joint Computer Conference,

San Francisco, CA, USA, 3–5 March 1959; pp. 295–298.
42. Black, P.E. Dictionary of Algorithms and Data Structures; Technical Report; National Institute of Standards and Technology:

Gaithersburg, MD, USA, 1998.
43. Brass, P. Advanced Data Structures; Cambridge University Press: Cambridge, UK, 2008; Volume 193.
44. Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM

Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219.
45. Boyer, M.; Brassard, G.; Høyer, P.; Tapp, A. Tight bounds on quantum searching. Fortschritte Phys. 1998, 46, 493–505. [CrossRef]
46. Arunachalam, S.; de Wolf, R. Optimizing the Number of Gates in Quantum Search. Quantum Inf. Comput. 2017, 17, 251–261.

[CrossRef]
47. Grover, L.K. Trade-offs in the quantum search algorithm. Phys. Rev. A 2002, 66, 052314. [CrossRef]
48. Long, G.L. Grover algorithm with zero theoretical failure rate. Phys. Rev. A 2001, 64, 022307. [CrossRef]
49. Motwani, R.; Raghavan, P. Randomized Algorithms; Chapman & Hall/CRC: Boca Raton, FL, USA, 2010.
50. Guibas, L.J.; Sedgewick, R. A dichromatic framework for balanced trees. In Proceedings of the 19th Annual Symposium on

Foundations of Computer Science, Washington, DC, USA, 16–18 October 1978; pp. 8–21.
51. Khadiev, K.; Remidovskii, V. Classical and quantum algorithms for constructing text from dictionary problem. Nat. Comput.

2021, 20, 713–724. [CrossRef]
52. Khadiev, K.; Remidovskii, V. Classical and Quantum Algorithms for Assembling a Text from a Dictionary. Nonlinear Phenom.

Complex Syst. 2021, 24, 207–221. [CrossRef]
53. Kothari, R. An optimal quantum algorithm for the oracle identification problem. In Proceedings of the 31st International

Symposium on Theoretical Aspects of Computer Science, Lyon, France, 5–8 March 2014; p. 482.

http://dx.doi.org/10.1007/s00453-022-01066-z
http://dx.doi.org/10.3390/math10030377
http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
http://dx.doi.org/10.26421/QIC17.3-4-4
http://dx.doi.org/10.1103/PhysRevA.66.052314
http://dx.doi.org/10.1103/PhysRevA.64.022307
http://dx.doi.org/10.1007/s11047-021-09863-1
http://dx.doi.org/10.33581/1561-4085-2021-24-3-207-221

Mathematics 2023, 11, 4707 18 of 18

54. Beals, R.; Buhrman, H.; Cleve, R.; Mosca, M.; de Wolf, R. Quantum Lower Bounds by Polynomials. In Proceedings of the 39th
Annual Symposium on Foundations of Computer Science, Palo Alto, CA, USA, 8–11 November 1998; pp. 352–361.

55. Bennett, C.H.; Bernstein, E.; Brassard, G.; Vazirani, U. Strengths and weaknesses of quantum computing. SIAM J. Comput. 1997,
26, 1510–1523. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1137/S0097539796300933

	Introduction
	Preliminaries
	Graph Theory
	Quantum Query Model

	Main Technique: A Walking Tree
	Noisy Tree Data Structures
	Noisy Binary Search Tree
	Noisy Segment Tree

	Quantum Sort Algorithm for Strings
	Auto-Complete Problem
	Conclusions
	Quantum Sorting Algorithm—The Second Approach
	References

