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Abstract: Pulmonary lobe segmentation is vital for clinical diagnosis and treatment. Deep neural
network-based pulmonary lobe segmentation methods have seen rapid development. However, there
are challenges that remain, e.g., pulmonary fissures are always not clear or incomplete, especially
in the complex situation of the trilobed right pulmonary, which leads to relatively poor results. To
address this issue, this study proposes a novel method, called nmPLS-Net, to segment pulmonary
lobes effectively using nmODE. Benefiting from its nonlinear and memory capacity, we construct
an encoding network based on nmODE to extract features of the entire lung and dependencies
between features. Then, we build a decoding network based on edge segmentation, which segments
pulmonary lobes and focuses on effectively detecting pulmonary fissures. The experimental results on
two datasets demonstrate that the proposed method achieves accurate pulmonary lobe segmentation.

Keywords: pulmonary lobe segmentation; neural memory ordinary differential equation;
multi-task learning

MSC: 68T07

1. Introduction

Pulmonary lobe segmentation plays a crucial role in clinical practice, including assist-
ing in diagnosing pulmonary diseases and planning lung surgeries. Relying on manual
pulmonary lobe segmentation is time-consuming and labor-intensive. Furthermore, manual
segmentation results can be influenced by subjective factors. Thus, an effective automatic
method is vital to ensure high efficiency and repeatability.

Although automatic pulmonary lobe segmentation algorithms have made significant
progress, there are still several challenges in their practical clinical application. Regarding
right pulmonary lobe segmentation, it comprises three lobes and is more complex than
the left ones. Specifically, the right middle lobe is sandwiched between two other lobes.
Moreover, segmenting pulmonary fissures always exhibit another challenge for unclear
or incomplete fissures. The existing methods rarely consider the crucial aspect of learning
correlations between features and cannot effectively extract the overall information between
samples, which is essential for resolving the abovementioned issue.

To address these issues, this study proposes a novel pulmonary lobe segmentation
method using nmODE [1], called nmPLS-Net. Firstly, this method benefits from the robust
nonlinear expressive and memory capabilities of nmODE, and the constructed model can
extract more complex and rich pulmonary features to support the precise segmentation
of pulmonary lobes. Then, due to the significant challenges in identifying pulmonary
fissures, nmPLS-Net leverages a fissure-enhanced associative learning approach, focusing
on learning detailed features of pulmonary fissures. Finally, this study utilizes two datasets
to evaluate the proposed method’s effectiveness. The experimental results demonstrate
that the proposed method achieves competitive results compared to other state-of-the-art
methods. The main contributions of this study can be summarized as follows:
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1. The main contribution of this study is the combination of nmODE with convolutional
neural networks in the task of pulmonary lobe segmentation. This combination
leverages nmODE’s high nonlinearity and memory capabilities better to identify
global pulmonary features and the relationships between these features;

2. This study employs a novel fissure-enhanced associative learning approach to make
the model focus on detail identification near pulmonary fissures;

3. This study conducted experiments on two datasets, and our network achieved com-
petitive overall segmentation results, significantly outperforming previous works in
segmenting the right middle pulmonary lobe.

2. Related Works
2.1. Medical Image Processing

Deep learning has found widespread application in medical image processing due
to its simplicity and efficiency. Early deep learning image segmentation networks have
used fully convolutional networks (FCNs) [2], demonstrating good performance due
to their ability to extract hierarchical features and end-to-end processing of inputs of
arbitrary sizes. However, an FCN’s limitation lies in the fact that it under-utilizes features
at different resolutions obtained from different layers, especially in large-resolution medical
images. U-Net [3], with its multi-level encoder-decoder architecture and skip connections,
addresses the FCN’s limitations and has gained popularity in medical image processing.
Shoaib et al. [4] used several different state-of-the-art convolutional neural networks to
perform left ventricle segmentation, achieving commendable results. Zhao [5] and his
team conducted a detailed investigation and analysis of deep learning methods for a
neuroimaging diagnosis of Alzheimer’s disease.

The introduction of the transformer [6] architecture had a profound impact on the
field of deep learning. Based on the transformer, the vision transformer (ViT) has found
widespread application in image processing. The swin-transformer [7] proposed by Liu et al.
addressed the computational challenges associated with ViT in image processing by incor-
porating a sliding window and partial attention mechanism. The swin-transformer v2 [8]
further improved upon the swin transformer. TransUNet [9], developed by Chen et al., com-
bines the strengths of U-Net and the transformer to process medical images. Shen et al. [10]
proposed a boundary-guided transformer that can simultaneously identify rectum and tu-
mor regions in sagittal MR images of rectal cancer patients. For a comprehensive overview
of related research, Liu et al. offered a survey [11]. Transformer-based approaches have
shown superior performance in many aspects. However, due to its huge parameters,
traditional 3D convolutional neural networks are currently more practical in this study.

Pulmonary lobe segmentation typically uses the entire CT scan as input. Three-
dimensional U-Net structures are commonly employed for this task, such as V-Net [12].
Based on V-Net, Imran et al. [13] introduced a progressive dense V-Net, enhancing perfor-
mance through feature fusion. Ferreira et al. [14] proposed FRV-Net, utilizing regularization
techniques to achieve better segmentation results, even with limited data. Tang et al. [15]
employed a mixed loss function to enhance the model’s focus on challenging pixels in pul-
monary lobes. While the previously mentioned methods have achieved good results, they
often have a large number of parameters. To obtain a more efficient network, Lee et al. [16]
introduced an efficient PLS-Net for pulmonary lobe segmentation. They leveraged 3D
depth-wise separable convolution to effectively reduce parameters while employing dilated
residual modules to enhance the network’s receptive field without increasing the parameter
count. Despite significantly reducing the model’s parameter count and improving the
receptive field, PLS-Net exhibits subpar performance at the pulmonary lobe edges and with
incomplete pulmonary fissures. To address the issue of incomplete fissures, Xie et al. [17]
harnessed relational modeling for pulmonary lobe segmentation, effectively capturing
relationships and contextual information among pulmonary lobes. However, this approach
comes at the cost of a substantially higher parameter count than PLS-Net, resulting in
relatively slower computational speeds due to its intricate process. Fan et al. [18] intro-
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duced a learnable interpolation and extrapolation network designed to handle incomplete
pulmonary fissures and enhance segmentation performance. Nevertheless, this method
necessitates five processing stages, including lung segmentation, pulmonary fissure segmen-
tation, pulmonary fissure completion, pulmonary lobe segmentation, and post-processing,
significantly diminishing its efficiency. Liu et al. [19] took the enhancement of PLS-Net
a step further with RPLS-Net by incorporating pulmonary lobe boundary segmentation
as an auxiliary task, thus focusing on challenging edge pixels. This approach achieved
superior results compared to PLS-Net without significantly increasing the parameter count.
However, it is worth noting that RPLS-Net cannot learn correlations between features and
heavily relies on an expanded receptive field to gather global information. This limitation
leads to relatively poorer performance on the right middle pulmonary lobe compared to
other pulmonary lobes.

2.2. Neural Ordinary Differential Equations

In recent years, deep learning has made remarkable strides across various applications.
One of the most renowned neural networks in the realm of deep learning is Res-Net [20],
celebrated for its robustness due to the incorporation of residuals. Research conducted by
Haber et al. [21] has revealed that Res-Net can be viewed as a discrete counterpart of certain
differential equations. The concept of neural ordinary differential equations (NODEs) was
introduced by Chen et al. [22], shifting the paradigm from discrete neural networks to
continuous differential equations. The core concept in Res-Net, the residual, can be likened
to a discrete differential equation form. Denote the output of the l-th layer in a neural
network as xl , conventionally. In that case, the output of the subsequent layer (l + 1) can be
represented as xl+1 = f (xl), where f encompasses the computational processes of a single
layer, including linear transformations, regularization, and nonlinear activation functions.
In the case of Res-Net, the output of the (l + 1)-th layer is defined as xl+1 = xl + f (xl) · 1.
If considering l as time step t and interpreting the output xl as a function y(t) evolving over
time steps, with the step interval of 1 being analogous to a time interval ∆t, the model’s
computations can be conceptualized as the equation y(t + ∆t)− y(t) = f (y(t)) · ∆t. As the
number of layers in the model approaches infinity, i.e., as ∆t tends to zero, it arrives at the
NODE expression, a differential equation illustrated in Equation (1). Obtaining the exact
solution to this equation is nearly impossible. In practice, by providing an initial value y(0)
to the abovementioned differential equation, an ODE solver library can be leveraged to
approximate the solution as y(T).

ẏ(t) = lim
∆t→0

y(t + ∆t)− y(t)
∆t

= f (y(t)). (1)

Compared to traditional neural networks, neural ordinary differential equations ex-
hibit more nonlinearity and fewer parameters. Subsequently, many related studies have
emerged. Dupont et al. [23] pointed out that the NODE, when using the data input as
the initial value, preserves the spatial structure of the input, and the authors provided
examples illustrating the NODE’s limitations in this regard. However, this issue can be
addressed by inputting the data through external input variables instead of using them
as initial values for the differential equation [1]. For more related methods, please refer
to Refs. [24,25].

3. Methods
3.1. Problem Formulation

The main task of this study is a multi-class segmentation problem. The input of the
constructed model is a whole CT image, denoted by X ∈ R1×D×H×W , and the labels are
denoted by G ∈ R1×D×H×W . D, H, and W denote the depth, height, and width in an input
image, respectively. F denotes the constructed model. P and Pe denote the output of
the main and fissure-enhanced associative learning task. L denotes the loss function to
optimize the constructed model.
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3.2. Model

The architecture of the proposed model in this study was inspired by PLS-Net [16] and
RPLS-Net [19]. Figure 1 illustrates the workflow of the proposed method. The reason for
choosing PLS-Net as the backbone network for this study is that, compared to commonly
used backbone networks for pulmonary lobe segmentation, such as V-Net, PLS-Net has
fewer parameters and yields better results. Additionally, using the same backbone network
and dataset as in Ref. [19] ensures a fair and accurate comparison of the performance of the
nmODE and FEAL modules.

The model inputs the original CT image X and then produces pulmonary lobe result
P and fissure-enhanced associative learning result Pe. This process can be represented as
P ,Pe = F (X).
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Figure 1. The detailed structure of nmPLS-Net, the modules of the backbone network encoder, and
the detailed structure of the nmODE module are displayed on the right. The color coding for each
module is as shown in the figure. Within the DRDB module, DRDB×1, DRDB×2, and DRDB×4
represent one, two, and four consecutive DRDB modules, respectively. Encoder1, Encoder2, and
Encoder3 in the figure are denoted as E1, E2, and E3 in this paper. Similarly, Decoder1, Decoder2,
and Decoder3 are denoted as D1, D2, and D3.

The model’s encoder consists of three hierarchical stages, denoted as E1, E2, and E3.
Similarly, the decoder comprises three corresponding stages, namely D1, D2, and D3, and
a classifier for generating results. Skip connections connect the same stage.

The model’s encoder comprises Dilated Separate Convolutions (DS Conv) and Dilated
Residual Dense Block (DRDB). In the case of dilated separate convolution, its principle is
similar to regular depth-wise separable convolution [26]. Additionally, dilated separate
convolution employs dilated convolutions [27] to increase the receptive field, thus enlarging
the receptive field without increasing the parameter count. The Dilated Residual Dense
Block, written as DRDB for simplicity, used in the model consists of dilated separate
convolutions and their structure, as shown in Figure 1. This module combines the results
of convolutions with different receptive fields in a residual manner to achieve a wide range
of receptive field combinations. In each encoder stage, the dilation rate for the dilated
separate convolution is set to 1, indicating no dilation, and the convolution stride is set
to 2 for down-sampling. In the DRDB module, the dilation rates for the four dilated
separate convolutions are set from top to bottom as (1, 2, 3, 4), as recommended in [16].
The input for each encoder stage is concatenated with the original image down-sampled to
the corresponding size to compensate for the information loss during down-sampling. In
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stage E3, the nmODE module is introduced to process the features extracted by its DRDB
module. The input to the nmODE module is the output feature of the DRDB module, and
the output is the solution of the differential equation in the nmODE module. The following
section will provide a detailed description of the nmODE module.

The model’s decoder consists of Dilated Separate Convolutions (DS Conv) and Depth-
wise Separable Deconvolutions (DS DeConv). The structure of dilated separate convolution
is the same as that used in the encoder, with a dilation rate of 1. Depth-wise separable
deconvolution employs deconvolution to perform depth-wise separable convolution for up-
sampling. The outputs from the corresponding layers of the encoder, transmitted through
skip connections, are used to supplement the missing feature information after up-sampling.
The classifier comprises two 1× 1× 1 convolution modules responsible for generating
segmentation results from model outputs. Within the classifier, a fissure-reinforcement
method is introduced, with further information available in Section 3.4.

3.3. Neural Memory Ordinary Differential Equation (nmODE)

Neural differential equations exhibit a higher degree of nonlinearity and better ro-
bustness, and the architecture of the NODEs is depicted in Figure 2a. However, regu-
lar NODE has some limitations, such as their inability to represent mappings such as
g(1) = −1, g(−1) = 1. This limitation primarily arises since NODE treats data as initial
values, which preserves the spatial structure of the input data [23]. Furthermore, differen-
tial equations can describe dynamical systems, and research suggests that attractors within
dynamical systems are considered to be associated with memory capacity [28,29]. However,
traditional neural differential equations often fail to harness the memory capacity offered
by attractors.

Yi [1] proposed a new type of neural differential equation, called the neural mem-
ory differential equation (nmODE), which not only addresses the inherent limitations of
traditional differential equations but also fully harnesses the memory capacity offered by
dynamical systems. The nmODE treats the input data as external parameters rather than
utilizing them as the initial conditions for the ordinary differential equation while employ-
ing a fixed initial value. By doing so, nmODE not only avoids the problem mentioned
above but also separates the functionality of neurons into learning and memory compo-
nents. Learning only occurs in the learning part, while the memory part is responsible for
mapping the input to its global attractor, establishing a mapping from the input space to the
memory space [1]. The structure of nmODE is illustrated in Figure 2b, where γ represents
external input, and the learning part occurs within the transformation g(xl). In our model,
γ represents the output of the DRDB module within the encoder stage, labeled as E3. The
formula representation of the nmODE architecture is shown in Equation (2). Based on the
nmODE architecture, Yi [1] also proposed a novel and efficient implementation, which
is structured as shown in Equation (3). Furthermore, Yi demonstrated in Ref. [1] that a
key property of this implementation is that it has a unique global attractor for each input,
defining a mapping that transforms an external input x into an output y(T) within the
memory space. {

γ = g(xl),

ẏ(t) = f (y(t), t, γ).
(2)

ẏ(t) = −y(t) + sin2(y(t) + γ). (3)

In pulmonary lobe segmentation, the right lung with three lobes is more challenging
than the left lung, and cases with unclear or incomplete boundaries between pulmonary
lobes can make segmentation even more difficult. Human annotators rely on the overall
pulmonary structure and dependencies between objects when performing manual seg-
mentation. Similarly, learning better global features and capturing dependencies between
features can help address these challenges for neural network models.
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Figure 2. Architecture of NODE and nmODE. Subfigure (a) represents the typical NODE architecture,
where the initial value of the differential equation, denoted as y(0), is derived from the data itself or
the output of the previous layer, denoted as xl . The output is the numerical solution of the differential
equation, denoted as xl+1. Subfigure (b) represents the nmODE Architecture, where the initial value
of the differential equation, denoted as y(0), is a fixed value of 0. Data or the output of the previous
layer serves as an external input γ into the module. The output is the same as in typical NODE,
which is the numerical solution of the differential equation.

In this study, an nmODE module was embedded in the encoder stage E3 to further
refine the features extracted by the encoder. The powerful nonlinear expressive capability
of nmODE enables effective learning of feature representations in complex conditions.
Embedding the nmODE module in PLS-Net leverages nmODE’s memory capacity and
strong nonlinear capabilities to obtain better global features and learn the relationships
between features. Across different samples, similar features are mapped to nearby attractors
in the nmODE memory space, allowing nmODE to memorize similar information between
samples and enabling the model to capture overall pulmonary characteristics. The nmODE
module can simultaneously learn and remember dependencies between features during
the mapping process. For individual samples, nmODE’s high nonlinearity and memory
capabilities refine and fuse information from different channels of features more effectively,
resulting in more global feature information. The primary reasons for placing the nmODE
module in the last stage of the encoder are two-fold. Firstly, the lowest-level stage boasts
the largest channel dimension and the most expansive receptive field. A higher channel
dimension facilitates a more comprehensive exploration of profound connections among
features. Moreover, a larger receptive field diminishes interference from superfluous fine-
grained details and steers the input features toward a more globally contextualized state
within the nmODE module. Second, it is for performance considerations. The lowest-
level output has the lowest resolution, and placing the nmODE module here does not
significantly increase memory usage or reduce model computation speed during training.

3.4. Fissure-Enhanced Associative Learning

Previous work [19] proposed an auxiliary task involving segmenting the entire pul-
monary lobe edge. Complete pulmonary segmentation is relatively straightforward, and
our observations during training have shown that the network tends to distinguish the
outer pulmonary contour first naturally. So, emphasizing the model’s attention on external
boundaries is unnecessary. Instead, this study aim to direct the model’s focus toward the
information within the pulmonary fissures, which are more challenging areas.

This study introduces a novel approach called Fissure-Enhanced Associative Learning
(FEAL) to encourage the model to focus on voxels near pulmonary fissures and integrate
pulmonary fissure information during classification. The associated loss is computed using
the pulmonary fissure segmentation results as a secondary model output. This integration
enables the model to identify voxels corresponding to pulmonary fissure locations accu-
rately. Within the classifier, the FEAL module merges the pulmonary fissure segmentation
output with the decoder’s output, employing a convolutional layer to combine the fissure
information with the decoder’s output features and make corresponding predictions. Pre-
viously, in multitask learning approaches for pulmonary lobe segmentation, the model

Figure 2. Architecture of NODE and nmODE. (a) represents the typical NODE architecture, where
the initial value of the differential equation, denoted as y(0), is derived from the data itself or the
output of the previous layer, denoted as xl . The output is the numerical solution of the differential
equation, denoted as xl+1. (b) represents the nmODE Architecture, where the initial value of the
differential equation, denoted as y(0), is a fixed value of 0. Data or the output of the previous layer
serves as an external input γ into the module. The output is the same as in typical NODE, which is
the numerical solution of the differential equation.

In this study, an nmODE module was embedded in the encoder stage E3 to further
refine the features extracted by the encoder. The powerful nonlinear expressive capability
of nmODE enables effective learning of feature representations in complex conditions.
Embedding the nmODE module in PLS-Net leverages nmODE’s memory capacity and
strong nonlinear capabilities to obtain better global features and learn the relationships
between features. Across different samples, similar features are mapped to nearby attractors
in the nmODE memory space, allowing nmODE to memorize similar information between
samples and enabling the model to capture overall pulmonary characteristics. The nmODE
module can simultaneously learn and remember dependencies between features during
the mapping process. For individual samples, nmODE’s high nonlinearity and memory
capabilities refine and fuse information from different channels of features more effectively,
resulting in more global feature information. The primary reasons for placing the nmODE
module in the last stage of the encoder are two-fold. Firstly, the lowest-level stage boasts
the largest channel dimension and the most expansive receptive field. A higher channel
dimension facilitates a more comprehensive exploration of profound connections among
features. Moreover, a larger receptive field diminishes interference from superfluous fine-
grained details and steers the input features toward a more globally contextualized state
within the nmODE module. Second, it is for performance considerations. The lowest-
level output has the lowest resolution, and placing the nmODE module here does not
significantly increase memory usage or reduce model computation speed during training.

3.4. Fissure-Enhanced Associative Learning

Previous work [19] proposed an auxiliary task involving segmenting the entire pul-
monary lobe edge. Complete pulmonary segmentation is relatively straightforward, and
our observations during training have shown that the network tends to distinguish the
outer pulmonary contour first naturally. So, emphasizing the model’s attention on external
boundaries is unnecessary. Instead, this study aim to direct the model’s focus toward the
information within the pulmonary fissures, which are more challenging areas.

This study introduces a novel approach called Fissure-Enhanced Associative Learning
(FEAL) to encourage the model to focus on voxels near pulmonary fissures and integrate
pulmonary fissure information during classification. The associated loss is computed using
the pulmonary fissure segmentation results as a secondary model output. This integration
enables the model to identify voxels corresponding to pulmonary fissure locations accu-
rately. Within the classifier, the FEAL module merges the pulmonary fissure segmentation
output with the decoder’s output, employing a convolutional layer to combine the fissure
information with the decoder’s output features and make corresponding predictions. Pre-
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viously, in multitask learning approaches for pulmonary lobe segmentation, the model
primarily relied on auxiliary tasks to encourage the decoder to prioritize pulmonary fis-
sures. However, during the final classification step, the classifier independently handled
pulmonary fissure segmentation. In contrast, our fissure-enhanced associative learning
approach incorporates classification information during the classification process, further
associating decoder features with pulmonary fissure information.

A simple and efficient algorithm can be used to automatically generate pulmonary
fissure labels from the label mask of CT images without any manual intervention. Thanks to
the fact that the values in CT label masks are limited to a few categories (e.g., a pulmonary
lobe segmentation mask may have only 6 classes, with values ranging from 0 to 5 as
integers), we determine whether a point belongs to the pulmonary fissure by sliding a
window and verifying whether the values inside the window belong to two neighbor
target categories simultaneously. The process is outlined in pseudocode in Algorithm 1.
The pulmonary fissure segmentation results obtained by the algorithm are shown in
Figure 3. This algorithm only needs to scan the image once and has a time complexity
of O(n), assuming the input size is n. Compared to the methods used in previous work,
which involved image processing with the scikit-image library, Gaussian filtering, and
thresholding, this algorithm is simpler and more efficient. Additionally, it can mitigate the
adverse effects of partial mislabeling. For example, in Figure 3, a small portion of the right
upper lobe is incorrectly labeled as the left lower lobe, which is ignored in the generated
pulmonary fissure mask.

Algorithm 1 Pulmonary Fissure Label Generation Algorithm

1: neighbours← [(1, 2), (1, 3), (2, 3), (4, 5)]
2: img_array← CT image mask of shape[D, W, H]
3: result← metric with all False values of shape[D, W, H]
4: for i← 1 to D, j← 2 to W − 1, k← 2 to H − 1 do
5: window← img_array[i, j− 1 : j + 1, k− 1 : k + 1]
6: for pair ∈ neighbors do
7: if pair[1] ∈ window and pair[2] ∈ window then
8: result[i, j, k]← True
9: end if

10: end for
11: end for
12: Output: Pulmonary fissure labels.

(a) (b)
Figure 3. (a) Lung CT image and its mask, with an annotation error circled in blue. (b) Pulmonary
fissures separated by Algorithm 1. In this visual representation, distinct lung regions are color-coded:
yellow for the right upper lobe, green for the right middle lobe, brown for the right lower lobe, blue
for the left upper lobe, red for the left lower lobe, and white for pulmonary fissures.
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3.5. Loss Functions

The loss function used for training is a mixed loss function consisting of two com-
ponents: Lmain for calculating pulmonary lobe segmentation loss and Le for calculating
the FEAL method loss. A hybrid loss function consisting of dice loss LDice and focal loss
LFocal is used as the primary loss Lmain. The calculation formula for the LDice in the hybrid
loss is as in Equation (4). In this equation, C represents the number of pulmonary lobe
categories, and N represents the number of points in a single sample. gi

c and pi
c, respectively,

denote the ground truth and the probability of point i being predicted as category c. ε is
the smoothing coefficient; in this study, the value is set to 1. The dice loss is calculated
separately for each category. However, there is a significant difference in the number of
foreground and background pixels for each category. Therefore, the focal loss is introduced
to balance the positive and negative samples. The formula for the LFocal used in the hybrid
loss is as in Equation (5). In this equation, C, N, gi

c, pi
c are the same as in Equation (4). αc

represents the weight for each category, and β is a hyperparameter. Lmain is as shown in
Equation (6), where λ1 and λ2 are the weight coefficients for the two types of losses.

Ic =
N

∑
i=1

gi
c ∗ pi

c,

Uc =
N

∑
i=1

(gi
c + pi

c),

LDice(P , G) =
C

∑
c=1

1− 2Ic + ε

Uc + ε
.

(4)

LFocal(P , G) =−
C

∑
c=1

αc

N

∑
i=1

(gi
c(1− pi

c)
β log pi

c

+ (1− gi
c)(pi

c)
β log (1− pi

c)). (5)

Lmain(P , G) = λ1LDice(P , G) + λ2LFocal(P , G). (6)

Since positive samples account for only a small portion of the pulmonary fissure
labels, leading to severe class imbalance, the focal loss is used as the loss function for the
fissure-enhanced associative learning output Le to address this issue. The formula is as
in Equation (7). In this context, Pe and Ge represent the predictions and ground truth for
pulmonary fissure, while pi

e and gi
e represent the predictions and ground truth for each

pixel. αe and βe are hyperparameters.

Le(Pe, Ge) =
N

∑
i=1

αe(gi
e(1− pi

e)
βe log pi

c

+ (1− gi
e)(pi

e)
βe log (1− pi

e)). (7)

The overall loss function is as in Equation (8), where λ represents the weight of the
fissure-enhanced associative learning loss function.

L(P , G,Pe, Ge) = Lmain(P , G) + λLe(Pe, Ge). (8)

4. Experiments
4.1. Experimental Settings

Dataset: A base dataset consistent with Ref. [19] was used in this study, which
comprises 32 chest CT scan images with a maximum slice thickness of 1 mm. The pul-
monary fissure labels used for fissure-enhanced associative learning were generated from
pulmonary lobe labels using the fissure label generation algorithm. Experiments were
conducted on another publicly available LUNA16 dataset, as presented in Ref. [15], which
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contains 50 cases with unclear or incomplete pulmonary fissures and lesions to validate the
effectiveness of our method. All CT data were resized to a (1 mm, 1 mm, 1 mm) spacing
and filtered to include voxels with Hounsfield Unit (HU) values between 400 and 1000.
The data were then normalized. A 20-voxel-wide region of uninformative background near
each CT image’s boundary was cropped to improve training efficiency. For example, a CT
of size (300, 512, 512) was cropped to (300, 472, 472) after this process.

Model and Training: Our model and training code were implemented using the Py-
Torch library [30]. The code of the model can be found at https://github.com/EdewagaPoe/
nmPLS-Net-Segmenting-Pulmonary-Lobes-using-nmODE.git accessed on 4 November
2023. We employed PyTorch’s built-in automatic mixed precision training (AMP) to save
GPU memory during training. Due to the non-uniform input sizes, the batch size was
fixed at 1. The optimizer used was the Adam optimizer [31] with a learning rate of 0.001
and a weight decay of 5× 10−4. The dilated residual convolution module of the model
used dilation rates and growth rates of (1, 2, 3, 4) and 12, respectively, following the recom-
mendations in Ref. [16]. The hyperparameters in the overall loss function, namely λ1, λ2,
and λ, were set to 0.6, 0.4, and 0.2, respectively. αc and αe were both set to 1, and β and βe
were set to 2. The training was performed on an NVIDIA TITAN RTX GPU with 24 GB of
VRAM. We trained the model for 100 epochs and selected the best-performing result on the
validation set for testing.

Evaluation Metrics: This study used the dice coefficient (DC) as an evaluation metric
for segmentation performance, as shown in Equation (9). Here, Pval represents the output
processed through the argmax function, ‖·‖1 denotes the L1 Norm, N is the total number
of voxels in the output, pi

val is the predicted value for voxel i, and gi is the corresponding
ground truth. The Jaccard index is also used as an evaluation metric for segmentation
performance, as shown in Equation (10).

Pval = argmax(P),

‖Pval
⋂

G‖1 =
N

∑
i=1
|pi

val ∗ gi|,

DC(Pval , G) = 2
‖Pval

⋂
G‖1

‖Pval‖1 + ‖G‖1
.

(9)



Pval = argmax(P),

‖Pval
⋂

G‖1 =
N

∑
i=1
|pi

val ∗ gi|,

‖Pval
⋃

G‖1 =
N

∑
i=1
|pi

val + gi|,

Jaccard(Pval , G) =
‖Pval

⋂
G‖1

‖Pval
⋃

G‖1
.

(10)

The average symmetric surface distance (ASSD) is used as another evaluation metric
to measure the segmentation accuracy of pulmonary lobe boundaries. The formula for
ASSD is expressed as in Equation (11). In this equation, v represents any voxel, S represents
the set of surface voxels, ‖·‖2 denotes the L2 Norm, S(Pval) and S(G) represent the sets
of surface voxels for Pval and G, respectively, and |S| indicates the number of elements
in a set. 

D(v, S) = min
s∈S
‖v− s‖2,

ASSD =
∑p∈S(Pval)

D(p, S(G)) + ∑g∈S(G) D(g, S(Pval))

|S(Pval)|+ |S(G)| .
(11)

https://github.com/EdewagaPoe/nmPLS-Net-Segmenting-Pulmonary-Lobes-using-nmODE.git
https://github.com/EdewagaPoe/nmPLS-Net-Segmenting-Pulmonary-Lobes-using-nmODE.git
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The Precision and Recall metrics are also used to measure the model’s performance.
The formula for precision and recall is shown in Equations (12) and (13), where TP repre-
sents the number of true positives, FP represents the number of false positives, and FN
represents the number of false negatives.

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

4.2. Quantitative Experiment Results

This study conducted experiments on the base dataset using three networks: PLS-Net,
RPLS-Net, and nmPLS-Net. The specific experimental results are shown in Table 1a. In
this table and the subsequent tables, UR, MR, LR, UL, and LL represent the metric of
upper right lobe, middle right lobe, lower right lobe, upper left lobe, and lower left lobe,
respectively. The average dice coefficient achieved by nmPLS-Net is 0.9570, the average
ASSD is 1.1133, the average precision is 0.9578, the average recall is 0.9615, and the average
Jaccard index is 0.9185, surpassing the compared networks. From the experimental results,
it can be seen that nmPLS-Net exhibits a significant improvement in overall segmentation
performance, especially with a substantial enhancement in the segmentation of the right
middle pulmonary lobe. At the same time, nmPLS-Net has also achieved the optimal ASSD
value, which means that the network’s segmentation results along the pulmonary lobe
edges are more precise. This performance improvement can be attributed to two key factors:
Firstly, the nmODE module’s increased memory capacity and high nonlinearity enhance the
network’s capability to capture global features and learn dependencies between features.
This enables the model to predict results from a more comprehensive and interrelated
perspective. Secondly, the fissure-enhanced associative learning approach concentrates the
model’s training on voxels near pulmonary fissures and associates them with the fissure
information, resulting in an enhanced segmentation performance for challenging fissure
voxels. We also trained and validated on another publicly available dataset in [15]. As
shown in Table 1b, the results are consistent with those on the base dataset. Our network
still achieves the best performance in both overall segmentation and the segmentation of
the right middle lobe, demonstrating the effectiveness and reliability of our approach.

Furthermore, this study conducted training on the training set of the base dataset
and subsequently validated the model using 20 randomly selected CT scans from the
LUNA16 dataset, as presented in Table 2. Notably, nmPLS-Net continues to exhibit superior
performance in the validation results, particularly in the right lung. While the overall
performance decreases compared to directly training on the LUNA16 dataset, several factors
may contribute to this phenomenon. Firstly, our training dataset comprises only 20 CT
scans, in contrast to the 40 CT scans in the training set of the LUNA16 dataset, potentially
impacting the model’s generalization ability. Secondly, inconsistencies in data sources and
the subjective nature of manual annotations have led to disparities in data distribution
between the training and validation sets, contributing to the observed performance drop.
However, it is worth highlighting that our model demonstrates resilient performance under
these circumstances, especially in segmenting the right middle lobe. This result underscores
the enhancing effect of nmPLS-Net’s memory capabilities and the memorized features on
the model’s generalization and robustness.
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Table 1. Comparison of results on different datasets. UR, MR, LR, UL, and LL represent the metric of
upper right lobe, middle right lobe, lower right lobe, upper left lobe, and lower left lobe, respectively.
The best results in subtables are highlighted with red, and the second best results are highlighted
with blue.

(a) Comparison between the target method and previous state-of-art work training on the base dataset.

Model Metric RU RM RL LU LL AVG

PLS-Net

DC 0.9309± 0.0709 0.8690± 0.1182 0.9511± 0.0348 0.9442± 0.0528 0.9441± 0.0425 0.9279± 0.5470

ASSD 3.1171± 0.9880 1.7678± 0.6075 1.5129± 0.5662 2.0548± 2.070 1.7204± 1.2939 2.0346± 0.7194

Precision 0.9388± 0.0410 0.8704± 0.0896 0.9412± 0.0502 0.9738 ± 0.0171 0.9208± 0.0912 0.9290± 0.0221

Recall 0.9555± 0.0440 0.9078± 0.0347 0.9173± 0.0912 0.9745 ± 0.0136 0.9404± 0.0625 0.9391± 0.0341

Jaccard Index 0.8717± 0.1200 0.7683± 0.1703 0.9058± 0.0772 0.8943± 0.1133 0.8943± 0.0907 0.8668± 0.5675

RPLS-Net

DC 0.9562± 0.0401 0.8731± 0.1590 0.9664 ± 0.0110 0.9601± 0.0429 0.9546± 0.0356 0.9421± 0.0850

ASSD 1.1829± 0.8243 2.2384± 2.1269 0.8308 ± 0.2972 1.0739± 1.1420 1.4468± 1.6806 1.3546± 1.4554

Precision 0.9161± 0.0250 0.8904± 0.0563 0.9508± 0.0316 0.9551± 0.0207 0.9558± 0.0277 0.9417± 0.0146

Recall 0.9698 ± 0.0133 0.9342± 0.0249 0.9665 ± 0.0130 0.9502± 0.0836 0.9515± 0.0197 0.9544± 0.0152

Jaccard Index 0.9161± 0.0423 0.7748± 0.1876 0.9350 ± 0.0131 0.9233± 0.0542 0.9131± 0.0411 0.8925± 0.1246

nmPLS-Net

DC 0.9640 ± 0.0127 0.9336 ± 0.0217 0.9620± 0.0198 0.9660 ± 0.0200 0.9596 ± 0.0223 0.9570 ± 0.0100

ASSD 1.0263 ± 0.3399 1.4077 ± 0.3747 0.9050± 0.1429 0.9642 ± 0.6733 1.2633 ± 1.0183 1.1133 ± 0.3381

Precision 0.9636 ± 0.0363 0.9342 ± 0.0443 0.9705 ± 0.0248 0.9632± 0.0334 0.9572 ± 0.0495 0.9578 ± 0.0181

Recall 0.9640± 0.0134 0.9583 ± 0.0188 0.9601± 0.0142 0.9634± 0.0435 0.9618 ± 0.0183 0.9615 ± 0.0095

Jaccard Index 0.9300 ± 0.0319 0.8781 ± 0.0337 0.9330± 0.029 0.9292 ± 0.0523 0.9223 ± 0.0517 0.9185 ± 0.0236

(b) Comparison between the target method and previous state-of-art work training on the LUNA16 dataset.

Model Metric RU RM RL LU LL AVG

PLS-Net

DC 0.9165± 0.0662 0.7960± 0.1501 0.9266± 0.0553 0.9442± 0.0390 0.9366± 0.0392 0.9040± 0.0538

ASSD 3.2066± 1.3894 5.4324± 2.5495 2.5325± 1.2278 3.0186± 1.858 2.7501± 0.9402 3.3880± 1.0641

Precision 0.9326 ± 0.0642 0.7760± 0.1971 0.9455± 0.0219 0.9498± 0.0385 0.9367± 0.0455 0.9081± 0.0538

Recall 0.9185± 0.0512 0.7847± 0.0800 0.9500 ± 0.0364 0.9540± 0.0161 0.9434± 0.0051 0.9101± 0.0152

Jaccard Index 0.8454± 0.1120 0.6616± 0.1799 0.8632± 0.0694 0.8943± 0.0703 0.8809± 0.0753 0.8291± 0.0985

RPLS-Net

DC 0.9314 ± 0.0582 0.8291± 0.1703 0.9407± 0.0517 0.9548± 0.0239 0.9465± 0.0248 0.9205± 0.0595

ASSD 2.5011± 1.4062 3.5855± 1.5051 1.5885± 0.4354 1.6182± 1.3881 1.5146± 1.0935 2.1616± 0.8422

Precision 0.9130± 0.0734 0.8324± 0.1594 0.9538± 0.0212 0.9564± 0.0441 0.9519± 0.0231 0.9215± 0.0458

Recall 0.9386 ± 0.0223 0.8378± 0.1479 0.9470± 0.0355 0.9651 ± 0.0130 0.9601± 0.0171 0.9297± 0.0358

Jaccard Index 0.8716 ± 0.1100 0.7081± 0.1944 0.8880± 0.0899 0.9135± 0.0694 0.8984± 0.0657 0.8559± 0.0899

nmPLS-Net

DC 0.9307± 0.0550 0.8499 ± 0.1049 0.9523 ± 0.0200 0.9605 ± 0.0144 0.9558 ± 0.0128 0.9298 ± 0.0370

ASSD 1.7161 ± 0.5950 2.9336 ± 1.5176 1.4748 ± 0.8940 1.2606 ± 1.0253 1.1010 ± 0.3341 1.6972 ± 0.5353

Precision 0.9011± 0.0961 0.8817 ± 0.0992 0.9557 ± 0.0248 0.9570 ± 0.0411 0.9528 ± 0.0416 0.9296 ± 0.0335

Recall 0.9366± 0.0277 0.8876 ± 0.0642 0.9489± 0.0476 0.9478± 0.0162 0.9739 ± 0.0057 0.9390 ± 0.0341

Jaccard Index 0.8705± 0.1017 0.7390 ± 0.1403 0.9089 ± 0.0716 0.9241 ± 0.0553 0.9151 ± 0.0527 0.8715 ± 0.0775

4.3. Ablation Experiment

Ablation experiments were conducted to analyze the contributions of various com-
ponents in the methodology for performance improvement. The results of the ablation
experiments are shown in Table 3. In cases where the nmODE module and fissure-enhanced
associative learning were not used, the model reverted to PLS-Net, so separate experiments
for this scenario were not conducted again. It can be observed that both the nmODE module
and fissure-enhanced associative learning contribute to the segmentation performance of
the model. The nmODE module, in particular, exhibits the most significant improvement
in segmentation performance, with the performance boost primarily evident in the right
middle lobe.

Although adding fissure-enhanced associative learning on top of the nmODE module
does not substantially improve overall segmentation performance, the enhancement in
the segmentation performance of the right middle lobe is notable, indicating that fissure-
enhanced associative learning does have an effect, aligning with the purpose of their
incorporation into our methodology.
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Table 2. Comparison between the target method and previous work training on the base dataset and
testing on 20 LUNA16 dataset’s CT volumes. The best results in the table are highlighted with red,
and the second best results are highlighted with blue.

Model Metric RU RM RL LU LL AVG

PLS-Net

DC 0.8656± 0.1198 0.7832± 0.1688 0.9001± 0.0731 0.9032± 0.0808 0.8807± 0.1097 0.8666± 0.0833

ASSD 5.1146± 3.3692 5.7794± 2.4364 2.8784± 0.7087 5.0594± 4.5588 4.4321± 3.3269 4.6528± 1.7337

Precision 0.8693± 0.0211 0.7258± 0.0826 0.9464± 0.0154 0.9313± 0.0438 0.9059± 0.0650 0.8757± 0.0287

Recall 0.9023± 0.0668 0.7387± 0.0642 0.9211± 0.0310 0.9414± 0.0205 0.9066± 0.0339 0.8820± 0.0483

Jaccard Index 0.7640± 0.1623 0.6437± 0.1671 0.8183± 0.1156 0.8235± 0.1333 0.7858± 0.1346 0.7671± 0.1671

RPLS-Net

DC 0.8956± 0.0532 0.8188± 0.0679 0.9236± 0.0286 0.9552 ± 0.0254 0.9351 ± 0.0304 0.9057± 0.0358

ASSD 3.6705± 1.9807 4.1332± 1.4911 2.8075± 1.7102 1.3967 ± 0.4519 1.9061± 0.5417 2.7828± 1.7246

Precision 0.8788± 0.1316 0.8198± 0.1325 0.9519± 0.0312 0.9546 ± 0.0531 0.9462± 0.0270 0.9102± 0.0443

Recall 0.9021± 0.0268 0.8207± 0.1052 0.9546 ± 0.0398 0.9462 ± 0.0298 0.9510± 0.0379 0.9149± 0.0328

Jaccard Index 0.8109± 0.1042 0.6932± 0.1038 0.8681± 0.0556 0.9131 ± 0.0622 0.8782 ± 0.0867 0.8309± 0.1002

nmPLS-Net

DC 0.9197 ± 0.0438 0.8508 ± 0.0539 0.9381 ± 0.0227 0.9299± 0.0382 0.9238± 0.0281 0.9125 ± 0.0303

ASSD 2.2433 ± 1.7509 3.5638 ± 2.2124 1.4560 ± 0.4983 1.5622± 1.3761 1.3036 ± 0.3838 2.0258 ± 0.7938

Precision 0.8853 ± 0.0627 0.8711 ± 0.0895 0.9532 ± 0.0155 0.9447± 0.0247 0.9592 ± 0.0275 0.9227 ± 0.0184

Recall 0.9150 ± 0.0583 0.8831 ± 0.0656 0.9484± 0.0463 0.9368± 0.0223 0.9696 ± 0.0108 0.9306 ± 0.0157

Jaccard Index 0.8513 ± 0.0908 0.7403 ± 0.1045 0.8834 ± 0.0512 0.8690± 0.0499 0.8584± 0.0697 0.8405 ± 0.0817

Table 3. Ablation experiments, trained and tested on the base dataset. The right symbols at the first
two columns represent the use of the corresponding module. FEAL represents fissure-enhanced
associative learning. The best results in the table are highlighted with red, and the second best results
are highlighted with blue.

nmODE FEAL Metric RU RM RL LU LL AVG

DC 0.9309± 0.0709 0.8690± 0.1182 0.9511± 0.0348 0.9442± 0.0528 0.9441± 0.0425 0.9279± 0.5470

ASSD 1.7678± 0.6075 3.1171± 0.988 1.5129± 0.5662 2.0548± 2.0700 1.7204± 1.2939 2.0346± 0.7194

Precision 0.9388± 0.0410 0.8704± 0.0896 0.9412± 0.0502 0.9738 ± 0.0171 0.9208± 0.0912 0.9290± 0.0221

Recall 0.9555± 0.0440 0.9078± 0.0347 0.9173± 0.0912 0.9745 ± 0.0136 0.9404± 0.0625 0.9391± 0.0341

Jaccard Index 0.8717± 0.1200 0.7683± 0.1703 0.9058± 0.0772 0.8943± 0.1133 0.8943± 0.0907 0.8668± 0.5675

X

DC 0.9648± 0.0066 0.9187± 0.0457 0.9655± 0.0087 0.9553± 0.0188 0.9446± 0.0458 0.9498± 0.0190

ASSD 1.2216± 0.5127 1.8847± 0.6801 1.0419± 0.1517 0.9042 ± 0.3784 1.0596 ± 0.4025 1.2224± 0.2559

Precision 0.9600± 0.0362 0.9200± 0.034 0.9653± 0.0105 0.9507± 0.0367 0.9504± 0.0486 0.9493± 0.0183

Recall 0.9590± 0.0061 0.9372± 0.0219 0.9597± 0.0116 0.9449± 0.0921 0.9509± 0.0130 0.9523± 0.0180

Jaccard Index 0.9320± 0.0185 0.8496± 0.1012 0.9333± 0.0636 0.9144± 0.0692 0.8950± 0.1024 0.9049± 0.0675

X

DC 0.9692 ± 0.0075 0.9250± 0.0331 0.9660 ± 0.0062 0.9676 ± 0.0234 0.9556± 0.0237 0.9567± 0.0110

ASSD 0.9574 ± 0.2561 1.5769± 0.4282 0.9529± 0.1772 1.0195± 0.7127 1.2403± 0.8388 1.1494± 0.3035

Precision 0.9635± 0.0420 0.9276± 0.0843 0.9679± 0.0152 0.9705± 0.0178 0.9457± 0.0206 0.9550± 0.0200

Recall 0.9659 ± 0.0068 0.9488± 0.0230 0.9628 ± 0.0149 0.9633± 0.0316 0.9576± 0.0182 0.9597± 0.0077

Jaccard Index 0.9338 ± 0.0122 0.8603± 0.0425 0.9397 ± 0.0149 0.9385 ± 0.0410 0.9182± 0.0472 0.9181± 0.0166

X X

DC 0.9640± 0.0127 0.9336 ± 0.0217 0.9620± 0.0198 0.9660± 0.0200 0.9596 ± 0.0223 0.9570 ± 0.0100

ASSD 1.0263± 0.3399 1.4077 ± 0.3747 0.9050 ± 0.1429 0.9642± 0.6733 1.2633± 1.0183 1.1133 ± 0.3381

Precision 0.9636 ± 0.0363 0.9342 ± 0.0443 0.9705 ± 0.0248 0.9632± 0.0334 0.9572 ± 0.0495 0.9578 ± 0.0181

Recall 0.9641± 0.0134 0.9583 ± 0.0188 0.9601± 0.0142 0.9634 ± 0.0435 0.9618 ± 0.0183 0.9615 ± 0.0095

Jaccard Index 0.9300± 0.0319 0.8781 ± 0.0337 0.9330± 0.029 0.9292± 0.0523 0.9223 ± 0.0517 0.9185 ± 0.0236

The results of the ablation experiments on the loss functions are presented in Table 4.
Only the mean values of each metric are listed to simplify the table. The experimental
results indicate that using a mixed loss function for pulmonary lobe segmentation tasks can
lead to some improvement, although it has minimal overall impact. It can also be observed
that dice or cross-entropy, as the loss function for the FEAL module, is less effective than
not using the FEAL module. This is primarily due to the extreme class imbalance in the
labels used by FEAL, where both dice and cross-entropy struggle to effectively calculate
the loss contributions of the sparsely represented positive samples.
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Table 4. Ablation experiments for the loss function, trained and tested on the base dataset. mDC,
mASSD, mPrecision, mRecall and mJaccard-Index are the mean dice coefficient (DC), mean average
symmetric surface distance (ASSD), mean precision, mean recall, and mean Jaccard index, respectively.
The content within the brackets in the table header represents (Lmain, Le). The best results in the table
are highlighted with red, and the second best results are highlighted with blue.

Metric (CE, Focal) (Dice, Focal) (CE+Dice, Focal) (Dice+Focal, Dice) (Dice+Focal, CE) (CE+Focal, Focal) (Dice+Focal, Focal)

mDC 0.9519± 0.0192 0.9552± 0.0238 0.9563± 0.0145 0.9531± 0.0178 0.9540± 0.0178 0.9558± 0.0126 0.9570 ± 0.0100

mASSD 1.2538± 0.4015 1.5171± 0.5332 1.1427± 0.3955 1.1411± 0.4172 1.2511± 0.4318 1.1503± 0.3524 1.1133 ± 0.3381

mPrecision 0.9528± 0.0190 0.9517± 0.0336 0.9556± 0.0202 0.9509± 0.0259 0.9538± 0.0271 0.9566± 0.0252 0.9578 ± 0.0181

mRecall 0.9581± 0.0099 0.9545± 0.0162 0.9597± 0.0131 0.9540± 0.0209 0.9578± 0.0125 0.9606± 0.0113 0.9615 ± 0.0095

mJaccard-Index 0.9092± 0.0343 0.9141± 0.0544 0.9159± 0.0485 0.9120± 0.0415 0.9131± 0.0373 0.9153± 0.0447 0.9186 ± 0.0236

4.4. Qualitative Analysis

Quantitative evaluation validates the effectiveness of nmPLS-Net in segmenting right
pulmonary lobes and in case of unclear pulmonary fissures. Figure 4 showcases the
segmentation outcomes achieved by our network and the comparative networks across
five distinct CT scans. In the five CT cases, the first CT represents a normal lung with
intact and clear pulmonary fissures. In the remaining four CT cases, partial or complete
unclear pulmonary fissures are present. It can be observed that in the CTs of rows 2, 3,
and 5, nmPLS-Net consistently demonstrates superior performance. In contrast, the other
networks exhibit poor performance, with some results displaying noticeable segmentation
errors. While the segmentation results in the CT scans of the third row are generally
suboptimal, nmPLS-Net still provides the closest approximation to the ground truth. This
case underscores nmPLS-Net’s adeptness at effectively handling scenarios with unclear or
incomplete pulmonary fissures.
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(a) Image (b) GT (c) PLS-Net (d) RPLS-Net (e) nmPLS-Net
Figure 5. The segmentation results of three CT scans in nmPLS-Net and the comparative networks.
In this visual representation, distinct lung regions are color-coded: yellow for the right upper lobe,
green for the right middle lobe, brown for the right lower lobe, blue for the left upper lobe and
red for the left lower lobe. The first column represents the original images, and the subsequent
four columns represent the segmentation results for the ground truth, PLS-Net, RPLS-Net, and
nmPLS-Net, respectively.

Table 4. Ablation experiments for the loss function, trained and tested on the base dataset. mDC,
mASSD, mPrecision, mRecall and mJaccard-Index are the mean dice coefficient (DC), mean average
symmetric surface distance (ASSD), mean precision, mean recall and mean Jaccard index respectively.
The content within the brackets in the table header represents (Lmain,Le).
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Metric (CE,Focal) (Dice,Focal) (CE+Dice,Focal) (Dice+Focal,Dice) (Dice+Focal,CE) (CE+Focal,Focal) (Dice+Focal,Focal)

mDC 0.9519± 0.0192 0.9552± 0.0238 0.9563± 0.0145 0.9531± 0.0178 0.9540± 0.0178 0.9558± 0.0126 0.9570 ± 0.0100

mASSD 1.2538± 0.4015 1.5171± 0.5332 1.1427± 0.3955 1.1411± 0.4172 1.2511± 0.4318 1.1503± 0.3524 1.1133 ± 0.3381

mPrecision 0.9528± 0.0190 0.9517± 0.0336 0.9556± 0.0202 0.9509± 0.0259 0.9538± 0.0271 0.9566± 0.0252 0.9578 ± 0.0181

mRecall 0.9581± 0.0099 0.9545± 0.0162 0.9597± 0.0131 0.9540± 0.0209 0.9578± 0.0125 0.9606± 0.0113 0.9615 ± 0.0095

mJaccard-Index 0.9092± 0.0343 0.9141± 0.0544 0.9159± 0.0485 0.9120± 0.0415 0.9131± 0.0373 0.9153± 0.0447 0.9186 ± 0.0236

some results displaying noticeable segmentation errors. While the segmentation results
in the CT scans of the third row are generally suboptimal, nmPLS-Net still provides the
closest approximation to the ground truth. This case underscores nmPLS-Net’s adeptness
at effectively handling scenarios with unclear or incomplete pulmonary fissures.

To further substantiate the efficacy of nmODE, an analysis was conducted on feature
maps generated by the model using six CT scans. These feature maps included those
with dimensions (129, D/8, H/8, W/8) prior to

:::::
before entering the nmODE module, as

well as those with the same dimensions subsequent to
::::
after passing through the nmODE

module. Principal component analysis (PCA) was applied to reduce the dimensionality
of these feature maps from (129, D/8, H/8, W/8) to a compact representation of (129, 2).

Figure 4. The segmentation results of three CT scans in nmPLS-Net and the comparative networks.
In this visual representation, distinct lung regions are color-coded: yellow for the right upper lobe,
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green for the right middle lobe, brown for the right lower lobe, blue for the left upper lobe, and
red for the left lower lobe. The first column represents the original images, and the subsequent
four columns represent the segmentation results for the ground truth, PLS-Net, RPLS-Net, and
nmPLS-Net, respectively.

To further substantiate the efficacy of nmODE, an analysis was conducted on fea-
ture maps generated by the model using six CT scans. These feature maps included
those with dimensions (129, D/8, H/8, W/8) before entering the nmODE module, as
well as those with the same dimensions after passing through the nmODE module.
Principal component analysis (PCA) was applied to reduce the dimensionality of these
feature maps from (129, D/8, H/8, W/8) to a compact representation of (129, 2). These
reduced-dimensional feature representations were then visualized on a 2D plane, and
the outcomes are presented in Figure 5. Figure 5a provides a visual representation of
features before entering the nmODE module, while Figure 5b showcases the features
after undergoing processing by the nmODE module. Each color in the visualizations
corresponds to the same CT scan across both figures. It can be observed that the original
features, after being processed by nmODE, exhibit more pronounced overall similarity in
shape, indicating that nmODE’s memory capacity can indeed extract common features
among different samples. Furthermore, the distribution of features before processing by
the nmODE module is more concentrated. In contrast, the feature distribution follow-
ing nmODE processing exhibits a heightened level of uniformity and reveals stronger
inter-feature correlations. These findings underscore the nmODE module’s adeptness in
learning intricate feature correlations, thus enhancing its capacity to capture meaningful
relationships within the data.

(a) feature map before nmODE module

Figure 5. Cont.
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(b) feature map after nmODE module

Figure 5. Visualized feature-maps of 6 CT volumes. In (a,b), the same colors represent the output
features of the same CT volumes and each scatterplot in the figure is obtained by projecting the
various channels of the model’s encoder output features onto a two-dimensional plane after PCA
dimension reduction. (a) shows the scatterplot of the feature mapping obtained before processing
with the nmODE module, while (b) shows the scatterplot of the feature mapping obtained after
processing with the nmODE module.

5. Discussion and Conclusions

This study proposes a 3D fully convolutional neural network, nmPLS-Net, which
combines nmODE (nonlinear memory ordinary differential equation) with multitask learn-
ing to perform the end-to-end segmentation of pulmonary lobes in chest CT scans. The
memory capabilities and high nonlinearity of the nmODE module enhance the extraction
of global features, improving the model’s performance in segmenting the overall lung and
complex scenarios in the right lung. Additionally, fissure-enhanced associative learning
guides the model’s attention toward challenging voxels within pulmonary fissures. The
model’s performance is validated on two distinct datasets, and the experimental results
demonstrate that nmPLS-Net achieves notably superior results in right pulmonary lobe
segmentation compared to previous methods. However, incorporating nmODE requires
an ODE solver, which may slightly reduce computational speed. This problem can be
addressed in future work through knowledge distillation, an area we plan to explore for
further improvements.
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