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Abstract: This study presents a novel methodology for automating the classification of pediatric
ADHD using electroencephalogram (EEG) biomarkers through machine learning and deep learning
techniques. The primary objective is to develop accurate EEG-based screening tools to aid clinical
diagnosis and enable early intervention for ADHD. The proposed system utilizes a publicly available
dataset consisting of raw EEG recordings from 61 individuals with ADHD and 60 control subjects
during a visual attention task. The methodology involves meticulous preprocessing of raw EEG
recordings to isolate brain signals and extract informative features, including time, frequency, and
entropy signal characteristics. The feature selection techniques, including least absolute shrinkage
and selection operator (LASSO) regularization and recursive elimination, were applied to identify
relevant variables and enhance generalization. The obtained features are processed by employing
various machine learning and deep learning algorithms, namely CatBoost, Random Forest Decision
Trees, Convolutional Neural Networks (CNNs), and Long Short-Term Memory Networks (LSTMs).
The empirical results of the proposed algorithms highlight the effectiveness of feature selection
approaches in matching informative biomarkers with optimal model classes. The convolutional neural
network model achieves superior testing accuracy of 97.75% using LASSO-regularized biomarkers,
underscoring the strengths of deep learning and customized feature optimization. The proposed
framework advances EEG analysis to uncover discriminative patterns, significantly contributing to
the field of ADHD screening and diagnosis. The suggested methodology achieved high performance
compared with different existing systems based on AI approaches for diagnosing ADHD.

Keywords: artificial intelligence; machine learning; deep learning; electroencephalogram; hyperac-
tivity disorder

MSC: 68Q32

1. Introduction

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common child-
hood psychiatric conditions, estimated to affect around 5% of children worldwide [1]. The
core symptoms include inattention, hyperactivity, impulsivity, and emotional dysregu-
lation, which impair daily functioning. Although standardized clinical evaluations are
the gold standard for diagnosis, ADHD assessment remains challenging due to subjective
biases and a lack of definitive biomarkers. Prior research has sought to augment behav-
ioral assessments using neurophysiological features from electroencephalogram (EEG),
functional magnetic resonance imaging (fMRI), and genetics [2]. In particular, advanced
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analytical techniques applied to non-invasive EEG measurements provide promise for
objective ADHD diagnostics [3–6]. Raising Children Australian Parenting reported that
during early childhood, the brains of children experience a significant period of rapid devel-
opment. By the age of six, the cerebral development of individuals reaches around 90–95%
of the size seen in adults. During the first stages of development, the early years play a vital
role in shaping the brain. However, it is important to note that substantial restructuring is
still required for the brain to attain the level of functionality seen in adult brains [7]. The
human brain may be conceptualized as a complex and extensive network that efficiently
regulates the whole body. The anatomical development of neural tissue in the brain un-
dergoes changes from childhood to adolescence, which are accompanied by alterations
in oscillatory patterns and brain imaging data. These changes can be measured using
both EEG and fMRI, as demonstrated in studies conducted by Smit et al. [8,9] and Power
et al. [10]. Furthermore, these measurement techniques can be used to compare patients
with healthy individuals. The brain network of individuals diagnosed with ADHD exhibits
several anomalies and divergences when compared to the brain network of neurotypical
individuals. These developmental problems have been identified by fMRI assessments, as
reported by Tang et al. [11]. Numerous EEG investigations have shown atypical amplitude
patterns in the brain waves of individuals with ADHD [12–14]. Individuals diagnosed
with ADHD exhibit distinct EEG patterns that indicate deviations in neuropsychological
functioning when compared to neurotypical individuals. These differences can be effec-
tively identified through the application of machine learning (ML) algorithms, which are
recognized as a valuable approach for analyzing complex datasets [15–17]. EEG signals
provide intrinsic benefits, such as universality, uniqueness, affordability, and accessibility,
when compared to other biometric measures [18,19]. Consequently, EEG devices may be
conveniently used in many settings, including educational and medical institutions.

Consequently, the use of artificial intelligence (AI) techniques has been proposed as a
means to mechanize the procedure and they serve as a tool for aiding in the examination and
identification of mental disorders. The aforementioned methodologies may be categorized
into two distinct subfields within the domain of artificial intelligence, namely machine
learning (ML) and deep learning (DL), with the latter being a subset of the former [20–22].
Classification is a prominent problem within the field of EEG and its application to mental
diseases. This implies that an ML model utilizes diverse properties derived from EEG data
as input and produces a prediction, such as the presence or absence of a mental disorder in
a patient. Feature extraction (FE) was employed to obtain the input characteristics from
the unprocessed EEG data. The ability to extract and choose a suitable set of features for a
certain problem is a crucial factor, as it may determine the usability and effectiveness of an
ML model. In other words, it may be argued that FE has significant importance, especially
in the context of data analysis such as EEG.

The limitations of the current systems prevent their performance in classifying AHDA
using the EGG dataset. This is evident from the findings of previous studies [23,24], which
reported an accuracy of 93.91% and 91% using SVM and graphic neural networks based on
the accuracy measures. Therefore, we have built an upgraded system aimed at boosting
the accuracy of the existing method. The main contribution of this proposed research is
drawn below:

• This study implemented a comprehensive ML and DL pipeline using EEG data to
classify ADHD accurately from healthy brain function.

• Raw multichannel EEG recordings from 61 ADHD and 60 control children performing
a visual attention task were utilized. The rigorous preprocessing, time-frequency
feature extraction, feature selection, classifier optimization, and validation techniques
are applied to enhance the classification algorithms.

• The ML and DL models have been developed to detect ADHD based on features
obtained from the feature selection methods.

• We demonstrated the efficacy of combining EEG biomarkers and sophisticated classifi-
cation algorithms in robust ADHD detection compared with different existing systems.
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• The methodology and results establish guidelines and performance benchmarks to in-
form future research and the translation of these techniques to improve clinical practice.

2. Background of the Study

The examination of EEG characteristics associated with ADHD has attracted consider-
able attention, resulting in a substantial body of research [25–37]. The bulk of studies in this
field primarily investigate frequency-domain indicators, which often include absolute and
relative power estimates across different frequency bands or power ratios across various
frequency bands [38–44]. Although these approaches are computationally efficient and
visually interpretable, they lack the ability to evaluate the nonlinear characteristics of EEG
brain dynamics. Researchers have used techniques derived from nonlinear dynamics
and chaos theory to investigate the nonlinear characteristics of brain dynamics. The mea-
surement of EEG coherence provides significant insights into the functional connectivity
between different regions of the brain. These nonlinear measures capture unique facets
of localized brain dynamics and the synchronization interplay between different brain
regions. With applications spanning no-task resting states, perceptual processing, cognitive
task execution, and various sleep stages, nonlinear time series evaluations of EEG and
MEG have provided insights into the brain’s fluctuating dynamics [45]. Nevertheless,
coherence is insufficient for defining nonlinear interdependencies, especially when it comes
to nonstationary time series. Nonlinear synchronization techniques are used in lieu of
conventional methods to facilitate the investigation of functional brain connectivity [25].

According to Stam et al. [39], distinct patterns of brain activity exhibit distinct chaotic
dynamics. The dynamics under consideration may be described by nonlinear measures,
such as entropy and Lyapunov exponents. Research has shown that the use of the approxi-
mation entropy metric is particularly advantageous in the characterization of short time
series that are affected by noise. The aforementioned capability allows for the provision
of a dependable evaluation of dynamical complexity that is not reliant on specific models
and is grounded in information theory [36]. References [40,41] are provided. Numerous
studies have shown that brain activity, as a highly intricate dynamic system, has a mul-
tifractal organization. Previous research has shown the efficacy of using fractal analysis
of EEG time series as a viable approach for elucidating the neural dynamics associated
with sleep [36]. A study conducted by Fetterhoff et al. [43] revealed that the multifractal
firing patterns seen in hippocampal spike trains exhibited increased complexity during
the performance of a working memory task by rats. However, these patterns undergo a
significant decrease when rats suffer from memory impairment. Zorick et al. [41] showed
that multifractal detrended fluctuation analysis has the potential to impede an individual’s
ability to perceive changes in their state of consciousness.

Feature extraction is a fundamental technique in digital signal processing. It involves
selecting an appropriate analysis domain, such as time, frequency, or space, then using
mathematical functions to derive synthetic and highly informative values from the input
signals. The feature extraction methodologies used in electroencephalographic (EEG) in-
vestigations focused on the diagnosis and treatment of ADHD in pediatric populations.
The researchers were conducted at the executive function level in order to examine the
effort involved in identifying neurocorrelates of a diverse range of illnesses, such as ADHD.
In some cases, the characteristics that are retrieved in this manner may undergo further
transformation and/or calibration in order to enhance the process of detection or classifica-
tion [46–48].

The researchers have used several techniques for feature extraction in the analysis of
EEG data. These techniques include statistical features and deep-learning-based features,
which have been extensively utilized [49–52]. The ADHD may also be diagnosed using
EEG data, hence necessitating the extraction of characteristics from these signals [53,54].
The linear and non-linear characteristics are extensively used for the purpose of diagnosing
youngsters afflicted with ADHD [55], whereas a range of morphological, time domain,
frequency, and non-linear properties were extracted from EEG signals in order to facilitate



Mathematics 2023, 11, 4698 4 of 31

the diagnosis of ADHD in children. Alt1nkaynak et al. [56] used the utilization of mor-
phological, non-linear, and wavelet characteristics as diagnostic tools for the identification
of ADHD in children. In the present investigation, we have further derived temporal
domain, morphological, and non-linear characteristics based on prior research [57]. Some
researchers used alterations in power that measure by persuing the theta/beta ratio (TBR).
This characteristic has been proposed in a number of studies [58–62]. However, TBR has lim-
itations as a universal ADHD diagnostic marker. Elevated TBR is not evident in all ADHD
patients, while non-ADHD individuals may also demonstrate heightened ratios [58,62].
Moreover, factors like fatigue or medication can confound TBR, underscoring the need to
consider influencing variables. Nonetheless, within a holistic assessment, TBR remains a
widely studied potential EEG biomarker warranting ongoing scientific attention.

Some researchers have used the feature selection approaches for the identification of
putative characteristics associated with ADHD. The process of feature selection is important
as it eliminates redundant features and improves the performance of machine learning
(ML) and deep learning (DL) models. The feature selection methods are used to mitigate
overfitting issues in the training/testing process. Within the existing body of literature,
numerous feature selection techniques have been employed, like PCA [63,64] minimum
redundancy maximum relevance (mRMR) [65], mutual information (MI) [66,67], t-test [56,57],
support vector machine recursive elimination (SVM-RFE) [65], least absolute shrinkage and
selection operator (LASSO) [57], and logistic regression (LR) [57]. Khoshnoud et al. [64] used
PCA as a technique for reducing the dimensionality of the data. Through this process, they
were able to select characteristics that had a high degree of correlation with one another.

The DL and ML methodologies have gained significant traction in several real applica-
tions, such as medical imaging [62] and time series analysis [49,68,69]. The ML techniques
have been extensively used to differentiate ADHD from a control group of healthy individ-
uals [56,57,63,65,70–73]. In a study by Muller et al. [44], a set of five classification models
was used. These models consisted of logistic regression, support vector machine (SVM)
with a linear kernel, SVM with a radial basis function kernel, random forest (RF), and
XGBoost. The models demonstrated sensitivities ranging from 75–83% and specificities
ranging from 71–77%. The variables used in this research included the conditions of closed
eyes, open eyes, and visual continuous performance test signal power throughout vari-
ous frequency ranges. Additionally, the study examined the amplitudes and latencies of
event-related potentials (ERPs). One possible explanation for the suboptimal efficacy of
identifying ADHD lies in the inadequate selection of features for the models. One of the
prevailing EEG features often seen in individuals with ADHD is an elevation in power
at low frequencies, namely in the delta and theta bands, as well as a reduction in power
at high frequencies, particularly in the beta band. In the majority of ADHD detection
studies, nonlinear characteristics were retrieved by the authors and then identified using
common classifiers, such as SVM, multilayer perceptron, and KNN [74]. In this study,
researchers conducted experiments using deep convolutional neural networks and DL
networks to assess the diagnosis of ADHD in both adult and pediatric populations [75].
Table 1 summarizes systems-based ML and DL models for detecting ADHD.

By effectively implementing prompt intervention and precise diagnosis, it is feasible to
modify neuronal connections and improve symptomatology. Nevertheless, due to the many
characteristics of ADHD, as well as its coexisting conditions and the limited availability of
diagnostic professionals universally, the identification of ADHD is often put off. Therefore,
it is vital to take into account new methods to enhance the effectiveness of early detection,
like the use of ML and DL models. The research gaps that have been found pertain to the
performance of existing systems. In the present work, we have examined supplementary
characteristics and have used a varied range of ML and DL models in order to enhance
accuracy. Furthermore, it is important to find the appropriate feature extraction approaches
for the outcomes.
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Table 1. Summary of existing systems-based ML and DL models for detecting ADHD.

Authors ADHD Dataset Models Validation Process Performance/Accuracy

Kim et al. [76] 69 sample RF 80% training/20% testing 93.60%
Slobodin et al. [77] 458 sample RF 100 cross-validation 87%

Das et al. [78] 50 Sample SVM 10 cross-validation 76%
Liu et al. [79] 1983 Sample CNN 75% training/25% testing 90%

Kautzky et al. [80] 38 sample RF 5 cross-validation 82%
Yoo et al. [81] 269 sample RF 10 cross-validation 85%
Koh et al. [82] 107 sample Bagged tree 10 cross-validation 87%

Duda et al. [83] 420 Sample LDA 3 cross-validation 82%
Heller et al. [84] 52 sample Game developing 3 cross-validation 78%
Zou et al. [85] 776 sample CNN 4 cross-validation 69%
Zhao et al. [86] 603 sample GCN 10 cross-validation 72%
Colby et al. [87] 776 sample RBF 10 cross-validation 55%

Anderson et al. [88] 748 sample DT 10 cross-validation 66%
Quresh et al. [89] 134 sample ELM 70% training/30% testing 60%
Miao et al. [90] 669 sample DT 79% training/21% testing 81%

3. Materials and Methods

This research proposes a novel methodology for automated classification of pediatric
ADHD from EEG signals. The approach comprises a systematic pipeline with each phase
carefully designed to contribute to a robust performance, as depicted in Figure 1. Initially,
meticulous preprocessing of the raw EEG recordings is performed through filtering and
artifact removal techniques. These are critical to isolating the neurophysiologically relevant
signals from potential biochemical and environmental contaminants and establishing
a firm foundation for subsequent analysis. Informative features are then strategically
extracted from the preprocessed EEG data to enable a nuanced characterization of the
brain dynamics. The set of time, frequency, entropy, and power signal features provide a
comprehensive encapsulation of the salient neural properties. This phase transforms the
data into an informative representation suitable for machine learning. The feature set is
further refined through rigorous selection techniques to retain only the most diagnostically
relevant variables. By eliminating redundant and uninformative features, the efficiency,
generalizability, and interpretability of later processes can be enhanced. Subsequently,
optimized models are developed that are tailored to effectively learn from the EEG feature
space. Model hyperparameters and architectures are tuned to maximize classification
performance on these specific neural data. Finally, rigorous benchmarking on unseen
holdout test data provides unbiased insights into real-world effectiveness. Multifaceted
metrics quantitatively validate the methodology’s strengths and limitations on this crucial
diagnostic task. This strategic methodology holds substantial promise for enabling robust
EEG-based ADHD classification. Each phase addresses a key aspect of the overall pipeline,
working synergistically to unlock the full potential of data-driven analytics on these neural
signals. Detailed empirical evaluations in this paper demonstrate the methodology’s
capacity to instigate major advances in computational healthcare.

3.1. Participant Recruitment and EEG Data Acquisition

The dataset consisted of EEG recordings from 61 children diagnosed with ADHD
(48 males, 13 females; mean age 9.62 ± 1.75 years) and 60 controls (50 males, 10 females;
mean age 9.85 ± 1.77 years), as represented in Figure 2.



Mathematics 2023, 11, 4698 6 of 31

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 34 
 

 

neural signals. Detailed empirical evaluations in this paper demonstrate the methodol-

ogy’s capacity to instigate major advances in computational healthcare. 

 

Figure 1. An illustration of the comprehensive proposed approach for identifying ADHD. 

3.1. Participant Recruitment and EEG Data Acquisition 

The dataset consisted of EEG recordings from 61 children diagnosed with ADHD (48 

males, 13 females; mean age 9.62 ± 1.75 years) and 60 controls (50 males, 10 females; mean 

age 9.85 ± 1.77 years), as represented in Figure 2. 

Figure 1. An illustration of the comprehensive proposed approach for identifying ADHD.



Mathematics 2023, 11, 4698 7 of 31Mathematics 2023, 11, x FOR PEER REVIEW 7 of 34 
 

 

 

Figure 2. Participant demographics and EEG dataset of children with ADHD and controls; (a) gen-

der, (b) classes. 

Nasrabadi, A.M. EEG Data for ADHD/Control Children 2020. Available online: 

https://ieee-dataport.org/open-access/eeg-data-adhd-control-children (accessed on 30 

July 2023). 

The participant cohort for this study comprised 61 children diagnosed with ADHD 

recruited through psychiatric referrals at Roozbeh Hospital in Tehran, Iran. Clinical eval-

uations were conducted by experienced child and adolescent psychiatrists to confirm 

DSM-IV diagnoses of ADHD based on established criteria (American Psychiatric Associ-

ation [APA] [91,92]). Adherence to standardized DSM-IV guidelines ensured consistent 

and reliable ADHD assessment across all subjects. The control group consisted of 60 

healthy children, with 50 males and 10 females, selected from two Tehran primary schools 

following psychiatric verification of no neurological disorders. 

EEG signals were recorded using a 19-channel system (SD-C24) at a 128 Hz sampling 

rate with 16-bit analog-to-digital resolution [93]. During recording, participants engaged 

in a visual sustained attention task responding to a series of images. Each image contained 

between 5 to 16 randomly positioned age-appropriate animal cartoon characters. Per the 

experimental protocol, images were presented uninterrupted and immediately following 

responses to maintain engagement throughout the recording session [93]. The consequent 

variable-duration EEG recordings depended on individual response speeds. Since the trial 

length depended on the time taken by each child to count the animals and provide their 

response, the total trial duration varied across subjects. The minimum trial length was 50 

s for one control subject, while the maximum length was 285 s for one subject with ADHD. 

No additional incentives or penalties were provided linked to performance [93]. 

This cohort and experimental design allowed the collection of multi-channel EEG 

data from a sample of well-characterized and matched ADHD and control subjects under-

taking a clinically-relevant cognitive task known to elicit ADHD-related neural patterns. 

The 19 active EEG electrodes were positioned on the scalp according to the interna-

tionally standardized 10–20 system [93]. This allowed reliable coverage of frontal (Fp1, 

Fp2, F7, F3, Fz, F4, and F8), central (C3, T3, C4, and T4), parietal (P3, Pz, and P4), temporal 

(T5 and T6), and occipital (O1 and O2) sites. Reference electrodes were placed on the left 

(A1) and right (A2) earlobes. Table 2 presents channels and their corresponding regions 

on the scalp, and Figure 3 illustrates the 10–20 electrode locations, which optimized the 

recording of brain dynamics across cortical regions relevant for EEG analysis. 

Figure 2. Participant demographics and EEG dataset of children with ADHD and controls; (a) gender,
(b) classes.

Nasrabadi, A.M. EEG Data for ADHD/Control Children 2020. Available online:
https://ieee-dataport.org/open-access/eeg-data-adhd-control-children (accessed on 30
July 2023).

The participant cohort for this study comprised 61 children diagnosed with ADHD
recruited through psychiatric referrals at Roozbeh Hospital in Tehran, Iran. Clinical eval-
uations were conducted by experienced child and adolescent psychiatrists to confirm
DSM-IV diagnoses of ADHD based on established criteria (American Psychiatric Associa-
tion [APA] [91,92]). Adherence to standardized DSM-IV guidelines ensured consistent and
reliable ADHD assessment across all subjects. The control group consisted of 60 healthy
children, with 50 males and 10 females, selected from two Tehran primary schools following
psychiatric verification of no neurological disorders.

EEG signals were recorded using a 19-channel system (SD-C24) at a 128 Hz sampling
rate with 16-bit analog-to-digital resolution [93]. During recording, participants engaged in
a visual sustained attention task responding to a series of images. Each image contained
between 5 to 16 randomly positioned age-appropriate animal cartoon characters. Per the
experimental protocol, images were presented uninterrupted and immediately following
responses to maintain engagement throughout the recording session [93]. The consequent
variable-duration EEG recordings depended on individual response speeds. Since the trial
length depended on the time taken by each child to count the animals and provide their
response, the total trial duration varied across subjects. The minimum trial length was 50 s
for one control subject, while the maximum length was 285 s for one subject with ADHD.
No additional incentives or penalties were provided linked to performance [93].

This cohort and experimental design allowed the collection of multi-channel EEG data
from a sample of well-characterized and matched ADHD and control subjects undertaking
a clinically-relevant cognitive task known to elicit ADHD-related neural patterns.

The 19 active EEG electrodes were positioned on the scalp according to the interna-
tionally standardized 10–20 system [93]. This allowed reliable coverage of frontal (Fp1, Fp2,
F7, F3, Fz, F4, and F8), central (C3, T3, C4, and T4), parietal (P3, Pz, and P4), temporal (T5
and T6), and occipital (O1 and O2) sites. Reference electrodes were placed on the left (A1)
and right (A2) earlobes. Table 2 presents channels and their corresponding regions on the
scalp, and Figure 3 illustrates the 10–20 electrode locations, which optimized the recording
of brain dynamics across cortical regions relevant for EEG analysis.

https://ieee-dataport.org/open-access/eeg-data-adhd-control-children
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Table 2. A presentation of the channels and regions on the scalp.

Region Channel

Anterior Fp1, Fp2, F7, F3, Fz, F4, and F8

Posterior T5, P3, Pz, P4, T6, O1, and O2

Left Fp1, F3, F7, C3, T3, T5, P3, and O1

Right Fp2, F4, F8, C4, T4, T6, P4, and O2
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Electrodes were positioned on the scalp per the 10–20 international standard, allowing
reliable coverage of frontal, central, parietal, temporal, and occipital regions. Reference elec-
trodes were placed on the left (A1) and right (A2) earlobes. Figure 3 illustrates the electrode
locations that optimized the recording of brain dynamics relevant for EEG analysis.

3.2. Preprocessing of EEG Signals

The raw EEG signals required extensive preprocessing before analysis to isolate clini-
cally relevant neural activity. The multi-stage preprocessing pipeline consisted of:

3.2.1. Digital Filtering

The continuous EEG time series was filtered to remove frequencies outside typical
neural bands that represent noise:

- Bandpass filter (0.5–63 Hz): Removes very low and very high frequency compo-
nents outside the primary EEG range of interest. Attenuates unwanted noise outside
this bandwidth.

- Notch filter (49–51 Hz): Removes power line interference at 50 Hz specifically. This
narrow stopband targets just the 50 Hz noise while preserving nearby EEG content.
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- Butterworth response: Used for both the bandpass and notch filters. Provides a maxi-
mally flat frequency response in the passband to avoid distortion of EEG frequencies.

- 4th order filters: Higher order improves roll-off steepness of the filters. This allows
sharper attenuation at cutoffs for the band pass and tighter rejection of 50 Hz in the
notch filter.

- Zero-phase filters: These are applied to the Butterworth filters to prevent phase
distortion. This filtering approach processes the input data in both forward and
reverse directions, eliminating phase shifts and ensuring the filter output is aligned to
the input.

3.2.2. Frequency Band Separation

The filtered EEG signals were decomposed into conventional delta (0.5–4 Hz), theta
(4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) frequency bands using 4th-order Butterworth
bandpass filters. This enabled examination of ADHD-related neural oscillations in each band.

The delta, theta, alpha, and beta bands cover the spectrum of normal neural oscil-
lations observable in surface EEG recordings and have formed the focus of most ADHD
neurophysiological research. Delta waves (0.5–4 Hz) are linked to deep sleep and uncon-
sciousness. Theta waves (4–8 Hz) are associated with drowsiness and memory recall. Alpha
waves (8–13 Hz) indicate wakeful relaxation. Beta waves (13–30 Hz) are linked to active
concentration and problem-solving.

Critically, these four bands show robust differences in ADHD populations compared to
controls. Elevated theta and reduced beta band power are considered diagnostic biomarkers
of ADHD. The alpha fluctuations index impairs attentional processes in ADHD. Delta
waves also show atypical activity in ADHD. In contrast, higher frequency gamma waves
are more difficult to characterize in surface EEG and less utilized in ADHD research.

However, theta/beta ratio (TBR) has limitations as a universal ADHD diagnostic
marker. Elevated TBR is not evident in all ADHD patients, while non-ADHD individuals
may also demonstrate heightened ratios. Moreover, factors like fatigue or medication
can confound TBR, underscoring the need to consider influencing variables. Nonetheless,
within a holistic assessment, TBR remains a widely studied potential EEG biomarker
warranting ongoing scientific attention.

3.2.3. Signal Segmentation

The continuous raw EEG signals recorded during the visual attention task ranged
in duration from 50 to 285 s for each subject. To enable extraction of transient features
from the continuous EEG recordings, it is standard practice to partition the time-series
into fixed-duration segments. The selection of an appropriate window length involves
balancing sufficient signal characterization against attaining adequate samples. In this work,
the multi-channel EEG data were segmented into 2-second epochs to analyze localized
waveform patterns. Furthermore, 50% overlap between windows was implemented, so
each 2-second segment shared 1 s with the prior. This overlap enhances continuity between
successive windows. The 2-second duration provides a reasonable compromise between
encapsulating salient EEG phenomena while yielding sufficient samples from even the
shortest recordings. This aligns with typical EEG analysis values. Specifically, a 2-second
window balances capturing transient neural events against characterizing slower oscillatory
dynamics. Overly short windows risk missing informative lower frequency patterns,
while long windows can smooth valuable fast fluctuations. A 2-second window enables
the differentiation of standard EEG bands while providing stable feature calculations.
Many event-related potentials and EEG processes of interest manifest over a few seconds,
making 2-second segmentation suitable for capturing their time course. Computationally,
this window size is efficient and reduces boundary effects sometimes seen with narrow
windows. The 2-second window with 50% overlap achieves an effective balance between
transient and oscillatory data, frequency resolution, statistical stability, capturing EEG
phenomena time courses, computational demands, and boundary effects.



Mathematics 2023, 11, 4698 10 of 31

3.3. Feature Extraction

This study extracted a set of 11 time-, frequency-, and information-theoretic features
from each two-second epoch of the preprocessed EEG signals across each frequency band
and electrode. The time-domain features [94] captured important statistics about the
waveform amplitude and distribution in the time series. Specifically, the mean, variance,
skewness, and kurtosis were calculated. The mean and variance provide information
about signal energy and variability over time. Skewness indicates the asymmetry of the
distribution, while kurtosis measures the heaviness of the tails. For frequency features [95],
the Hjorth parameters of activity, mobility, and complexity were derived. The activity
reflects the signal power, mobility represents the proportion of faster to slower frequencies,
and complexity quantifies variability and change in the frequency domain. Shannon
entropy and spectral entropy measured the unpredictability and information content of the
signals, with higher values indicating more randomness. Power spectral density entropy
assessed the flatness versus peak frequency of the power distribution. Additionally, the
relative power in each frequency band was computed as the ratio of the absolute power in
that specific band to the total power across the bands. This helps quantify the contribution
of each EEG rhythm. In total, these 11 features were extracted for each of the 19 channels
in the delta, theta, alpha, and beta bands, resulting in 836 feature variables for each two-
second window. By concatenating the feature vectors, the high-dimensional EEG time
series data were transformed into a consolidated set of informative features for input into
the ML classifier.

The selection of features, encompassing statistical, spectral, entropic, and power-
related attributes, was purposefully designed to capture the diverse time-domain, frequency-
domain, and information-theoretical characteristics of the EEG data. The ultimate goal was
to use these features to effectively differentiate between experimental conditions (ADHD
vs. Control) using machine learning algorithms.

3.4. Feature Selection

After extracting a substantial feature set from the EEG data, two approaches were
pursued for feature selection to derive an optimal diagnostic biomarker subset. The first
technique applied a sequential wrapper-filter process. Recursive feature elimination (RFE)
was utilized as the wrapper method for feature selection in this study. RFE operates by
iteratively training a model, ranking features by importance, and pruning the least impor-
tant features until the desired number remains. Specifically, a random forest (RF) model
was employed within RFE to evaluate feature significance. The RF ensemble consisted of
100 decision trees, each trained on a subset of the data and features. Feature importance
was determined based on the decrease in impurity (Gini criterion) conferred across trees. At
each RFE iteration, the full set of 836 extracted features was used to train the RF model. The
10% least important features based on the ranking were then eliminated, and the process
repeated until 95% of the original features were retained. This reduced feature subset
was subsequently passed to principal component analysis (PCA) as the filter method for
further dimensionality reduction. PCA transforms correlated features into a smaller set of
orthogonal principal components that account for maximal variance. PCA was applied,
retaining 95% of the explained variance, yielding the final feature set used for classification.
The combination of RFE for initial feature pruning followed by PCA provided a robust
data-driven approach for feature engineering. RFE removed irrelevant and redundant
features, while PCA identified key patterns and reduced overfitting. This integration of
wrapper and filter methods enabled optimal feature selection from the high-dimensional
EEG biomarkers [96,97].

The second approach Involved employing least absolute shrinkage. Selection operator
(LASSO) regularization is a technique that performs both features selection and regulariza-
tion to enhance model generalization and interpretability. Unlike standard regression that
minimizes the residual sum of squares, LASSO adds a penalty term to the loss function
equal to the sum of the absolute values of the coefficients multiplied by a tuning parameter
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lambda. This penalizes model complexity and shrinks coefficients towards zero. As lambda
increases, more coefficients are shrunk to exactly zero and eliminated from the model.
This inherently performs embedded feature selection, removing uninformative variables.
Only features with nonzero coefficients are retained, ideally identifying the most relevant
biomarkers for the task. Therefore, LASSO serves a dual role—the L1 regularization helps
prevent overfitting, while the coefficient shrinkage enforces parsimony by selecting a sparse
feature subset.

We chose these approaches as the most effective methods for selecting the best features
from the EEG data after the ADHD feature extraction. This feature selection process was
vital in enhancing the accuracy and efficiency of our model, ensuring that we could derive
a concise and highly informative set of biomarkers for ADHD classification.

3.5. Data Partitioning and Balancing

In the process of evaluating model performance, the consolidated dataset was sys-
tematically divided into separate training and testing subsets, utilizing an 80/20 stratified
division. Specifically, 80% of the data was earmarked for model training, while the residual
20% was reserved for the test set to facilitate an unprejudiced assessment of the model.
Upon examination, the original dataset revealed a class imbalance, with a disproportionate
number of samples in the ADHD group relative to the control group. It is noteworthy that
the duration of each trial was contingent on the time each child took to enumerate the
animals and register their responses, resulting in variability in trial lengths. The shortest
trial duration recorded was 50 s for a control subject, whereas the longest spanned 285 s
for an ADHD participant. Furthermore, the dataset comprised 61 ADHD subjects and
60 controls. Given the observed asymmetry, it was imperative to rectify this bias to ensure
rigorous model training. To ameliorate this, the Synthetic Minority Over-Sampling Tech-
nique (SMOTE) was judiciously applied to the underrepresented control class within the
training data. The SMOTE algorithm operates by first identifying the k nearest neighbors
for each minority class sample based on proximity within the feature space. Next, one of
these k neighbors is randomly chosen, and a new synthetic sample is computed along the
line segment joining the minority sample and its selected neighbor. This process is repeated
until the minority class representation matches the desired prevalence.

This method generated synthetic samples, effectively equilibrating the representation
of control and ADHD classes in the training subset. It is paramount to emphasize that the
application of SMOTE was circumscribed solely to the training data, safeguarding against
potential biases in the test data. The undisturbed test subset sustained the intrinsic class
imbalance, a strategic decision made to gauge the model’s generalizability to real-world,
imbalanced scenarios. This inherent imbalance also furnished an unvarnished evaluation
of the model’s aptitude in handling the intrinsic challenges of the dataset. The judicious
application of SMOTE to balance only the training dataset facilitated robust model tuning,
while the unaltered test set ensured a candid evaluation of model performance on genuine
imbalances. This meticulous approach mitigated biases, offering a transparent view of
model efficacy and significantly enhancing the models’ performance.

3.6. Machine Learning Algorithms

The automatic detection and classification of ADHD versus healthy controls was
performed by applying various ML and DL algorithms, including the decision tree model,
AdaBoost model, gradient boosting model, extra trees model, RF model, LightGBM model,
CatBoost model, KNeighbors model, multilayer perceptron (MLP) model, CNN-LSTM
model, LSTM-transformer model, and CNN model, to EEG biomarker datasets.

This study implemented and evaluated a diverse set of ML algorithms for EEG-based
ADHD classification, including both single models and ensemble techniques. Specifically, a
single decision tree model was tested as a baseline nonlinear classifier that makes predic-
tions by recursively partitioning the feature space based on optimal splits. For ensemble
learning, the study utilized adaptive boosting (AdaBoost), which combines multiple weak
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learners in a sequential manner, focusing on misclassified instances. Gradient boosting was
also used, which produced an additive ensemble model minimizing a loss function via
gradient descent optimization.

In addition, extra trees and the RF ensemble method [95] were applied, both of which
aggregate predictions across multiple randomized decision trees to improve generaliza-
tion capability. LightGBM, a gradient boosting framework optimized for efficiency with
high-dimensional data, and CatBoost, a boosting technique adept at handling categorical
variables, were also implemented.

Finally, KNN, a simple yet effective algorithm that predicts proximity in feature space,
was evaluated [96]. This diverse ensemble of single and ensemble tree-based models and
distance-based techniques aimed to thoroughly evaluate a wide range of modern ML
approaches for EEG-based ADHD classification. Table 3 shows the important parameters
of the ML model for detecting ADHD.

Table 3. Machine learning algorithm parameters.

Classifier Parameters

Random Forest Model n_estimators: 100, criterion: ‘gini’

Gradient Boosting Model loss: ‘deviance’, learning_rate: 0.1, n_estimators: 100

LightGBM Model boosting_type: ‘gbdt’, num_leaves: 31, max_depth: −1

CatBoost Model iterations: 1000

KNeighbors Model n_neighbors: 5, weights: ‘uniform’, algorithm: ‘auto’

Decision Tree Model criterion: ‘gini’, splitter: ‘best’

AdaBoost Model base_estimator: None, n_estimators: 50, learning_rate: 1.0

3.7. Deep Learning Algorithms

The advanced DL models proposed for the classification of ADHD using EEG, includ-
ing the MLP model, CNN-LSTM model, LSTM-transformer model, and CNN model, were
applied to the EEG biomarker datasets.

3.7.1. Convolutional Neural Networks (CNNs) Model

A one-dimensional convolutional neural network (1D CNN) architecture was devel-
oped for EEG-based classification of ADHD in this study [97]. The tailored CNN model
comprised multiple layers optimized for learning salient features and patterns from the
EEG biomarkers to accurately discriminate ADHD cases. Specifically, the model contained
two 1D convolutional layers with 128 and 64 filters, respectively, to capture distinctive
spatial patterns along the temporal dimension within the extracted EEG features. The con-
volutional filters learned to recognize localized waveform motifs of diagnostic relevance
from the raw biomarker time series. To mitigate overfitting, a dropout regularization layer
(rate 0.5) and max pooling layer (pool size 2) were incorporated. The dropout randomly
omitted units during training to prevent co-adaptation, while max pooling reduced feature
map dimensionality by retaining only the most salient elements. The CNN model then
passed the extracted features through fully connected layers, including a 1024-unit layer
and a 128-unit layer, with rectified linear unit (ReLU) activation to introduce non-linearity.
Finally, a softmax output layer provided binary classification probabilities for ADHD ver-
sus control. The model was compiled using categorical cross-entropy loss and the Adam
optimizer. Performance was evaluated by classification accuracy on held-out data. Early
stopping with patience for 10 epochs avoided overfitting during training. The CNN model
architecture is shown in Figure 4, and the model parameters are shown in Table 4.
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Table 4. Describes the CNN model parameters.

Layer and Parameter Details

Convolutional Layer 1 Number of Filters 128

Kernel Size 3

Convolutional Layer 2 Number of Filters 64

Kernel Size 3

Dropout Layer Dropout Rate 0.5

MaxPooling Layer with Pool Size 2

Flatten Layer -

Dense Layers 1024, 128

Output Layer Activation Function Softmax with 2 Output

Optimizer Adam with a Learning Rate of 0.001

Number of Epochs 70

Batch Size 64

3.7.2. Convolutional Neural Network, Long Short-Term Memory (CNN-LSTM)

This hybrid CNN-LSTM architecture utilized the strengths of both CNNs for feature
extraction and LSTM for sequence modeling. The model starts with a one-dimensional
(1D) convolutional layer with 128 filters and a kernel size of 3. The Conv1D layer can
identify localized patterns in sequential EEG data using the sliding window approach.
ReLU activation introduces nonlinearity to the convolved features. A second Conv1D layer
follows with 64 filters and a kernel size of 3 to extract higher-level representations of spatial
patterns. Stacking convolutional layers allows for the learning of hierarchical features.
MaxPooling1D downsamples the feature maps by 2, reducing computational requirements
while retaining the most salient features. The model then utilizes an LSTM [98] recurrent
layer with 100 memory units. LSTMs can learn long-range temporal relationships from
sequential data, such as EEG. Furthermore, the feature maps are flattened into a 1D vector
in preparation for fully connected layers. This condenses the data while preserving feature
information. The final SoftMax output layer contained two nodes for binary classification
into ADHD and control groups. The CNN-LSTM model architecture is shown in Figure 5,
and the model parameters are shown in Table 5.
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Table 5. Describes the CNN-LSTM model parameters.

Layer and Parameter Details

Convolutional Layer 1 Number of Filters 128

Kernel Size 3

Convolutional Layer 2 Number of Filters 64

Kernel Size 3

MaxPooling Layer with Pool Size 2

LSTM Layer 100 Uints

Output Layer Activation Function Softmax with 2 Output

Optimizer RMSprop with Learning Rate 0.001

Number of Epochs 70

Batch Size 32

3.7.3. LSTM-Transformer Model

The developed neural architecture comprises a hybrid recurrent-transformer topology
optimized for EEG-based ADHD classification. The model is structured into three key
sections. The base of the network uses two sequential LSTM layers with 100 and 50 units
to capture the temporal dynamics in the EEG input sequences. LSTM units [99] contain
memory cells and gates that enable the learning of temporal dependencies and long-range
sequential patterns. The paired LSTM layers provide a robust foundation for modeling
temporal information in EEG biomarkers.

Following the recurrent layers, a transformer block is applied that employs multihead
self-attention to identify informative components across the EEG biomarker sequence.
Self-attention draws global dependencies between sequence elements [99]. The multihead
mechanism runs parallel attention layers to focus on different parts of the sequence. This
block has shown effectiveness in diverse sequence modeling tasks. Furthermore, the trans-
former contains feedforward layers with residual connections and layer normalization to
stabilize activations. Residual connections propagate signals directly across network layers,
while layer normalization rescales outputs for consistency. The output of the transformer
is flattened into a 1D representation and passed to a final dense layer with Softmax acti-
vation to produce binary ADHD classification probabilities. The model is compiled with
Adam optimization at a learning rate of 0.001 and categorical cross-entropy loss [100,101].
Early stopping halts training if validation loss shows no improvement for 10 epochs to
prevent overfitting. The LSTM with multihead self-attention model architecture is shown
in Figure 6, and the model parameters are shown in Table 6.
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Table 6. Describes the LSTM-Transformer model parameters.

Layer and Parameter Details

LSTM Layer 1 100 Units

LSTM Layer 2 50 Units

Transformer Block with Number of Attention Heads 2

Key Dimension 2

Feed-Forward Dimension 32

Dropout Rate 0.1

Output Layer Activation Function Softmax with 2 Output

Optimizer Adam with a learning rate of 0.001

Number of Epochs 150

Batch Size 32

3.8. Multilayer Perceptron (MLP)

The perceptron is restricted to binary classification tasks using a simple linear predictor.
The multilayer perceptron (MLP) provides a significantly more flexible architecture capable
of modeling complex nonlinear relationships for both classification and regression problems.
The MLP contains multiple layers of computational nodes, starting with an input layer to
receive data, followed by one or more hidden layers, and ending with an output layer that
produces the prediction. The addition of one or more hidden layers enables the network to
learn sophisticated data representations and feature hierarchies directly from the inputs.
The parameters of the MLP model for detecting ADHD are shown in Table 7.

Table 7. MLP parameters.

Parameters Values of MLP Model

Hidden layer 100

Activation function Relu

Optimizer function Adam

4. Experimental Results

This study proposed a framework for developing and validating EEG-based classifica-
tion models for ADHD diagnosis. The experimental framework includes critical processes
of data preprocessing, class balancing, model implementation and evaluation, and detailed
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results analysis. In this section, we provide details about the experimental environment
setup and the evaluation matrix that is used for ADHD diagnosis models.

4.1. Environmental Setup

The ML and DL models were implemented and tested using a laptop workstation
equipped with an 8th generation Intel Core i7 CPU, 16 GB RAM, and a dedicated NVIDIA
GeForce GTX GPU with 8 GB memory. The models leveraged the TensorFlow and Scikit-
learn frameworks for efficient development and evaluation. This integration of cutting-
edge software Python 3.9.16 and hardware provided an optimal environment for rapidly
prototyping and validating EEG-based ADHD classifiers.

4.2. Evaluation Metrics

A robust evaluation of model competence necessitates employing a diverse array of
performance metrics. Vital indicators, such as sensitivity, recall, F1-score, receiver operating
characteristic (ROC) analysis, and confusion matrices, should be analyzed. No single metric
reveals the full picture. Rather, utilizing multiple metrics to scrutinize different facets of
performance allows for holistically gauging strengths, weaknesses, and overall efficacy
from different lenses. A comprehensive, multifaceted evaluation is imperative for fully
characterizing model capabilities.

Accuracy =
TP + TN

TP + FP + FN + TN
× 100% (1)

F1 − score = 2 ∗ precision × Recall
precision + Recall

× 100% (2)

Sensitivity =
True Positives

True Positives + False positives
× 100% (3)

Speci f icity =
True Negatives

True Negatives + False Negatives
× 100% (4)

High specificity signifies that the model rarely misclassifies controls as having ADHD.
Along with sensitivity for the positive class, specificity thus provides crucial insights into
performance for clinically important subgroups.

The ROC curve visualizes the tradeoff between true and false positives across thresh-
olds, conveying deeper insights than accuracy alone. ROC analysis elucidates the balance
of sensitivities and specificities at different operating points. The area under the curve
(AUC) provides a singular metric of classification discrimination capabilities.

4.3. Results
4.3.1. Classification Results Based on the RFE-PCA

In this subsection, we present the performance of ML and DL models on the ADHD
classification task using EEG biomarkers selected through the RFE and PCA methods.
Table 8 summarizes the results of the ML and DL models, using the RFE-PCA feature
selection methods. Several pertinent evaluation metrics are reported including testing
accuracy, sensitivity, specificity, area under the curve (AUC) ROC curve, and F1 score.

Among ML models, the KNN algorithm achieved the highest testing accuracy of 92.79%,
indicating robust generalization. The ensemble methods, including random forest, LightGBM,
and CatBoost, also exhibited excellent performance, with testing accuracy surpassing 84%
for all models. This highlights the power of the KNN model for EEG classification.

The confusion matrix is a statistical summary of a binary classifier’s performance that
includes the proportion of correct and incorrect classifications. It provides a numerical
evaluation of the model’s class discrimination performance. To better understand the
strengths and drawbacks of binary classification models, the confusion matrix emphasizes
errors such as false positives and false negatives. Figures 7 and 8 display the confusion
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metrics of the machine learning algorithm for detecting ADHA. It is observed that the KNN
model has achieved high accuracy with less misclassification in 191 samples of data.

Table 8. Results of Ml algorithms with RFE-PCA method.

Models Testing Accuracy% Sensitivity% Specificity% AUC% F1 Score

Decision Tree Model 71.02 72.99 68.55 70.77 73

AdaBoost Model 72.82 74.64 70.55 79.83 75

Gradient Boosting Model 78.70 82.88 73.47 86.86 81

Extra Trees Model 84.28 91.02 0.7586 92.48 86

Random Forest Model 84.64 89.74 78.26 92.26 86

LightGBM Model 84.76 88.25 80.39 92.65 86

CatBoost Model 87.24 90.27 83.44 94.81 88

KNeighbors Model 92.79 89.85 96.48 98.34 93
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The results of the DL models with RFE-PCA are presented in Table 9. Notably, the
deep neural network architectures, namely the CNN and MLP models, attained the highest
evaluations across all metrics—exceeding 94% testing accuracy and AUC, along with
95% F1 scores. This demonstrates the exceptional capacity of DL techniques to extract
informative features from selected EEG biomarkers and achieve highly accurate ADHD
screening. Figure 9 shows the confusion matrix of the proposed deep learning. The CNN
and MLP models have shown less false positive and false negative; therefore, the MLP and
CNN models have achieved high accuracy.
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Table 9. Results of DL algorithms with RFE-PCA method.

Models Testing Accuracy% Sensitivity% Specificity% AUC% F1 Score

CNN-LSTM Model 80.53 80.75 80.25 82.17 89

LSTM-Transformer Model 87.22 87.53 86.92 87.15 95

CNN 94.39 96.23 92.09 95.01 99

MLP Classifier 94.68 94.74 94.61 98.69 95

Figure 10 illustrates the performance of deep learning in identifying ADHD. The
validation accuracy of the CNN model ranged from 70% to 94%. In comparison, the
validation accuracy of the LSTM model with transform and the CNN-LSTM model were
almost the same, reaching 84%.

Figure 11 displays the training and testing losses of the deep learning models imple-
mented using Recursive Feature Elimination-Principal Component Analysis (RFE-PCA).
The graphical representation reveals that the CNN model exhibited a gradual reduction
in loss, reaching a value of 0.2. In contrast, the LSTM model with transform and the
CNN-LSTM model had testing losses of 0.3 and 0.4, respectively. This serves as evidence
that the CNN model has attained a commendable level of accuracy.
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4.3.2. Classification Results Based on the LASSO

The results demonstrated strong performance across both shallow learning and deep
neural network models using the EEG biomarkers selected by LASSO regularization.
Table 10 shows the results of the ML algorithms with the LASSO method. Among ensemble
tree-based methods, RF, LightGBM, and Extra Trees attained testing accuracy exceeding
92%, while CatBoost showed robust generalization capabilities with 95.13 accuracy.

Table 10. Results of Ml algorithms with LASSO method.

Model Testing Accuracy% Sensitivity% Specificity% AUC% F1 Score%

AdaBoost Model 78.14 80.17 75.60 85 80.30

Decision Tree Model 78.29 78.73 77.73 78 80.12

Gradient Boosting Model 85.20 89.37 80.00 92 87.03

Random Forest Model 92.11 95.91 87.37 97 93.11

LightGBM Model 92.14 93.14 90.89 98 92.94

Extra Trees Model 92.14 96.60 86.57 97 93.18

KNeighbors Classifier 94.42 92.72 96.54 98 94.86

CatBoost 95.13 96.23 93.75 99 95.64

As shown in the aforementioned evaluation, a collection of performance measures
may be used on the confusion matrix of a classification issue in order to evaluate machine
learning (ML) and deep learning (DL) algorithms, or to make comparisons between the
performances of various algorithms. The confusion matrices of machine learning models
for identifying ADHD are shown in Figures 12 and 13, respectively. In the matrix, the
columns correspond to the anticipated class instances, while the rows correspond to the
actual class occurrences. It is noted that the KNN method has achieved high accuracy.
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Table 11 shows the results of the DL model using LASSO method for detecting ADHD.
The CNN models achieved the best evaluations, with over 97.75% testing accuracy, 100%
AUC, 98.46% sensitivity, and 96.88% specificity. This highlights the exceptional ability
of deep networks to extract discriminative features from LASSO-selected biomarkers for
accurate ADHD identification.

Table 11. Results of DL algorithms with LASSO method.

Model Testing Accuracy% Sensitivity% Specificity% AUC% F1 Score%

MLP Model 92.91 94.36 91.09 98 93.67

CNN-LSTM Model 92.99 95.00 90.49 98 93.78

LSTM-Transformer 93.32 95.18 91.49 95 93.38

CNN 97.75 98.46 96.88 100 97.99

Comparing these LASSO results to the prior feature set, the DL approaches demon-
strated consistent performance improvements using the LASSO-derived features. This
suggests that the LASSO biomarkers provided more useful information for classification.
Figure 14 shows the confusion matrix of DL learning models.
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Figure 15 provides a visual representation of the accuracy of the deep learning models.
The percentage representing the accuracy of the CNN model is shown on the Y-axis,
while the X-axis represents the epochs. During the process of validation, the CNN model
demonstrated a notable improvement in efficiency, with an increase from an initial accuracy
rate of 75% to a much higher rate of 97.75% during the subsequent testing phase. The
LSTM-transform and CNN-LSTM models achieved a near 93% accuracy after 25 epochs.
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We have used a categorical cross-entropy function for the purpose of evaluating the
loss in accuracy of the deep learning models. Figure 16 illustrates the accuracy and loss
metrics of deep learning models. During the experimental period consisting of 25 epochs,
the validation losses showed a significant reduction, decreasing from an initial value of 0.5
to a final value of 0.1 using the CNN model. The validation loss of the LSTM-Transformer
and CNN-LSTM models started at 0.7 and reached 0.3. It was observed that the CNN was
showing less loss during the validation phase.



Mathematics 2023, 11, 4698 24 of 31
Mathematics 2023, 11, x FOR PEER REVIEW 27 of 34 
 

 

 

Figure 16. Accuracy loss of DL with LASSO, (a) CNN, (b) LSTM-Transformer, (c) CNN-LSTM. 

5. Discussion 

ADHD is a neurodevelopmental issue that may potentially have detrimental effects 

on an individual’s sleep patterns, mood regulation, anxiety levels, and academic perfor-

mance. Individuals diagnosed with ADHD may have enhanced facilitation in doing their 

routine tasks when promptly diagnosed and initiated on appropriate therapeutic inter-

ventions. ADHD may be diagnosed by neurologists via the analysis of abnormalities seen 

in the EEG data. EEG signals may exhibit complex, nonlinear, and nonstationary behavior. 

Differentiating subtle variations in EEG patterns between individuals with ADHD and 

those without ADHD may pose considerable difficulty. 

The comparative classification results provide valuable insights into the utility of 

LASSO regularization versus RFE-PCA for EEG biomarker selection in ADHD detection 

models. The deep neural networks, including CNN architecture, demonstrated notable 

performance improvements on all metrics using the LASSO-derived feature set compared 

to the RFE-PCA. These consistent gains suggest that the LASSO biomarkers offered more 

useful information for DL-based ADHD classification, likely due to the selection of a 

sparse and diagnostically relevant feature subset. These comparative findings highlight 

the importance of tailored feature selection to match informative biomarkers with optimal 

model classes. Figure 17 displays the receiver operating characteristic (ROC) percentages 

for the most effective machine learning algorithms when using the recursive feature elim-

ination-principal component analysis (RFE-PCA) and least absolute shrinkage and selec-

tion operator (LASSO) approaches. It is worth mentioning that the K-nearest neighbors 

(KNN) algorithm with RFE-PCA achieved a ROC of 98%, while the ROC of KNN with 

LASSO reached 99%. 

Figure 16. Accuracy loss of DL with LASSO, (a) CNN, (b) LSTM-Transformer, (c) CNN-LSTM.

5. Discussion

ADHD is a neurodevelopmental issue that may potentially have detrimental effects on
an individual’s sleep patterns, mood regulation, anxiety levels, and academic performance.
Individuals diagnosed with ADHD may have enhanced facilitation in doing their routine
tasks when promptly diagnosed and initiated on appropriate therapeutic interventions.
ADHD may be diagnosed by neurologists via the analysis of abnormalities seen in the
EEG data. EEG signals may exhibit complex, nonlinear, and nonstationary behavior.
Differentiating subtle variations in EEG patterns between individuals with ADHD and
those without ADHD may pose considerable difficulty.

The comparative classification results provide valuable insights into the utility of
LASSO regularization versus RFE-PCA for EEG biomarker selection in ADHD detection
models. The deep neural networks, including CNN architecture, demonstrated notable
performance improvements on all metrics using the LASSO-derived feature set compared
to the RFE-PCA. These consistent gains suggest that the LASSO biomarkers offered more
useful information for DL-based ADHD classification, likely due to the selection of a
sparse and diagnostically relevant feature subset. These comparative findings highlight
the importance of tailored feature selection to match informative biomarkers with optimal
model classes. Figure 17 displays the receiver operating characteristic (ROC) percent-
ages for the most effective machine learning algorithms when using the recursive feature
elimination-principal component analysis (RFE-PCA) and least absolute shrinkage and
selection operator (LASSO) approaches. It is worth mentioning that the K-nearest neighbors
(KNN) algorithm with RFE-PCA achieved a ROC of 98%, while the ROC of KNN with
LASSO reached 99%.



Mathematics 2023, 11, 4698 25 of 31

 
 

 

 
Mathematics 2023, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/mathematics 

Article 

Developing System-Based Artificial Intelligence Models for 
Detecting the Deficit Hyperactivity Disorder 
Hasan Alkahtani 1,2, Theyazn H. H. Aldhyani 1,3,*, Zeyad A. T. Ahmed 4 and Ahmed Abdullah Alqarni 1,5 

 
 

 
1 King Salman Center for Disability Research, Riyadh 11614, Saudi Arabia; hsalkahtani@kfu.edu.sa (H.A.);  

aaalqarni@bu.edu.sa (A.A.A.) 
2 College of Computer Science and Information Technology, King Faisal University, P.O. Box 400,  

Al-Ahsa 31982, Saudi Arabia 
3 Applied College in Abqaiq, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia 
4 Department of Computer Science, Dr. Babasaheb Ambedkar Marathwada University,  

Aurangabad 431004, India; csit.zat@bamu.ac.in 
5 Department of Computer Sciences and Information Technology, Al Baha University, P.O. Box 1988,  

Al Baha 65431, Saudi Arabia 
* Correspondence: taldhyani@kfu.edu.sa 

Abstract: This study presents a novel methodology for automating the classification of pediatric 
ADHD using electroencephalogram (EEG) biomarkers through machine learning and deep learning 
techniques. The primary objective is to develop accurate EEG-based screening tools to aid clinical 
diagnosis and enable early intervention for ADHD. The proposed system utilizes a publicly availa-
ble dataset consisting of raw EEG recordings from 61 individuals with ADHD and 60 control sub-
jects during a visual attention task. The methodology involves meticulous preprocessing of raw 
EEG recordings to isolate brain signals and extract informative features, including time, frequency, 
and entropy signal characteristics. The feature selection techniques, including least absolute shrink-
age and selection operator (LASSO) regularization and recursive elimination, were applied to iden-
tify relevant variables and enhance generalization. The obtained features are processed by employ-
ing various machine learning and deep learning algorithms, namely CatBoost, Random Forest De-
cision Trees, Convolutional Neural Networks (CNNs), and Long Short-Term Memory Networks 
(LSTMs). The empirical results of the proposed algorithms highlight the effectiveness of feature 
selection approaches in matching informative biomarkers with optimal model classes. The convo-
lutional neural network model achieves superior testing accuracy of 97.75% using LASSO-regular-
ized biomarkers, underscoring the strengths of deep learning and customized feature optimization. 
The proposed framework advances EEG analysis to uncover discriminative patterns, significantly 
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Figure 17. ROC of KNN approach, (a) KNN with RFE-PCA, (b) KNN with LASSO methods.

Figure 18 illustrates the ROC of deep learning models using RFE PCA. The results
indicate that the CNN model with RFE-PCA achieved a score of 99%, while the CNN-
LSTM model achieved a score of 95%. Ultimately, the study examined the comparative
effectiveness of the RFE-PCA approach in conjunction with CNN for the detection and
diagnosis of ADHD in children.
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The ROC results of deep learning with the LASSO method are shown in Figure 19.
The CNN model with RFE-PCA scored 100%, and the CNN-LSTM model scored 95%. The
research compared RFE-PCA and CNN for ADHD detection and diagnosis in youngsters.
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Table 12 presents a comparison of the outcomes obtained from the ML and DL models
in relation to several pre-existing systems. Benchmarking against prior EEG studies further
validates the efficacy of the proposed pipeline. Alim et al. [79] achieved 93.2% accuracy
using an analysis of variance and PCA features with a Gaussian SVM model. Ekhlasi
et al. [80] obtained 91.2% accuracy with graph neural networks on theta and delta bands.
By comparison, our CNN model attained 97.75% testing accuracy using LASSO-regularized
biomarkers, showcasing the strengths of DL and tailored feature selection for unlocking
discriminative information from complex neurophysiological data.

Table 12. Comparison results of proposed ML and DL with existing models.

Author Dataset Features Selection Method Model Accuracy

Alim et al. [23] EEG ANOVA-PCA SVM 93.2

Ekhlasi et al. [24] = Theta and Delta bands Graph Neural Networks 91.2%

Our model = RFE-PCA MLP 94.68

Our model = LASSO CNN 97.75

These results underscore the potential of our integrated framework, encompassing
data preprocessing, class balancing, and custom feature selection techniques to extract
maximally informative biomarkers from high-dimensional EEG for enhanced ADHD
screening using deep networks.

The feature selection stage was critical for improving model performance by extracting
key biomarkers from the extensive initial feature set. This process provided two main
benefits—preventing overfitting and reducing complexity. By eliminating redundant, irrel-
evant, and noisy features, the models could focus on salient EEG variables that robustly
distinguished ADHD from control patterns. Removing these uninformative features en-
abled better generalization and testing accuracy by retaining only meaningful biomarkers.
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Additionally, feature selection substantially decreased the dimensionality of the input space,
lessening computational demands and training times. Simpler models with fewer features
are also more interpretable, concentrating on core explanatory EEG markers.

In this work, RFE-PCA and LASSO regularization effectively refined the EEG features.
The considerable performance gains after feature selection demonstrated the utility of
these techniques for identifying concise yet highly informative feature subsets, enabling
enhanced ADHD detection.

The comparative results also provided insights into matching feature selection ap-
proaches with machine learning algorithms. The deep networks showed notable improve-
ments using LASSO-selected features versus RFE-PCA. Their consistent gains suggest the
LASSO biomarkers offered more useful information for DL-based classification, likely due
to identifying a sparse, diagnostically relevant feature subset. These findings highlight the
importance of tailored feature selection to complement the strengths of different model
classes. The LASSO features improved CNN 97%, displaying the value of an optimized
feature selection approach.

6. Conclusions

In the context of this research, we delineate a novel computational architecture that
ingeniously integrates ML and DL paradigms for the nuanced differentiation of ADHD pro-
files and normative developmental patterns in children, as discerned through meticulous
EEG data analysis. This comprehensive infrastructure embraces a series of sophisticated
processes, including data preprocessing, astute feature extraction, strategic feature selection,
and advanced classification techniques.

The models conceived in this study stand as paragons of technological innovation,
substantiating the transformative impact of refined ML pipelines in amplifying the precision
of ADHD diagnostic mechanisms, thereby signaling a departure from traditional analytical
methods. Leveraging the rich repository of the ADHD EEG dataset, our strategy unveils
potent CNN, and MLP algorithms synergized with RFE-PCA for an optimized feature
selection process, registering remarkable accuracy of 94.93% and 94.68. Moreover, our
CatBoost and CNN models, orchestrated with Lasso methodologies, demonstrate a sterling
accuracy metric, achieving 95.13 and 97.75, respectively.

These results profoundly underscore the quintessential role of feature optimization and
meticulous data management in extracting clinically salient biomarkers from the complex
labyrinth of EEG data arrays. Our tailored preprocessing, class equilibration, and feature
selection techniques create a harmonized blend of RFE-PCA and Lasso methodologies,
serving to foster a robust delineation between ADHD manifest patterns and standard
neurological frameworks.

This study augments the burgeoning body of literature, emphasizing the promising
synergy of EEG analytics and ML as vital adjuncts in facilitating nuanced clinical evalu-
ations of ADHD. Our optimized models, envisioned as potent diagnostic allies, promise
to confer reliable support for diagnostic trajectories, notably in delineating complex case
scenarios, thus warranting further empirical validation across a broader spectrum of pa-
tient demographics. This trajectory potentially foretells the advent of earlier and more
individualized intervention strategies, thereby enhancing the adaptive functioning and
quality of life of individuals navigating the challenges of ADHD. In summation, our re-
search initiative lays a seminal foundation for forthcoming translational ventures aimed at
unlocking the maximal diagnostic potential of ML in tandem with neurophysiological data
analytics in clinical arenas.
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