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Abstract: In this paper, an effective numerical method is proposed for a linear complementarity
problem (LCP) arising in the valuation of American bond options under the Cox–Ingersoll–Ross
(CIR) model. Firstly, a variable substitution is used to simplify the linear complementary model.
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numerical experiments highlight the effectiveness and performance of the proposed algorithm.

Keywords: Cox–Ingersoll–Ross model; American bond options; linear complementarity problem;
finite difference method; projection and contraction method

MSC: 90A09; 65M12; 65M60

1. Introduction

With the continuous development of financial markets, investors need to find more
complex and diversified investment tools to meet their risk preferences and asset allocation
needs. Thus, a wide variety of financial derivatives have emerged to meet the different
needs of investors, as such Zaevski employs the Crank–Nicolson finite difference approach
in conjunction with a Monte Carlo method to valuate discounted American capped op-
tions [1]. And he devises an efficient pricing algorithm utilizing the optimal strike boundary
as a numerical technique for pricing cancellable American put options [2]. Kifer explores
the scenario of a game contingent claim, drawing upon the theory of optimal stopping
games [3]. Zaevski determines the optimal exercise regions for both the option’s holder
and writer, subsequently deriving the equitable option price [4]. Chuang develops a quasi-
analytical methodology to evaluate a perpetual strangle, leveraging the characteristics of
the early exercise frontier in the perpetual case [5], etc. In this paper, we will mainly focus
on the American bond option. Bond options, as an emerging financial instrument, not
only help investors reduce risk and increase returns, but also assist issuers in achieving
fundraising and risk management goals, making them increasingly popular [6–9].

The earliest description of option pricing was the famous Black–Scholes model, which
was proposed by R. Merton, F. Black, and M. Scholes in 1973 [8]. It is the cornerstone of
modern pricing theory and has had a profound impact on option pricing theory. However,
when pricing interest rate derivatives, the volatility of bond prices decreases as the maturity
date approaches, and the assumption of constant volatility in the traditional Black–Scholes
model is too idealized. This flaw has prompted the development of yield curve models [10].
As a result, more and more scholars have established different stochastic interest rate
models based on the fact that interest rates are subject to random fluctuations [11–14].

It is well known that the most widely used model of short-term interest rates r(t) is
the CKLS model [15], which can nest many term structure models as special cases. Before
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presenting the model, we define the probability space (Ω,F ,P) and W(t) is a standard
Brownian motion under the risk-neutral measure Q. Here Ω is a simple space, F is a
σ-algebra on Ω, and P is a probability measure on (Ω,F ). We denote by (Ft)t≥0 the
filtration generated by W(t). Then, the CKLS model can be described as follows:

dr(t) = κ(θ − r(t))dt + σr(t)γdW(t), (1)

where κ is the mean reversion rate, θ is the long-term rate, and σ is a positive constant. In
the case γ = 0 or 0.5, the model (1) is the Vasicek model or the CIR model, respectively.
In 1974, Merton used option pricing to give a formula for defaulted zero-coupon bonds
based on the Black–Scholes model [12]. In 1977, Vasicek proposed the mean-reverting
model, but it had the drawback of negative interest rates [13]. In 1985, Cox, Ingersoll and
Ross proposed the Cox–Ingersoll–Ross (CIR) model [14], which originated from intrinsic
real variables and the overall equilibrium process in the economy. Compared to previous
models, the CIR model considered not only the mean reversion, but also factors including
risk aversion, time preference for consumption, numerous investment choices, which can
accurately reflect the interest rate changes in the actual market. Due to the uncertainty
and complexity of interest rates, no analytic solutions are available for the valuation of
American bond options under the CIR model. Thus, it is of considerable importance to
develop effective numerical methods for pricing American bond options [16,17].

In the past two decades, many scholars have conducted in-depth research on numerical
methods for pricing bond options, such as the lattice method, finite difference method, finite
element method, and so on for the valuation of American bond options, for instance, [18–23].
In 2004, Yang [20] used the finite element method coupled with the Crank–Nicolson method
to price American zero-coupon bond options, and presented the existence and uniqueness
of these solutions. In 2012, Zhang et al. [21] proposed the fitted finite volume method for
pricing discounted American bond options and proved the convergence of the method.
Later, Hilal et al. [22] transformed the pricing problem of bond options into a parabolic
partial differential complementarity problem and proposed the cubic spline interpolation and
generalized Newton’s method to solve it. In 2021, Gan et al. [23] used the modular matrix
splitting iterative method to price zero-coupon bond options.

This paper will focus on developing a fast and effective numerical method for pricing
American bond options under the CIR model. For simplicity, we only consider the put
options, the call options can be treated in a similar way. The American bond option pricing
problem is a differential linear complementary problem (LCP). The main difficulties in
solving the model numerically are as follows: (1) the model is defined on the unbounded
domain; (2) the problem is complex and nonlinear, which is difficult to solve efficiently. The
goal of this paper is to present the techniques to deal with these difficulties and provide an
efficient numerical method. Firstly, we apply a skilled variable transformation to simplify
the linear complementary model. Then, the finite difference method is adopted to discretize
the simplified model, and an equivalent variational form is obtained. Furthermore, we
establish the positive definiteness of the discretized matrix. Finally, based on the resulting
form, a projection and contraction method (PCM) is adopted for the resulting discretized
variational problem. Compared with other existing methods, the PCM has one prominent
merit, that is, the computing speed is significantly faster for the same given accuracy, which
will be verified in the numerical simulations.

The remaining organization of this paper is as follows. In Section 2, we present the
pricing model for American bond options. In the same section, we simplify the pricing
model by using variable substitution. In Section 3, we discretize the simplified model
by using the finite difference method and obtain an equivalent variational inequality.
Moreover, the positive definiteness of the discretized matrix is obtained. Based on the
resulting structure, a projection and contraction method (PCM) is adopted for the resulting
discretized variational problem in the same section. Then, we validate the effectiveness of
the algorithm through numerical simulations in Section 4. Finally, we provide conclusions
in Section 5.
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2. Mathematics Model

In this section, we present the pricing problem for American bond options under the
CIR model, which is described by the unbounded parabolic linear complementary problem
(LCP). For the pricing model, we use skilled variable substitution to obtain the simplified
LCP. For brevity, we only consider the put options, the call options can be treated in a
similar way.

2.1. Linear Complementary Problem

In this paper, we mainly present the pricing model for American bond options under
the CIR model, which is a special version of model (1) where γ = 0.5. Then, the CIR model
for the stochastic interest rate r(t) satisfies as follows:

dr(t) = κ(θ − r(t))dt + σ
√

r(t)dW(t), (2)

In practice, r(t) is positive, which enforces the constraint 0 < σ2 ≤ 2κθ (Feller’s
condition [14]).

Under the CIR model (2), a zero-coupon bond price B(r, t; s) when r(t) = r with face
value E and maturity date s at time t satisfies the following conditional expectation [14]:

B(r, t; s) = E
[

exp
(
−
∫ s

t
r(u)du

)
|Ft

]
(3)

where E denotes the expectation under the risk neutral measure Q.
Moreover, based on the form (2) and (3), the zero-coupon bond price B(r, t; s) can be

depicted as an explicit expression as follows [14]:

B(r, t; s) = EA(s− t)e−C(s−t)r, (4)

here
C(t) = eφ1t−1

φ2(eφ1t−1)+φ1
,A(t) = ( φ1eφ2t

φ2(eφ1t−1)+φ1
)

φ3
,

φ1 =
√

µ2 + 2σ2,φ2 = µ+φ1
2 ,φ3 = 2θ

σ2 ,θ = κθ,µ = κ + ξ.

Now, based on the CIR model (2), an American zero-coupon bond put option price
P(r, t) with strike price K and maturity date T, can be formulated as the following optimal
stopping problem ([24]) when r(t) = r at time t:

P(r, t) = esssup
τ∈Γ[t,T]

E
[

exp
(
−
∫ τ

t
r(u)du

)
g(r(τ), τ)|Ft

]
(5)

where Γ[t,T] is the set of all stopping times assuming values in [t, T],g(r, t) = max(K −
B(r, t; s), 0) is the payoff of the put.

It is well-known that the optimal stopping problem (5) also can be described the
parabolic free boundary problem, whose solution is the price P(r, t) and the optimal
exercise boundary r∗(t) [24]:

∂P
∂t + σ2

2 r ∂2P
∂r2 + (θ − µr) ∂P

∂r − rP = 0, P(r, t) > g(r, t), 0 < r < r∗(t), 0 ≤ t < T,
P(r∗(t), t) = g(r∗(t), t), Pr(r∗(t), t) = gr(r∗(t), t), 0 ≤ t < T,
P(r, t) = g(r, t), r > r∗(t), 0 ≤ t ≤ T,
P(r, T) = g(r, T), r ≥ 0,

(6)

For the property of the price P(r, t) and the optimal exercise boundary r∗(t), the
literature [20] proposes the following result, which can show the existence and uniqueness
of optimal exercise boundary.
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Lemma 1 ([20]). If κθ
σ2 > 1

2 , then for each t ∈ [0, T], we have

P(r, t) > g(r, t), 0 < r < r∗(t); P(r, t) = g(r, t), r ≥ r∗(t) (7)

which means that there is a unique optimal exercise boundary.

Remark 1. The literature [20] proposes that when κθ
σ2 ≤ 1

2 , we may assume that P(r, t) +
B(r, t; s) is a decreasing function of r. Under such an assumption, (7) hold for κθ

σ2 ≤ 1
2 .

For the case of κθ
σ2 ≤ 1

2 , we point out the two aspects as follows: (1) It is an open
question to prove the above assumption. (2) The following numerical tests can verify
the assumption.

In this paper, we mainly focus on the linear complementarity problem, which is
equivalent with model (6) [21]:

( ∂P
∂t + σ2r

2
∂2P
∂r2 + (θ − µr) ∂P

∂r − rP) · (P− g) = 0, 0 < r < ∞, 0 ≤ t < T,
P(r, T) = g(r, T), 0 < r < ∞
P(0, t) = g(0, t), 0 ≤ t ≤ T,
lim
r→∞

P(r, t) = g(r, t), 0 ≤ t ≤ T,

(8)

with the constraint condition:

∂P
∂t

+
σ2r
2

∂2P
∂r2 + (θ − µr)

∂P
∂r
− rP ≤ 0, P(r, t) ≥ g(r, t). (9)

The pricing problem of American bond options can be defined as the above linear
complementarity models (8) and (9). When numerically solving this model, we encounter
the following difficulties:

(1) The corresponding solution region of this model is an unbounded region;
(2) The problem is complex and nonlinear, which is difficult to solved efficiently.

2.2. Simplified Model

In this subsection, we propose effective techniques to address the first difficulty
mentioned above. First, we assume a sufficiently large number as the upper bound for
interest rates and restrict it within [0, R], which transforms the unbounded region into a
bounded one. Secondly, considering the backward problem, we introduce the following
transformation:

τ = T − t, V(r, τ) = P(r, T − τ), G(r, τ) = g(r, T − τ), (10)

then the LCP (8) and (9) is converted so that
( ∂V

∂τ −
σ2r
2

∂2V
∂r2 − (θ − µr) ∂V

∂r + rV) · (V − G)= 0, 0 < r < R, 0 ≤ τ < T,
V(r, 0) = G(r, 0), 0 ≤ r ≤ R,

V(0, τ) = G(R, τ), 0 ≤ τ ≤ T,
V(R, τ) = G(R, τ), 0 ≤ τ ≤ T,

(11)

with the constraint condition:

∂V
∂τ
− σ2r

2
∂2V
∂r2 − (θ − µr)

∂V
∂r

+ rV ≥ 0, V(r, τ) ≥ G(r, τ). (12)

To facilitate the use of numerical methods for solving the problem, we further employ
the transformation:

x =
√

r, V(r, τ) = x−αeβτu(x, τ), L =
√

R. (13)
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Denote the region Ω = [0, L]× [0, T], then the models (11) and (12) are transformed
into the following form:

( ∂u
∂τ −

σ2

8
∂2u
∂x2 + c1(x) ∂u

∂x + c2(x)u) · (u(x, τ)− f (x, τ)) = 0, (x, τ) ∈ Ω,
u(x, 0) = f (x, 0), 0 ≤ x ≤ L,
u(R, τ) = f (R, τ), 0 ≤ τ ≤ T,
u(0, τ) = f (0, τ), 0 ≤ τ ≤ T,

(14)

with the constraint condition:

∂u
∂τ
− σ2

8
∂2u
∂x2 + c1(x)

∂u
∂x

+ c2(x)u ≥ 0, u(x, τ) ≥ f (x, τ), (15)

where:

c1(x) = σ2

8 (1 + 2α− 4 θ
σ2 )x−1 + µ

2 x,c2(x) = x2 + µ
4 + σ2

8 α(4 θ
σ2 − 2− α)x−2,

f (x, τ) = xαe−βτG(x2, τ) = xαe−βτmax(K− B(x2, T − τ), 0).

By now, we have obtained the simplified form (14) and (15), which is a forward time
simplified LCP defined on a bounded domain. For the resulting form, we will propose a
fast numerical method to solve it in the next section.

3. Numerical Algorithm

In this section, we mainly address the second difficulty by proposing an effective
numerical method for the pricing problem (14) and (15). In addition, for the sake of struc-
tural integrity, this paper briefly introduces two numerical methods for solving American
bond options.

3.1. Finite Difference Method

This subsection proposes the finite difference method to discretize the simplified linear
complementary problem (14) and (15). Before discretization, we introduce some notation.

Let
Ih : 0 = x0 < x1 < · · · < xN = L, h = L

N , xi = ih;
Iτ : 0 = τ0 < τ1 < · · · < τM = T, ∆τ = T

M , τm = m∆τ,

denote the partitions on the spatial domain [0, L] and the time domain [0, T], respectively.
Next, we will use these difference formulas for the point (xi, τm), i = 1, 2, · · · , N − 1,

m = 1, 2, · · · , M:
∂u
∂τ (xi, τm) =

um
i −um−1

i
∆τ + ∆τ

2
∂u
∂τ (xi, ξm),

∂u
∂x (xi, τm) =

um
i+1−um

i−1
2h + h2

6
∂3u
∂x3 (ζi, τm),

∂2u
∂x2 (xi, τm) =

um
i+1−2um

i +um
i−1

h2 + h2

12
∂4u
∂x4 (ηi, τm).

Therefore, the fully implicit difference approximation for the linear complementarity
problem (14) and (15) by defined ũm

i can be described as follows:

(
ũm

i −ũm−1
i

∆τ − 1
8 σ2 ũm

i+1−2ũm
i +ũm

i−1
h2 − c1(xi)

ũm
i+1−ũm

i−1
2h − c2(xi)ũm

i ) · (ũm
i − f m

i ) = 0,
ũm

i −ũm−1
i

∆τ − 1
8 σ2 ũm

i+1−2ũm
i +ũm

i−1
h2 − c1(xi)

ũm
i+1−ũm

i−1
2h − c2(xi)ũm

i ≥ 0, ũm
i ≥ f m

i ,
ũ0

i = f 0
i , ũm

0 = f m
0 , ũm

N = f m
N , i = 1, 2, · · · , N − 1, m = 1, 2, · · · , M.

(16)

The above difference scheme (16) can be rearranged into the following matrix form:

(AUm + Λm −Um−1, Um − Fm) = 0,
AUm + Λm −Um−1 ≥ 0, Um − Fm ≥ 0,

(17)
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where:

Um = (ũm
1 , ũm

2 , · · · ũm
N−1)

T , Fm = ( f m
1 , f m

2 , · · · f m
N−1)

T , Λm = (Λm
1 , 0, · · · 0, Λm

N−1)
T ,

Λm
1 = (− c1(x1)∆τ

2h − σ2∆τ
8h2 ) f m

0 , Λm
N−1 = ( c1(xN−1)∆τ

2h − σ2∆τ
8h2 ) f m

N .

In addition, the coefficient matrix A is a tridiagonal matrix of size (N − 1)× (N − 1):

A =


b1 c1
a1 b2 c2

. . . . . . . . .
aN−3 bN−2 cN−2

aN−2 bN−1


(N−1)×(N−1)

,

where:
ai = −

c1(xi+1)∆τ
2h − σ2∆τ

8h2 , i = 1, · · ·N − 2,
bi = 1 + σ2∆τ

4h2 + c2(xi+1)∆τ, i = 1, · · ·N − 1,

ci =
c1(xi+1)∆τ

2h − σ2∆τ
8h2 , i = 1, · · ·N − 2.

Inspired by [25], we obtain the equivalent variational form for the matrix form (17).

Lemma 2 (cf. [25]). Let Σ =
{

Um∣∣Um ≥ Fm, U0 = F0} be a closed convex set in RN−1. The
solutions to the matrix form (17) exist if and only if the following inequality holds:

(Vm −Um)T(AUm −Um−1 + Λm) ≥ 0, f or ∀Vm ∈ Σ. (18)

Now, we present the following theorem to indicate the property of the coefficient matrix, which
can state the positive definiteness of the discretized matrix A.

Theorem 1. The matrix A + ATis a symmetric positive definite matrix when ∆τ
h2 is small enough

and 0 <|α|< 4 θ
σ2 − 2.

Proof. Let Ã = A+AT , we write matrix Ã as follows:

Ã =



2b1 a1 + c1 0 0 0

c1 + a1 2b2
. . . 0 0

0
. . . . . . . . . 0

0 0
. . . 2bN aN−2 + cN−2

0 0 0 cN−2 + aN−2 2bN−1


,

It is clear that Ã is symmetric,∣∣∣Ã1,1

∣∣∣− ∑
l 6=1

∣∣∣Ã1,l

∣∣∣ = 2(1 + σ2∆τ
4h2 + c2(x1)∆τ)− σ2∆τ

4h2

= 2+ σ2∆τ
4h2 +2c2(x1)∆τ

> σ2∆τ
4h2 + σ2∆τ

4h2 α(4 θ
σ2 − 2− α) + h2∆τ + µ

4 ∆τ,

for i = 2, · · · , N − 2, we have:∣∣∣Ãi,i

∣∣∣− ∑
l 6=i

∣∣∣Ãi,l

∣∣∣ = 2(1 + σ2∆τ
4h2 + c2(xi)∆τ)− σ2∆τ

2h2

= 2 + 2c2(xi)∆τ

> σ2∆τ
4i2h2 α(4 θ

σ2 − 2− α) + 2∆τi2h2 + µ
2 ∆τ.
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By the same token, we can obtain:∣∣∣ÃN−1,N−1

∣∣∣− ∑
l 6=N−1

∣∣∣ÃN−1,l

∣∣∣ = 2(1 + σ2∆τ
4h2 + c2(xN−1)∆τ)− σ2∆τ

4h2

> σ2∆τ
4h2 + σ2∆τ

4(N−1)2h2 α(4 θ
σ2 − 2− α) + (N − 1)h2∆τ + µ

4 (N − 1)∆τ.

Multiplying both at the right end of the equation by h2

∆τ , when 0 <|α|< 4 θ
σ2 − 2, it

results in ∣∣∣Ãi,i

∣∣∣ > ∑
l 6=i

∣∣∣Ãi,l

∣∣∣, i = 1, · · ·N − 1

which completes the proof. �

3.2. Numerical Method

This part introduces the numerical method to solve the above discretized variational
inequality. Based on the positive definiteness of the discretized matrix A, the projected and
contraction method (PCM) [26,27] is a fast numerical method to solve the variational form
(18). In addition, we briefly give two popular numerical methods to ensure the integrality
of the structure, which can be used to compare with PCM to verify the effectiveness of the
proposed algorithm in the following section.

At first, we propose the PCM for solving the discretized variational inequality. In
order to better apply the PCM, we define the operators Vm

= Vm − Fm, Um
= Um − Fm,

Wm
= Wm + AFm, then we obtain:

(Vm −Um
)

T
(AUm

+ Wm
) ≥ 0, f or∀Vm ≥ 0. (19)

Now, we use the PCM to solve the variational inequality (19). The specific Algorithm
1 is as follows:

Algorithm 1. Projected Contraction Method

For m = 1 : M
set k = 0, β(0) = 1,

U = Um−1.Fv = AU + Wm, tol =
∣∣U−max(U− Fv, 0)

∣∣.
While (tol > ε )

• U(k)
= U, Fv

(k) = Fv, U = max(U(k) − β(k)Fv
(k), 0),

Fv = AU + Wm, dv = U(k) −U, dF = β(k)(Fv
(k) − Fv),

ρ(k) = ‖dF‖/‖dv‖;
• While (ρ(k) > ν)

β(k) = 2
3 β(k)min(1, 1/ρ(k)),

update U, Fv, dv, dF, ρ(k);
end
• dvF = dv − dF, α∗ = (dv, dF)/(dvF, dvF),

U = U(k) − α∗γdvF, Fv = AU + Wm,
tol =

∣∣U−max(U− Fv, 0)
∣∣;

• If ρ(k) < z
β(k) = β(k)γ;

end
• set β(k+1) = β(k) and k = k + 1

end
end
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Based on the above algorithm, we can obtain the discrete solution {Um}, then the
option price P follows from inverting the transformation (10) and (13) from:

P(r, t) = x−αeβτ ũ(x, τ), t = T − τ, r = x2.

At the end of this section, we briefly introduce the lattice method (LM) [28] and the
fitted finite volume method (FFVM) [29], which are the popular numerical algorithms for
solving American bond options. The lattice method (LM) was originally proposed to obtain
American bond options [28]. The lattice method for valuing options and other derivative
securities arises from discrete random walk models of the underlying security. The method
is relatively simple and easy to implement, which is actually particularly the case for the
explicit finite difference method [30] and the convergence speed is relatively slow. The
fitted finite volume method (FFVM) was first proposed to deal with the American option
pricing problem [31]. It is a variant of the finite volume method that approximates the
integral term of a conservation equation by fitting the shape of the solution to a discrete
grid. The idea behind this method is based on a finite volume formulation coupled with a
fitted approximation technique.

4. Numerical Simulation

In this section, we present some numerical examples to demonstrate the efficiency of
the proposed method. Firstly, we give an example to verify the correctness of our algorithm
by comparing it with the lattice method (LM) [28]. To give investors a better understanding
of the American bond option pricing problem, we then provide several visual illustrations
of options. Moreover, we give some numerical tests to indicate the validity of the projected
and contraction method (PCM). Furthermore, we proposed some numerical tests to verify
the error estimates. Finally, we give the numerical test to verify the fact that put price plus
bond price is a decreasing function of r.

In the following examples, we mainly consider two special cases: Case I (0 < σ2 ≤ 2κθ)
and Case II (2κθ < σ2), which can describe the validity of the algorithm. In addition, we
consider the pricing problem of a one-year American zero-coupon bond option with a face
value 100. The exercise price of the option is 60, i.e., T = 1, E = 100, K = 60. The other
parameters are chosen so that ξ = 0, s = 5, R = 2 in all examples.

Example 1. In order to ensure the feasibility of the parameters, the parameters were chosen as those
used in the literature [20]. We first consider Case I, where the model parameters satisfy the Feller
condition. Parameter selection κ = 0.1 and σ= 0.1, we can change the value of θ to 0.05, 0.06, 0.07,
when the feller condition is satisfied. We assume the LM with M = 5000 as the reference solution
and assume the PCM using time grid M = 600 and space grid N = 300. Figure 1 shows the
values of P(r, t) at time t = 0 by LM and PCM for different θ values. The blue line represents the
option price obtained using LM, the red line represents the option price obtained by PCM and the
green line indicates the payoff function g(r, T). Moreover, we present the three–dimensional image
of the option prices P(r, t) of the PCM against different values of θ in Figure 2.

In Figures 1 and 2, we observed that the price of option P(r, t) is an increasing function
of r, which is consistent with the results in the literature [20]. And that the price obtained
by PCM is nearly the same as the LM, which can verify the correctness of the proposed
method. From Figure 2, we observe that the price trend of the option value is similar to
standard American options.
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Example 2. We consider the pricing problem for Case II with κ = 0.1 and θ = 0.08. In order to
examine the performance of our approach, we set the volatility σat 0.3, 0.4 and 0.5.

In this example, we use numerical tests to verify the correctness of our method. Due to
the lack of an analytical solution for American bond options, we use the LM with M = 5000
as the reference solution and assume the PCM using time grid M = 600 and space grid
N = 300. Figure 3 shows the values of P(r, t) at time t = 0 by LM and PCM for different σ
values. The blue line represents the option price obtained using LM, the red line represents
the option price obtained by PCM and the green line indicates the payoff function g(r, T).
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From Figure 3, it can be observed that the results obtained by the PCM are close to
those obtained by the LM, and, in order to verify the proximity of the two methods, the
error estimates and time consumption by the two methods are given in Table 1.
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Table 1. Comparison of time consumption and error of LM and PCM.

σ = 0.3 σ = 0.4 σ = 0.5

LM (s) 46.52 34.81 27.78

PCM (s) 0.8139 1.0619 1.2536

Error
(
10−4) 1.4559 1.3267 1.2596

From Figure 3 and Table 1, it can be seen that the option price obtained by using the
PCM is sufficiently close to the option price obtained by the LM, and the error of PCM
reaches 10−4, which fully verifies the correctness of the PCM.

For a more intuitive understanding of the zero-coupon bond pricing problem, we
can transform it into P(r, T− τ) = x−αeβτu(x, τ), Figure 4 represents a three–dimensional
image of the option prices P of the PCM against different values of σ.
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As can be seen from the results, the trend of bond option prices is similar to that
of standard American options, further justifying the proposed algorithm. The difference
between the option value P and payoff function g(r, t) is represented by Figure 5.
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Example 3. To demonstrate that our method is robust, we change the parameter θ = 0.04, 0.06, 0.08
in the Example 1.

In this example, we show that the computational speed of the PCM is comparable to
the fitted finite volume method (FFVM) [30] whereas its accuracy is slightly better. The
results obtained by the PCM are compared with those obtained by the LM and the FFVM,
respectively, and the time spent and the error are presented in Table 2.
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Table 2. Comparison of time consumption and error of FFVM and PCM.

θ 0.04 0.06 0.08

σ 0.3 0.4 0.5 0.3 0.4 0.5 0.3 0.4 0.5

FFVM
Error/10−4 2.06 1.56 1.36 2.03 1.64 1.40 2.24 1.72 1.44

PCM
Error/10−4 1.74 1.32 1.27 1.51 1.46 1.33 1.83 1.46 1.33

FFVM
Time/s 1.27 1.31 1.36 1.37 1.28 1.37 1.17 1.34 1.41

PCM
Time/s 0.81 1.02 1.30 0.82 1.02 1.26 0.80 1.06 1.31

It is obvious that the PCM is an efficient numerical method for American bond options,
compared with the FFVM from Table 2, it mainly reflects that: (1) comparing to the FFVM,
the PCM is nearer the LM; (2) the PCM is faster than the FFVM under the same order
of magnitudes.

At the end of this section, we show the relationship between the spatial numbers
and the spatial error. Let the temporal numbers be M = 600, which could guarantee that
the space error is dominant. Moreover, due to the lack of an analytic solution for the
American bond option pricing problem, we choose the PCM as the reference solution with
M = 1000, N = 2000.

Here we need to point out that the error we used in the following tests indicated that:

Error =

√√√√√ N
∑

i=0
(P(xi, 0)− P∗(xi, 0))

N + 1
.

Now, the convergence results can be reflected for the difference combination {σ,θ} in
Figure 6.
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From this figure, we can obviously see that the convergence rates in the spatial direc-
tion for the proposed method all approximate to the order 2.

Example 4. For the different cases of ρ = κθ
σ2 , we provide the American put price plus bond prices

in Figure 7. From this figure, it is seen that the price is a monotonically decreasing function of r.
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5. Conclusions

This study investigates the numerical solution to the pricing problem of American
bond options. By transforming the pricing model into a bounded forward simplification
model through variable substitution, we discretize the model using the finite difference
method. Based on the positive definiteness of the discretized matrix, we apply the PCM
algorithm to solve the discrete system and obtain the option prices. Finally, the correctness
and effectiveness of the PCM algorithm are verified through numerical experiments.
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