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Abstract: We consider the problem of extending a function fP defined on a subset P of an arbitrary
set X to X strictly monotonically with respect to a preorder < defined on X, without imposing
continuity constraints. We show that whenever < has a utility representation, fP is extendable if and
only if it is gap-safe increasing. This property means that whenever x′ � x, the infimum of fP on the
upper contour of x′ exceeds the supremum of fP on the lower contour of x, where x, x′ ∈ X̃ and X̃ is
X completed with two absolute <-extrema and, moreover, fP is weakly increasing. The completion
of X makes the condition sufficient. The proposed method of extension is flexible in the sense that
for any bounded utility representation u of <, it provides an extension of fP that coincides with u
on a region of X that includes the set of P-neutral elements of X. An analysis of related topological
theorems shows that the results obtained are not their consequences. The necessary and sufficient
condition of extendability and the form of the extension are simplified when P is a Pareto set.

Keywords: extension of utility functions; monotonicity; utility representation of a preorder; lifting
theorems
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1. Introduction
We consider the following problem. For an arbitrary nonempty preordered set (X,<),

let u : X → R be a bounded utility representation of <. Suppose that fP : P → R is a new
(updated, renewed) utility function on an arbitrary subset P ⊆ X. Under what conditions
and how can fP be extended to X so that the resulting function f represents < on X and
coincides with u on the “P-neutral” subset N = {x ∈ X | @p ∈ P : p < x or x < p}?

In this setting, f can be considered as an update of utility function u that adjusts it
to fP . If all elements of X are feasible, then the conditions for the extendability of fP to X
are actually those of the consistency of fP .

In this paper, we present a simple necessary and sufficient condition for the extend-
ability of fP and, in the case where this condition is satisfied, we provide the extension (12)
of fP coinciding with u on a region of X that includes N. Moreover, we consider the case
where the structure of subset P minimally restricts functions representing < on P. This
is the case of Pareto sets P (in which p′ � p for no p, p′ ∈ P); for such sets, the proposed
extension takes a simpler form.

Starting with the classical results of Eilenberg [1], Nachbin [2,3], and Debreu [4–7],
much of the work related to utility functions has been conducted under the continuity
assumption [8,9]. Sometimes, this assumption was made just “for purposes of mathematical
reasoning” [10]. However, this requirement is not always necessary. Moreover, there are
threshold effects [11,12] such as a shift from quantity to quality or disaster avoidance
behavior that require utility jumps. In other situations, the feasible set of possible outcomes
is discrete, which may eliminate the continuity constraints. Thus, utility functions that
may not be continuous everywhere are useful or even necessary to model some real-world
problems [13–19]. For a discussion of various versions of the continuity postulate in utility
theory, we refer to [20].
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Thus, in this paper, we study the problem of extending utility functions defined on
arbitrary subsets of an arbitrary set X equipped with a preorder < but not endowed with a
topological structure, since we do not impose continuity requirements. On the other hand,
some kind of continuity of an associated inverse mapping follows from the necessary and
sufficient condition of extendability we establish.

The paper is organized as follows. Section 2 contains standard definitions, introduces
and discusses the concept of a gap-safe increasing function, presents preliminary results,
and recalls basic facts on the extension of preorders and corresponding utilities.

Section 3 contains the main results. Its subsections present Theorem 1 on the extension
of a function fP defined on an arbitrary subset P of an arbitrary preordered set (X,<) (where
< has a utility representation) to the whole set (Section 3.1), alternative representations of
the extension (Section 3.2), and the application of Theorem 1 to the special case of Pareto
sets (Section 3.3).

Theorem 1 solves the extendability problem in the strictly increasing version. Another
feature of the problem under study is that it does not involve continuity constraints, which,
as mentioned above, matches certain classes of applications. This enables us to obtain a
simple and easily interpretable necessary and sufficient extendability condition, that is,
the property of gap-safe increase. Under this condition, Theorem 1 introduces a class of
extensions based on arbitrary bounded utility representations of<. Furthermore, as follows
from Proposition 5 and Corollary 1, the resulting extension coincides with the chosen utility
representation of < on a region of X that contains the set N = {x ∈ X | @p ∈ P : p <
x or x < p}. This provides a solution to the problem of constructing a utility extension
consistent (i.e., coinciding on N) with an arbitrary bounded representation of <. The latter
problem can be treated as the problem of updating utility functions. Propositions 3–5
provide additional representations of the proposed utility extension that highlight its
properties. They may give rise to alternative formulations of Theorem 1. In the case where
P is such that p′� p for no p, p′∈ P (a Pareto set), the necessary and sufficient extendability
condition simplifies. Namely, by Lemma 2, fP is gap-safe increasing if and only if it is
upper-bounded on lower P-contours, lower-bounded on upper P-contours, and preserves
the <-equivalence. The form of the proposed utility extension also simplifies in this case
(Corollary 2).

In Section 4, we discuss the connection of the above results to related work. Most
of the work on the extension of functions that represent preorders was performed in the
topological framework under continuity assumptions. In the case of strictly increasing
functions, this leads to rather complex extendability conditions (see [21–24]). Technically,
solutions to the extension problems without continuity requirements can be obtained from
the corresponding general topological results by applying them to the discrete topology.
However, the only topological result [23] we know that corresponds to the problem under
consideration contains an inaccuracy that makes it impossible to derive the gap-safe increase
extendability condition from it. This is demonstrated using Example 2. Furthermore,
the results of this kind involve extension algorithms that differ from the flexible approach
we use, and they do not solve the problem of updating an existing bounded utility function
u using fP as a correcting function. In Section 4, we also briefly touch on the application of
the results obtained.

Section 5 contains all the proofs. In Appendix A, we list the relevant properties and
classes of binary relations.

2. Basic Definitions and Methods
2.1. The Problem and Standard Definitions

Throughout the paper, (X,<) is (To denote a preorder, symbols < [25] or % [6] are
used. Variables for the elements of X are printed in bold (as is common for vectors in Rk)
to distinguish them from the variables for real numbers.) a preordered set, where X is an
arbitrary nonempty set, and < is a preorder (i.e., a transitive and reflexive binary relation)
defined on X. We first formulate the problem under consideration and then provide the
necessary definitions; the basic properties and classes of binary relations are defined in
Appendix A.



Mathematics 2023, 11, 4688 3 of 18

Suppose that < has a utility representation; let u : X → R be a bounded utility
representation of <. Consider any subset P ⊆ X and any real-valued function fP defined
on P. The problem studied in this paper is (1) to find conditions under which fP can be
extended to X yielding a function f : X → R strictly increasing with respect to < and
coinciding with u on the subset N = {x ∈ X | @p ∈ P : p < x or x < p} and (2) to propose
such an extension.

The definitions of the relevant terms are as follows.
Given a preorder< on X, the asymmetric� and symmetric≈ parts of< are the relations

[x � y] ≡ [x < y and not y < x] and [x ≈ y] ≡ [x < y and y < x], respectively, where ≡ is
“identity by definition”. Relation � is transitive and irreflexive (i.e., it is a strict partial order),
whereas ≈ is transitive, reflexive, and symmetric (i.e., it is an equivalence relation).

The converse relations corresponding to< and � are4 such that [x 4 y] ≡ [y < x] and
≺ such that [x ≺ y] ≡ [y � x], respectively. For any P ⊆ X, <P is the restriction of < to P.

x ∈ X is a maximal (minimal) element of (X,<) iff x′ � x (resp., x � x′) for no x′ ∈ X.

Definition 1. A function fP : P→ R, where P ⊆ X, is said to be weakly increasing with respect
to the preorder < defined on X (or, briefly, weakly increasing) if for all p, p′ ∈ P, p′ < p
implies fP(p′) ≥ fP(p). (In the terminology of [26], functions with this property are called order-
preserving, or isotone (with < being a partial order). Note that in other papers (e.g., [27,28]),
strictly increasing functions are called order-preserving.)

If, in addition, fP(p′) > fP(p) for all p, p′ ∈ P such that p′ � p, then fP is called strictly
increasing with respect to <, or a utility representation [6] of <P.

Utility functions fP strictly increasing with respect to < can express the attitude,
consistent with the preference preorder <, of a decision maker towards the elements of P.
Utility representations of preorders and partial orders have been studied since [3,25,29,30].

It follows from Definition 1 that for any weakly increasing function fP,[
p, p′ ∈ P and p′ ≈ p

]
⇒ fP(p′) = fP(p). (1)

Using (1), we obtain the following simple lemma.

Lemma 1. A function fP : P→ R, where P ⊆ X, is strictly increasing with respect to a preorder
< defined on X if and only if for all p, p′ ∈ P,[

p′ ≈ p ⇒ fP(p′) = fP(p)
]

and
[

p′ � p ⇒ fP(p′) > fP(p)
]
, (2)

where ≈ and � are the symmetric and asymmetric parts of <, respectively.

Indeed, (2) follows from Definition 1 using (1). Conversely, if (2) holds, then [ p′ <
p ⇒ fP(p′) ≥ fP(p)], since p′ < p implies [ p′ ≈ p or p′ � p] with the desired conclusion
in either case, while the second condition is immediate.

Definition 2. A real-valued function fP defined on P ⊆ X is strictly monotonically (we mean
increasing) extendable to (X,<) if there exists a function f ≡ fX : X → R such that:
(∗) the restriction of f to P coincides with fP;
(∗∗) f is strictly increasing on X with respect to <.
In this case, f is said to be a strictly increasing extension of fP to (X,<).

In economics and decision-making, alternatives are often identified with k-dimensional
vectors of criteria values [31] or goods [10]. In such cases, X = Rk. Thus, an important
special case of the extendability problem is the problem of extending to Rk functions
defined on P ⊂ Rk and strictly increasing with respect to the Pareto preorder on Rk. The
Pareto preorder < [32] is defined as follows: for any x = (x1, . . . , xk) and y = (y1, . . . , yk)
that belong to Rk, [x < y] ≡ [xi ≥ yi for all i ∈ {1, . . . , k}].
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2.2. Extensions of Preorders and Corresponding Utilities
Extensions of preorders and partial orders and their numerical representations have

been studied since Szpilrajn’s theorem [33], according to which, every partial order can be
extended to a linear order.

Another basic result is that a preorder < has a utility representation whenever there
exists a countable dense (Y ⊆ X is R-dense [25] in X, where R is a binary relation on X, iff
x′Rx⇒ [x′ ∈ Y or x ∈ Y or [x′Ry and yRx for some y ∈ Y]]) (with respect to the induced
partial order) subset in the factor set X/≈, where ≈ is the symmetric part of < [7,25,34].
This is not a necessary condition; however, for the subclass of weak orders (i.e., connected
preorders), it is necessary.

Among the extensions of the Pareto preorder on Rk are all lexicographic linear or-
ders [6,25] on Rk. When k > 1, these extensions lack utility representations [7], while a utility
representation of the Pareto preorder is any function strictly increasing in all coordinates.

Any utility representation of a preorder < induces a weak order that extends <.
In turn, this weak order determines a utility representation of < up to an arbitrary strictly
increasing transformation; for certain related results, see [8,9,25,35–37]. As was seen on
the example of the Pareto preorder, not all weak orders extending < correspond to utility
representations of <. However, this is true when X is a vector space and the weak order
has the Archimedean property, which ensures [25] the existence of a countable dense (with
respect to this weak order) subset of X.

2.3. Utility Bounds on Upper and Lower Contours
Theorem 1 below provides a necessary and sufficient condition for the strictly increas-

ing extendability (with respect to a preorder< having a utility representation) of a function
defined on any subset P of X. Moreover, this theorem presents such an extension based on
any bounded utility representation uαβ of<. As follows from Proposition 5 and Corollary 1,
this extension coincides with uαβ on the region S4 ⊆ X that contains the P-neutral subset N.

We now present the notation used in Theorem 1 and simple facts related to it.
Following [7], consider the extended real line R̃:

R̃ = R ∪ {−∞,+∞} (3)

with the ordinary > relation supplemented by +∞ > −∞ and +∞ > x > −∞ for all x ∈ R.
Since the extended > relation is a strict linear order, it determines unique smallest (min Q)
and largest (max Q) elements in any nonempty finite Q ⊂ R̃.

Functions sup Q and inf Q are considered as maps from 2R to R̃ defined for Q = ∅
as follows: sup ∅ = −∞ and inf ∅ = +∞. This preserves inclusion monotonicity, i.e., the
property that sup Q does not decrease and inf Q does not increase with the expansion of
the set Q (cf. [38], (Section 4)). Throughout, we assume +∞ + x = +∞ and −∞− x = −∞
whenever x > −∞, while indeterminacies like +∞ + (−∞) never occur in our expressions.

Remark 1. If Y ⊂ R and Y is bounded, then defining sup Q and inf Q on 2Y with the preservation
of inclusion monotonicity allows one to set sup ∅ = a and inf ∅ = b, where a and b are any strict
lower and upper bounds of Y, respectively. This is applicable to (4) below whenever the range of fP
is bounded.

Definition 3. For any P ⊆ X and x ∈ X, the lower P-contour and the upper P-contour of x are
P↑(x) ≡ {p ∈ P | p 4 x} and P↓(x) ≡ {p ∈ P | p < x}, respectively.

For any fP : P→ R, where P ⊆ X, define two functions from X to R̃:

f P
↑(x) = sup

{
fP(p) | p ∈ P↑(x)

}
;

f ↓P (x) = inf
{

fP(p) | p ∈ P↓(x)
}

.
(4)
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By definition, the “lower supremum” f P
↑(x) and “upper infimum” f ↓P (x) functions can take

values −∞ and +∞ along with real values.
It follows from the transitivity of < and the inclusion monotonicity of the sup and inf

functions that for any (not necessarily increasing) fP, functions f P
↑(x) and f ↓P (x) are weakly

increasing with respect to <:

For all x, x′ ∈ X, x′ < x implies
[

f P
↑(x′) ≥ f P

↑(x) and f ↓P (x′) ≥ f ↓P (x)
]
. (5)

Consequently,

for all x, x′ ∈ X, x′ ≈ x implies
[

f P
↑(x′) = f P

↑(x) and f ↓P (x′) = f ↓P (x)
]
. (6)

Furthermore, since p ∈ P implies p ∈ P↑(p) ∩ P↓(p), it holds that

for all p ∈ P, f P
↑(p) ≥ fP(p) ≥ f ↓P (p). (7)

We use the following characterizations of the class of weakly increasing functions fP
in terms of f P

↑ and f ↓P .

Proposition 1. For any P ⊆ X and fP : P→ R, the following statements are equivalent:
(i) fP is weakly increasing;

(ii) f ↓P (x) ≥ f P
↑(x) for all x ∈ X;

(iii) f ↓P (x′) ≥ f P
↑(x) for all x, x′ ∈ X such that x′ < x;

(iv) fP(p) ≥ f P
↑(p) for all p ∈ P;

(v) f ↓P (p) ≥ fP(p) for all p ∈ P;
(vi) f ↓P (p) ≥ f P

↑(p) for all p ∈ P.

The proofs are given in Section 5.

Remark 2. In view of Equation (7), the inequality in items (iv) to (vi) of Proposition 1 can be
replaced by an equality.

2.4. Gap-Safe Increasing Functions
We now consider the class of gap-safe increasing functions fP, which is no wider

but can be narrower for some X and P than the class of strictly increasing functions P→ R
(see Proposition 2 and Example 1 below). It is shown that this is precisely the class of
functions that admits a strictly increasing extension to (X,<).

Let us extend X in the same manner as R is extended by (3):

X̃ = X ∪ {−∞,+∞},

where−∞ and +∞ are two distinct elements that do not belong to X. Preorder<X ⊆ X×X
is extended to X̃ as follows:

<X̃ ≡
[
<X ∪ {(+∞, x) | x ∈ X̃} ∪ {(x,−∞) | x ∈ X̃}

]
,

where (+∞, x) and (x,−∞) are pairs of elements of X̃.
Functions f P

↑, f ↓P : X̃ → R̃ are defined in the same way as in (4).
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Definition 4. A function fP : P → R, where P ⊆ X, is gap-safe increasing with respect to a
preorder < defined on X (or, briefly, gap-safe increasing) if fP is weakly increasing and for any

x, x′ ∈ X̃, x′ � x implies f ↓P (x′) > f P
↑(x).

The term “gap-safe increasing” refers to the property of a function to orderly separate
its values ( f ↓P (x′) > f P

↑(x)) when the corresponding sets of arguments are orderly separated

(x′ � x) in X; see also Remark 3. In [39], the term “separably increasing function” was
used, clashing with topological separability, which means the existence of a countable
dense subset.

Proposition 2. If fP defined on P ⊆ X is gap-safe increasing, then:
(a) fP is strictly increasing;

(b) fP is (an equivalent formulation is: there is no x ∈ X such that f P
↑(x) = +∞ or f ↓P (x) =

−∞) upper-bounded on the lower P-contour and lower-bounded on the upper P-contour of x for
every x ∈ X.

It should be noted that there are functions fP that are strictly increasing, upper-
bounded on all lower P-contours and lower-bounded on all upper P-contours but are
not gap-safe increasing.

Example 1. Consider

fP(p) =

{
p1, p1 ≤ 0,
p1−1, p1 > 1,

where p = (p1), P = ((−∞), (0) ] ∪ ((1), (+∞)) ⊂ R1 ≡ {(x1) | x1 ∈ R} ≡ X; < is induced
by the ≥ relation on R. Function fP satisfies (a) and (b) of Proposition 2, but it is not gap-safe

increasing. Indeed, (1) � (0), but f ↓P ((1)) = 0 = f P
↑((0)).

Remark 3. The gap-safe increase as a property of a function can be interpreted as follows. If fP
is weakly increasing, then x′ � x implies f ↓P (x′) ≥ f P

↑(x) for any x, x′ ∈ X, as (i) ⇒ (iii) in
Proposition 1. For the class of strictly increasing functions fP, the conclusion cannot be strengthened

to f ↓P (x′) > f P
↑(x), as Example 1 shows. This stronger conclusion holds for gap-safe increasing

functions, i.e., f ↓P (x′) = f P
↑(x) is incompatible with x′ � x for them. In other words, the absence

of a gap in the values of fP between P-contours “x′ or higher” (with infimum given by f ↓P (x′)) and
“x or lower” (with supremum of f P

↑(x)) implies x′ 6� x. Hence, the gap-safe increase as a property

of a function can be viewed as a kind of continuity of the inverse f−1
P mapping: there is no gap in its

values (x′ 6� x) whenever there is no gap in the argument ( f ↓P (x′) = f P
↑(x)).

3. Results
3.1. Extending Gap-Safe Increasing Functions

Let fP defined on any P ⊆ X be gap-safe increasing. Theorem 1 below states that this
is a necessary and sufficient condition for the existence of strictly increasing extensions of
fP to (X,<) provided that < enables a utility representation. Furthermore, for any such
bounded representation uαβ, the theorem provides an extension of a gap-safe increasing
function fP that combines it with uαβ.

In precise terms, for any α, β ∈ R such that α < β, let uαβ : X → R be a utility
representation of < (i.e., a function strictly increasing with respect to <) satisfying

α < uαβ(x) < β for all x ∈ X. (8)
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For any (unbounded) utility representation of <, u(x), such a function uαβ(x) can be
obtained, for example, using transformation

uαβ(x) =
β− α

π

(
arctan u(x) +

π

2

)
+ α.

In particular, consider the functions u01: X → R that satisfy

0 < u01(x) < 1. (9)

They are normalized versions of the above utilities uαβ:

u01(x) = (β− α)−1(uαβ(x)− α), x ∈ X. (10)

For any real α and β > α and any utility representations uαβ of <, we define

f (x) = max
{

f P
↑(x), min

{
f ↓P (x), β

}
− β + α

}(
1− u01(x)

)
+ min

{
f ↓P (x), max

{
f P
↑(x), α

}
− α + β

}
u01(x), x ∈ X. (11)

For an arbitrary gap-safe increasing fP, function f : X → R given by (11) is well
defined as the two terms in the right-hand side are finite. This follows from item (b) of
Proposition 2. For preordered sets (X,<) that have minimal or maximal elements (see
Example 2 in Section 4, where (X,<) has a maximal element), this is ensured by introducing
the augmented sets X̃ in the definition of a gap-safe increasing function. Indeed, since
f ↓P (+∞) = +∞, f P

↑(−∞) = −∞, and +∞ � x � −∞ for all x ∈ X, Definition 4 provides

f ↓P (+∞) > f P
↑(x) and f ↓P (x) > f P

↑(−∞), hence +∞ > f P
↑(x) and f ↓P (x) > −∞, i.e., fP

is upper-bounded on all lower P-contours and lower-bounded on all upper P-contours,
ensuring the correctness of definition (11). If (X,<) has neither minimal nor maximal
elements (like the Pareto preorder on Rk), then the replacement of X̃ with X in Definition 4
does not alter the class of gap-safe increasing functions.

We now formulate the main result.

Theorem 1. Suppose that a preorder < defined on X has a utility representation and fP is a real-
valued function defined on some P ⊆ X. Then, fP is strictly monotonically extendable to (X,<) if
and only if fP is gap-safe increasing.

Under these conditions, function f defined by (11), where u01 is any utility representation of
< that satisfies (9) and α < β, is a strictly increasing extension of fP to (X,<).

3.2. Extension of Utility: Additional Representations
The class of extensions introduced by Theorem 1 allows alternative representations

that clarify its properties. They are given by Propositions 3–5.

Proposition 3. If uαβ : X → R is a utility representation of < satisfying (8) and fP : P → R,
where P ⊆ X, is gap-safe increasing, then

f (x) = (β− α)−1
(

max
{

f P
↑(x)− α, min

{
f ↓P (x)− β, 0

}}(
β− uαβ(x)

)
+ min

{
f ↓P (x)− β, max

{
f P
↑(x)− α, 0

}}(
uαβ(x)− α

))
+ uαβ(x) (12)

is a strictly increasing extension of fP to (X,<), and f (x) coincides with function (11), where u01
is related to uαβ by (10).
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The order of proofs in Section 5 is as follows. The verification of the second statement
of Proposition 3 is straightforward and is omitted. This statement is used to prove Propo-
sition 5, which implies Proposition 4, and they both are used in the proof of Theorem 1,
which in turn implies the first statement of Proposition 3.

To simplify (12), we partition X \ P into four regions determined by < and P:

A =
{

x ∈ X \ P
∣∣ P↑(x) 6= ∅ and P↓(x) 6= ∅

}
,

L =
{

x ∈ X \ P
∣∣ P↑(x) = ∅ and P↓(x) 6= ∅

}
,

U =
{

x ∈ X \ P
∣∣ P↑(x) 6= ∅ and P↓(x) = ∅

}
,

N =
{

x ∈ X \ P
∣∣ P↑(x) = ∅ and P↓(x) = ∅

}
.

(13)

Clearly, these regions are pairwise disjoint, and X = P ∪ A ∪ L ∪U ∪ N.

Proposition 4. If uαβ : X → R is a utility representation of < satisfying (8) and fP : P → R,
where P ⊆ X, is gap-safe increasing, then function f defined by (12) can be represented as follows:

f (x) =



fP(x), x ∈ P,

min
{

f ↓P (x)− β, 0
}
+ uαβ(x), x ∈ L,

max
{

f P
↑(x)− α, 0

}
+ uαβ(x), x ∈ U,

uαβ(x), x ∈ N,

expression (12), x ∈ A.

(14)

Proposition 4 highlights the role of uαβ in (12). Function f reduces to fP on P and to uαβ

on N whose elements are<-incomparable with those of P. Moreover, f (x) = uαβ(x) on the

part of L where f ↓P (x) ≥ β and on the part of U where f P
↑(x) ≤ α. On the complement parts

of L and U, f (x) = f ↓P (x) + (uαβ(x)− β) and f (x) = f P
↑(x) + (uαβ(x)− α), respectively.

On A, (12) is not simplified. This fact and the ambiguity on L and U prompt us to make
another decomposition of X.

Consider four regions that depend on <, P, fP, α, and β:

S1 =
{

x ∈ X
∣∣ f ↓P (x)− f P

↑(x) ≤ β− α
}

,

S2 =
{

x ∈ X
∣∣ f ↓P (x)− f P

↑(x) ≥ β− α and f ↓P (x) ≤ β
}

,

S3 =
{

x ∈ X
∣∣ f ↓P (x)− f P

↑(x) ≥ β− α and f P
↑(x) ≥ α

}
,

S4 =
{

x ∈ X
∣∣ f P
↑(x) ≤ α and f ↓P (x) ≥ β

}
.

(15)

It is easily seen that X = S1 ∪ S2 ∪ S3 ∪ S4, whereas the Si-regions are not disjoint. This
decomposition allows us to express f (x) without min and max.

Proposition 5. For a gap-safe increasing fP, f defined by (11) can be represented as follows, where
u01 and uαβ are representations of < related by (10) :

f (x) =



f P
↑(x)

(
1− u01(x)

)
+ f ↓P (x) u01(x), x ∈ S1,

f ↓P (x) + uαβ(x)− β, x ∈ S2,

f P
↑(x) + uαβ(x)− α, x ∈ S3,

uαβ(x), x ∈ S4.

(16)

Thus, on S1, f (x) is a convex combination of f ↓P (x) and f P
↑(x) with coefficients u01(x)

and (1− u01(x)), respectively. The regions S1, S2, S3, and S4 intersect on some parts of the
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border sets f ↓P (x)− f P
↑(x) = β− α, f P

↑(x) = α, and f ↓P (x) = β. Accordingly, the expressions

of f given by Proposition 5 are concordant on these intersections.

Corollary 1. In the notation and assumptions of Proposition 5, N ⊆ S4.
For any x ∈ X, f P

↑(x) = f ↓P (x) implies f (x) = f P
↑(x). In particular, if x ≈ p for some p ∈ P,

then f (x) = fP(p) and x ∈ S1.

3.3. Extension of Functions Defined on Pareto Sets
Consider the case where P is a Pareto set. In decision making, such a set comprises

elements of X that are mutually undominated.

Definition 5. A subset P ⊆ X is called a Pareto set in (X,<) if there are no p, p′ ∈ P such that
p′ � p, where � is the asymmetric part of <.

For functions defined on Pareto sets P, the necessary and sufficient condition of the
extendability to (X,<) given by Theorem 1 reduces to the boundedness on all P-contours
(which appeared in Proposition 2) supplemented by condition (1):

[
p, p′ ∈ P and p′ ≈

p
]
⇒ fP(p′) = fP(p).

Lemma 2. A function fP defined on a Pareto set P ⊆ X is gap-safe increasing with respect to a
preorder < defined on X if and only if fP is upper-bounded on all lower P-contours, lower-bounded
on all upper P-contours, and satisfies

[
p, p′ ∈ P and p′ ≈ p

]
⇒ fP(p′) = fP(p), where ≈ is

the symmetric part of <.

By the transitivity of <, for any Pareto set P, the sets P ∪ A and S1 have a simple
structure described in the following lemma.

Lemma 3. Under the conditions of Lemma 2, S1 = P ∪ A = {x ∈ X | ∃ p ∈ P : p ≈ x}, where
S1 and A are defined by (15) and (13), respectively.

Lemmas 2 and 3, Propositions 4 and 5, and Corollary 1 yield the following special case
of Theorem 1 for Pareto sets.

Corollary 2. Suppose that a preorder < on X has a utility representation uαβ satisfying (8) and
P ⊆ X is a Pareto set. Then, a function fP : P→ R is strictly monotonically extendable to (X,<)
if and only if it is upper-bounded on all lower P-contours, lower-bounded on all upper P-contours,
and satisfies

[
p, p′ ∈ P and p′ ≈ p

]
⇒ fP(p′) = fP(p), where ≈ is the symmetric part of <.

Under these conditions, the function f : X → R such that
f (x) = fP(p), whenever p ≈ x and p ∈ P;
f (x) is defined by (14) or (16), when x 6∈ P ∪ A = S1

is a strictly increasing extension of fP to (X,<) coinciding with (12).

It follows from Corollary 2 that for a Pareto set P, functions fP and uαβ influence f in a
similar but different way: f reduces to fP on P ∪ A = S1, to uαβ on S4, and is determined

by the sum f ↓P (x) + uαβ(x) or f P
↑(x) + uαβ(x) on S2 ∪ S3.

4. Discussion and Connections to Related Work
Problems of extending real-valued functions while preserving monotonicity (some-

times called lifting problems [28]) have been considered primarily in topology. Therefore,
continuity was usually a property to be preserved. This strand of literature started with the
following theorem of general topology.

Urysohn’s extension theorem [40]. A topological space (X, τ) is normal (a topological space
(X, τ) is called normal if for any two disjoint closed subsets of X there are two disjoint open
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subsets each covering one of the closed subsets) if and only if every continuous real-valued
function fP whose domain is a closed subset P ⊂ X can be extended to a function continuous on X.

For metric spaces, a counterpart to this theorem was proved by Tietze [41].
Nachbin [3] obtained extension theorems for functions defined on preordered spaces.

In his terminology, a topological space (X, τ,<) equipped with a preorder < is normally
preordered if for any two disjoint closed sets F0, F1 ⊂ X, F0 being decreasing (i.e., with every
x ∈ F0 containing all y ∈ X such that y 4 x) and F1 increasing (with every x ∈ F1 containing
all y ∈ X such that y < x), there exist disjoint open sets V0 and V1, decreasing and
increasing, respectively, such that F0 ⊆ V0 and F1 ⊆ V1. The space is normally ordered if,
in addition, its preorder < is antisymmetric (i.e., it is a partial order).

Nachbin’s lifting theorem [3] for compact sets in ordered spaces. In any normally ordered
space (X, τ,<) whose partial order < is a closed subset of X×X, every continuous weakly increas-
ing real-valued function defined on any compact set P ⊂ X can be extended to X in such a way as
to remain continuous and weakly increasing.

An analogous theorem for more general normally preordered spaces is ([42], (Theorem 3.4)).
Sufficient conditions for (X, τ,<) to be normally preordered are (a) compactness of X and <
belonging to the class of closed partial orders ([3], (Theorem 4 in Chapter 1)) (this result
was strengthened in [42]) and (b) connectedness and closedness of < [43].

Additional utility extension theorems in which P is a compact set, fP is continuous,
and f is required to be continuous and weakly increasing as well as fP are discussed in [9].

The extendability of continuous functions defined on noncompact sets P requires a
stronger condition. It can be formulated as follows:

For a function fP : P→ R, where P ⊆ X, let the lower fP-contour and the upper fP-contour
of r ∈ R denote the sets f−1

P ((−∞, r]) ≡ {p ∈ P | fP(p) ≤ r} and f−1
P ([ r,+∞)) ≡ {p ∈ P |

fP(p) ≥ r}, respectively. Let us say that fP is inversely closure-increasing if for any r, r′ ∈ R
such that r < r′, there exist two disjoint closed subsets of X: a decreasing set containing
f−1
P ((−∞, r]) and an increasing set containing f−1

P ([ r′,+∞)).

Nachbin’s lifting theorem [3] for closed sets in preordered spaces. In any normally pre-
ordered space (X, τ,<), a continuous weakly increasing bounded function fP defined on a closed
subset P ⊂ X can be extended to X in such a way as to remain continuous, weakly increasing, and
bounded if and only if fP is inversely closure-increasing.

For several other results regarding the extension of weakly increasing functions de-
fined on noncompact sets P, we refer to [21,42,44].

Theorems on the extension of strictly increasing functions were obtained in [21–24].
Herden’s Theorem 3.2 [21] contains a compound condition consisting of several arithmetic
and set-theoretic parts, which is not easy to grasp. To formulate a more transparent
result ([23], (Theorem 2.1)) let us introduce the following notation. Using Definition 3,
for any Z ⊆ X, define the decreasing cover of Z, d(Z) =

⋃
z∈Z X↑(z) and the increasing cover

of Z, i(Z) =
⋃

z∈Z X↓(z). In these terms, Z is decreasing (increasing) whenever Z = d(Z)
(resp., Z = i(Z)). A preorder is said to be continuous [45] if for every open V ⊂ X, both
d(V) and i(V) are open. A preorder < is separable (on connections between versions of
preorders’ separability and denseness, see [37]) if there exists a countable Z ⊆ X such
that [x, x′ ∈ X and x ≺ x′] ⇒ [x, x′ ∈ Z or (x ≺ z ≺ x′ for some z ∈ Z)]. For x ∈ X,
denote by V x

d and V x
i the collections of open decreasing and open increasing sets containing

x, respectively.

Hüsseinov’s extension theorem [23] for strictly increasing functions. In any normally pre-
ordered space (X, τ,<) with a separable and continuous preorder<, a continuous strictly increasing
function fP defined on a nonempty closed subset P ⊂ X can be extended to X in such a way as to
remain continuous and strictly increasing if and only if fP is such that for any x, x′ ∈ X, x′ � x

implies f ↓P (x′) > f P
↑(x), and for any x ∈ X, M(x) ≥ m(x), where
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m(x) = inf
Vd∈V x

d

sup{ f (p) | p∈ P ∩Vd} and M(x) = sup
Vi∈V x

i

inf{ f (p) | p∈ P ∩Vi}

with the convention that m(x) = inf{ f (p) | p ∈ P} if P ∩ Vd = ∅ for some Vd ∈ V x
d , and

M(x) = sup{ f (p) | p∈ P} if P ∩Vi = ∅ for some Vi ∈ V x
i .

This theorem is a topological counterpart to the first part of our Theorem 1. Consider
the discrete topology in which every subset of X is open. Then, the space (X, τ,<) is
normally preordered, and the preorder < is continuous, as well as any function fP. The
separability of < in Hüsseinov’s theorem ensures its representability by utility, which is
explicitly assumed in Theorem 1.

Condition M(x) ≥ m(x) reduces to f ���P (x) ≥ f P
��� (x), where f ���P (x) and f P

��� (x) modify

f ↓P (x) and f P
↑(x) by taking values sup{ fP(p) | p ∈ P} or inf{ fP(p) | p ∈ P} instead of

+∞ or −∞ when P↓(x) = ∅ or P↑(x) = ∅, respectively. It is easily seen that conditions

f ���P (x) ≥ f P
��� (x) and f ↓P (x) ≥ f P

↑(x) are equivalent (cf. Remark 1), therefore, by (i)⇔ (ii) of

Proposition 1, M(x) ≥ m(x) for all x ∈ X reduces in the discrete topology to the weak
increase property of fP.

The last condition, x′ � x⇒ f ↓P (x′) > f P
↑(x), proposed in [39] and forming the essence

of gap-safe increase, is required for all x, x′ ∈ X in the above theorem and for all x, x′ ∈ X̃
in Theorem 1. This difference is significant, as the following example illustrates.

Example 2. X = Z \ N = {0,−1,−2, ...}; < =
⋃

x∈X\{0}{(0, x), (x, x)} ∪ {(0, 0)}; P =

X \ {0}; fP(p) = −p for all p ∈ P.
Then, fP has no strictly increasing extension to (X,<) and is not gap-safe increasing, since

+∞ � 0, but +∞ = f ↓P (+∞) 6> f P
↑(0) = +∞. However, x′ � x ⇒ f ↓P (x′) > f P

↑(x) for all

x, x′ ∈ X; therefore, the above theorem claims that fP is strictly monotonically extendable to (X,<).

The reason for the above claim is that ([23], (Theorem 2.1)) was actually proved for
a bounded function fP; however, the boundedness condition was removed by a remark
erroneously claiming that this condition was not essential. Note that the lifting theorems
in [28] apply to either bounded functions fP or compact sets P. The method of extension
proposed in the present paper differs from the classical approach, which is systematically
applied to continuous functions.

In [22], Hüsseinov shows that condition M(x) ≥ m(x) for all x ∈ X is equivalent
to the necessary and sufficient extendability condition for a weakly increasing bounded
function fP defined on a closed subset of a preordered space, i.e., to the aforementioned
Nachbin property of being inversely closure-increasing.

The problem of extending utility functions without continuity constraints was consid-
ered in [39] with the focus on the functions representing Pareto partial orders on Euclidean
spaces. Partial orders are antisymmetric preorders; therefore, preorders are more flexible,
allowing symmetry (x < y, y < x) on a pair of distinct elements, while partial orders
only allow “negative” (x 6< y, y 6< x) symmetry. Symmetry is an adequate model for the
equivalence between objects (which suggests the same value of the utility function), while
“negative” symmetry can model the absence of information, which is generally compatible
with unequal utility values.

Returning to the meaning of Theorem 1, observe that together with Proposition 4, it
implies that for any fP, the utility on the set N = {x ∈ X | @p ∈ P : p < x or x < p} can
be defined using any bounded representation uαβ of <. If α and β > α are fixed, then by
Proposition 5 and Corollary 1, f ≡ uαβ can be set on the region S4 (see (15)), which contains
N and can be significantly wider. Such a definition cannot violate the extendability of fP
to (X,<). This observation demonstrates that the results obtained solve the problem of
updating utility functions. In this problem, given (X,<) and a bounded utility function uαβ

representing <, we consider fP as a function that contains corrective information. The task
is to find a condition under which fP is extendable to (X,<) in such a way that the resulting
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updated utility function f coincides with uαβ on N (or on S4 ⊇ N) and to construct such
an extension.

Versions of Theorem 1 and Corollary 2 were used in [46,47] to construct implicit
representations of scoring procedures for preference aggregation and the evaluation of
the centrality of network nodes. More specifically, theorems of this type allow us to move
from axioms that determine a positive impact of the comparative results of objects and
“neighbors’ power” on their functional scores to the conclusion that the scores are a solution
to a system of equations determined by a strictly increasing function.

5. Proofs

Proof of Proposition 1. (i)⇒ (ii). Let (i) hold. For any x∈X, if P↑(x) = ∅ or P↓(x) = ∅,

then f P
↑(x) = −∞ or f ↓P (x) = +∞, respectively, with f ↓P (x) ≥ f P

↑(x) in both cases. Other-

wise, p′ ∈ P↑(x) and p′′ ∈ P↓(x) imply p′′ < x < p′, and p′′ < p′ by the transitivity of <.
Hence, fP(p′′) ≥ fP(p′) by (i). Therefore, inf{ fP(p′′) | p′′ ∈ P↓(x)} ≥ sup{ fP(p′) | p′ ∈
P↑(x)}, i.e., f ↓P (x) ≥ f P

↑(x).

(ii)⇒ (iii). Let (ii) hold. Then, for any x, x′ ∈ X such that x′ < x, using (5), we obtain
f ↓P (x′) ≥ f ↓P (x) ≥ f P

↑(x).

(iii)⇒ (ii). As < is reflexive, (ii) follows from (iii).
(iv) ⇔ (i) ⇔ (v). [For all p ∈ P, fP(p) ≥ f P

↑(p)]⇔ [for all p, p′ ∈ P, (p < p′) ⇒

( fP(p) ≥ fP(p′))]⇔ [for all p′ ∈ P, f ↓P (p′) ≥ fP(p′)].
(vi)⇒ (iv). [(vi) and the last inequality of (7)]⇒ (iv).
(ii)⇒ (vi) as P ⊆ X.

Proof of Proposition 2. Let fP be gap-safe increasing.
(a) Assume that fP is not strictly increasing. Since fP is weakly increasing, there are

p, p′ ∈ P such that p′ � p and fP(p) = fP(p′). Then, by (7), f P
↑(p) ≥ fP(p) = fP(p′) ≥

f ↓P (p′) holds, i.e., fP is not gap-safe increasing. Therefore, the assumption is wrong.
(b) Let P↑(x) be the lower P-contour of some x ∈ X. By definition, +∞ ∈ X̃

and +∞ � x. Since fP is gap-safe increasing, +∞ = f ↓P (+∞) > f P
↑(x). Since f P

↑(x) =

sup
{

fP(p) | p ∈ P↑(x)
}

, fP is upper-bounded on P↑(x). Similarly, fP is lower-bounded on
all upper P-contours.

Next, we prove Proposition 5; then, it is used to prove Proposition 4 and Theorem 1.

Proof of Proposition 5. Let x ∈ S1. Since f ↓P (x)− f P
↑(x) ≤ β− α, we have

min
{

f ↓P (x), β
}
− f P
↑(x) ≤ β− α,

f ↓P (x)−max
{

f P
↑(x), α

}
≤ β− α,

hence
f P
↑(x) ≥ min

{
f ↓P (x), β

}
− β + α,

f ↓P (x) ≤ max
{

f P
↑(x), α

}
− α + β.

Therefore, (12) reduces to f (x) = f P
↑(x)

(
1− u01(x)

)
+ f ↓P (x)u01(x).

Let x ∈ S2. Inequalities f ↓P (x) − f P
↑(x) ≥ β − α and f ↓P (x) ≤ β imply f P

↑(x) ≤ α,

hence (11) reduces to f (x) = f ↓P (x) + uαβ(x)− β.
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Let x ∈ S3. Inequalities f ↓P (x) − f P
↑(x) ≥ β − α and f P

↑(x) ≥ α imply f ↓P (x) ≥ β,

hence (11) reduces to f (x) = f P
↑(x) + uαβ(x)− α.

Finally, let x ∈ S4, i.e., f P
↑(x) ≤ α and f ↓P (x) ≥ β. Substituting max

{
f P
↑(x)− α, 0

}
= 0

and min
{

f ↓P (x)− β, 0
}
= 0 into (12) yields f (x) = uαβ(x).

Proof of Proposition 4. Let x ∈ P. Then, by (7) and (8), f ↓P (x) − f P
↑(x) ≤ β − α, hence

x ∈ S1. Using Proposition 5, we have f (x) = fP(x)
(
1− u01(x)

)
+ fP(x) u01(x) = fP(x).

Let x ∈ U. Then, f ↓P (x) = +∞, hence (12) reduces to f (x) = max
{

f P
↑(x)− α, 0

}
+

uαβ(x). Similarly, if x ∈ L, then f P
↑(x) = −∞, and (12) reduces to f (x) = min

{
f ↓P (x)−

β, 0
}
+ uαβ(x).

Finally, if x ∈ N, then f P
↑(x) = −∞ and f ↓P (x) = +∞, whence f P

↑(x) < α and

f ↓P (x) > β, and Proposition 5 provides f (x) = uαβ(x).

Proof of Theorem 1. Suppose that fP is strictly monotonically extendable to (X,<). Then,
fP is strictly increasing with respect to <. Assume that fP is not gap-safe increasing.

This implies that there are x, x′ ∈ X̃ such that x′ � x and f ↓P (x′) ≤ f P
↑(x). If x, x′ ∈ X,

then using this inequality, the definition of f P
↑ and f ↓P , and the strict monotonicity of

f , we obtain f (x′) ≤ f ↓P (x′) ≤ f P
↑(x) ≤ f (x), whence f (x′) ≤ f (x), and as x′ � x, f

is not strictly increasing. Therefore, {x, x′} 6⊆ X. If x ∈ X̃ \ X, then x′ � x implies
x = −∞ and x′ ∈ X ∪ {+∞}. By the assumption, f ↓P (x′) ≤ f P

↑(x) = sup ∅ = −∞, hence

f ↓P (x′) = −∞; thus, x′ 6= +∞ and x′ ∈ X. Since f ↓P (x′) = −∞, f (x′) cannot be assigned a
value compatible with the strict monotonicity of f , whence fP is not strictly monotonically
extendable to (X,<), there is a contradiction. The case of x′ ∈ X̃ \ X is considered similarly.
It is proved that fP is gap-safe increasing whenever fP is strictly monotonically extendable
to (X,<).

Now, let fP be gap-safe increasing. By Proposition 4, the restriction of f to P coincides
with fP.

It remains to prove that f is strictly increasing on X. This can be shown directly by
analyzing expression (11). Here, we give a proof that does not require the analysis of special
cases with min and max.

By Proposition 5, function (11) coincides with (16), where uαβ and u01 are related
by (10).

We use Lemma 1. First, consider any x, x′ ∈ X such that x′ ≈ x and show that f (x′) =
f (x). By (6), f P

↑(x′) = f P
↑(x) and f ↓P (x′) = f ↓P (x). Furthermore, uαβ and u01 are strictly

increasing with respect to < by definition; hence, uαβ(x′) = uαβ(x) and u01(x′) = u01(x).
Therefore, by (16), f (x′) = f (x) holds.

Now, suppose that x, x′ ∈ X and x′ � x. Then, by (5) and the strict monotonicity of
uαβ and u01, we have

uαβ(x′) > uαβ(x),
u01(x′) > u01(x),

f P
↑(x′) ≥ f P

↑(x),

f ↓P (x′) ≥ f ↓P (x).

(17)

Let x and x′ belong to the same region: S2, S3, or S4. Inequalities (17) yield

f ↓P (x′) + uαβ(x′)− β > f ↓P (x) + uαβ(x)− β,

f P
↑(x′) + uαβ(x′)− α > f P

↑(x) + uαβ(x)− α;
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hence, by (16), f is strictly increasing on each of these regions.
If x, x′ ∈ S1, then by (16), (17), (9), and item (ii) of Proposition 1,

f (x′)− f (x) ≥ f P
↑(x)

(
1− u01(x′)

)
+ f ↓P (x)u01(x′)

− f P
↑(x)

(
1− u01(x)

)
− f ↓P (x)u01(x)

=
(

f ↓P (x)− f P
↑(x)

)(
u01(x′)− u01(x)

)
≥ 0.

This implies that f (x′) = f (x) is possible only if f ↓P (x′) = f ↓P (x) and f ↓P (x) = f P
↑(x),

hence only if f ↓P (x′) = f P
↑(x). The last equality is impossible, since fP is gap-safe increasing

by assumption. Therefore, f (x′) > f (x), and f is strictly increasing on S1.
Now, let x and x′ belong to different regions Si and Sj. Consider the points that

represent x and x′ in the three-dimensional space with axes corresponding to f P
↑(·), f ↓P (·),

and u01(·). Let us connect these points,
(

f P
↑(x), f ↓P (x), u01(x)

)
and

(
f P
↑(x′), f ↓P (x′), u01(x′)

)
,

by a line segment. The projections of this segment and the borders of the regions S1, S2, S3,
and S4 onto the plane u01 = 0 are illustrated in Figure 1.
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(
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↑(x), f ↓P (x)

)(a1, b1)
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(
f P
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Figure 1. An example of line segment
[(

f P
↑(x), f ↓P (x), u01(x)

)
,
(

f P
↑(x′), f ↓P (x′), u01(x′)

)]
in the R3 space

with axes f P
↑(·), f ↓P (·), and u01(·) projected onto the plane u01 = 0.

Suppose that (a1, b1, u1), . . . , (am, bm, um), m ∈ {1, 2, 3}, are the consecutive points

where the line segment
[(

f P
↑(x), f ↓P (x), u01(x)

)
,
(

f P
↑(x′), f ↓P (x′), u01(x′)

)]
crosses the planes



Mathematics 2023, 11, 4688 15 of 18

f P
↑(x) = α, f ↓P (x) = β, and f ↓P (x)− f P

↑(x) = β− α separating the S-regions on the way from

x to x′. Then, by the linearity of the segment, it holds that

f P
↑(x) ≤ a1 ≤ · · · ≤ am ≤ f P

↑(x′), (18)

f ↓P (x) ≤ b1 ≤ · · · ≤ bm ≤ f ↓P (x′), (19)
u01(x) < u1 < · · · < um < u01(x′)

with strict inequalities in (18) or in (19), or in both (since otherwise x and x′ belong to the
same S-region).

Consider f represented by (16) as a function f̆ (a, b, v) of a = f P
↑(x), b = f ↓P (x), and v =

u01(x). Then, using the fact that f̆ (a, b, v) is nondecreasing in all variables on each region,
strictly increasing in v on S2, S3, and S4, and strictly increasing in a and b on S1, and the
fact that each point (ai, bi, vi) (1 ≤ i ≤ m) belongs to both regions on the border of which it
lies, we obtain

f (x) = f̆
(

f P
↑(x), f ↓P (x), u01(x)

)
< f̆ (a1, b1, v1) < · · · < f̆ (am, bm, vm)

< f̆
(

f P
↑(x′), f ↓P (x′), u01(x′)

)
= f (x′).

Thus, x′ � x⇒ f (x′) > f (x), and f is strictly increasing. Theorem 1 is proved.

Proof of Corollary 1. x ∈ N ⇒ P↑(x) = P↓(x) = ∅; hence, f P
↑(x) = −∞ and f ↓P (x) = +∞,

which satisfies the conditions of S4.
f P
↑(x) = f ↓P (x) implies x ∈ S1, whence f (x) = f P

↑(x) follows from (16).

If x ≈ p and p ∈ P, then since fP is gap-safe increasing and thus weakly increasing,
Equation (6), Remark 2, and (i) ⇔ (iv) ⇔ (v) of Proposition 1 imply f P

↑(x) = f P
↑(p) =

fP(p) = f ↓P (p) = f ↓P (x); hence, x ∈ S1 and f (x) = f P
↑(x) = fP(p).

Proof of Lemma 2. If fP is gap-safe increasing, then the conditions presented in Lemma 2
are satisfied due to Proposition 2 and Lemma 1.

Conversely, suppose that these conditions hold. By the definition of a Pareto set,
for any p, p′ ∈ P, p′ < p reduces to p′ ≈ p, and the condition

[
p′ ≈ p ⇒ fP(p′) = fP(p)

]
implies that fP is weakly increasing.

Assume that fP is not gap-safe increasing. Then, there exist x, x′ ∈ X̃ such that x′ � x

and f ↓P (x′) ≤ f P
↑(x). This is possible only if (a) P↓(x′) = ∅, or (b) P↑(x) = ∅, or (c) there

are p, p′ ∈ P such that p′ < x′ � x < p. However, in (a), f ↓P (x′) = +∞ = f P
↑(x) and

x ∈ X (since x = −∞ is incompatible with f P
↑(x) = +∞ and x = +∞ is incompatible

with x′ � x); hence, fP is not upper-bounded on a lower P-contour. Similarly, in (b),

f P
↑(x) = −∞ = f ↓P (x′) and x′ ∈ X (since x′ = +∞ is incompatible with f ↓P (x′) = −∞

and x′ = −∞ is incompatible with x′ � x); hence, fP is not lower-bounded on an upper
P-contour. In (c), by the “mixed” strict transitivity of preorders (x < y � z ⇒ x � z and
x � y < z⇒ x � z), we have p′ � p; hence, P is not a Pareto set. In all cases, we obtain a
contradiction; therefore, fP is gap-safe increasing.

Proof of Lemma 3. Let x ∈ S1. Then, P↓(x) 6= ∅ and P↑(x) 6= ∅. Indeed, otherwise, either

f ↓P (x) = +∞ or f P
↑(x) = −∞, and since fP is upper-bounded on all lower P-contours

and lower-bounded on all upper P-contours, f ↓P (x)− f P
↑(x) = +∞, which contradicts the

assumption. Therefore, x ∈ P ∪ A.
Let x ∈ P ∪ A. Then, there exist p, p′ ∈ P such that

p′ < x < p (20)
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and by the transitivity of <, p′ < p. Since P is a Pareto set, p′ 6� p. By the transitivity of �,
the latter is incompatible with p′ � x � p in (20); consequently, x ≈ p for some p ∈ P.

Let x ≈ p for some p ∈ P. Then, by the last statement of Corollary 1, x ∈ S1. This
completes the proof.

6. Conclusions
The paper presents a strict-extendability condition and, if this condition is met, a class

of extensions for a function fP defined on an arbitrary subset P of an arbitrary set X
equipped with a preorder<. For any bounded utility representation uαβ of<, the proposed
class contains an extension f of fP that updates uαβ in the sense that f coincides with uαβ

on a region of X that includes the set of P-neutral (incomparable in terms of < with the
members of P) elements of X. The class of extensions under study is presented in several
forms, which clarify its properties. If all elements of X are feasible, then the conditions for
the extendability of fP to X are actually those of the consistency of fP . The necessary and
sufficient extendability condition, i.e., the gap-safe increase property of fP, and the proposed
extension simplify when P is a Pareto set. The results obtained are not consequences of
topological theorems found in the literature. Versions of these results have been used
to show that certain indirect scoring procedures designed for preference aggregation or
measuring centrality in networks produce scores that are solutions to systems of equations
of a special form.

The formulation of the gap-safe increase involves augmenting X with two absolute <-
extrema, which makes the condition sufficient. The structure of this condition is similar to
that of the inverse closure-increase, which is equivalent to the extendability of a continuous
weakly increasing function fP defined on a closed subset P ⊂ X (we refer to [8] for a related
discussion). Moreover, as mentioned in Section 4, the latter “inverse” condition has an
equivalent “direct” counterpart. Relationships of this kind deserve further study.

Among other problems, we mention: (1) exploring relationships between various
extensions proposed earlier for continuous functions and the extension proposed in this
paper; (2) characterizing the entire class of extensions of fP to (X,<) (and, for instance,
to (Rk, Pareto preorder)); (3) exploring the extension problem with R as the range of f
replaced by certain other posets.
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Appendix A. Binary Relations
A binary relation R on a set X is a set of ordered pairs (x, y) of elements of X (R ⊆ X×X);

(x, y) ∈ R is abbreviated as xRy.
A binary relation is

• Reflexive if xRx holds for all x ∈ X;
• Irreflexive if xRx holds for no x ∈ X;
• Transitive if xRy and yRz imply xRz for all x, y, z ∈ X;
• Symmetric if xRy implies yRx for all x, y ∈ X;
• Antisymmetric if xRy and yRx imply x = y for all x, y ∈ X;
• Connected if xRy or yRx holds for all x, y ∈ X such that x 6= y.

A binary relation is a/an:
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• Preorder (or quasi-order) if it is transitive and reflexive;
• Partial order if it is transitive, reflexive, and antisymmetric;
• Strict partial order if it is transitive and irreflexive;
• Weak order if it is a connected preorder;
• Linear (or total) order if it is an antisymmetric weak order (or, equivalently, a connected

partial order);
• Strict linear order if it is a connected strict partial order;
• Equivalence relation if it is transitive, reflexive, and symmetric.

A relation R extends a relation R0 if R0 ⊆ R.
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