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Abstract: The aim of this paper is to introduce and investigate some new subclasses of bi-concave
functions using g-convolution and some applications. These special cases are obtaining by making
use of a g- derivative linear operator. For the new introduced subclasses, the authors obtain the first
two initial Taylor-Maclaurin coefficients |c;| and |c3| of bi-concave functions. For certain values of
the parameters, the authors deduce interesting corollaries for coefficient bounds which imply special
cases of the new introduced operator. Also, we develop two examples for coefficients |c;| and |c3]| for
certain functions.
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1. Introduction and Preliminaries

Assuming that .4 denote the class of functions with the given form:

—+o00
Fle)=¢+ ) g, (cel), 1)
n=2

which in the unit disc i = {g : |¢| < 1} are analytic and univalent, and let the function
H € Abe given by

—+o0
H(g):=¢+ Y dug", cel. )
n=2

Then, 7 and ‘H Hadamard (or convolution) product is given by
—+o00

(FxH)(g) :=c+ Y cadug", c€U.
n=2

For each univalent function F € A4, the Koebe one-quarter Theorem ([1]) establishes
that the disk with radius (1/4) belongs to the image of . An inverse F ! of a function
F € A exists and is satisfied.

FF @) =, <|<oy < Ro(F), Ro(F) > i)

where
G(@)=F Y @) =@ — cr® + <2c§ — C3>(D3—
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<5C%—5C2C3+C4>w4+..., @ EeU. 3)

The study of analytic and bi-univalent functions is revitalized in 2010 by Srivastava et al.,
and the literature has since been supplemented with many sequels to their paper (see [2]).
A function F € A is called to as bi-univalent in ¢/ if 7 and F~! are both univalent in /.

LetX denote the class of bi-univalent functions in ¢/ given by (1). Note that the functions

Fi(g) = fz( ) = %log 1%2, F3(¢) = —log(1l — ¢), with their corresponding

i Frl@) = Fl@) = ), e = &=
inverses JF; (w) = 14-7' , (@) = o173 (o) =
(see [2]). For a brief history and interesting examples in the class X, see [3]. Brannan and
Taha [4] (see also [2]) introduced certain subclasses of the bi-univalent functions class %
similar to the familiar subclasses S*(«) and K(«) of starlike and convex functions of order
a (0 < a < 1), respectively (see [3]), where the function G is the analytic extension of F !
to U given by (3).

The function F : U — Cis said to belong to the family Cy(«) if F satisfies the following
conditions:

(i) F is analytic in i with the standard normalization F(0) = F (0) — 1 = 0;
(ii) F maps U conformally onto a set whose complement with respect to C is convex;
(ili) The opening angle of F () at oo is less than or equal to ta, a € (1,2].

, are elements of X

Concave univalent functions are referred to as the class Cy(«), and for a thorough
study of concave functions (see [5,6]). In particular, the inequality

%<1+ g]f(é))> <0, (celU),

is used. Bhowmik et al. [7] showed that an analytic function / maps U onto a concave
domain of angle 7«, if and only if R(Px(g)) > 0, where

2

Pr(c) = ——

(@+)(l+e) | ¢F (g)
2(1-¢) Flo) |

There have been a number of investigations on basic subclasses of concave univalent

functions (see [8,9]).
For 0 < g < 1, the g-derivative operator [10,11] (see also [12]) for F * H is defined by

Dy(F *H)(g) :== Dy (g + +Z°)o cndng">

n=2
— -
_ (]:* H)(gzl _(;* H)(qg) =1 + Zz[ﬂ]qcndngn_ll ¢ S u/
where
1—¢" (S
[n]g = 1—gq =1+ ; 7, [O]q =0 @

Fora > —1and 0 < g < 1, El-Deeb et al. [12] defined the linear operator Rg‘_f’ A— A
as follows
RYF(6) * Lyara(6) = ¢ Dg(FxH) (), ¢ €U,

where the function Z, .1 is given by

Ry DC+1 -1
Tyui1(c) 9+Z n_;’" ¢", celU.
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A simple computation shows that

Ry F(g —g+2 cndn¢" (a>-1,0<g<1,gelU). (5)

+ 1 lgn—1
By using the operator R;//, we define a new operator as follows:

0 y
DY F(c) = Ry F(c)

DEFe) = 6 (RF@) + 14200 (RyF(©) +¢(R3IF(6)

!

;5g3(D$_2‘7(;m_1}"(g)) (1+20)? (D51 F ) +¢(D5H" R ()

D" Flg) =
Y (e —1) 4+ 1) g
= n n— C
°T L [+ 1]y " ng

+o0
= ¢+ ) pncng” (a>-1,0<g<1,méeNy=NU{0}, celf),
n=2

where
[”]q!

n =" 6(n—1)+1)" ——
pn = n""(8(n )+>[a+1]q,n71

dy. (6)

From the Definition relation (5), we can easily verify that the next relations hold for all
FeA

M o+ 1gD55"F(e) = [l D"‘“"mf(g) + 0" ¢ Dy (D3 " F (o)) ¢ € Us

chdng , ceU.

(i) Zy5F(g) := lim Dy " F(¢) = ¢+ bl n?"((n —1) +1)"
g—1 n=2

Remark 1. Taking different particular cases for the coefficients dy;, we obtain the next special cases

for the operator Dg A,

(i)  Fordy = 1and m = 0, we obtain the operator By defined by Srivastava et al. [13] as follows

By F —g+2 ———d", (a>-1,0<g<1,¢EU); (7)

+1qn1

3 (=)™ Ir(e+1)
(W) For dn = 4 = 1) (n + )
El-Deeb [14] as follows

, 0 > 0and m = 0, we obtain the operator /\/F‘,’fq defined by

(e g,

Np,q]:( )k _Q+nzz4n In—1)IT(n+p) [ac—i—l]w,_l

nlg!
:g+za[¥¢ncng”, (p>0,a>-1,0<g<1,¢€l), (8)

[ +1]q,n71
where (~1)-1r( )
()" T(e+1)
= 4n=1(n — )T (n+p)’ ©)
t+1
(iii) Ford, = (t+n> v>0,t>0 and m = 0, we obtain the opemtor/\/l " as follows
t+1 [n]q!
METF (g ! " g EeU; 10
+Z(Hn) CE o
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n—1
(iv) Ford, = he“’, o >0 and m = 0, we obtain the g-analogue of Poisson operator
1, defined by El-Deeb et al. [12] as follows
I3 F(g) =g+ Zo:O . ! g, c eU. (11)
n — 1 [0( + 1]q,n—1

Definition 1. Let the functions R, S : U — C be so constrained that

min{R(R(¢), R(S(¢)} >0,

and

In recent years, using the idea of analytic and bi-univalent functions, many ideas
have been developed by different well-known authors. Also, the fractional g-calculus was
applied in the geometric function theory, which has a new generalization of the classical
operators. The concept of g-calculus operator has been broadly been applied in various
fields, including optimal control, quantum physics, g-difference, fractional sub-diffusion
equations, hypergeometric series and g-integral equations.

Now, we define the following subclass of bi-concave functions B;“j(;mco (A):

Definition 2. Let the function F have the form (1), which is said to be in the class Bj{ﬂ;mco(/\) if
the following conditions are satisfied:

"

Dy F
—1—€(%5 @2 eRWU), (12)

(D5 F (o))

2 (A+MH(0+9)

Fex, with 1 20— o)

and
"

2 a+Ax1+w)_1_W(DﬁTgwﬂ)
A—1 2(1—(@) ( ,qmg( ))

witha > -1, 0 < g <1, m,é6 € Ngand A € (1,2], where (3) denotes the function G, which is
the analytic extension of F~! toU.

€ SU), (13)

Remark 2.

(~1)"'T(p+1)
T F T —1)I(n+p)
the functions F € X that satisfy (12) and (13) for Dy ’q’ substituted with /\/'F‘jf,7 (8);

(i)  Puttingd, = p > 0and m =0, we find that Ny 1Co(A) indicates

v
(ii) Putting <t+1) ,v >0,t> 0and m = 0, we obtain that M‘:’jCo()\) indicates the
t+n ’

functions F € X that satisfy (12) and (13) for D3/%" substituted with My (10);
n—1

(n—1)!
F € X that satisfy (12) and (13) for D“ q " substituted with 77 (11).

(iii) Putting e=%, 0 > 0and m = 0, we obtain that Ty'"Cy(\) indicates the functions

We established some results for coefficients bounds for bi-concave functions belonging
to the class B%{;mco()\).

2. Coefficient Bounds for the Function Class B;‘_lqémco()\)

In this section, we discuss a class of bi-univalent analytic functions by applying a
principle of convolution. In this sense, we establish in advance a new g-linear differential
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les| < min{

8()\+1)2+()\71)2<

operator. Further we provide an estimate for the function coefficients |cz| and |c3| of the

new classes.

Theorem 1. If the function F given by (1) belongs to the class BZZ;mCo(/\), and A € (1,2], then

(A*1)2<]R’(0)‘2+5’(0)‘2> (A2—1)<‘R/(O)’+‘S,(O)D
3203 * 803 ’

. A+1)?
|c2] < min J (4p%) +

"

(;H)( R (o)'+ s (o)D ()
16(2p§—3p3) + 2(2p§—3p3) /

and

Rof+[sof) | ) (Roffso) a0 (& f+/s" o)

3203 803 48p3 ’

(- @m-A) R O 0-vgs @ L
2403 (203 3p3) 2(203—p3) (’

where p, (n € {2,3}) are defined by (6).

Proof. If F € B;;’q(;mco(/\), from (12) and (13), respectively. Hence, it follows that

"

2 |+M)(+g) € (D%mf(g))/ = R(¢),
A-1| 2(1-yg) (Dg‘j(;'”f(g))
and !
2 |+M)(1+@) @ (D%mg@)) = S(@),
A-1| 20-w) (D31"g(@))

(14)

(15)

(16)

(17)

where R and § satisfy the conditions of Definition 1. Then, the functions R(¢) and S(®)

have the following Taylor-Maclaurin series expansions:
R(g) =1+rg+rg+...,

and
S(@) =1+s51@ + 50>+ ...,

respectively. By equalizing according to the coefficients of ¢ and @ in (14) and (15), it is

obvious that
2[(1+A) —20200]

1_1 1,

2[(1+A) +405c3 —6p3cs] _
A—1

=712,

C2[(1+A) —2p0c]

1—1 51,

(18)

(19)

(20)
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and - 5
2[(A+1) +4p3c3 — 6p3(2c3 — c3) ] s 1)
A—1
Using (18) and (20), we obtain
r = —5s1, (22)
and from (18), we can write
=010 _@A-1, (23)

2p2 4p2

Squaring (18) and (20), after adding relations, we obtain

3 (A+1)? A-1>2(3+s}) (/\2—1)(

r1—s1). (24)
403 3203 803

Adding (19) and (21), we have

g A-Dizts) (A+1) )

8(203 —3p3)  2(207 —3p3)

Taking the absolute value of (24) and (25), we conclude that

!

s (o)‘)

a0 (RO Of) ey (Riof+
‘62| < 403 + 3203 * 803

and

a1 (R ©]+s" ©
lco| < (‘ ) D-I— (/\ztl) ,
16(20%—3p3) 2(203—3p3)

which gives the bound for |c;| as we asserted in our Theorem.
To find the bound for |c3|, by subtracting (21) from (19), we obtain

2 (A=D(r2—s)

c3 = Cy — 24p2 (26)

Also, upon substituting the value of in view of C% from (24) and (25) into (26), we obtain

2 (A=1)2(r24s2 A2-1 —1)(ry—s
03 = (1;:7?%\) ( )325]%1 1) ( 2 )(1,1 - (A 12)4(p§ 2), (27)
and
cn = A Dotsy) (4D (A=D(ra=s)) (28)
37 8(2033p3)  2(2033p3) 2dp; -

Taking the absolute value of (27) and (28), we obtain

/

s+ -2 ([ O +[s 0 ) ey (Rof+s o)) | 00K 0] o))
3203 + 803 T 48p3 ’

‘2

+

+

|c3] <

and

a-D@m-R)|R Ora-nds o L
24p3 (ZP%*3P3) 2(2p57p3) ’

This completes the proof of the Theorem. [

3] <

Putting m = d, = 1, we determine that S*7Cy(A) in Theorem 1, we obtain the
following Corollary:
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Corollary 1. For the function F given by (1) belonging to the class S*1Cy(A), and A € (1,2],

then
20150 w12 el |2
| (s )2 (A1) ([a+1],) (‘R (0)‘ +|S (0)‘ > (/\2_1)([a+1]q)2()R/(O)‘+’5/(O)D
|co| < min \l e =+ 32([2]!) * 8([2lq!)” ,
(A-1) (\R O|+]s" (0>'> (A+1)

and

_l’_
21\ 3 2,0 \*  3[3],!
16 <2< [“‘*j]q) - ["‘3+31qu2> 2<2( [“4";]‘7) B [“+1j]q,2
2

([a+1]q)2{8()\+1)2+()\71)2 R (0)| s’(o)f)]
lc3] < min +
32([2]41)
(2-1) (le+1],)* ([R ©)]+[' 0))) N ()\*1)[0#1]&7,2( R’ (o)’+ s’ (O)D
3! gt \2\|,” 2t \?| "
(A71)<3["‘“?m2 ([ q]ﬂ) ) ! (O)F(A*l)([’**?]ﬂ) ° (0)‘ (A+1)
24[3],! et \2 33! + Rt \2 3!
la+1], 2 <2<[a+1]q> _[a+1]q/2> 2<2<[a+1]q) _[a+1]q/2>
_1\n—1
Putting d, = ()" T(p+1) ,p > 0and m = 0in Theorem 1, we obtain the

4=1(n —1)T(n+p)
following Corollary:

Corollary 2. If the function F given by (1) belongs to the class ./\/’; Co(A), and A € (1,2], then

’ 2
) A+ ([t 1],)? (A=1)*(la-+1g) (‘R ‘ +‘5 (0)‘ ) (ALl)([aJrl]q)z()R’(o)‘Jr s’(o)()
2] < min J N (12,03 " 8(121y!) 92 ’
(Afl)( R (0)|+|s (O)D . (1)

2l )2 ! 2yt \? 5 3Bl ’
16<2<[1X+'hq> ¢§—%¢3> 2<2<[“+‘hq> ¢35 [a+1? ¢3>

_ {([a+1]q)2[8(?\+1)2+()\1)2(R/(0)‘2+‘S/(0)2)
|c3] < min 14

and

32([2]q1) "3

(A2-1)([a+1],) (‘R 0)’ ‘S O)D N (A— 1)[1x+1}q,2<R"’(0)+S (0)‘ ,
8([2ly!) "3 48130103

ety (380 (22 Y 2[R o) rmny (22 ) a2l o)
[+, 37\ Tet1]g [a+1]q 2 (A—i—l)

+ ,
24[3]4! [2]4! [3] [2]4! 3[3]¢
[vc+l]zlz¢3 <2<[a+1]q> ¢3— u¢+122¢3> 2<2< pEs| ) =) 24’3>

where ¢, (n € {2,3}) are defined by (9).

t+1

Puttmg dn = (t—i—n

Corollary:

) ,v>0,t > 0and m = 0in Theorem 1, we obtain the following
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Corollary 3. Let the function F given by (1) belongs to the class My, /Co(A), and A € (1,2],

then
]2+\s/(o)(2)

200 o2 2 (A-12(t+2)% (Ja+1],)* ( [R (0)
|C2| < min (A+1) (t+22 ([ac;l]q) n ( »1)2 ( i
4([2051)" (1) 32([21q!)" (t+1)>

!

N (A2-1) (t+2) (fa+1],)* (|R
8([2]g!)  (t+1)%

(0)]+

s’(o)‘)

R

-y ([ 0 'S © D N (o)

2 v 2 v ! v ’
(2@ ) () -2 () ) 2(a() () - ras (4))

and

[ ()2 {8(/\4—1)2—&-()\—1)2 ()R/ (0)‘2+‘S,(0)‘2>]
|c3| < min 5 +
32([2)41) " (t+1)>

!

(Az—l)(t+2)2"([a+l]q)z( R (0)‘+ s’(O)D (Afl)(t+3)”[a+1]q,z< R (0)'+ s’ (O)D
8([2el) (1) * B :
" O '

. 2 " 1\ 2 v
- (5205 () f(ilu) <%> )R o0 (85) ()] o

24(3]4! t+1 ! i 33 (@)1
a+1q2 t+3 2 [a+1]q/2 t+3

(A+1)

+
oo gt NP1V 3Bl (rr1Y
== (t+2) [at1]y 0 (t+3)

Putting d,, =

(;_ 1>'€_‘7, o > 0 and m = 0 in Theorem 1, we obtain the following
Corollary:

Corollary 4. Let the function F given by (1) belong to the class T, 'Co(A), and A € (1,2); then,

2 ’ 2 / 2
' (A1) (1], (A=1)*([a+1]g) (R (0)‘ +|s (0)‘ > (/\2—1)([a-i—l]q)z()R/(O)‘+’S/(O)D
leal < mm{J 402([2],,!)2«3—,720 + 3202([2]!) 20 + 802([2]!) e 20 ’

(/\71)< R’ (0)‘+ s’ (O)D . ()

1?2 | 12 !

) (o) | - ()
and
| (er)? {8(A+1)2+(A71)2< R,(O)‘2+ s (o)f)]

€3] < min 32([2]y1) 022 +

(12-1) (1, (|R )| +]s'0)]) . (H)[aﬂ}q,z( R (0) +‘s” (O)D

8([2]!) 022 24[3],10%
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2
3[3Jq! — 2lg! —20
(%1)(2[“1‘]7%2026 7<[a+q]q> 22 )
12[3]!02e=7 [2]4! 2 - 3[3],! s
[uiuq,z <2<[a+q]q> ol _<2[u+1?q,2>0—28 )
(A+1)

+ 2gt \* 3[3]g!
2 <2( [aﬁj]'q ) o2e 27— (2[&4—132[2 >‘7237‘7>

By specializing the functions R and S in Theorem 1, we obtain the following examples:

Example 1. Having the functions

B
R(g) = (1:) :1+2[3g+2,82g2—0—..., (0<p<1),

—..., (0<B<Y,

ok
s@):(ﬂ) —1-2p@ + 22>

and F given by (1), which belongs to the class B?_ZZ’SOCO()\), and A € (1,2], then

. (A+1)2([a+1]5)? —1)(] 0c+l]q)
lea| < mm{\/ (2,2 + £ 4(H Va +

B(12-1) ([a+1],)?
2(12)!)'

B*(A-1) + (A+1)
2! \? | 2l \? 3[3],! !
z<2<[a+‘hq) dg—[ﬂfﬂ@) 2( ([Hl} ) dz‘[a+1fq,zd3>

and
cs] < mind Z(EH1) [BATIH0-17] | p02-1) (1)) | FODirlys
- 4([2)y!) 3 2([2)g!) 3 oBlgtds
2 '\ 2
(H);ﬂ( rol e () d%)ﬂwlwz([ﬁ?jt,) & R
: + )
6[3]4! 24! 3[3]4! [2]g! 3[3]4!
[zx+1]¢;,2 a3 <2< [Hq]q ) d3— [a+1]£;,2 d3> 2 (2( Al ) d3— [a+1]qq/2 d3>

Example 2. Considering the functions

R(g):H(ll__gza)g:1—|—2(1—(T)g+2(1—(7)g2+..., 0<o<1),
S(w):17(11+—7£U)w:1—2(1—0)w+2(1—0)a)2+..., (0<o<1),

and F given by (1), which belongs to the class B Co( ), and A € (1,2], then
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. A+12(la+1))” | A=121-0)(la+1)y)" | (A2-1)(1— a)([:x+1 )?
|C2‘ < mll’l{\/ 4([2]q!)2d% + 3([2],7!)201% + 2([ 3 ) al2 ’

(A-1)(1—0)? n (A+1)
2t \* 5, 3 2t \* 30l ’
’ <2< Rty B R ”’3> ’ <2< witly) et

and
(1) B2+ (A-121-0)2] | (A2-1)(1-0)([a+1]y)? | (A=1)(1—0)2[a+1],7
<
s mm{ 4(21)' % T A Bl
Bl 2l \? 2lg
(A-1)(1-0)? <3[/X+ﬁ l2d37([”’{]q> d%>+(/\71)(170’)2<[a+1]q> 43 ) (1)

2 2
6[3]q! (2lq! 33! 24! 3(3]4!
S (o i24) 8- i) 222 ) 820

3. Concluding Remarks and Observations

In this study, we used the g-derivative operator D, ’q’ to introduce and examine the

properties of a few new subclasses of the class of analytlc and bi-concave functions in the
open unit disk /. We derived estimates for the initial Taylor-Maclaurin coefficients |c;|
and |c3| for functions belonging to the bi-concave function classes that are presented in this
study, among other features and results. In addition, we chose to deduce a few corollaries
and implications of our main points (see Theorem 1). Future studies may uncover special
features of the defined subclasses of analytic and bi-concave functions.
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