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Abstract: We present a theoretical framework that links Fermat’s principle of least time to optimal
transport theory via a cost function that enforces local transport. The proposed cost function captures
the physical constraints inherent in wave propagation; when paired with specific mass distributions,
it yields shortest paths in the considered media through the optimal transport plans. In the discrete
setting, our formulation results in physically significant optimal couplings, whose off-diagonal entries
identify shortest paths in both directed and undirected graphs. For undirected graphs with positive
edge weights, commonly used to parameterize seismic media, our method provides solutions to the
Eikonal equation consistent with those from the Dijkstra algorithm. For directed negative-weight
graphs, corresponding to transportation cost matrices with negative entries, our approach aligns with
the Bellman–Ford algorithm but offers considerable computational advantages. We also highlight
potential research directions. These include the use of sparse cost matrices to reduce the number of
unknowns and constraints in the considered transportation problem, and solving specific classes of
optimal transport problems through the Dijkstra algorithm to enhance computational efficiency.

Keywords: transportation theory; ray theory; shortest path problem

MSC: 49Q22; 86A22; 05C12

1. Introduction

The origins of optimal transport theory can be traced back to Gaspard Monge in the
18th century [1]. Monge’s initial problem was rooted in practical concerns, specifically
the relocation of soil in the context of construction projects. He aimed to determine the
most efficient way to move piles of sand to fill holes, while minimizing worker effort.
More generally, optimal transport seeks the cheapest way—in terms of transportation cost—
of reshaping a mass distribution into another, or of relocating resources from suppliers
to consumers.

Over the years, the theory of optimal transport has transcended its original applica-
tion and nowadays plays a central role in many areas of applied mathematics, including
biology, fluid mechanics, image processing, machine learning, inverse and optimization
problems [2–5]. In the field of geophysics, optimal transport found its first application in
exploration seismology less than a decade ago [6], and since then, it has garnered increasing
attention [7–9].

The renewed interest in this theory, particularly within the seismological community,
can be largely attributed to optimal transport inducing a metric; this is known as the Wasser-
stein or optimal-transport distance, and provides a measure of similarity between density
functions. The optimal-transport distance carries interesting properties, which render it
amenable to seismic data analysis [10]. For example, when associated with specific (trans-
portation) cost functions and normalizations of seismic waveforms, it exhibits robustness to
noise and convexity with respect to data translation and dilation [10]. Furthermore, unlike
the Euclidean distance—which measures point-wise similarity between seismograms—
the Wasserstein distance offers holistic comparisons, considering simultaneously both
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their amplitude and phase. Overall, these properties have proven beneficial in mitigating
cycle-skipping challenges in waveform-inversion tasks [11,12].

While a significant portion of recent geophysical research has delved into the properties
of the Wasserstein distance, the physical interpretability of optimal transport plans remains
less explored [13]. This study aims to present an unconventional formulation of the optimal
transportation problem, conceived from a simple geometric idea linking Fermat’s principle
of least time to the optimal-transport distance. This leads us to devise a cost function that—
when used in conjunction with particular mass distributions—reflects wave propagation in
heterogeneous media, resulting in transport plans with clear physical significance. The thus
identified optimal transport plans allow for tracing rays in the given media, yielding, in the
discrete case, approximate solutions to the Eikonal equation.

2. Optimal Transport Theory: A Primer

We briefly introduce in this section the mathematical formalism of optimal transport,
from Monge’s initial formulation [1] to its generalization by Kantorovich [14]. As antici-
pated, optimal transport concerns distributions of “mass” or “density”, which represent
the supply and demand of resources. While many studies treat these distributions as
probability measures [15], we consider general mass distributions without normalization.

2.1. Monge Formulation

Let α(x) and β(y) be non-negative measures defined over domains X and Y respec-
tively, representing the supply and demand distributions. These are assumed to have the
same mass, i.e., ∫

X
α(x)dx =

∫
Y

β(y)dy. (1)

Monge’s problem seeks a transport map f : X → Y that transforms α into β and is
bijective, ensuring no mass splitting. Among all feasible (mass-preserving) transport maps
F , the optimal one minimizes the total transportation cost

d(α, β) = min
f∈F

∫
X

c(x, f (x))α(x)dx, (2)

where c : X×Y → R≥0 denotes the cost of transporting a unit mass from x ∈ X to f (x) ∈ Y.
(For clarity, throughout this manuscript, we use R≥0 to denote the set of non-negative
real numbers.)

2.2. Kantorovich Formulation

In 1942, Léon Kantorovich provided a relaxation of Monge’s problem by allowing
mass to be split and combined during transport [14]. This leads to the concept of the
transport plan, which describes how mass is transported from each point in X to each point
in Y. A feasible plan, π(x, y), must satisfy

α(x) =
∫

Y
π(x, y)dy (3a)

β(y) =
∫

X
π(x, y)dx. (3b)

The optimal plan is then determined by minimizing the total transportation cost over the
set Π of all feasible plans, i.e.,

π∗ = arg min
π∈Π

∫
X×Y

c(x, y)dπ(x, y). (4)

Commonly [9,13], the cost function is chosen as c(x, y) = |x − y|p, leading to the p-
Wasserstein distance dWp(α, β) = p

√
d(α, β).
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2.3. Discrete Optimal Transport

The continuous formulation of Kantorovitch can be translated into a discrete form by
introducing the concept of coupling, which serves as the discrete counterpart of the transport
plan. Given a discretization of the domains X and Y into n and m bins, respectively, let
a ∈ Rn

≥0 and b ∈ Rm
≥0 denote the supply and demand vectors, chosen such that ∑i a = ∑j b.

A feasible coupling, P(a, b) ∈ Rn×m
≥0 , must satisfy

∑
j

Pi,j = a (5a)

∑
i

Pi,j = b. (5b)

In other words, each entry Pi,j represents the amount of mass transported from the ith bin
in X to the jth bin in Y [15].

Similar to Equation (4), the optimal coupling minimizes the transportation cost, i.e.,

P∗ = arg min
P∈U

∑
i,j

Ci,jPi,j, (6)

where Ci,j is the cost of transporting a unit of mass from the ith to the jth bin, and U denotes
the set of all feasible couplings. Determining P∗ amounts to solving a linear programming
problem [16], although the optimal solution is not guaranteed to be unique [15].

3. Linking Optimal Transport to Wave Propagation

Wave propagation in elastic media, such as the Earth’s subsurface, results in a continu-
ous flow of energy or, equivalently, a displacement of mass. At high frequencies, where
the wavelength is significantly shorter than the scale of heterogeneities in the medium,
the continuous wavefront of a propagating seismic wave can be approximated using ray the-
ory [17,18]. In ray theory, waves are represented by rays that travel along paths determined
by the medium’s properties, specifically its velocity structure (or its reciprocal, slowness).
The corresponding wave travel times are stationary with respect to perturbations in the ray
path, a concept rooted in Fermat’s principle.

The link between optimal transport and ray theory becomes clear when we think of
the propagation of a seismic wave as a flow of energy within the medium. In the context
of optimal transport, such an energy flow can be analogously viewed as a sequential
movement of mass. Starting from a source point xs (representing the hypocenter), mass
is successively transported through its immediate neighborhood, progressing from one
neighboring point to another, until it eventually reaches a target point xr (representing,
for example, a receiver). This sequence of infinitesimally small transport steps mirrors the
wavefront’s continuous advance through the medium.

3.1. Cost Function and Mass Distributions

To formalize the above idea, we first need to choose appropriate mass distributions,
defined over the spatial domain X ⊆ Rn, so as to induce a mass flow (in the optimal-
transport sense) from xs ∈ X to xr ∈ X. Here, X is assumed to be connected in the
topological sense, i.e., any two points in X can be joined by a continuous path lying entirely
within X. An obvious choice for such distributions is

α(x) =

{
2 if x = xs

1 otherwise
(7a)
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and

β(x) =

{
2 if x = xr

1 otherwise,
(7b)

requiring a unit of mass to be relocated from xs to xr.
Let Bε(x) = {y ∈ X : ‖y− x‖ < ε}, where ‖ · ‖ denotes the Euclidean norm, be the

ε-neighborhood (or ball) of any point x ∈ X, with ε being a small positive real number.
Then, we can define the transportation cost function

c(x, y) =


0 if x = y
t(x, y) if y ∈ Bε(x)
∞ otherwise,

(8)

where t(x, y) > 0 denotes the time required for a wave to travel from x to y. Throughout
this manuscript, any transport associated with an infinite cost is treated as unallowed,
ensuring that the optimal-transport distance remains finite. Since the cost function (8)
assigns infinite cost to the transport of mass between non-neighboring points, it strictly
enforces local transport, reflecting the physical constraints of wave propagation. Note how
this definition departs from “traditional” optimal transport formulations, where mass can
be transported across larger distances without prohibitive costs [6,9].

3.2. Existence of the Transport Plan

Proposition 1. Given the mass distributions (7), defined over the connected domain X, and the
cost function (8), there exists a feasible (mass-preserving) transport plan π. This transport plan
must involve a continuous path for mass transport between the source, xs, and the receiver, xr,
within the domain X.

Proof. To transform α into β, a unit of mass must be moved from xs to xr. Without loss of
generality, assume that xs and xr are not immediate neighbors, i.e., xs /∈ Bε(xr). By defi-
nition, the cost function (8) assigns infinite cost to transport mass between any two non-
neighboring points. Since the mass cannot be transported from xs to xr directly, it must
come from a neighboring point of xr, say xp ∈ Bε(xr). Transporting mass to xr from xp
induces a mass deficit at xp; in turn, this must be rectified by transporting a unit of mass to
xp from another neighboring point, say xq ∈ Bε(xp).

The described sequence of mass-transport steps, compensating for the mass deficit
at successive neighbors, must eventually be traced back to xs, the original location with
a surplus of mass. It follows that a feasible transport plan must involve a sequence of
neighboring points that identify a continuous path for mass transport from xs to xr within
X. The existence of such a continuous path is guaranteed by the connectedness of X, thus
concluding the proof.

3.3. Optimal Transport Plan

It is important to recognize that, while a continuous path for mass transport from xs
to xr is ensured by Proposition 1, a feasible transport plan is not required to move mass
along this path exclusively. In fact, mass transport between neighboring points that do
not lie directly on the path from xs to xr may still satisfy mass balance; however, since
by definition c(x, y) > 0 if x 6= y, such mass movements will necessarily incur higher
transportation costs.

Corollary 1. From the above discussion, we deduce that an optimal transport plan, as defined by
Equation (4), must involve mass transport exclusively along a continuous path (as described in
Proposition 1) connecting xs to xr.
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We emphasize that the optimal transport plan is not guaranteed to be unique, i.e., mul-
tiple plans associated with the same transportation cost may exist. For instance, consider a
medium with uniform slowness everywhere except for a high-slowness region situated
along the most direct route from xs to xr. This configuration leads to multiple optimal paths
for wave propagation that circumvent the high-slowness region. Specifically, due to the
symmetry of the problem, two equivalent optimal paths can be identified in the 2-D setting
(Figure 1) and infinitely many in 3-D.

High
Slowness

Uniform
Slowness

Equivalent
Ray Paths

Figure 1. Schematic illustration of a 2-D seismic medium characterized by uniform slowness except
for a high-slowness region (dark grey) along the most direct route between a seismic source (star)
and a receiver (triangle). In this configuration, two stationary ray paths exist (red lines), both
corresponding to the least arrival time of the wave at the receiver.

3.4. Optimal-Transport Distance as Least Arrival Time

We established that an optimal transport plan always exists, and this involves a
continuous path for mass transport connecting xs and xr. Building on this foundation, we
now aim to demonstrate the following theorem.

Theorem 1. Consider the mass distributions (7), defined over the connected domain X, and the
cost function (8). The optimal-transport distance, d(α, β), associated with the optimal transport
plan (4), corresponds to the least arrival time at xr of a wave generated at xs.

Proof. Consider a continuous path P from xs to xr within the domain X. We can decompose
this path into a sequence of infinitesimally small segments ds, each lying entirely within an
ε-neighborhood of some point in X. From (8), the transportation cost between neighboring
points x and y ∈ Bε(x) is c(x, y) = t(x, y), where t(x, y) denotes the time required by a
wave to travel between the two points. According to Corollary 1, the optimal transport
plan must direct mass exclusively along a continuous path that connects xs and xr. This is
because any deviations or additional mass exchanges across the domain X would increase
the total transportation cost.

It follows that the optimal transport plan is the one minimizing
∫

P ρsds, where ρs
is the average slowness of the infinitesimal segment ds. The optimal-transport distance
therefore reads

d(α, β) = min
P∈P

∫
P

ρsds, (9)

where P denotes the set of all continuous paths connecting xs and xr. In the context of
our formulation, d(α, β) represents a time duration, specifically the cumulative time taken
to traverse the path P given the slowness structure. This minimal time, in accordance
with Fermat’s principle of least time, represents the propagation time of a wave from xs to
xr [17].
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3.5. Tracing Multiple Rays

The mass distributions defined in Equation (7), which we used earlier to trace a wave
generated at xs and recorded at xr, can be generalized to accommodate N receivers located
at xr1 , xr2 , . . . , xrN . To this end, we introduce the mass distributions

αN(x) =

{
2N if x = xs

N otherwise
(10a)

and

βN(x) =

{
N + 1 if x ∈ R
N otherwise,

(10b)

whereR ⊆ X denotes the set of receivers.

Proposition 2. Under the conditions of Theorem 1, given the mass distributions αN and βN from
Equation (10), there exists an optimal transport plan. This plan transports mass along continuous
paths from xs to each receiver, with each path being the shortest in terms of wave travel time.

Proof. To transform αN into βN , N units of mass must be redistributed from the source
xs to the receivers R, with each receiver xri ∈ R receiving one unit. The structure of the
cost function (8) requires that each such mass transportation take place along a continuous
path, Pi, spanning a sequence of neighborhoods from xs to xri . Building on the proof of
Proposition 1, the existence of a feasible transport plan is guaranteed by the connectedness
of X and the mass excess at the source xs in αN . Furthermore, as established in Corollary 1,
any mass exchanges in the domain X outside the paths P1, P2, . . . , PN must result in higher
transportation costs. It follows that an optimal transport plan will involve transportation
of mass exclusively along such continuous paths.

As deduced in Theorem 1, an optimal transport of mass to each receiver xri minimizes∫
Pi

ρsds, where ds denotes an infinitesimal segment of Pi and ρs its slowness. Since the total
transportation cost equals the cumulative cost of transporting mass along P1, P2, . . . , PN ,
an optimal transport plan minimizes h = ∑N

i
∫

Pi
ρsds. Minimizing h is equivalent to

minimizing the individual transportation costs to each receiver, i.e.,

min

(
N

∑
i

∫
Pi

ρsds

)
=

N

∑
i

min
Pi∈Pi

(∫
Pi

ρsds
)

, (11)

where Pi denotes the set of all continuous paths connecting xs and xri . By Theorem 1,
the minimal cost (11) is achieved when each Pi corresponds to a path of least propagation
time, thus completing the proof.

Corollary 2. A direct implication of Proposition 2 is that the optimal-transport distance, d(αN , βN),
associated with the optimal transport plan (4), equals the cumulative arrival times of the wave at
each receiver. Specifically,

d(αN , βN) =
N

∑
i=1

d(α1, β
(ri)
1 ), (12)

where α1 and β
(ri)
1 are the mass distributions from Equations (7a) and (7b), respectively, and the

superscript ri denotes the receiver.

4. Numerical Validation

In this section, we aim to demonstrate that the derived theory can be implemented in
computer code using the discrete optimal transport formulation (Section 2.3). While our
study focuses on 2-D media discretized through regular grids for simplicity, the founda-
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tional principles of our approach—optimal transport and wave propagation—are inherently
geometric. As such, they are not limited by dimensionality, allowing our methodology to
be applicable in 2-D, 3-D, as well as higher-dimensional spaces.

4.1. Cost Matrix

Consider a 2-D medium discretized through a Cartesian grid with uniform spacing
along both dimensions. Let s ∈ Rn

>0 be the medium’s slowness in each of the n pixels
identified by the grid (Figure 2a). To implement the theoretical framework from Section 3,
a cost matrix is required that restricts mass transport to neighboring nodes and has entries
with time as their physical unit.

Figure 2. (a) Discretization of a 2-D medium into a grid with uniform (unitary) spacing along both
dimensions, resulting in n = 36 pixels. Each pixel has a value of slowness and a central node. The red
lines highlight the neighbors of the node at (x4, y4), located in horizontally, vertically, and diagonally
adjacent pixels. (b) Cost matrix (14), derived from the discretization in (a). In this case, C is a
36× 36 matrix where only a limited number of entries are finite, as indicated by the background color
(gray corresponds to non-finite entries). Row and column indexes in (b) correspond to the numbers
reported in the lower right of each pixel in (a).

To construct such a matrix, we define a connected undirected graph, G(V , E), where
the vertex set V consists of nodes placed at the center of each pixel, and the edge set E
connects only neighboring nodes. Here, we consider two nodes to be neighbors if they
reside within adjacent pixels (Figure 2a). For instance, with a unitary grid spacing along
both dimensions, neighboring nodes would be those within a distance of either 1 (for
horizontally or vertically adjacent pixels) or

√
2 (for diagonally adjacent pixels). Nodes not

directly connected by an edge are considered infinitely distant from each other.
Accordingly, let D ∈ Rn×n

≥0 be the distance matrix where each entry Di,j =√
(xi − xj)2 + (yi − yj)2 is the Euclidean distance between nodes i and j, with (xi, yi) denot-

ing the coordinates of i. Entries corresponding to non-neighboring nodes are set to infinity.
Likewise, we introduce a slowness matrix S ∈ Rn×n

≥0 , chosen such that

Si,j =


si if i = j,
si+sj

2 if i and j are neighboring nodes,
∞ otherwise.

(13)
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The slowness and distance matrices allow us to define the cost matrix C ∈ Rn×n
≥0 , with entries

Ci,j = Di,jSi,j, (14)

which serves as the discrete counterpart of the cost function (8). In fact, the above definition
results in Ci,j = 0 if i = j, Ci,j = ti,j if i and j are neighbors (similar to Section 3, ti,j denotes
the time required by a wave to travel from node i to node j), and Ci,j = ∞ otherwise.
An example of the structure of C is illustrated in Figure 2b.

4.2. Mass Vectors

We emphasize that the cost matrix (14) is determined solely by the medium’s param-
eterization, via D, and its slowness. Conversely, the mass vectors a ∈ Rn

≥0 and b ∈ Rn
≥0,

which act as the discrete analogs of the supply and demand distributions from Section 3,
depend on the locations of the source and receivers. Similar to Equation (10), these are
computed by assigning an appropriate amount of mass to each node in the vertex set V .
In the case of N receivers belonging to the setR ⊆ V ,

ai =

{
2N if (xi, yi) = (xs, ys)

N otherwise
(15a)

and

bi =

{
N + 1 if (xi, yi) ∈ R
N otherwise,

(15b)

where (xs, ys) denotes the coordinates of the source.

4.3. Optimal Coupling and Its Physical Significance

Given the cost matrix (14) and the mass vectors (15), we can compute an optimal
coupling P∗, representing the discrete counterpart of the optimal transport plan. This is
achieved by solving the linear program (6), subject to the constraints (5).

Recall from Section 3 that, for a connected domain, an optimal transport plan inher-
ently directs mass along paths from the source to the receivers. As established by Theorem 1
and Proposition 2, these paths are the shortest in terms of wave arrival time. This principle
is visually reinforced by Figure 3, which presents two examples of optimal couplings asso-
ciated with the cost matrix shown in Figure 2b and different source–receiver configurations.
A characteristic of these couplings is that only a limited number of off-diagonal entries are
non-zero. Each such entry P∗i,j represents the amount of mass transported from the ith to the
jth position within the discretized domain. When visualized as arrows connecting nodes
i and j in the graph G (Figure 3b,d), these mass transports delineate “continuous” paths
that connect the source to the receivers. Notably, the identified paths often deviate from
the most direct routes, bending towards low-slowness regions of the medium to ensure
minimal arrival times [19]. This aspect highlights the physical meaning of P∗, making it a
tool for ray tracing in heterogeneous media.
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Figure 3. Optimal couplings, (a,c), associated with the source (star) receivers (triangles) configuration
shown in (b,d). The two couplings were computed using the cost matrix in Figure 2b and the mass
vectors in Equation (15). Note how each off-diagonal entry P∗i,j corresponds to a mass transport from
the ith to the jth node; this is visualized through arrows in (b,d), with colors representing the amount
of transported mass.

4.4. Optimal Coupling as an Eikonal Solver

As established earlier, off-diagonal entries of an optimal coupling relate to wave
propagation between adjacent nodes. This intrinsic property can be exploited to obtain
approximate solutions to the Eikonal equation

|∇t(xs, x)| = s(x), (16)

where s denotes the medium’s slowness, and it is emphasized that the wave travel time t to
a point x is dependent on the source location xs.

In our context, solving Equation (16) involves determining the travel time t ∈ Rn
≥0 across

n discrete locations that define the medium’s parameterization. Based on Proposition 2, this
is achieved by positioning a “receiver” at the center of each pixel that discretizes the
medium; with R = V , the mass vectors (15) are computed accordingly. The resulting
optimal coupling P∗ enables the calculation of the wave’s travel time throughout the
medium to each node. In fact, its off-diagonal entries, P∗i,j, correspond to fractional paths
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taken by the wave to propagate from the ith to the jth node. Starting from a given node,
this information can be used to trace the ray’s trajectory back to its source, concurrently
computing the arrival time as detailed in Algorithm 1.

Algorithm 1 Retrieve arrival time at a node.

Input: Target node i, Source node u, Optimal coupling P∗, Cost matrix C
Output: Arrival time t at node i
t← 0
j← i
while j 6= u do

Find k 6= j such that P∗k,j > 0 . Search for off-diagonal entry
t← t + Ck,j . Add the time taken to travel from k to j
j← k . Move one step closer to the source

end while

4.5. Accuracy of the Eikonal Solution

To validate our approach, we employ the P-wave component of the Marmousi
model [20], a 2-D slowness model known for its complex subsurface structure (Figure 4a).
We first select an arbitrary wave-source position (Figure 4b) and define the mass vectors (15)
using 432,776 receivers, each corresponding to a pixel in Figure 4a. We then compute the
cost matrix (14), based on the known distances between adjacent nodes and the slowness
structure as described in Section 4.1. Finally, we retrieve the optimal coupling P∗ by solving
the linear program (6), subject to the constraints (5).

Figure 4. (a) P-wave component of the Marmousi model. (b) Wave travel time across the medium,
with the red star denoting the source position.

Figure 4b shows the resulting travel times. Notably, our results are equivalent to those
derived from the Dijkstra algorithm [21], given the same parameterization or undirected
graph. (We omitted the image from Dijkstra’s algorithm as it is identical to ours within
floating-point precision, making its inclusion redundant.) This congruence is a logical
outcome of the foundational principles of both methodologies. In fact, our method identifies
the most efficient paths for wave propagation through a heterogeneous medium (Theorem 1
and Proposition 2). Likewise, the Dijkstra algorithm inherently determines the shortest
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paths between nodes in a weighted graph, where the weights represent the traversal cost
or time. Consequently, given identical node distributions and travel costs, our approach is
to be considered as accurate as the Dijkstra algorithm and, by extension, the shortest-path
networks frequently used in the literature for seismic ray tracing [19,22].

5. Beyond Seismic Media

Building on the theoretical framework presented in Section 3, we have thus far focused
on media with strictly positive slowness, discretized through undirected graphs. Drawing
a parallel between optimal transport and wavefront propagation, we showed that our
approach allows for determining shortest paths in the considered graph, yielding the
same results as the Dijkstra algorithm. In this section, we shall consider more general cost
functions, admitting negative transportation costs. In particular, we aim to show that our
method retrieves the shortest paths within directed graphs characterized by the presence of
negative edge weights, consistent with the Bellman–Ford algorithm [23].

5.1. Directed Graphs with Negative Edge Weights

Directed graphs with negative edge weights, while not common in seismology, are of
significant interest in other disciplines. In seismology, negative weights would imply the
existence of media with negative slowness, a non-physical scenario. However, in computer
networking, such graphs are able to represent certain paths or connections that offer
rewards or credits [24,25]. For instance, in some network protocols, a node might “credit”
data packets sent along a particular route, assigning a negative cost to incentivize its use.

Another intriguing application of negative edge weights lies in the route planning
for electric vehicles [26,27]. Unlike fossil-fueled ones, electric vehicles can recover energy
under certain conditions, such as while decelerating. This capability, known as regenerative
braking, allows them to recharge their battery while in motion, resulting in negative costs in
terms of energy consumption. In terrains with varied topography, efficient route planning
is therefore crucial, as downhill segments offer opportunities for energy recovery through
deceleration [28].

In directed graphs with negative weights, the Bellman–Ford algorithm can reliably
find the optimal solution to the above shortest-path problems, given two conditions: (i) a
viable route between the path’s endpoints exists, and (ii) no negative cycle is present along
the route. Here, by “negative cycle”, we refer to the circumstance where traveling in a loop
from a node in the graph to the same node results in a net negative or zero cost. (For clarity,
such a cycle would be akin to an electric car that, perpetually traveling within a closed
trajectory or loop, produces as much or more energy than it consumes, thereby defying the
fundamental laws of energy conservation.)

5.2. Negative Transportation Costs

In the continuous setting, let us reconsider the cost function (8), this time allowing for
negative transportation costs. Namely,

c(x, y) =


0 if x = y
w(x, y) if y ∈ Bε(x)
∞ otherwise,

(17)

where w(x, y) is a real-valued function.

Proposition 3. Consider the cost function (17) and the mass distributions (7), defined over the
connected domain X. Under the assumption that no closed trajectory with net negative transporta-
tion cost exists in X, the optimal transport plan, as defined by (4), must involve mass transport
exclusively along the shortest path between the considered origin, xs, and destination, xr.
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Proof. Building upon Proposition 1, any feasible transport plan must involve transporta-
tion of mass along a continuous path connecting xs and xr, the existence of which is ensured
by the connectedness of X and the mass excess at xs. In the absence of closed paths with net
negative cost in X, any transport plan that involves mass exchanges between pairs of neigh-
boring points, or sequences of neighbors throughout closed trajectories, will have a net
positive cost. It follows that an optimal transport plan will not involve any mass exchanges
across the domain except for those happening along the continuous path connecting origin
and destination; in fact, any deviations from this path must necessarily result in higher
transportation costs.

Analogous to the reasoning in Theorem 1, the optimal transport plan will favor the
least costly route among all continuous connections between the two considered endpoints
in X. This route is also known as the shortest path.

Corollary 3. Under the conditions of Proposition 3 and considering the mass distributions (10) for
multiple destinations, the optimal transport plan corresponds to mass transports along the shortest
paths from the origin to each destination. This follows directly from the arguments presented in the
proofs of Propositions 2 and 3.

Remark 1. Throughout our discussion, we considered X as a connected domain, a natural assump-
tion given the inherent physical continuity of seismic media. However, Proposition 3 and Corollary 3
remain valid even for non-connected domains, provided a continuous path exists between the origin
and each destination. This observation is relevant in contexts such as electric vehicles traveling
across topographic terrains, where domain connectivity may not be guaranteed.

5.3. Energy-Efficient Routes in Topographic Terrains

To validate the proposed framework, we conduct synthetic numerical tests, simulating
the navigation of a topographic terrain with an electric vehicle equipped with regenerative
braking capabilities. We consider a discretized topographic surface comprising n pixels,
with the elevation of the ith pixel corresponding to the ith entry of z ∈ Rn (Figure 5a).

Figure 5. (a) Topographic surface discretized into n = 36 pixels through a grid with unitary spacing
along both dimensions. The yellow star and triangle denote the origin xs and destination xr, which
are used to calculate the mass vectors (15). (b) Cost matrix (18), derived from the topography in (a).
Note the matrix’s asymmetry compared to Figure 2b, which reflects the asymmetric nature of the
directed graph G ′ introduced in Section 5.3. (c) Optimal coupling P∗, derived from the cost matrix (18)
and the mass vectors (15). The shortest path connecting xs and xr, as identified by the off-diagonal
entries of P∗, is shown in the form of red arrows in panel (a).

Drawing from Section 4.1, we define the directed graph G ′ , with nodes at each pixel
center and edges connecting only neighboring nodes. Based on G ′ , we introduce the cost
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matrix C
′ ∈ Rn×n, where each entry C

′
i,j is set to zero if i = j and to +∞ if i and j are

non-neighboring nodes. We choose the remaining entries such that

C
′
i,j =

{
li,jE0 + gi,jk+ if gi,j ≥ 0
li,jE0 + gi,jk− if gi,j < 0,

(18)

where li,j denotes the Euclidean distance between nodes i and j, gi,j =
zj−zi

li,j
the signed to-

pographic gradient, and E0 the base energy required to travel a unit of distance. The factors
k+ and k− account for the variations in energy requirement during uphill and downhill
traversals, respectively.

It is important to note that, although the cost matrix (18) captures the asymmetry
in energy consumption due to topographic gradients (Figure 5b), it offers a simplified
representation of an electric car’s energy requirement. Here, we employ Equation (18) for
illustrative purposes, and arbitrarily set E0 = 5, k+ = 0.15 and k− = 0.1.

Analogous to Section 4, we use Equation (15) to define the mass vectors for specific
configurations of origin and destinations. In conjunction with the cost matrix (18), we use
the mass vectors to compute an optimal coupling P∗, by solving the linear program (6).
Figure 5c shows an example of such a coupling; note how the off-diagonal entries of P∗,
corresponding to mass transports between nearby nodes, identify a “continuous” path that
connects the origin and destination (Figure 5a). Once again, this path deviates from the
most direct route to minimize the total transportation or travel cost.

In a second test, we consider a topographic surface finely discretized into n = 62,001 pix-
els (Figure 6a) and determine the travel cost from a specific origin point (Figure 6b). This is
achieved by defining the mass vectors (15) through 62,001 “receivers” (i.e., destinations,
each located at a pixel center), which are used to retrieve an optimal coupling. The energy
required to reach each destination is then computed via the off-diagonal entries of the
optimal coupling as per Algorithm 1. In fact, while Algorithm 1 was introduced in the
context of wave propagation to calculate arrival times, here it retrieves an energy cost due
to the definition of the cost matrix (18).

Figure 6. (a) Topographic surface discretized into n = 62,001 pixels. (b) Energy required to travel
from the origin (red star) throughout the terrain, obtained from the optimal coupling as explained in
Section 5.3.

Similar to our earlier comparison with the Dijkstra algorithm in Section 4.5, the re-
sults presented in Figure 6b closely match (within floating-point precision) those derived
from the Bellman–Ford algorithm, given an analogous directed-graph parameterization.
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This consistency highlights the robustness of our approach, suggesting its reliability in
calculating shortest paths in graphs with negative edge weights.

6. Technical and Computational Remarks

A key observation in the transportation problems solved across this manuscript is
the “sparsity” of the cost matrices (14) and (18). In fact, most of their entries, Ci,j and C

′
i,j,

are infinite (Figures 2b and 5b); these infinite values inherently indicate prohibited mass
transports between nodes i and j, ensuring that the corresponding entries in the resulting
optimal coupling are zero (Figures 3a,c and 5c). Since such entries in the optimal coupling
are known, the sparsity of C and C

′
significantly reduces the number of decision variables

and constraints in the linear-programming problem (6), making it more tractable.
Leveraging the mentioned sparsity, we evaluate the computational efficiency of our

approach by computing approximate solutions to the Eikonal Equation (16) based on
increasingly larger undirected graphs G(V , E). In this experiment, each such graph corre-
sponds to a 2-D seismic medium defined by random slowness (0.2–2 s/m) and discretized
via a regular grid as described in Section 4.1. For each parameterization, we randomly
select a source position and compute the wave arrival times throughout the medium, based
on our approach, and the Dijkstra and Bellman–Ford algorithms. We repeat this calculation
fifty times to estimate the average running time and standard deviation for each method.
Here and throughout the manuscript, we employ the Dijkstra and Bellman–Ford algorithm
implementations from the SciPy Python library [29]; for solving the linear program (6), we
use the network simplex algorithm [15] provided by the DOcplex Python API [30].

The outcome of this experiment is illustrated in Table 1. Although the Dijkstra algo-
rithm consistently demonstrates superior computational efficiency, our optimal-transport
approach exhibits a significant advantage over the Bellman–Ford algorithm. In fact, based
on the collected running times, we estimate computational complexities of O(VE) for the
Bellman–Ford algorithm and O(V2) for solving our transportation problem; this implies
that the relative efficiency of our method, compared with the Bellman–Ford algorithm,
becomes increasingly evident as the associated graph grows in size.

Table 1. Average running time (in ms) and standard deviation for the Dijkstra, Bellman–Ford and
optimal-transport (OT) algorithms on undirected graphs with random edge weights, with V and
E denoting the number of graph nodes and edges. The reported times, obtained using a 6-core
(AMD Ryzen 5 5600H) laptop with 16 GB of RAM, omit the computations needed to determine the
graph weights.

V E Dijkstra Bellman–Ford OT

400 2964 0.21 ± 0.06 1.92 ± 0.42 15.58 ± 0.97
1600 12,324 0.42 ± 0.01 29.60 ± 0.47 96.05 ± 2.08
3600 28,084 0.87 ± 0.22 150.91 ± 2.57 195.31 ± 5.22
6400 50,244 1.46 ± 0.08 480.75 ± 8.84 358.32 ± 8.99
10,000 78,804 2.36 ± 0.16 1184.05 ± 20.83 653.19 ± 29.23
16,900 133,644 4.27 ± 0.92 3383.53 ± 59.46 1450.47 ± 33.10
25,600 202,884 6.36 ± 0.47 7750.18 ± 110.86 2715.73 ± 73.76
40,000 317,604 10.93 ± 2.65 18,968.36 ± 265.16 5440.09 ± 147.60
62,500 497,004 16.19 ± 0.46 46,406.79 ± 755.12 11,245.12 ± 799.94

7. Future Directions and Conclusions

We showed that optimal transport theory can be used to compute shortest paths in
heterogeneous media through ad hoc transportation cost functions and mass distributions.
In the discrete setting, the derived theoretical framework can be readily translated into
computer code and applied to connected graphs with either positive or negative edge
weights. For graphs with positive weights, optimal transport provides shortest-path
solutions analogous to those obtained from the Dijkstra algorithm. For graphs with negative
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weights—assuming the absence of negative cycles—our method aligns with the Bellman–
Ford algorithm.

The computational tests presented in this study highlight the advantages of our ap-
proach over the Bellman–Ford algorithm when dealing with negative-weight graphs, even
though these are infrequently encountered in geophysical parameterizations. Consequently,
the immediate applicability of our method to seismic ray-tracing problems might be limited,
especially given the Dijkstra algorithm’s superior computational efficiency.

Nevertheless, the novel approach introduced here opens potential avenues for future
research. One promising direction involves the use of sparse transportation cost matrices,
characterized by infinite entries associated with distant node pairs. These matrices inher-
ently produce optimal couplings that emphasize local transport. Furthermore, their sparsity
reduces the number of unknowns and constraints in the associated transportation problems,
offering computational benefits. This principle might find utility in scenarios where local
mass transport is advantageous, or where this constraint provides valid approximations.
For instance, sparse cost matrices could facilitate the transformation of regular grids into
curvilinear ones through optimal transport, with each grid point’s distortion representing
local mass transport.

Another intriguing research direction arises from the established relationship between
optimal transport theory and wave propagation. The Dijkstra algorithm, by design, re-
trieves shortest paths on undirected graphs, with each path consisting of a node sequence
originating from the source. In our optimal transport framework, such node sequences are
identified by the off-diagonal entries of the optimal couplings. It follows that the Dijkstra
algorithm can be employed to derive optimal couplings when the transportation problem
is framed as a shortest-path or wave-propagation problem. Given the Dijkstra algorithm’s
computational advantage over the network simplex algorithm, this idea can potentially
lead to significant speed-ups in the solution of specific classes of transportation problems.
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