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Abstract: In this work, a control chart with multiple runs rules is proposed and studied in the case
of monitoring inflated processes. Usually, Shewhart-type control charts for attributes do not have a
lower control limit, especially when the in-control process mean level is very low, such as in the case
of processes with a low number of defects per inspected unit. Therefore, it is not possible to detect a
decrease in the process mean level. A common solution to this problem is to apply a runs rule on the
lower side of the chart. Motivated by this approach, we suggest a Shewhart-type chart, supplemented
with two runs rules; one is used for detecting decreases in process mean level, and the other is
used for improving the chart’s sensitivity in the detection of small and moderate increasing shifts in
the process mean level. Using the Markov chain method, we examine the performance of various
schemes in terms of the average run length and the expected average run length. Two illustrative
examples for the use of the proposed schemes in practice are also discussed. The numerical results
show that the considered schemes can detect efficiently various shifts in process parameters in either
direction.

Keywords: attributes control chart; average run length count data; expected average run length;
inflated Poisson distribution; statistical process monitoring
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1. Introduction

Statistical process monitoring (SPM) is a collection of methods and techniques which
focus on the monitoring of a process and the timely detection of changes in it. The most
frequently used SPM method is the control chart. The most common chart is the Shewhart
chart, suggested by Walter A. Shewhart in the 1920’s, while there are two other main types
of control charts, namely the cumulative sum (CUSUM) chart, proposed by Page [1], and
the exponentially weighted moving average (EWMA) chart, proposed by Roberts [2]. A
Shewhart chart is useful for the detection of sudden and of large magnitude shifts, while
the CUSUM and EWMA charts are better than Shewhart charts in the detection of shifts of
small magnitude. See [3] for more details on the properties and applications of the main
types of control charts.

The superiority of CUSUM and EWMA charts in the detection of shifts of small
magnitude is attributed to their inherent memory, i.e., the respective charting statistics
consist of information not only from the most recent sample (or recent observation) but
also from the past ones. However, even though their practical implementation is nowadays
a routine application, there are still some difficulties in their statistical design, mainly in
how to choose the most appropriate values for their chart parameters. From this point
of view, intermediate solutions, such as supplementing a Shewhart chart with additional
stopping rules based on runs (i.e., runs rules), are still popular in practical problems. We
refer to [4,5] for thorough reviews of control charts with runs rules.
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Control charts for attributes are used when count data are available from the process.
This situation occurs when it is not possible to find a critical-to-quality (CTQ) characteristic
X (random variable, r.v.) that follows a continuous distribution. Usually, in the case of
attributes charts, the distribution of X can either take values on {0, 1, ...} (e.g., in the case of
monitoring the number of defects that follow a Poisson distribution) or on {0, 1, ..., n} (e.g.,
in the case of monitoring the number of defective in a sample of size n, which follows a
binomial distribution). Even though Poisson distribution and the associated Shewhart-type
chart, the c-chart, are frequently used in the monitoring of count data, there are many cases
where both are not appropriate. For example, this is the case of count data that exhibit
over-dispersion, i.e., the variance of the distribution of X is much larger than its mean.
Recall that in Poisson distribution, mean and variance are equal. Therefore, a solution to
this problem is to adopt a distributional model for the available count data from the process
that can capture this deviation from the ordinary Poisson model.

Inflated probability distributions have been studied by several authors due to their
flexibility in modeling over-dispersion in the data. A common sub-class of the family of
inflated distributions is that of zero-inflated distributions (see, for example, Chapter 8 in [6]),
where the probability for the occurrence of a zero value is much larger than the respective
probability under the non-inflated distribution. Even though inflated distributions (not
necessarily only at zero) have been studied in the past (Yoneda [7]), in recent years, there
has also been interest in extending them to model the inflation of two or more values. See,
for example, [8-11] and references therein for inflated distributions in exactly two values:
at 0 and at another one non-zero value. Also, Sun et al. [12] suggested a zero-one-two
inflated distribution, a distribution inflated at exactly three values. Begum et al. [13] and
Rakitzis et al. [14] proposed a general inflated Poisson model that takes into account
the inflation on the first » + 1 values (i.e., the {0, 1, ..., r}) of the distribution. Also,
Rakitzis et al. [14] proposed and studied a two-parameter mixture model, namely the
r-geometrically inflated Poisson (GIP;) distribution, which can model the inflation not only
on the zero-values but also on other values of the Poisson distribution, while it has only
two parameters.

Control charts for inflated distributions have been studied quite extensively in the
recent literature, especially those related to the monitoring of zero-inflated processes. See
the overview provided in [15]. Even though in the literature exists almost every main
type of chart for inflated distributions (such as Shewhart, CUSUM, and EWMA), there are
very few control charts with supplementary runs rules for monitoring this type of process.
Actually, the case of attributes control charts with supplementary runs rules has not been
paid much attention compared to their variable counterparts. Supplementing a Shewhart
chart with runs rules is an easy-to-apply solution for the problem of their insensitivity in
detecting small to moderate shifts in process parameter(s). We should also mention that it
is very common for attribute charts to have no lower control limit, especially in the case
of high-quality processes, where the fraction of non-conforming items is very low. For
example, the lower control limit of a c-chart with 3 sigma limits and an IC mean lower than
9 is negative. In this case, it is suggested to use only an upper control limit on the chart
(see [16]). Nelson [17], Acosta-Mejia [18], Lucas et al. [19], and Chang and Gan [20] studied
attributes control charts with no lower control limit, and instead, they applied a runs rule
on the lower side of the chart to detect a decrease in the process mean level.

Usually, high-quality processes can be modeled according to a discrete inflated prob-
ability distribution. Motivated by the works in [19,20], we propose and study a control
chart with multiple runs rules to monitor a GIP, process and detect increases as well as de-
creases in its mean level. The aim is to suggest a control chart for attributes that retains the
simplicity of a Shewhart-type chart with runs rules while it has an improved performance
compared to its competitors. To the best of our knowledge, in the literature, there are no
two-sided control charts with multiple runs rules for monitoring a GIP, processes. Also, it
is worth noting that even though the properties of the proposed scheme are investigated in
the case of monitoring a GIP, process, after some straightforward but necessary modifica-
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tions, it can be used for the monitoring of any other process which is modeled according to
a discrete probability distribution. These are the main scopes and motivations of this work.
The structure of this work is as follows: In Section 2, we present the main properties
of the GIP, distribution. In Section 3, we introduce the proposed scheme and present
the measures for evaluating its performance. In Section 4, we present the findings of an
extensive numerical study regarding the statistical design and the performance of the
proposed chart. Practical guidelines for applying the chart in practice are given as well.
In Section 5, we present two illustrative examples (using real data), which show how to
implement the proposed charts in practice. Finally, in Section 6, the conclusions and main
findings of this work are summarized, while topics for future research are also given.

2. The r-Geometrically Inflated Poisson Distribution

We start this section by presenting the basic properties of the r-geometrically inflated
Poisson distribution. Further details can be found in Rakitzis et al. [14]. Let X be a discrete
random variable with support S = {0, 1, 2, ...}. If the probability mass function (pmf) of
Xis

x+1 e M\X

A
forn (2l 1) = Eion 0+ =0+ 1-golrg) o xe 0L}, ()

then we say that X follows the r-geometrically inflated Poisson distribution with parameters
¢ € (0,1) (the inflation parameter), A > Oand r € {0, 1, 2, ...} (i.e, X ~ GIP,(¢$,A)).
Also, go(x,¢) = ¢(1 — ¢**1) /(1 — ¢) satisfies the inequality r + 1 — go(r,¢) > 0 for every
¢ € (0,1) (soas fgrp,(x|¢, A) is a true pmf), while I4(x) is the usual indicator function. For
r =0, the GIP,(¢, A) distribution reduces to the ZIP distribution with parameters ¢ and A.

The cumulative distribution function (cdf) Fgyp, (x|¢, A) of the GIP,(¢, A) distribution
is given by

0, x <0
Foip, (x|¢,A) = { 5 (g0([x), @) + (r+1—go(r,¢))Fp(x[A)), 0<x<r @)
%( o(r, @) + (r+1—go(r,¢))Fp(x|A)), x=>r+1

The |...] represents the smallest integer contained in |.. .| and Fp(x|A) is the cdf of the
Poisson distribution with parameter A. In addition, the mean of the GIP, (¢, A) distribution
equals
§1(r, @) + (r +1—go(r,¢))A

r+1

norp, = E(X) = , 3)

where, for ¢ € (0,1), itis g1(x, ¢) = (W)(])z

For a given r value, the parameters ¢ and A can be estimated by using either the
maximum likelihood estimation method or the method of moments; see [14] for further
details on estimation methods for the parameters of the GIP,(¢$, A) distribution. In the
present work, we assume that process parameters are known, or that they have been

estimated from a (sufficiently) large Phase I sample.

3. The Proposed Monitoring Scheme
3.1. Operation of the Proposed Monitoring Scheme

In this section, we present the operation of the proposed monitoring scheme that can
be used for the monitoring of a GIP, process. Following the setup in [21], we assume
that the value of r is predetermined and remains unaffected by the presence of assignable
causes. Moreover, in this work the aim is to detect either upward or downward shifts
in the in-control (IC) process mean level, which is denoted as i grp,. The control charts
studied by [21,22] can detect only upward shifts in y g1p,. Let us also assume that at each
sampling stage, an individual observation is obtained from the GIP, process. We denote as
Ao, ¢o the IC values of the process parameters. When the process is OOC, we assume that



Mathematics 2023, 11, 4671

40f16

the OOC values of the process parameters are Ay = - Ag and ¢y = T - ¢pg with d > 0 and
T € (0,1/¢0]. When (7,5) = (1,1) the process is IC.

Both p,grp, and 1 Gip, are obtained via Equation (3) for the respective IC and OOC
values of ¢ and A. It is worth mentioning that in practice, it is of great importance to detect
an increase in the mean of the process, that is, a change from g gyp, to u1,61p, > Ho,GIP,,
because it is related to process deterioration. For example, control chart operators are
interested in detecting an increase in the expected number of nonconformities of the
inspected units or an increase in the expected weekly number of confirmed new infections
from a specific disease. In addition, in modern statistical process monitoring (see, for
example, [23-26]), the case of decreases is considered very important because it is related
to process improvement. In such cases, the interest is in detecting a decrease in the
expected number of non-conformities in the inspected units, which can be considered an
indication that the attempts for process improvement have been successful. Note also that
this improvement can be attributed to the occurrence of assignable causes, such as the
recruitment of well-trained personnel or the use of improved raw materials. Consequently,
for continuous improvement, it becomes essential to consider the improvement case. In
this work, we consider both OOC cases: y1 G1p, > Ho,GIp, OF H1,GIp, < H0,GIP,-

Let [, m, k be positive integers with 2 < | < m and k > 2. Then, the proposed
monitoring scheme, to be denoted as CRR; ,,, gives an OOC signal when at least one of the
following events occurs:

i.  Asingle value X; is beyond an upper control limit UCL (Region 1);

ii. l-out-of-m successive values are in the interval (UWL, UCL] (Region 2) with the
intermediate m — [ values being in the interval (LWL, UWL] (Region 3);

iii. ksuccessive values are in the interval [0, LWL] (Region 4);

whichever of the (i)—(iii) occurs first.

The suggested scheme can be viewed as an extension of the schemes studied by [19,20].
Specifically, in the above-mentioned works, the rule for detecting a decreasing shift in
Ho,G1p, is of the type k-out-of-k successive zero values. For the detection of increasing shifts
in p g1p,, Lucas et al. [19] applied only the rule of a single value X; above an upper control
limit UCL while Chang and Gan [20] applied a rule of type l-out-of-m consecutive points
above an UCL.

The regions of the CRR; ,, chart are given in Figure 1. To apply the proposed control
chart in practice, the values of LWL, UWL, UCL, and k must be determined for the given
integer values I,m (2 < | < m). This is carried out via an appropriate design procedure;
the values (LWL, UWL,UCL, k) are determined so the CRR; ,, scheme has the desired
IC performance, and it is sensitive enough in the detection of specific shifts in process
parameters.

Region 1
U,
Region 2
h UwL
— Region 3
. LWL
Region 4

Figure 1. Regions of the CRR; ,, control chart.
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3.2. Performance of the Proposed Monitoring Scheme

The performance of a process monitoring scheme is evaluated by the run length (RL)
distribution, which is defined as the number of points plotted on the chart until it gives for
the first time an OOC signal.

The computation of the RL properties of the CRR;,, scheme is feasible using the
finite Markov chain embedding technique of Fu and Koutras [27] (see also [28,29] and
references therein). Further details on the method can be found in the Appendix A. Using
this method, it is possible to calculate the entire RL distribution, as well as its expected
value E(RL), which is known as the average run length (ARL). The ARL is the most
common performance measure of a control chart.

Apart from the ARL, there are other performance measures that can be viewed as
measures of the overall performance of the chart. Specifically, the ARL evaluates the
performance of a chart at a specific shift (7, ) in process parameters ¢y and Ay, respectively.
In practice, these shifts are rarely known, or practitioners may want to know how the
chart performs for a range of shifts. For this reason, in this work, we use also the expected
average run length (EARL), which is defined as (see, for example, [30,31])

Timax Omax
1
EARL = / ARL(t, 6)d8dr,
(Tmax - Tmin)(émax — Opmin )T 5 ( )

where [6,in, Omax | and [Tyin, Tmax | are the intervals for the shifts § and 7 in Ay and ¢y, re-
spectively. The chart with the minimum EARL is the one with the best overall performance
at the specific range of shifts.

4. Numerical Results

In this section, we present the results of a numerical study regarding the performance
of the CRR; ,, chart. Specifically, we consider the following specific values for I, m (see
Table 1):

Table 1. The CRR; ,,, schemes under study.

Scheme 1 2 3 4 5 6 7
1 2 2 2 2 3 4 5
m 2 3 4 5 4 5 5

Notation ~ CRRy, ~ CRRy3  CRRyy  CRRps  CRR3y  CRRys  CRRss

These values correspond to very well-known runs rules such as the 2-of-2, the 2-of-3,
and the 4-of-5, to mention a few.

Next, in Table 2 we provide six indicative scenarios for different IC GIP, processes.
Cases 5 and 6 correspond to a zero-inflated Poisson (ZIP) process. The IC process mean
level is given in the third row of Table 2 and varies from 0.4 to 2.6250 for the different
6 scenarios. Thus, they can be considered cases of high-quality processes.

Table 2. Scenarios for the IC GIP, Processes.

Case 1 2 3 4 5 6
(r,¢0, Ao) (3,0.7,3) (3,0.7,1.5) (2,09,3) (1,0.5,4) (0,0.8,2) (0,0.9,6)
Ho,GIP, 2.1442 1.3091 1.3170 2.6250 0.4000 0.6000

For each IC scenario in Table 2, we determined the values of the design parameters
LWL, UWL, UCL, and k for the seven schemes in Table 1 to have comparable IC perfor-
mance. For illustrative purposes, we considered an IC ARL approximately equal to 100.
Any other value can be used depending on practitioners’ needs.
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The design procedure is based on an extensive grid search on the possible positive
integer values for LWL, UWL, UCL, and k which satisfy the following two constraints:
(D0<LWL<UWL<UCL<15and (Il)k € {7, 8, ..., 50}. Then, any combination of
LWL, UWL, UCL, and k that gives an IC ARL approximately equal to the pre-specified
ARLj = 100 value, i.e., in the interval (98,102), is considered accepted.

Once all the possible combinations for (LWL, UWL,UCL, k) that give the desired
IC performance have been determined, we evaluated the OOC ARL of the proposed
charts for several pairs of shifts (7,6). The considered pairs are (7,9) € {0.6,0.8,1,1.1} x
{0.5,0.8,1,1.2,1.5} while for (7,6) = (1,1), the process is IC.

In Tables 3-8 we provide the best charts, i.e., the ones with the minimum OOC ARL
values, for various shifts in ¢y and Ay when the IC ARL is (approximately) equal to 100.
The shifts are given in columns ‘7" and ‘0", while the OOC values A, and ¢, of the process
parameters are given in the respective columns. The column ‘p; grp,” gives the OOC process
mean level, while the column “p1 g1p, / po,c1p,” gives the change in IC process mean level.
Note that when ﬁl Z“’ r < 1, there is a decrease in the process mean level, otherwise, there is
an increase. Also, the results in Tables 3-8 have been sorted according to the values of this
column to discriminate the decreases from the increases.

Table 3. Best charts in terms of ARL, Case 1, ARL(y =~ 100.

T 5 M ¢ mc, ;‘;% ARL; LWL UWL UCL k  Scheme u CLS: o ,;Ii ’73 ugz;‘{bf;fi 2

1 0.5 1.5 0.70  1.3092 0.61 18.72 3 6 10 14 CRR 51.84 173.69
0.8 0.5 15 0.56 1.3096 0.61 19.07 2 3 15 8 CRRy5 51.89 173.11
1.1 0.5 1.5 0.77 1.3260 0.62 17.73 3 6 10 14 CRRy 54.06 184.28
0.6 0.5 15 0.42 1.3414 0.63 19.63 2 3 15 8 CRRyps 56.87 194.78
1.1 0.8 24 0.77 1.7376 0.81 34.07 3 6 10 14 CRR3» 100.60 261.13

1 0.8 2.4 0.70 1.8102 0.84 42.90 3 6 10 14 CRRyp 111.30 258.62
0.8 0.8 24 0.56 1.9514 0.91 63.42 3 6 10 14 CRR3» 145.35 264.59
1.1 1 3 0.77  2.0119 0.94 65.00 3 6 10 14 CRRyp 126.47 140.21
0.6 0.8 24 042  2.0835 0.97 85.58 3 6 10 14 CRRyp 208.52 276.92

1 1 3 0.70 2.1442 1.00 150.89 149.31 125.37
1.1 1.2 3.6 0.77  2.2863 1.07 48.53 0 5 7 7 CRRp4 71.03 64.58
0.8 1 3 0.56  2.3793 1.11 59.11 2 3 9 12 CRR34 117.80 107.85

1 1.2 3.6 0.70  2.4783 1.16 37.64 0 5 7 7 CRRy4 58.34 54.94
0.6 1 3 042 25783 1.20 41.15 2 3 9 12 CRR34 101.87 97.99
1.1 15 4.5 0.77  2.6978 1.26 17.90 0 5 7 7 CRRy4 25.26 24.50
0.8 1.2 3.6 0.56  2.8072 1.31 26.17 1 4 9 10 CRRyp 45.55 4444

1 1.5 45 0.70  2.9793 1.39 14.05 0 5 7 7 CRRy4 20.74 20.37
0.6 1.2 3.6 042  3.0730 143 18.46 2 3 9 12 CRR34 39.39 39.03
0.8 1.5 45 0.56  3.4490 1.61 10.30 0 5 7 7 CRRy4 16.20 16.09
0.6 15 4.5 0.42  3.8152 1.78 8.55 0 5 7 7 CRRy4 14.01 13.98

Table 4. Best charts in terms of ARL, Case 2, ARLy =~ 100.

T § M ¢ mem P ARL, LWL UWL UCL k  Scheme LICLS:I i 1;1214 ug;;bzlgec; »
0.6 0.5 0.75 042 0.7229 0.55 20.09 1 4 5 8 CRR35 31.10 31.00
0.8 0.5 0.75 0.56 0.7748 0.59 23.43 1 4 5 8 CRRy5 35.06 34.94

1 0.5 0.75 070 0.8916 0.68 33.77 1 2 5 8 CRRs5 46.58 46.42
1.1 0.5 0.75 0.77  0.9831 0.75 46.23 1 2 5 8 CRRs55 59.02 58.82
0.6 0.8 1.2 0.42 1.0940 0.84 52.88 1 4 5 8 CRRy5 97.64 87.12
0.8 0.8 1.2 0.56  1.0957 0.84 55.47 1 4 5 8 CRRy5 96.27 87.28

1 0.8 1.2 0.70 1.1421 0.87 69.62 1 2 5 8 CRRs55 108.80 99.74
1.1 0.8 1.2 0.77 1.1889 0.91 86.51 1 2 5 8 CRRs5 124.06 114.33

1 1 15 0.7 1.3091 1.00 96.70 176.58 122.79
0.8 1 15 0.56  1.3096 1.00 84.94 1 3 6 8 CRR35 75.49 113.21
1.1 1 1.5 0.77  1.3260 1.01 98.12 1 2 7 9 CRR34 117.73 135.38
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Table 4. Cont.

© 5 M ¢ mem, 9T ARL, LWL UWL UCL k  Scheme CLS:, i ,,”i v ugz;‘{bf;e; »
0.6 1 15 042 13414 102 81.71 1 3 6 8 CRRy5 65.28 115.36
11 12 18 077 14632 112 77.65 1 2 7 9 CRR34 60.07 117.02

1 12 18 070 14762 113 77.82 1 2 7 9 CRR34 49.34 105.01
08 12 18 056 15236 116 73.34 1 2 7 9 CRR34 38.52 93.48
06 12 18 042 1588 121 63.63 1 3 6 8 CRRy5 33.31 89.78
11 15 225 077 16690 127 46585 1 2 7 9 CRR34 28.03 66.36

1 15 225 070 17267 132 4250 1 2 7 9 CRR34 23.02 57.06
0.8 15 2.25 0.56  1.8445 141 33.58 1 3 6 8 CRRy5 17.96 47.17
06 15 225 042 19598 150 26.71 1 3 6 8 CRRy5 15.54 4226

Table 5. Best charts in terms of ARL, Case 3, ARLy = 100.

T b Mo @1 mew, P ARL, LWL UWL UCL k  Scheme UCI?:I{ e 1;1274 ugzzzb:u;; .
11 05 15 099 1003 076 73.09 1 5 7 8 CRRy5 118.61 307.21
11 08 24 099 10212 078 76.25 1 5 7 8 CRRy5 121.98 341.42
1.1 1 3 099 1.0332 078 76.81 1 5 7 8 CRRy5 123.05 299.94

1 0.5 15 0.90 1.0365 0.79 68.60 1 3 7 8 CRR34 109.88 307.21
11 12 36 099 10451  0.79 75.63 1 5 7 8 CRRy5 123.64 234.44
11 15 45 099 10630  0.81 70.47 1 5 7 8 CRRy5 124.07 166.75
0.8 0.5 1.5 0.72  1.1158 0.85 70.10 1 2 7 8 CRRyps 108.15 279.85

1 08 24 090 12048 091  100.78 1 3 7 8 CRR34 143.59 229.34
0.6 0.5 1.5 0.54 1.2076 0.92 82.37 1 2 7 8 CRRys 124.94 308.88

1 1 3 090 13170  1.00 159.59 156.73 121.55

1 12 36 090 14292  1.09 51.35 1 3 6 14  CRRyp 72.98 64.33
08 08 24 072 15323 116 64.24 1 3 11 9 CRRy4 186.37 150.42

1 15 45 090 15975 121 25.34 1 3 6 14  CRRy, 31.65 29.98
0.8 1 3 0.72  1.8100 1.37 28.91 0 3 6 7 CRR 64.49 60.84
06 08 24 054 18109 138 35.98 1 3 1 9 CRRy4 128.67 119.23
0.8 1.2 3.6 0.72  2.0877 1.59 15.52 0 3 6 7 CRRy 29.49 28.84
0.6 1 3 054 22131  1.68 16.13 1 3 7 10  CRRys3 4452 43.84
08 15 45 072 25042 190 8.34 0 3 6 7 CRRy, 12.79 12.68
06 12 36 054 26153 199 9.19 0 3 6 7 CRRy 20.36 20.26
0.6 15 45 0.54 3.2186 2.44 5.15 0 3 6 7 CRR3» 8.83 8.82

Table 6. Best charts in terms of ARL, Case 4, ARLy ~ 100.

T 5 M $ macp, ﬁ% ARL; LWL UWL UCL k Scheme UCLS; s ’;1:73 ugz;zbzn;’e;l »
11 05 2 055 12988  0.49 14.14 3 7 10 9 CRRy5 33.68 98.08

1 0.5 2 0.5 1.3750 0.52 14.79 3 7 10 9 CRRy5 38.62 118.01
08 05 2 04 15200 058 15.56 4 11 15 12 CRRys 52.67 179.34
0.6 0.5 2 0.3 1.6550 0.63 16.08 4 11 15 12 CRRy5 199.06 295.48
11 08 32 055 19873 076 31.97 4 11 15 12 CRRys 5222 151.12

1 08 32 05 21250 081 35.51 4 11 15 12 CRRgs 64.64 188.76
08 08 32 04 2380 091 43.49 4 11 15 12 CRRys 106.26 293.53
1.1 1 4 055 24463 093 78.41 4 11 15 12 CRRgs 58.74 105.87
0.6 0.8 3.2 0.3 2.6210 1.00 52.64 4 11 15 12 CRRy5 199.06 428.80

1 1 4 05 26250  1.00 74.89 74.41 116.96
11 12 48 055 29053 111 37.28 0 6 10 9 CRRy4 31.23 53.02
0.8 1 4 04 29600 1.3 72.66 0 4 9 7 CRRy3 65.01 133.62

1 12 48 05 31250 119 32.10 0 6 10 9 CRRy4 28.67 52.96
0.6 1 4 03 32650 1.4 54.41 0 4 9 7 CRRy3 58.15 139.62
0.8 1.2 4.8 0.4 3.5360 1.35 24.96 0 6 10 9 CRRy4 24.88 51.20
11 15 6 055 35938 137 13.01 0 6 10 9 CRRy4 11.41 19.08

1 15 6 05 3.8750 148 11.41 0 6 10 9 CRRy4 10.47 18.03
06 12 48 03 39090 149 19.71 0 4 9 7 CRRy3 22.26 48.20
08 15 6 04 44000  1.68 9.16 0 6 10 9 CRRy4 9.09 16.19
0.6 15 6 0.3 4.8750 1.86 7.69 0 6 10 9 CRRy4 8.13 14.70
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Table 7. Best charts in terms of ARL, Case 5, ARLy = 100.

T 5 M ¢ mew, 9% ARL, LWL UWL UCL k  Scheme UCLS:I » ,,'i/'i S ug::;b:u;e; .
11 05 1 08 0120 030 3050 1 4 6 21  CRRas 29.86 98.08
11 08 16 08 01920 048 4233 1 4 6 21  CRRas 36.83 151.12

1 05 1 08 02000 050 4023 1 4 6 21 CRRys 52.16 118.01
11 1 2 08 02400 060 5072 1 4 6 21  CRRas 4021 105.87
1.1 12 24 088 0280 072 5411 0 2 7 18  CRRp, 42.69 53.02

1 08 16 08 03200 080 7027 3 4 8 47  CRRas 78.81 188.76
08 05 1 064 03600 090 5564 3 4 8 47  CRRas 206.93 179.34
11 15 3 088 03600 090 4533 0 2 5 22 CRRas 45.14 19.08

1 1 2 08 04000  1.00 94.96 93.99 116.96

1 12 24 08 04800 120 6372 0 2 5 22 CRRys 52.15 52.96
06 05 1 048 05200 130 6016 3 4 8 47  CRRas 525.45 295.48
08 08 16 064 05760 144 10018 3 4 8 47  CRRas 117.29 293.53

1 15 3 08 06000 150 3555 0 2 5 22 CRRas 27.07 18.03
0.8 1 2 064 0720 180 5168 0 2 5 22 CRRas 52.76 133.62
06 08 16 048 08320 208 5588 0 2 5 22 CRRas 81.20 428.80
08 12 24 064 08640 216 2968 0 2 5 22 CRRas 28.97 51.20
0.6 1 2 048 1.0400 260 2671 0 2 5 22 CRRgs 36.52 139.62
08 15 3 064 1080 270 1655 0 2 5 22 CRRas 15.04 16.19
06 12 24 048 1248 312  16.01 0 2 5 22 CRRas 20.06 4820
06 15 3 048 15600  3.90 9.49 0 2 5 22 CRRas 10.41 14.70

Table 8. Best charts in terms of ARL, Case 6, ARLy =~ 100.

T 5 M 1 mew, % ARL, LWL UWL UCL k  Scheme u CLS: -9 W’L/Zs u Ci‘s’:f‘lr(‘]e; .
11 05 3 099 0030 005 2584 0 1 14 23 CRRys 25.84 30.94
11 08 48 099 0048 008 2598 0 1 14 23 CRRys 25.98 31.04
111 6 099 0060 010 2599 0 1 14 23 CRRys 26.00 30.75
11 12 72 099 0072 012 2595 0 1 14 23 CRRys 26.00 30.11
11 15 9 099 009 015 2573 0 1 14 23 CRRys 26.01 28.56

1 05 3 09 0300 050 3821 5 12 15 33  CRRyy 94.07 144.80
1 08 48 09 0480 080 6351 6 9 15 40  CRRys 101.32 136.47
1 1 6 09 0600  1.00 119.16 102.37 95.51
1 12 72 09 0720 120 4729 1 6 9 49  CRRas 52.53 57.09
08 05 3 072 0840 140 2351 0 1 13 45  CRRys 3239.43 6913.29
1 15 9 09 0900 150  23.11 1 6 9 49  CRRas 24.24 28.11
08 08 48 072 1344 224 1764 0 1 13 45  CRRys 142.06 337.92
06 05 3 054 1380 230 9.58 0 1 13 45  CRRys 1971.82 7431.91
08 1 6 072 1680 280  16.61 0 1 13 45  CRRys 4256 83.51
08 12 72 072 2016 336 1532 1 6 9 49  CRRas 18.76 31.48
06 08 48 054 2208 368 7.39 0 1 13 45  CRRys 86.47 208.69
08 15 9 072 2520 420 7.91 1 6 9 49  CRRas 8.66 12.14
06 1 6 054 2760 460 7.03 0 1 13 45  CRRys 25.90 51.01
06 12 72 054 3312 552 6.80 0 1 13 45  CRRys 11.42 19.18
06 15 9 054 4140 690 458 1 6 9 49  CRRas 5.27 7.39

For comparison purposes, we included the ARL profiles of the following schemes: The
upper one-sided GIP; Shewhart chart in Mamzeridou and Rakitzis [21] (in column ‘SH’), a
lower one-sided scheme, which is the add-on procedure suggested by Lucas et al. [19] and
gives an OOC signal when 5-out-of-r7 (7 > 2) consecutive zero values occur (in column
‘n/1’) and a two-sided scheme (in column ‘Combined’) that combines the previously
mentioned one-sided schemes. This combined scheme is the procedure suggested by Lucas
et al. [19]. Note also that the GIP, Shewhart chart has one upper control limit UCLgy; thus,
its ARL performance is evaluated only for increasing shifts in g g1p,. The value of UCLgy
is determined so as its IC performance is as close as possible to 100 in order to have a fair
comparison with the other schemes. Given the values of UCLgy, ¢1, and Aq, the ARL is
calculated by

ARLy =

1

1 — Fgrp,(UCLsg|¢1, A1)
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Furthermore, the ARL for the 17/1 scheme is given by (see [19])

1-p)

ARL, = — PO
pe(1—po)

where pg = Fgp, (0]¢p1,A1). Also, its ARL performance is evaluated only for decreasing
shifts in y g1p,. The value of 1 is determined so the IC ARL is also as close as possible to
100. Finally, the ARL of the two-sided that combines the two one-sided procedures equals

1-pl
1—P0—P1<1—Pg>

where p; = Fgip, (UCLgy|¢1,A1) — Frp, (0|¢1, A1). Again, the values of (UCLgp, 1) are
determined so the IC ARL¢ is as close as possible to 100.

The numerical results for the CRR; ,, charts show that there is not a single chart that
has the best performance, neither for all shifts nor for all different cases. For the upper side
of the chart, we suggest using the rule 2-out-of-m, m € {2, 3, 4, 5}, depending on the IC
values of the process parameters as well as on the values of the shifts (7, ). For the lower
side of the chart, larger values for k are needed when r = 0 than when r > 1. For the latter,
a value around 11-15 is sufficient in most of the cases, but the exact value depends on the
shift we want to detect.

The comparison with two one-sided charts and the combined two-sided chart shows
that there is at least one CRR; ,,, chart that has better ARL performance, in almost all the
considered cases. It should be mentioned that due to the discrete nature of the process,
the IC ARL of the upper GIP; Shewhart chart, the lower-sided 7/ scheme, and the
combined two-sided chart is not always comparable with that of the CRR; ,,,. Therefore,
conclusions should be made with caution. Another interesting point is that the rule of
n-out-of-11 consecutive zero values works well in the case of zero-inflated Poisson processes
(Cases 5 and 6) but its performance is weak in the remaining ones. Thus, the add-on
procedure suggested by Lucas et al. [19] is still effective when there is an excessive number
of zero values in the data but when there is inflation in zero and non-zero values, a
modification is needed. This modification is offered by the proposed CRR; ,, chart.

Another interesting finding is that there are cases where a change in one of the process
parameters results in a y1 grp, = Ho,cIp,- See, for example, Case 2 for (7,6) = (0.8,1) and
(1.1, 1) or Case 3 for (7,6) = (1,0.8). The charts can only marginally detect this change
while they cannot distinguish the type of shift. This is one of the limitations of this study.
A solution is to use, if possible, rational samples of size n > 2 (instead of individual
observations), as well as an appropriate statistic (e.g., the MLEs from each sample) to
improve chart’s ability to discriminate between the different types of shifts. This topic
needs a separate careful investigation, and it is left for a future study.

Next, in Tables 9 and 10, we provide the EARL values for the seven charts in Table 1
and the combined two-sided chart for each of the six cases in Table 2. For the shifts (7, 4) in
process parameters, we considered the following two scenarios:

" Scenario 1: [Tyin, Tnax] = [0.6, 1.1] and [01i, Omax] = [0.5,1.5]
. Scenario 2: [Tyin, Tmax] = [0.3,1.1] and [0,i,, Omax] = [0.3,2.0]

ARLc =

Table 9. Best charts based on EARL, ARL( ~ 100, Scenario 1.

Case CRRZ,Z CRR2,3 CRR2,4 CRR2,5 CRR3,4 CRR4,5 CRR5,5 Combined
1 65.31 64.89 59.30 58.76 61.34 64.19 63.94 142.59
2,6,7,10 2,6,7,10 2,5,8,9 2,5,8,9 2,3,10,11 2,3,12,8 2,3,7,10 7,4
5 68.67 68.16 64.57 63.92 67.95 69.72 68.53 84.88
1,4,5,8 1,4,58 1,3,6,8 1,3,6,8 1,35,8 1,35,8 1,2,58 54
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Table 9. Cont.

Case CRRZ,Z CRR2,3 CRR2,4 CRR2,5 CRR3,4 CRR4,5 CRR5,5 Combined

3 134.41 64.67 63.47 87.35 76.26 74.22 90.79 130.75
1,3,6,14 1,399 1,3,11,9 1,4,6,10 1,3,7,8 1,2,7,8 1,2,7,8 6,5

4 64.39 50.53 51.31 51.17 51.56 54.06 56.68 144.35
3,7,10,9 4,6,11,15 4,6,12,15 4,6,12,15 4,5,10,14 4,5,9,15 3,4,9,10 9,4

5 78.45 127.77 94.11 93.71 116.05 116.44 116.45 95.68
1,2,6,25 1,3,7,21 0,2,6,19 0,2,6,19 3,4,6,49 3,4,6,49 3,4,6,49 5,17

6 42.13 42.17 42.16 42.17 137.79 143.94 144.82 413.46
0,1,14,43 0,1,13,45 0,1,13,45 0,1,13,45 7,8,13,50 3,4,9,45 7,8,13,50 10,27

Table 10. Best charts based on EARL, ARLgy ~ 100, Scenario 2.

Case CRRZ’Z CRRZ,:; CRRZA CRR2,5 CRR3’4 CRR4,5 CRR5,5 Combined
1 46.17 44.67 40.29 39.84 38.92 43.07 43.46 104.55
2,5,7,11 2,6,7,10 2,5,8,9 2,5,8,9 2,3,10,11 2,3,7,11 2,3,7,10 7,4
5 48.90 48.32 43.39 42.86 47.71 49.89 48.76 60.22
1,4,5,8 1,4,5,8 1,3,6,8 1,3,6,8 1,2,7,9 1,3,58 1,258 54
3 101.20 43.21 42.83 61, 64 52.69 48.28 131.31 100.17
1,3,6,14 1,3,9,9 1,3,11,9 1,4,6,10 1,3,7,8 1,2,7,8 1,2,7,8 6,5
4 46.58 34.15 34.58 34.47 34.72 37.15 39.54 141.35
3,7,10,9 4,6,11,15 4,6,12,15 4,6,12,15 4,5,10, 14 4,5,9,15 3,4,9,10 9,4
5 58.78 85.73 85.23 85.11 95.02 94.99 95.05 269.10
1,2,6,25 1,3,5 24 1,3,524 1,3,5 24 3,4,6,49 3,4,6,49 3,4,6,49 5,17
6 27.17 26.50 26.49 26.49 116.18 90.86 118.89 6091.24
0,1,14,43 0,1,13,45 0,1,13,45 0,1,13,45 7,8,13,50 0,1,14,23 7,8,13,50 10, 27

The first line of each cell consists of the EARL value (in two decimals accuracy), while
in the second line we provide the values of the chart’s design parameters in the form
(LWL, UWL, UCL, k). For the combined chart, the parameters are given as (UCLgy, 7).

The results in Tables 9 and 10 reveal that there is not one scheme among the examined
ones that outperforms the others in terms of EARL. However, in none of the six cases do
the CRRy5 and CRR55 charts achieve the minimum EARL value, while the CRR3 4 is the
best chart in Case 1 and only under Scenario 2. On the other hand, one of the schemes
CRRym, m € {2, 3, 4, 5} is the best scheme in almost all Cases, under both Scenarios. We
also notice that the combined scheme does not have a competitive EARL performance
except for Case 5 under Scenario 1.

5. Examples

In this section, we present two real data examples regarding the application of the
proposed charts in practice. First, we discuss an application of the proposed chart in
the monitoring of changes in the number of unintentional needle-stick occurrences per
day in a hospital. The second example is from the area of public health and focuses on
the monitoring of the monthly number of poliomyelitis cases in the USA. Both examples
highlight the usefulness of control charts as powerful tools in biosurveillance and the
detection of abnormalities. Consequently, authorities (such as hospital’s administration or
the center for disease prevention and control) can be warned based on the signals given by
the charts and take actions to improve the quality of the services offered by the professionals
in health-care units.
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5.1. Monitoring the Daily Number of Unintentional Needle-Stick Occurrences

In the first example, we consider a case where we are interested in the quality of the
provided healthcare services. An increase on the average daily number of unintentional
needle-stick occurrences is an indication of process deterioration, while a decrease shows
improved performance by the hospital staff.

We use the dataset provided by Fatahi et al. [32] and analyzed further by Aly et al. [33].
Following [33], we assume that the data are from a ZIP process, and we use the first
40 observations as a Phase I sample to estimate the process parameters. Using the maximum
likelihood method, we obtain A =~ 2.38, 43 ~ 0.56 (in two decimals accuracy). Then, we
apply the Shewhart chart as a Phase I analysis method. For illustrative purposes we assume
that the desired IC ARL value is (approximately) equal to 200, yielding a UCL for the
Shewhart chart equal to 6. The theoretical IC performance of the chart implies that on
average, a false alarm signal would be triggered once in 6.5 months. Note also that the
(theoretical) IC ARL equals 204.39.

The respective chart is given in Figure 2 from which we notice that none of the
40 points exceeds the UCL. Therefore, the process was IC, when these values have been
collected, and we can proceed to the Phase II analysis by assuming that the IC values of the
process parameters equal the respective estimates, that is Ay = 2.38, ¢g = 0.56.

0 —

UCL=6

I T T 1 T T T 1 1
0 5 10 15 20 25 30 35 40

t

Figure 2. The ZIP Shewhart chart for the Phase I data of the number of unintentional needle-stick
occurrences per day in a hospital.

Since there are no further details regarding the future behavior of the process and the
shifts that are considered important and must be detected quickly, we will use for Phase
II monitoring the best chart in terms of the EARL, with a desired ARLy ~ 200. Again,
we consider the two scenarios in Section 4. In Table 11, we provide for each CRR; ,, chart
the minimum EARL value (first line), the IC ARL (second line), and the set of values
(LWL, UWL,UCL, k), in the third line, which gives the minimum EARL. Even though
the CRRy5 chart attains the minimum EARL, the IC ARL is not very close to the desired
nominal value of 200. Thus, we choose the CRR; 3 as the best chart in terms of EARL, for
both scenarios, since its IC ARL performance is much closer to the desired one.
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Table 11. Best charts based on EARL, for a ZIP process with (Ag, ¢p) = (2.38,0.56) and ARL( = 200.

Scenario CRR2,2 CRR2,3 CRR2,4 CRRZ,S CRR3,4 CRR4,5 CRR5,5
164.18 154.79 260.01 255.96 257.17 152.35 325.06

1 204.85 202.87 204.20 203.76 198.37 215.46 214.97
1,4,7,14 1,4,9,13 0,4,9,10 0,4,10,10 0,3,7,10 1,2,7,14 0,289

132.30 121.59 310.54 301.20 309.93 107.60 398.30

2 204.85 202.87 204.20 203.76 198.37 215.46 214.97
1,4,7,14 1,4,9,13 0,4,9,10 0,4,10,10 0,3,7,10 1,2,7,14 0,289

In Figure 3, we provide the CRR; 3 chart with (LWL, UWL, UCL, k) = (1,4,9,13) for
the 50 Phase II observations. This chart gives an OOC signal at point 35 since points 33 and
35 are plotted in Region 2, while point 34 is plotted in Region 3. These points are marked
with *. It is worth noting that the CRR3 3 gives this OOC signal at (almost) the same period
with the AEWMA chart in [33].

o

ucL=9

<
UWL=4
-

T
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t
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1

Figure 3. The CRRy 3 chart with (LWL, UWL,UCL, k) = (1,4,9,13).

5.2. Monitoring the Monthly Number of Poliomyelitis Cases

In the second example, we consider the monthly number of polio cases in the USA
(see also [21]). Rakitzis et al. [22] used 131 observations (from January 1973 to November
1983) where observations 1-100 are the Phase I dataset, and the remaining ones are the Phase
IT dataset. According to the results of the Phase I analysis conducted by Rakitzis et al. [22],
the GIP;(0.604,1.54) is the model with the best fit in the data when the process is IC. We
assume that the IC values of process parameters are known and proceed directly to Phase
II monitoring using the observations during the period May 1981-November 1983.

For illustrative purposes, we assume that the desired IC ARL value is (approximately)
equal to 20. This means that, on average, every 20 months, the chart gives a false alarm
signal. Larger IC ARL, such as the well-known textbook value 370.4, might not be very
useful because, in this case, the chart would give, on average, a false alarm (i.e., a false
indication of a change in the average monthly number of polio cases) every 370 months
(>30 years). This is a (very) long period for an infectious disease to retain its initial
characteristics.

For Phase II monitoring, we will use the best chart in terms of the EARL and IC ARL
as close as possible to 20. Again, we consider the two scenarios in Section 4. In Table 12, we
provide for each CRR; ,, chart the minimum EARL value (first line), the IC ARL (second
line), and the set of values (LWL, UWL, UCL, k), in the third line, which gives the minimum
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EARL. We choose the CRR; as the best chart since it has the minimum EARL and its
ARL performance is very close to the desired one.

Table 12. Best charts based on EARL, for a GIP; process with (Ag, ¢p) = (1.54,0.604) and ARLy ~ 20.

CRR;, CRRy;3 CRRy,4 CRRy5 CRR;, CRRy5 CRRs

17.782 23.110 23.108 23.108 18.200 18.337 18.352

Scenario 1 20.084 20.184 20.184 20.184 20.044 20.178 20.188
1,2,4,8 3,4,6,15 3,4,6,15 3,4,6,15 1,2,3,11 1,2,3,11 1,2,3,11

14.286 25.995 25.973 25.971 14.483 14.613 14.631

Scenario 2 20.084 20.184 20.184 20.184 20.044 20.178 20.188
1,2,4,8 3,4,6,15 3,4,6,15 3,4,6,15 1,2,3,11 1,2,3,11 1,2,3,11

In Figure 4, we provide the CRRy chart with (LWL, UWL,UCL,k) = (1,2,4,8) for
the 31 Phase II observations. The occurrence of 8 successive points in Region 4 (points
6-13, marked with *) indicates an OOC situation at point 13, which is related to a possible
decrease in the average monthly number of polio cases. It is worth noting that for the same
dataset, the charts proposed in [21,22] are not able to detect this OOC situation since they
are upper one-sided charts and can only detect increases in the process mean level. Also,
another OOC signal is given at point 31 (marked with *) since this point is above the UCL
(Region 1).

—
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t
Figure 4. The CRRy chart with (LWL, UWL,UCL, k) = (1,2,4,8).

6. Conclusions

In this work, we proposed and studied a control chart for attributes with multiple
runs rules that can be used for detecting either increasing or decreasing shifts in the
process mean level. The suggested scheme is preferable when the lower control limit of
the usual Shewhart-type chart is negative and thus is not capable of detecting a decrease
in the process mean level. The proposed chart was studied in the case of monitoring zero-
or general inflated Poisson processes. However, it can be used (after some necessary but
straightforward modifications) for the monitoring of any other process with count data. The
Markov chain method was used for studying its in-control and out-of-control performance,
and practical guidelines were provided. The out-of-control performance of the chart was
evaluated in terms of ARL and EARL. The numerical results showed that there is not a
unique scheme among the examined ones, with the best performance for all shifts, under
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either performance measures. However, for improving the performance in the detection
of increasing shifts we suggest the use of a runs rule of type 2-out-of-m. For the case of
decreasing shifts, larger k values are needed in the case of zero-inflated Poisson processes
than in the case of general inflated Poisson processes.

It should be also mentioned that in this work, we assumed that the value of r is
known. Clearly, r, as well as ¢y and Ay, must be determined before the application of the
charts. Therefore, the suggested approach is to first conduct a detailed model selection
procedure among the possible candidate models (e.g., various GIP;, distributions with
different r values) and then, by applying model selection criteria and/or goodness-of-fit
tests, to choose the model with the best fit in the data. With this procedure, practitioners
can determine the appropriate value for r.

Topics for future research consist of studying the proposed charts in the case of
estimated parameters, as well as the case of a CRR; ,, chart with variable sampling intervals
and variable sample sizes. For both topics, the research is in progress.

Finally, the programs for reproducing the results provided in this work have been
written in R [34], version 4.3.0 and are available from the authors upon request.
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Appendix A

Here, we briefly describe the Markov chain method that we used to study the proposed
two-sided control chart CRR; ,,. Let us consider a two-sided chart where four regions are
defined, as in Figure 1. The probability that a single point falls on Region j is denoted as p;,
i=1,2,3 4,and for A = Ay =6y, ¢ = ¢1 = T¢p, equals

pi = P(X < LWL) = Fop, (LWLIgn, Ay,
p3 = P(LWL < X < UWL) = FGIP,(UWH(PL/\l) — FGIP,(LWLM’L)H)/
P2 = P(UWL < X< UCL) = PGIP,(UCLl(Pl/)\l) — FGIP—,(UWLl(PllAl)I

p1 = P(X > UCL) =1- FGIP,(UCLM)l//\l)

where X ~ GIPy(¢1,A1). The c.d.f. Fgp,(-|¢, A) is given in Equation (2).

For illustrative purposes, we consider the case of the two-sided CRRy 3 chart. Using
the finite Markov chain imbedding (FMCI) method, it is possible to study any other
CRR; ,, chart and derive its entire run length distribution. Let {Y;,i > 1} be a sequence
of i.i.d. multistate random variables taking values in the set £ = {1, 2, 3, 4} such that
P(Y; =j)=pjj=1,2, 3, 4 where p; are the previously defined probabilities. The CRR;3
chart gives an OOC signal when either a single point is above the UCL or if two-out-of-three
successive points are in the interval (UWL, UCL] and at most one intermediate point is in
the interval (LWL, UWL)] or if k consecutive points are in the interval [0, LWL].

Let W be the waiting time (random variable) until the first occurrence of the compound
pattern:

& =1{1,22,232,44.. .4}.
k
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This means that W is the distribution of the number of trials until the occurrence of
one of the following simple patterns for the first time:

“17, 7227, “232” and “44...4".
N
k

Then, the distribution of W coincides with the run length distribution of the CRR3
chart and can be obtained as follows. First, the simple patterns are decomposed into the
following sub-patterns, defining the k + 3 states of the embedding Markov chain:

1=“4",2="44",3="444", . k—1="44... 4", k="3", k+1="2",
——
k—1
k+2="23", k+3={1,22,232,44...4}

~—

k

The first k + 2 states are the transient states of the Markov chain while state k + 3 is the
unique absorbing state. Let also {Z;,i > 1} be the imbedded Markov chain with state space
T=A{1,23, ..., k+2, k+3}. Then, Z; isin transient state (€ {1, 2, ..., k+2})if the
maximum ending block of the first v trials Y7, Y>, ..., Y, (counting backward) is identified
to be the block corresponding to value 4.

Therefore, the transition probability matrix P of the imbedded Markov chain is

1 2 3 ... k k+1 k+2 k+3
1 0 ps. O -+ p3 pp O P1
2 0 0 p4 p3 pz 0 ]91
P Q (I—Q)lT B . . . . . . . .
—\o 1 “ k-1 0 0 0 ps p2 0 pitpr
k pa 0 O ps p2 O p1
k+1 pe 0 O 0 0 p3 pp+m
k+2 P4 0 0 P3 0 0 P2+P1
k+3 0O 0 O 0 0 O 1

where Q is the (k + 2) x (k + 2) matrix of the transition probabilities between the transient
states of the Markov chain, Iis the (k +2) x (k +2) identity matrixand 1" isa (k+2) x 1
vector of ones.

From the theory of Markov chains, the average run length of the chart equals

E(W)=ARL=1+v(I-Q) 1T
where v is the 1 x (k + 2) initial probabilities vector, with

v=(P(Y; €1),P(Y; €2),...,P(Y; €k),P(Y; € k+1),P(Y; € k+2))
- (P4/O/ . 'IPB/ pZIO)
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