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Abstract: In this work, a control chart with multiple runs rules is proposed and studied in the case
of monitoring inflated processes. Usually, Shewhart-type control charts for attributes do not have a
lower control limit, especially when the in-control process mean level is very low, such as in the case
of processes with a low number of defects per inspected unit. Therefore, it is not possible to detect a
decrease in the process mean level. A common solution to this problem is to apply a runs rule on the
lower side of the chart. Motivated by this approach, we suggest a Shewhart-type chart, supplemented
with two runs rules; one is used for detecting decreases in process mean level, and the other is
used for improving the chart’s sensitivity in the detection of small and moderate increasing shifts in
the process mean level. Using the Markov chain method, we examine the performance of various
schemes in terms of the average run length and the expected average run length. Two illustrative
examples for the use of the proposed schemes in practice are also discussed. The numerical results
show that the considered schemes can detect efficiently various shifts in process parameters in either
direction.

Keywords: attributes control chart; average run length count data; expected average run length;
inflated Poisson distribution; statistical process monitoring
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1. Introduction

Statistical process monitoring (SPM) is a collection of methods and techniques which
focus on the monitoring of a process and the timely detection of changes in it. The most
frequently used SPM method is the control chart. The most common chart is the Shewhart
chart, suggested by Walter A. Shewhart in the 1920’s, while there are two other main types
of control charts, namely the cumulative sum (CUSUM) chart, proposed by Page [1], and
the exponentially weighted moving average (EWMA) chart, proposed by Roberts [2]. A
Shewhart chart is useful for the detection of sudden and of large magnitude shifts, while
the CUSUM and EWMA charts are better than Shewhart charts in the detection of shifts of
small magnitude. See [3] for more details on the properties and applications of the main
types of control charts.

The superiority of CUSUM and EWMA charts in the detection of shifts of small
magnitude is attributed to their inherent memory, i.e., the respective charting statistics
consist of information not only from the most recent sample (or recent observation) but
also from the past ones. However, even though their practical implementation is nowadays
a routine application, there are still some difficulties in their statistical design, mainly in
how to choose the most appropriate values for their chart parameters. From this point
of view, intermediate solutions, such as supplementing a Shewhart chart with additional
stopping rules based on runs (i.e., runs rules), are still popular in practical problems. We
refer to [4,5] for thorough reviews of control charts with runs rules.
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Control charts for attributes are used when count data are available from the process.
This situation occurs when it is not possible to find a critical-to-quality (CTQ) characteristic
X (random variable, r.v.) that follows a continuous distribution. Usually, in the case of
attributes charts, the distribution of X can either take values on {0, 1, . . .} (e.g., in the case of
monitoring the number of defects that follow a Poisson distribution) or on {0, 1, . . ., n} (e.g.,
in the case of monitoring the number of defective in a sample of size n, which follows a
binomial distribution). Even though Poisson distribution and the associated Shewhart-type
chart, the c-chart, are frequently used in the monitoring of count data, there are many cases
where both are not appropriate. For example, this is the case of count data that exhibit
over-dispersion, i.e., the variance of the distribution of X is much larger than its mean.
Recall that in Poisson distribution, mean and variance are equal. Therefore, a solution to
this problem is to adopt a distributional model for the available count data from the process
that can capture this deviation from the ordinary Poisson model.

Inflated probability distributions have been studied by several authors due to their
flexibility in modeling over-dispersion in the data. A common sub-class of the family of
inflated distributions is that of zero-inflated distributions (see, for example, Chapter 8 in [6]),
where the probability for the occurrence of a zero value is much larger than the respective
probability under the non-inflated distribution. Even though inflated distributions (not
necessarily only at zero) have been studied in the past (Yoneda [7]), in recent years, there
has also been interest in extending them to model the inflation of two or more values. See,
for example, [8–11] and references therein for inflated distributions in exactly two values:
at 0 and at another one non-zero value. Also, Sun et al. [12] suggested a zero-one-two
inflated distribution, a distribution inflated at exactly three values. Begum et al. [13] and
Rakitzis et al. [14] proposed a general inflated Poisson model that takes into account
the inflation on the first r + 1 values (i.e., the {0, 1, . . . , r}) of the distribution. Also,
Rakitzis et al. [14] proposed and studied a two-parameter mixture model, namely the
r-geometrically inflated Poisson (GIPr) distribution, which can model the inflation not only
on the zero-values but also on other values of the Poisson distribution, while it has only
two parameters.

Control charts for inflated distributions have been studied quite extensively in the
recent literature, especially those related to the monitoring of zero-inflated processes. See
the overview provided in [15]. Even though in the literature exists almost every main
type of chart for inflated distributions (such as Shewhart, CUSUM, and EWMA), there are
very few control charts with supplementary runs rules for monitoring this type of process.
Actually, the case of attributes control charts with supplementary runs rules has not been
paid much attention compared to their variable counterparts. Supplementing a Shewhart
chart with runs rules is an easy-to-apply solution for the problem of their insensitivity in
detecting small to moderate shifts in process parameter(s). We should also mention that it
is very common for attribute charts to have no lower control limit, especially in the case
of high-quality processes, where the fraction of non-conforming items is very low. For
example, the lower control limit of a c-chart with 3 sigma limits and an IC mean lower than
9 is negative. In this case, it is suggested to use only an upper control limit on the chart
(see [16]). Nelson [17], Acosta-Mejia [18], Lucas et al. [19], and Chang and Gan [20] studied
attributes control charts with no lower control limit, and instead, they applied a runs rule
on the lower side of the chart to detect a decrease in the process mean level.

Usually, high-quality processes can be modeled according to a discrete inflated prob-
ability distribution. Motivated by the works in [19,20], we propose and study a control
chart with multiple runs rules to monitor a GIPr process and detect increases as well as de-
creases in its mean level. The aim is to suggest a control chart for attributes that retains the
simplicity of a Shewhart-type chart with runs rules while it has an improved performance
compared to its competitors. To the best of our knowledge, in the literature, there are no
two-sided control charts with multiple runs rules for monitoring a GIPr processes. Also, it
is worth noting that even though the properties of the proposed scheme are investigated in
the case of monitoring a GIPr process, after some straightforward but necessary modifica-
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tions, it can be used for the monitoring of any other process which is modeled according to
a discrete probability distribution. These are the main scopes and motivations of this work.

The structure of this work is as follows: In Section 2, we present the main properties
of the GIPr distribution. In Section 3, we introduce the proposed scheme and present
the measures for evaluating its performance. In Section 4, we present the findings of an
extensive numerical study regarding the statistical design and the performance of the
proposed chart. Practical guidelines for applying the chart in practice are given as well.
In Section 5, we present two illustrative examples (using real data), which show how to
implement the proposed charts in practice. Finally, in Section 6, the conclusions and main
findings of this work are summarized, while topics for future research are also given.

2. The r-Geometrically Inflated Poisson Distribution

We start this section by presenting the basic properties of the r-geometrically inflated
Poisson distribution. Further details can be found in Rakitzis et al. [14]. Let X be a discrete
random variable with support S = {0, 1, 2, . . .}. If the probability mass function (pmf) of
X is

fGIPr (x|φ, λ) =
φx+1

r + 1
I{0,1,...,r}(x) +

1
r + 1

(r + 1− g0(r, φ))
e−λλx

x!
, x ∈ {0, 1, . . .}, (1)

then we say that X follows the r-geometrically inflated Poisson distribution with parameters
φ ∈ (0, 1) (the inflation parameter), λ > 0 and r ∈ {0, 1, 2, . . .} (i.e., X ∼ GIPr(φ, λ)).
Also, g0(x, φ) = φ

(
1− φx+1)/(1− φ) satisfies the inequality r + 1− g0(r, φ) > 0 for every

φ ∈ (0, 1) (so as fGIPr (x|φ, λ) is a true pmf), while IA(x) is the usual indicator function. For
r = 0, the GIPr(φ, λ) distribution reduces to the ZIP distribution with parameters φ and λ.

The cumulative distribution function (cdf) FGIPr (x|φ, λ) of the GIPr(φ, λ) distribution
is given by

FGIPr (x|φ, λ) =


0, x < 0

1
r+1 (g0(bxc, φ) + (r + 1− g0(r, φ))FP(x|λ)), 0 ≤ x ≤ r

1
r+1 (g0(r, φ) + (r + 1− g0(r, φ))FP(x|λ)), x ≥ r + 1

(2)

The b. . .c represents the smallest integer contained in b. . .c and FP(x|λ) is the cdf of the
Poisson distribution with parameter λ. In addition, the mean of the GIPr(φ, λ) distribution
equals

µGIPr = E(X) =
g1(r, φ) + (r + 1− g0(r, φ))λ

r + 1
, (3)

where, for φ ∈ (0, 1), it is g1(x, φ) =

(
xφx+1−(x+1)φx+1

(1−φ)2

)
φ2.

For a given r value, the parameters φ and λ can be estimated by using either the
maximum likelihood estimation method or the method of moments; see [14] for further
details on estimation methods for the parameters of the GIPr(φ, λ) distribution. In the
present work, we assume that process parameters are known, or that they have been
estimated from a (sufficiently) large Phase I sample.

3. The Proposed Monitoring Scheme
3.1. Operation of the Proposed Monitoring Scheme

In this section, we present the operation of the proposed monitoring scheme that can
be used for the monitoring of a GIPr process. Following the setup in [21], we assume
that the value of r is predetermined and remains unaffected by the presence of assignable
causes. Moreover, in this work the aim is to detect either upward or downward shifts
in the in-control (IC) process mean level, which is denoted as µ0,GIPr . The control charts
studied by [21,22] can detect only upward shifts in µ0,GIPr . Let us also assume that at each
sampling stage, an individual observation is obtained from the GIPr process. We denote as
λ0, φ0 the IC values of the process parameters. When the process is OOC, we assume that
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the OOC values of the process parameters are λ1 = δ · λ0 and φ1 = τ · φ0 with δ > 0 and
τ ∈ (0, 1/φ0]. When (τ, δ) = (1, 1) the process is IC.

Both µ0,GIPr and µ1,GIPr are obtained via Equation (3) for the respective IC and OOC
values of φ and λ. It is worth mentioning that in practice, it is of great importance to detect
an increase in the mean of the process, that is, a change from µ0,GIPr to µ1,GIPr > µ0,GIPr ,
because it is related to process deterioration. For example, control chart operators are
interested in detecting an increase in the expected number of nonconformities of the
inspected units or an increase in the expected weekly number of confirmed new infections
from a specific disease. In addition, in modern statistical process monitoring (see, for
example, [23–26]), the case of decreases is considered very important because it is related
to process improvement. In such cases, the interest is in detecting a decrease in the
expected number of non-conformities in the inspected units, which can be considered an
indication that the attempts for process improvement have been successful. Note also that
this improvement can be attributed to the occurrence of assignable causes, such as the
recruitment of well-trained personnel or the use of improved raw materials. Consequently,
for continuous improvement, it becomes essential to consider the improvement case. In
this work, we consider both OOC cases: µ1,GIPr > µ0,GIPr or µ1,GIPr < µ0,GIPr .

Let l, m, k be positive integers with 2 ≤ l ≤ m and k ≥ 2. Then, the proposed
monitoring scheme, to be denoted as CRRl,m, gives an OOC signal when at least one of the
following events occurs:

i. A single value Xt is beyond an upper control limit UCL (Region 1);
ii. l-out-of-m successive values are in the interval (UWL, UCL] (Region 2) with the

intermediate m− l values being in the interval (LWL, UWL] (Region 3);
iii. k successive values are in the interval [0, LWL] (Region 4);

whichever of the (i)–(iii) occurs first.
The suggested scheme can be viewed as an extension of the schemes studied by [19,20].

Specifically, in the above-mentioned works, the rule for detecting a decreasing shift in
µ0,GIPr is of the type k-out-of -k successive zero values. For the detection of increasing shifts
in µ1,GIPr , Lucas et al. [19] applied only the rule of a single value Xt above an upper control
limit UCL while Chang and Gan [20] applied a rule of type l-out-of -m consecutive points
above an UCL.

The regions of the CRRl,m chart are given in Figure 1. To apply the proposed control
chart in practice, the values of LWL, UWL, UCL, and k must be determined for the given
integer values l, m (2 ≤ l ≤ m). This is carried out via an appropriate design procedure;
the values (LWL, UWL, UCL, k) are determined so the CRRl,m scheme has the desired
IC performance, and it is sensitive enough in the detection of specific shifts in process
parameters.
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3.2. Performance of the Proposed Monitoring Scheme

The performance of a process monitoring scheme is evaluated by the run length (RL)
distribution, which is defined as the number of points plotted on the chart until it gives for
the first time an OOC signal.

The computation of the RL properties of the CRRl,m scheme is feasible using the
finite Markov chain embedding technique of Fu and Koutras [27] (see also [28,29] and
references therein). Further details on the method can be found in the Appendix A. Using
this method, it is possible to calculate the entire RL distribution, as well as its expected
value E(RL), which is known as the average run length (ARL). The ARL is the most
common performance measure of a control chart.

Apart from the ARL, there are other performance measures that can be viewed as
measures of the overall performance of the chart. Specifically, the ARL evaluates the
performance of a chart at a specific shift (τ, δ) in process parameters φ0 and λ0, respectively.
In practice, these shifts are rarely known, or practitioners may want to know how the
chart performs for a range of shifts. For this reason, in this work, we use also the expected
average run length (EARL), which is defined as (see, for example, [30,31])

EARL =
1

(τmax − τmin)(δmax − δmin)

τmax∫
τmin

δmax∫
δmin

ARL(τ, δ)dδdτ,

where [δmin, δmax ] and [τmin, τmax ] are the intervals for the shifts δ and τ in λ0 and φ0, re-
spectively. The chart with the minimum EARL is the one with the best overall performance
at the specific range of shifts.

4. Numerical Results

In this section, we present the results of a numerical study regarding the performance
of the CRRl,m chart. Specifically, we consider the following specific values for l, m (see
Table 1):

Table 1. The CRRl,m schemes under study.

Scheme 1 2 3 4 5 6 7

l 2 2 2 2 3 4 5
m 2 3 4 5 4 5 5

Notation CRR2,2 CRR2,3 CRR2,4 CRR2,5 CRR3,4 CRR4,5 CRR5,5

These values correspond to very well-known runs rules such as the 2-of-2, the 2-of-3,
and the 4-of-5, to mention a few.

Next, in Table 2 we provide six indicative scenarios for different IC GIPr processes.
Cases 5 and 6 correspond to a zero-inflated Poisson (ZIP) process. The IC process mean
level is given in the third row of Table 2 and varies from 0.4 to 2.6250 for the different
6 scenarios. Thus, they can be considered cases of high-quality processes.

Table 2. Scenarios for the IC GIPr Processes.

Case 1 2 3 4 5 6

(r, φ0, λ0) (3, 0.7, 3) (3, 0.7, 1.5) (2, 0.9, 3) (1, 0.5, 4) (0, 0.8, 2) (0, 0.9, 6)

µ0,GIPr 2.1442 1.3091 1.3170 2.6250 0.4000 0.6000

For each IC scenario in Table 2, we determined the values of the design parameters
LWL, UWL, UCL, and k for the seven schemes in Table 1 to have comparable IC perfor-
mance. For illustrative purposes, we considered an IC ARL approximately equal to 100.
Any other value can be used depending on practitioners’ needs.
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The design procedure is based on an extensive grid search on the possible positive
integer values for LWL, UWL, UCL, and k which satisfy the following two constraints:
(I) 0 ≤ LWL < UWL < UCL ≤ 15 and (II) k ∈ {7, 8, . . . , 50}. Then, any combination of
LWL, UWL, UCL, and k that gives an IC ARL approximately equal to the pre-specified
ARL0 = 100 value, i.e., in the interval (98, 102), is considered accepted.

Once all the possible combinations for (LWL, UWL, UCL, k) that give the desired
IC performance have been determined, we evaluated the OOC ARL of the proposed
charts for several pairs of shifts (τ, δ). The considered pairs are (τ, δ) ∈ {0.6, 0.8, 1, 1.1} ×
{0.5, 0.8, 1, 1.2, 1.5} while for (τ, δ) = (1, 1), the process is IC.

In Tables 3–8 we provide the best charts, i.e., the ones with the minimum OOC ARL
values, for various shifts in φ0 and λ0 when the IC ARL is (approximately) equal to 100.
The shifts are given in columns ‘τ’ and ‘δ’, while the OOC values λ1 and φ1 of the process
parameters are given in the respective columns. The column ‘µ1,GIPr ’ gives the OOC process
mean level, while the column ‘µ1,GIPr /µ0,GIPr ’ gives the change in IC process mean level.
Note that when µ1,GIPr

µ0,GIPr
< 1, there is a decrease in the process mean level, otherwise, there is

an increase. Also, the results in Tables 3–8 have been sorted according to the values of this
column to discriminate the decreases from the increases.

Table 3. Best charts in terms of ARL, Case 1, ARL0 ≈ 100.

τ δ λ1 φ1 µ1,GIPr
µ1,GIPr
µ0,GIPr

ARL1 LWL UWL UCL k Scheme SH
UCLSH = 7

η/η
η = 3

Combined
UCLSH = 7, η = 4

1 0.5 1.5 0.70 1.3092 0.61 18.72 3 6 10 14 CRR2,2 51.84 173.69
0.8 0.5 1.5 0.56 1.3096 0.61 19.07 2 3 15 8 CRR4,5 51.89 173.11
1.1 0.5 1.5 0.77 1.3260 0.62 17.73 3 6 10 14 CRR2,2 54.06 184.28
0.6 0.5 1.5 0.42 1.3414 0.63 19.63 2 3 15 8 CRR4,5 56.87 194.78
1.1 0.8 2.4 0.77 1.7376 0.81 34.07 3 6 10 14 CRR2,2 100.60 261.13
1 0.8 2.4 0.70 1.8102 0.84 42.90 3 6 10 14 CRR2,2 111.30 258.62

0.8 0.8 2.4 0.56 1.9514 0.91 63.42 3 6 10 14 CRR2,2 145.35 264.59
1.1 1 3 0.77 2.0119 0.94 65.00 3 6 10 14 CRR2,2 126.47 140.21
0.6 0.8 2.4 0.42 2.0835 0.97 85.58 3 6 10 14 CRR2,2 208.52 276.92

1 1 3 0.70 2.1442 1.00 150.89 149.31 125.37

1.1 1.2 3.6 0.77 2.2863 1.07 48.53 0 5 7 7 CRR2,4 71.03 64.58
0.8 1 3 0.56 2.3793 1.11 59.11 2 3 9 12 CRR3,4 117.80 107.85
1 1.2 3.6 0.70 2.4783 1.16 37.64 0 5 7 7 CRR2,4 58.34 54.94

0.6 1 3 0.42 2.5783 1.20 41.15 2 3 9 12 CRR3,4 101.87 97.99
1.1 1.5 4.5 0.77 2.6978 1.26 17.90 0 5 7 7 CRR2,4 25.26 24.50
0.8 1.2 3.6 0.56 2.8072 1.31 26.17 1 4 9 10 CRR2,2 45.55 44.44
1 1.5 4.5 0.70 2.9793 1.39 14.05 0 5 7 7 CRR2,4 20.74 20.37

0.6 1.2 3.6 0.42 3.0730 1.43 18.46 2 3 9 12 CRR3,4 39.39 39.03
0.8 1.5 4.5 0.56 3.4490 1.61 10.30 0 5 7 7 CRR2,4 16.20 16.09
0.6 1.5 4.5 0.42 3.8152 1.78 8.55 0 5 7 7 CRR2,4 14.01 13.98

Table 4. Best charts in terms of ARL, Case 2, ARL0 ≈ 100.

τ δ λ1 φ1 µ1,GIPr
µ1,GIPr
µ0,GIPr

ARL1 LWL UWL UCL k Scheme SH
UCLSH = 4

η/η
η = 4

Combined
UCLSH = 5, η = 4

0.6 0.5 0.75 0.42 0.7229 0.55 20.09 1 4 5 8 CRR2,5 31.10 31.00
0.8 0.5 0.75 0.56 0.7748 0.59 23.43 1 4 5 8 CRR2,5 35.06 34.94
1 0.5 0.75 0.70 0.8916 0.68 33.77 1 2 5 8 CRR5,5 46.58 46.42

1.1 0.5 0.75 0.77 0.9831 0.75 46.23 1 2 5 8 CRR5,5 59.02 58.82
0.6 0.8 1.2 0.42 1.0940 0.84 52.88 1 4 5 8 CRR2,5 97.64 87.12
0.8 0.8 1.2 0.56 1.0957 0.84 55.47 1 4 5 8 CRR2,5 96.27 87.28
1 0.8 1.2 0.70 1.1421 0.87 69.62 1 2 5 8 CRR5,5 108.80 99.74

1.1 0.8 1.2 0.77 1.1889 0.91 86.51 1 2 5 8 CRR5,5 124.06 114.33

1 1 1.5 0.7 1.3091 1.00 96.70 176.58 122.79

0.8 1 1.5 0.56 1.3096 1.00 84.94 1 3 6 8 CRR2,5 75.49 113.21
1.1 1 1.5 0.77 1.3260 1.01 98.12 1 2 7 9 CRR3,4 117.73 135.38
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Table 4. Cont.

τ δ λ1 φ1 µ1,GIPr
µ1,GIPr
µ0,GIPr

ARL1 LWL UWL UCL k Scheme SH
UCLSH = 4

η/η
η = 4

Combined
UCLSH = 5, η = 4

0.6 1 1.5 0.42 1.3414 1.02 81.71 1 3 6 8 CRR2,5 65.28 115.36
1.1 1.2 1.8 0.77 1.4632 1.12 77.65 1 2 7 9 CRR3,4 60.07 117.02
1 1.2 1.8 0.70 1.4762 1.13 77.82 1 2 7 9 CRR3,4 49.34 105.01

0.8 1.2 1.8 0.56 1.5236 1.16 73.34 1 2 7 9 CRR3,4 38.52 93.48
0.6 1.2 1.8 0.42 1.5888 1.21 63.63 1 3 6 8 CRR2,5 33.31 89.78
1.1 1.5 2.25 0.77 1.6690 1.27 46.85 1 2 7 9 CRR3,4 28.03 66.36
1 1.5 2.25 0.70 1.7267 1.32 42.50 1 2 7 9 CRR3,4 23.02 57.06

0.8 1.5 2.25 0.56 1.8445 1.41 33.58 1 3 6 8 CRR2,5 17.96 47.17
0.6 1.5 2.25 0.42 1.9598 1.50 26.71 1 3 6 8 CRR2,5 15.54 42.26

Table 5. Best charts in terms of ARL, Case 3, ARL0 ≈ 100.

τ δ λ1 φ1 µ1,GIPr
µ1,GIPr
µ0,GIPr

ARL1 LWL UWL UCL k Scheme SH
UCLSH = 6

η/η
η = 4

Combined
UCLSH = 6, η = 5

1.1 0.5 1.5 0.99 1.0034 0.76 73.09 1 5 7 8 CRR2,5 118.61 307.21
1.1 0.8 2.4 0.99 1.0212 0.78 76.25 1 5 7 8 CRR2,5 121.98 341.42
1.1 1 3 0.99 1.0332 0.78 76.81 1 5 7 8 CRR2,5 123.05 299.94
1 0.5 1.5 0.90 1.0365 0.79 68.60 1 3 7 8 CRR3,4 109.88 307.21

1.1 1.2 3.6 0.99 1.0451 0.79 75.63 1 5 7 8 CRR2,5 123.64 234.44
1.1 1.5 4.5 0.99 1.0630 0.81 70.47 1 5 7 8 CRR2,5 124.07 166.75
0.8 0.5 1.5 0.72 1.1158 0.85 70.10 1 2 7 8 CRR4,5 108.15 279.85
1 0.8 2.4 0.90 1.2048 0.91 100.78 1 3 7 8 CRR3,4 143.59 229.34

0.6 0.5 1.5 0.54 1.2076 0.92 82.37 1 2 7 8 CRR4,5 124.94 308.88

1 1 3 0.90 1.3170 1.00 159.59 156.73 121.55

1 1.2 3.6 0.90 1.4292 1.09 51.35 1 3 6 14 CRR2,2 72.98 64.33
0.8 0.8 2.4 0.72 1.5323 1.16 64.24 1 3 11 9 CRR2,4 186.37 150.42
1 1.5 4.5 0.90 1.5975 1.21 25.34 1 3 6 14 CRR2,2 31.65 29.98

0.8 1 3 0.72 1.8100 1.37 28.91 0 3 6 7 CRR2,2 64.49 60.84
0.6 0.8 2.4 0.54 1.8109 1.38 35.98 1 3 11 9 CRR2,4 128.67 119.23
0.8 1.2 3.6 0.72 2.0877 1.59 15.52 0 3 6 7 CRR2,2 29.49 28.84
0.6 1 3 0.54 2.2131 1.68 16.13 1 3 7 10 CRR2,3 44.52 43.84
0.8 1.5 4.5 0.72 2.5042 1.90 8.34 0 3 6 7 CRR2,2 12.79 12.68
0.6 1.2 3.6 0.54 2.6153 1.99 9.19 0 3 6 7 CRR2,2 20.36 20.26
0.6 1.5 45 0.54 3.2186 2.44 5.15 0 3 6 7 CRR2,2 8.83 8.82

Table 6. Best charts in terms of ARL, Case 4, ARL0 ≈ 100.

τ δ λ1 φ1 µ1,GIPr
µ1,GIPr
µ0,GIPr

ARL1 LWL UWL UCL k Scheme SH
UCLSH = 8

η/η
η = 3

Combined
UCLSH = 9, η = 4

1.1 0.5 2 0.55 1.2988 0.49 14.14 3 7 10 9 CRR2,5 33.68 98.08
1 0.5 2 0.5 1.3750 0.52 14.79 3 7 10 9 CRR2,5 38.62 118.01

0.8 0.5 2 0.4 1.5200 0.58 15.56 4 11 15 12 CRR2,5 52.67 179.34
0.6 0.5 2 0.3 1.6550 0.63 16.08 4 11 15 12 CRR2,5 199.06 295.48
1.1 0.8 3.2 0.55 1.9873 0.76 31.97 4 11 15 12 CRR2,5 52.22 151.12
1 0.8 3.2 0.5 2.1250 0.81 35.51 4 11 15 12 CRR2,5 64.64 188.76

0.8 0.8 3.2 0.4 2.3840 0.91 43.49 4 11 15 12 CRR2,5 106.26 293.53
1.1 1 4 0.55 2.4463 0.93 78.41 4 11 15 12 CRR2,5 58.74 105.87
0.6 0.8 3.2 0.3 2.6210 1.00 52.64 4 11 15 12 CRR2,5 199.06 428.80

1 1 4 0.5 2.6250 1.00 74.89 74.41 116.96

1.1 1.2 4.8 0.55 2.9053 1.11 37.28 0 6 10 9 CRR2,4 31.23 53.02
0.8 1 4 0.4 2.9600 1.13 72.66 0 4 9 7 CRR2,3 65.01 133.62
1 1.2 4.8 0.5 3.1250 1.19 32.10 0 6 10 9 CRR2,4 28.67 52.96

0.6 1 4 0.3 3.2650 1.24 54.41 0 4 9 7 CRR2,3 58.15 139.62
0.8 1.2 4.8 0.4 3.5360 1.35 24.96 0 6 10 9 CRR2,4 24.88 51.20
1.1 1.5 6 0.55 3.5938 1.37 13.01 0 6 10 9 CRR2,4 11.41 19.08
1 1.5 6 0.5 3.8750 1.48 11.41 0 6 10 9 CRR2,4 10.47 18.03

0.6 1.2 4.8 0.3 3.9090 1.49 19.71 0 4 9 7 CRR2,3 22.26 48.20
0.8 1.5 6 0.4 4.4000 1.68 9.16 0 6 10 9 CRR2,4 9.09 16.19
0.6 1.5 6 0.3 4.8750 1.86 7.69 0 6 10 9 CRR2,4 8.13 14.70
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Table 7. Best charts in terms of ARL, Case 5, ARL0 ≈ 100.

τ δ λ1 φ1 µ1,GIPr
µ1,GIPr
µ0,GIPr

ARL1 LWL UWL UCL k Scheme SH
UCLSH = 4

η/η
η = 15

Combined
UCLSH = 5, η = 17

1.1 0.5 1 0.88 0.1200 0.30 30.50 1 4 6 21 CRR2,5 29.86 98.08
1.1 0.8 1.6 0.88 0.1920 0.48 42.33 1 4 6 21 CRR2,5 36.83 151.12
1 0.5 1 0.8 0.2000 0.50 40.23 1 4 6 21 CRR2,5 52.16 118.01

1.1 1 2 0.88 0.2400 0.60 50.72 1 4 6 21 CRR2,5 40.21 105.87
1.1 1.2 2.4 0.88 0.2880 0.72 54.11 0 2 7 18 CRR2,2 42.69 53.02
1 0.8 1.6 0.8 0.3200 0.80 70.27 3 4 8 47 CRR2,5 78.81 188.76

0.8 0.5 1 0.64 0.3600 0.90 55.64 3 4 8 47 CRR2,5 206.93 179.34
1.1 1.5 3 0.88 0.3600 0.90 45.33 0 2 5 22 CRR2,5 45.14 19.08

1 1 2 0.8 0.4000 1.00 94.96 93.99 116.96

1 1.2 2.4 0.8 0.4800 1.20 63.72 0 2 5 22 CRR2,5 52.15 52.96
0.6 0.5 1 0.48 0.5200 1.30 60.16 3 4 8 47 CRR2,5 525.45 295.48
0.8 0.8 1.6 0.64 0.5760 1.44 100.18 3 4 8 47 CRR2,5 117.29 293.53
1 1.5 3 0.8 0.6000 1.50 35.55 0 2 5 22 CRR2,5 27.07 18.03

0.8 1 2 0.64 0.7200 1.80 51.68 0 2 5 22 CRR2,5 52.76 133.62
0.6 0.8 1.6 0.48 0.8320 2.08 55.88 0 2 5 22 CRR2,5 81.20 428.80
0.8 1.2 2.4 0.64 0.8640 2.16 29.68 0 2 5 22 CRR2,5 28.97 51.20
0.6 1 2 0.48 1.0400 2.60 26.71 0 2 5 22 CRR2,5 36.52 139.62
0.8 1.5 3 0.64 1.0800 2.70 16.55 0 2 5 22 CRR2,5 15.04 16.19
0.6 1.2 2.4 0.48 1.2480 3.12 16.01 0 2 5 22 CRR2,5 20.06 48.20
0.6 1.5 3 0.48 1.5600 3.90 9.49 0 2 5 22 CRR2,5 10.41 14.70

Table 8. Best charts in terms of ARL, Case 6, ARL0 ≈ 100.

τ δ λ1 φ1 µ1,GIPr
µ1,GIPr
µ0,GIPr

ARL1 LWL UWL UCL k Scheme SH
UCLSH = 9

η/η
η = 23

Combined
UCLSH = 10, η = 27

1.1 0.5 3 0.99 0.030 0.05 25.84 0 1 14 23 CRR4,5 25.84 30.94
1.1 0.8 4.8 0.99 0.048 0.08 25.98 0 1 14 23 CRR4,5 25.98 31.04
1.1 1 6 0.99 0.060 0.10 25.99 0 1 14 23 CRR4,5 26.00 30.75
1.1 1.2 7.2 0.99 0.072 0.12 25.95 0 1 14 23 CRR4,5 26.00 30.11
1.1 1.5 9 0.99 0.090 0.15 25.73 0 1 14 23 CRR4,5 26.01 28.56
1 0.5 3 0.9 0.300 0.50 38.21 5 12 15 33 CRR2,4 94.07 144.80
1 0.8 4.8 0.9 0.480 0.80 63.51 6 9 15 40 CRR2,5 101.32 136.47

1 1 6 0.9 0.600 1.00 119.16 102.37 95.51

1 1.2 7.2 0.9 0.720 1.20 47.29 1 6 9 49 CRR2,5 52.53 57.09
0.8 0.5 3 0.72 0.840 1.40 23.51 0 1 13 45 CRR2,5 3239.43 6913.29
1 1.5 9 0.9 0.900 1.50 23.11 1 6 9 49 CRR2,5 24.24 28.11

0.8 0.8 4.8 0.72 1.344 2.24 17.64 0 1 13 45 CRR2,5 142.06 337.92
0.6 0.5 3 0.54 1.380 2.30 9.58 0 1 13 45 CRR2,5 1971.82 7431.91
0.8 1 6 0.72 1.680 2.80 16.61 0 1 13 45 CRR2,5 42.56 83.51
0.8 1.2 7.2 0.72 2.016 3.36 15.32 1 6 9 49 CRR2,5 18.76 31.48
0.6 0.8 4.8 0.54 2.208 3.68 7.39 0 1 13 45 CRR2,5 86.47 208.69
0.8 1.5 9 0.72 2.520 4.20 7.91 1 6 9 49 CRR2,5 8.66 12.14
0.6 1 6 0.54 2.760 4.60 7.03 0 1 13 45 CRR2,5 25.90 51.01
0.6 1.2 7.2 0.54 3.312 5.52 6.80 0 1 13 45 CRR2,5 11.42 19.18
0.6 1.5 9 0.54 4.140 6.90 4.58 1 6 9 49 CRR2,5 5.27 7.39

For comparison purposes, we included the ARL profiles of the following schemes: The
upper one-sided GIPr Shewhart chart in Mamzeridou and Rakitzis [21] (in column ‘SH’), a
lower one-sided scheme, which is the add-on procedure suggested by Lucas et al. [19] and
gives an OOC signal when η-out-of-η (η ≥ 2) consecutive zero values occur (in column
‘η/η’) and a two-sided scheme (in column ‘Combined’) that combines the previously
mentioned one-sided schemes. This combined scheme is the procedure suggested by Lucas
et al. [19]. Note also that the GIPr Shewhart chart has one upper control limit UCLSH ; thus,
its ARL performance is evaluated only for increasing shifts in µ0,GIPr . The value of UCLSH
is determined so as its IC performance is as close as possible to 100 in order to have a fair
comparison with the other schemes. Given the values of UCLSH , φ1, and λ1, the ARL is
calculated by

ARLU =
1

1− FGIPr (UCLSH |φ1, λ1)
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Furthermore, the ARL for the η/η scheme is given by (see [19])

ARLL =
1− pη

0

pη
0(1− p0)

where p0 = FGIPr (0|φ1, λ1). Also, its ARL performance is evaluated only for decreasing
shifts in µ0,GIPr . The value of η is determined so the IC ARLL is also as close as possible to
100. Finally, the ARL of the two-sided that combines the two one-sided procedures equals

ARLC =
1− pη

0

1− p0 − p1

(
1− pη

0

)
where p1 = FGIPr (UCLSH |φ1, λ1)− FGIPr (0|φ1, λ1). Again, the values of (UCLSH , η) are
determined so the IC ARLC is as close as possible to 100.

The numerical results for the CRRl,m charts show that there is not a single chart that
has the best performance, neither for all shifts nor for all different cases. For the upper side
of the chart, we suggest using the rule 2-out-of-m, m ∈ {2, 3, 4, 5}, depending on the IC
values of the process parameters as well as on the values of the shifts (τ, δ). For the lower
side of the chart, larger values for k are needed when r = 0 than when r ≥ 1. For the latter,
a value around 11–15 is sufficient in most of the cases, but the exact value depends on the
shift we want to detect.

The comparison with two one-sided charts and the combined two-sided chart shows
that there is at least one CRRl,m chart that has better ARL performance, in almost all the
considered cases. It should be mentioned that due to the discrete nature of the process,
the IC ARL of the upper GIPr Shewhart chart, the lower-sided η/η scheme, and the
combined two-sided chart is not always comparable with that of the CRRl,m. Therefore,
conclusions should be made with caution. Another interesting point is that the rule of
η-out-of-η consecutive zero values works well in the case of zero-inflated Poisson processes
(Cases 5 and 6) but its performance is weak in the remaining ones. Thus, the add-on
procedure suggested by Lucas et al. [19] is still effective when there is an excessive number
of zero values in the data but when there is inflation in zero and non-zero values, a
modification is needed. This modification is offered by the proposed CRRl,m chart.

Another interesting finding is that there are cases where a change in one of the process
parameters results in a µ1,GIPr ≈ µ0,GIPr . See, for example, Case 2 for (τ, δ) = (0.8, 1) and
(1.1, 1) or Case 3 for (τ, δ) = (1, 0.8). The charts can only marginally detect this change
while they cannot distinguish the type of shift. This is one of the limitations of this study.
A solution is to use, if possible, rational samples of size n ≥ 2 (instead of individual
observations), as well as an appropriate statistic (e.g., the MLEs from each sample) to
improve chart’s ability to discriminate between the different types of shifts. This topic
needs a separate careful investigation, and it is left for a future study.

Next, in Tables 9 and 10, we provide the EARL values for the seven charts in Table 1
and the combined two-sided chart for each of the six cases in Table 2. For the shifts (τ, δ) in
process parameters, we considered the following two scenarios:

� Scenario 1: [τmin, τmax] = [0.6, 1.1] and [δmin, δmax] = [0.5, 1.5]
� Scenario 2: [τmin, τmax] = [0.3, 1.1] and [δmin, δmax] = [0.3, 2.0]

Table 9. Best charts based on EARL, ARL0 ≈ 100, Scenario 1.

Case CRR2,2 CRR2,3 CRR2,4 CRR2,5 CRR3,4 CRR4,5 CRR5,5 Combined

1 65.31
2, 6, 7, 10

64.89
2, 6, 7, 10

59.30
2, 5, 8, 9

58.76
2, 5, 8, 9

61.34
2, 3, 10, 11

64.19
2, 3, 12, 8

63.94
2, 3, 7, 10

142.59
7, 4

2 68.67
1, 4, 5, 8

68.16
1, 4, 5, 8

64.57
1, 3, 6, 8

63.92
1, 3, 6, 8

67.95
1, 3, 5, 8

69.72
1, 3, 5, 8

68.53
1, 2, 5, 8

84.88
5, 4



Mathematics 2023, 11, 4671 10 of 16

Table 9. Cont.

Case CRR2,2 CRR2,3 CRR2,4 CRR2,5 CRR3,4 CRR4,5 CRR5,5 Combined

3 134.41
1, 3, 6, 14

64.67
1, 3, 9, 9

63.47
1, 3, 11, 9

87.35
1, 4, 6, 10

76.26
1, 3, 7, 8

74.22
1, 2, 7, 8

90.79
1, 2, 7, 8

130.75
6, 5

4 64.39
3, 7, 10, 9

50.53
4, 6, 11, 15

51.31
4, 6, 12, 15

51.17
4, 6, 12, 15

51.56
4, 5, 10, 14

54.06
4, 5, 9, 15

56.68
3, 4, 9, 10

144.35
9, 4

5 78.45
1, 2, 6, 25

127.77
1, 3, 7, 21

94.11
0, 2, 6, 19

93.71
0, 2, 6, 19

116.05
3, 4, 6, 49

116.44
3, 4, 6, 49

116.45
3, 4, 6, 49

95.68
5, 17

6 42.13
0, 1, 14, 43

42.17
0, 1, 13, 45

42.16
0, 1, 13, 45

42.17
0, 1, 13, 45

137.79
7, 8, 13, 50

143.94
3, 4, 9, 45

144.82
7, 8, 13, 50

413.46
10, 27

Table 10. Best charts based on EARL, ARL0 ≈ 100, Scenario 2.

Case CRR2,2 CRR2,3 CRR2,4 CRR2,5 CRR3,4 CRR4,5 CRR5,5 Combined

1 46.17
2, 5, 7, 11

44.67
2, 6, 7, 10

40.29
2, 5, 8, 9

39.84
2, 5, 8, 9

38.92
2, 3, 10, 11

43.07
2, 3, 7, 11

43.46
2, 3, 7, 10

104.55
7, 4

2 48.90
1, 4, 5, 8

48.32
1, 4, 5, 8

43.39
1, 3, 6, 8

42.86
1, 3, 6, 8

47.71
1, 2, 7, 9

49.89
1, 3, 5, 8

48.76
1, 2, 5, 8

60.22
5, 4

3 101.20
1, 3, 6, 14

43.21
1, 3, 9, 9

42.83
1, 3, 11, 9

61, 64
1, 4, 6, 10

52.69
1, 3, 7, 8

48.28
1, 2, 7, 8

131.31
1, 2, 7, 8

100.17
6, 5

4 46.58
3, 7, 10, 9

34.15
4, 6, 11, 15

34.58
4, 6, 12, 15

34.47
4, 6, 12, 15

34.72
4, 5, 10, 14

37.15
4, 5, 9, 15

39.54
3, 4, 9, 10

141.35
9, 4

5 58.78
1, 2, 6, 25

85.73
1, 3, 5, 24

85.23
1, 3, 5, 24

85.11
1, 3, 5, 24

95.02
3, 4, 6, 49

94.99
3, 4, 6, 49

95.05
3, 4, 6, 49

269.10
5, 17

6 27.17
0, 1, 14, 43

26.50
0, 1, 13, 45

26.49
0, 1, 13, 45

26.49
0, 1, 13, 45

116.18
7, 8, 13, 50

90.86
0, 1, 14, 23

118.89
7, 8, 13, 50

6091.24
10, 27

The first line of each cell consists of the EARL value (in two decimals accuracy), while
in the second line we provide the values of the chart’s design parameters in the form
(LWL, UWL, UCL, k). For the combined chart, the parameters are given as (UCLSH , η).

The results in Tables 9 and 10 reveal that there is not one scheme among the examined
ones that outperforms the others in terms of EARL. However, in none of the six cases do
the CRR4,5 and CRR5,5 charts achieve the minimum EARL value, while the CRR3,4 is the
best chart in Case 1 and only under Scenario 2. On the other hand, one of the schemes
CRR2,m, m ∈ {2, 3, 4, 5} is the best scheme in almost all Cases, under both Scenarios. We
also notice that the combined scheme does not have a competitive EARL performance
except for Case 5 under Scenario 1.

5. Examples

In this section, we present two real data examples regarding the application of the
proposed charts in practice. First, we discuss an application of the proposed chart in
the monitoring of changes in the number of unintentional needle-stick occurrences per
day in a hospital. The second example is from the area of public health and focuses on
the monitoring of the monthly number of poliomyelitis cases in the USA. Both examples
highlight the usefulness of control charts as powerful tools in biosurveillance and the
detection of abnormalities. Consequently, authorities (such as hospital’s administration or
the center for disease prevention and control) can be warned based on the signals given by
the charts and take actions to improve the quality of the services offered by the professionals
in health-care units.
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5.1. Monitoring the Daily Number of Unintentional Needle-Stick Occurrences

In the first example, we consider a case where we are interested in the quality of the
provided healthcare services. An increase on the average daily number of unintentional
needle-stick occurrences is an indication of process deterioration, while a decrease shows
improved performance by the hospital staff.

We use the dataset provided by Fatahi et al. [32] and analyzed further by Aly et al. [33].
Following [33], we assume that the data are from a ZIP process, and we use the first
40 observations as a Phase I sample to estimate the process parameters. Using the maximum
likelihood method, we obtain λ̂ ≈ 2.38, φ̂ ≈ 0.56 (in two decimals accuracy). Then, we
apply the Shewhart chart as a Phase I analysis method. For illustrative purposes we assume
that the desired IC ARL value is (approximately) equal to 200, yielding a UCL for the
Shewhart chart equal to 6. The theoretical IC performance of the chart implies that on
average, a false alarm signal would be triggered once in 6.5 months. Note also that the
(theoretical) IC ARL equals 204.39.

The respective chart is given in Figure 2 from which we notice that none of the
40 points exceeds the UCL. Therefore, the process was IC, when these values have been
collected, and we can proceed to the Phase II analysis by assuming that the IC values of the
process parameters equal the respective estimates, that is λ0 = 2.38, φ0 = 0.56.

Figure 2. The ZIP Shewhart chart for the Phase I data of the number of unintentional needle-stick
occurrences per day in a hospital.

Since there are no further details regarding the future behavior of the process and the
shifts that are considered important and must be detected quickly, we will use for Phase
II monitoring the best chart in terms of the EARL, with a desired ARL0 ≈ 200. Again,
we consider the two scenarios in Section 4. In Table 11, we provide for each CRRl,m chart
the minimum EARL value (first line), the IC ARL (second line), and the set of values
(LWL, UWL, UCL, k), in the third line, which gives the minimum EARL. Even though
the CRR4,5 chart attains the minimum EARL, the IC ARL is not very close to the desired
nominal value of 200. Thus, we choose the CRR2,3 as the best chart in terms of EARL, for
both scenarios, since its IC ARL performance is much closer to the desired one.
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Table 11. Best charts based on EARL, for a ZIP process with (λ0, φ0) = (2.38, 0.56) and ARL0 ≈ 200.

Scenario CRR2,2 CRR2,3 CRR2,4 CRR2,5 CRR3,4 CRR4,5 CRR5,5

1
164.18
204.85

1, 4, 7, 14

154.79
202.87

1, 4, 9, 13

260.01
204.20

0, 4, 9, 10

255.96
203.76

0, 4, 10, 10

257.17
198.37

0, 3, 7, 10

152.35
215.46

1, 2, 7, 14

325.06
214.97

0, 2, 8, 9

2
132.30
204.85

1, 4, 7, 14

121.59
202.87

1, 4, 9, 13

310.54
204.20

0, 4, 9, 10

301.20
203.76

0, 4, 10, 10

309.93
198.37

0, 3, 7, 10

107.60
215.46

1, 2, 7, 14

398.30
214.97

0, 2, 8, 9

In Figure 3, we provide the CRR2,3 chart with (LWL, UWL, UCL, k) = (1, 4, 9, 13) for
the 50 Phase II observations. This chart gives an OOC signal at point 35 since points 33 and
35 are plotted in Region 2, while point 34 is plotted in Region 3. These points are marked
with ∗. It is worth noting that the CRR2,3 gives this OOC signal at (almost) the same period
with the AEWMA chart in [33].
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5.2. Monitoring the Monthly Number of Poliomyelitis Cases

In the second example, we consider the monthly number of polio cases in the USA
(see also [21]). Rakitzis et al. [22] used 131 observations (from January 1973 to November
1983) where observations 1–100 are the Phase I dataset, and the remaining ones are the Phase
II dataset. According to the results of the Phase I analysis conducted by Rakitzis et al. [22],
the GIP1(0.604, 1.54) is the model with the best fit in the data when the process is IC. We
assume that the IC values of process parameters are known and proceed directly to Phase
II monitoring using the observations during the period May 1981–November 1983.

For illustrative purposes, we assume that the desired IC ARL value is (approximately)
equal to 20. This means that, on average, every 20 months, the chart gives a false alarm
signal. Larger IC ARL, such as the well-known textbook value 370.4, might not be very
useful because, in this case, the chart would give, on average, a false alarm (i.e., a false
indication of a change in the average monthly number of polio cases) every 370 months
(>30 years). This is a (very) long period for an infectious disease to retain its initial
characteristics.

For Phase II monitoring, we will use the best chart in terms of the EARL and IC ARL
as close as possible to 20. Again, we consider the two scenarios in Section 4. In Table 12, we
provide for each CRRl,m chart the minimum EARL value (first line), the IC ARL (second
line), and the set of values (LWL, UWL, UCL, k), in the third line, which gives the minimum
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EARL. We choose the CRR2,2 as the best chart since it has the minimum EARL and its
ARL performance is very close to the desired one.

Table 12. Best charts based on EARL, for a GIP1 process with (λ0, φ0) = (1.54, 0.604) and ARL0 ≈ 20.

CRR2,2 CRR2,3 CRR2,4 CRR2,5 CRR3,4 CRR4,5 CRR5,5

Scenario 1
17.782
20.084

1, 2, 4, 8

23.110
20.184

3, 4, 6, 15

23.108
20.184

3, 4, 6, 15

23.108
20.184

3, 4, 6, 15

18.200
20.044

1, 2, 3, 11

18.337
20.178

1, 2, 3, 11

18.352
20.188

1, 2, 3, 11

Scenario 2
14.286
20.084

1, 2, 4, 8

25.995
20.184

3, 4, 6, 15

25.973
20.184

3, 4, 6, 15

25.971
20.184

3, 4, 6, 15

14.483
20.044

1, 2, 3, 11

14.613
20.178

1, 2, 3, 11

14.631
20.188

1, 2, 3, 11

In Figure 4, we provide the CRR2,2 chart with (LWL, UWL, UCL, k) = (1, 2, 4, 8) for
the 31 Phase II observations. The occurrence of 8 successive points in Region 4 (points
6–13, marked with *) indicates an OOC situation at point 13, which is related to a possible
decrease in the average monthly number of polio cases. It is worth noting that for the same
dataset, the charts proposed in [21,22] are not able to detect this OOC situation since they
are upper one-sided charts and can only detect increases in the process mean level. Also,
another OOC signal is given at point 31 (marked with *) since this point is above the UCL
(Region 1).
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6. Conclusions

In this work, we proposed and studied a control chart for attributes with multiple
runs rules that can be used for detecting either increasing or decreasing shifts in the
process mean level. The suggested scheme is preferable when the lower control limit of
the usual Shewhart-type chart is negative and thus is not capable of detecting a decrease
in the process mean level. The proposed chart was studied in the case of monitoring zero-
or general inflated Poisson processes. However, it can be used (after some necessary but
straightforward modifications) for the monitoring of any other process with count data. The
Markov chain method was used for studying its in-control and out-of-control performance,
and practical guidelines were provided. The out-of-control performance of the chart was
evaluated in terms of ARL and EARL. The numerical results showed that there is not a
unique scheme among the examined ones, with the best performance for all shifts, under
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either performance measures. However, for improving the performance in the detection
of increasing shifts we suggest the use of a runs rule of type 2-out-of-m. For the case of
decreasing shifts, larger k values are needed in the case of zero-inflated Poisson processes
than in the case of general inflated Poisson processes.

It should be also mentioned that in this work, we assumed that the value of r is
known. Clearly, r, as well as φ0 and λ0, must be determined before the application of the
charts. Therefore, the suggested approach is to first conduct a detailed model selection
procedure among the possible candidate models (e.g., various GIPr distributions with
different r values) and then, by applying model selection criteria and/or goodness-of-fit
tests, to choose the model with the best fit in the data. With this procedure, practitioners
can determine the appropriate value for r.

Topics for future research consist of studying the proposed charts in the case of
estimated parameters, as well as the case of a CRRl,m chart with variable sampling intervals
and variable sample sizes. For both topics, the research is in progress.

Finally, the programs for reproducing the results provided in this work have been
written in R [34], version 4.3.0 and are available from the authors upon request.

Author Contributions: Methodology, E.M. and A.C.R.; Software, E.M. and A.C.R.; writing—original
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Appendix A

Here, we briefly describe the Markov chain method that we used to study the proposed
two-sided control chart CRRl,m. Let us consider a two-sided chart where four regions are
defined, as in Figure 1. The probability that a single point falls on Region j is denoted as pj,
j = 1, 2, 3, 4, and for λ = λ1 = δλ0, φ = φ1 = τφ0, equals

p4 = P(X ≤ LWL) = FGIPr (LWL|φ1, λ1),

p3 = P(LWL < X ≤ UWL) = FGIPr (UWL|φ1, λ1)− FGIPr (LWL|φ1, λ1),

p2 = P(UWL < X ≤ UCL) = FGIPr (UCL|φ1, λ1)− FGIPr (UWL|φ1, λ1),

p1 = P(X > UCL) = 1− FGIPr (UCL|φ1, λ1)

where X ∼ GIPr(φ1, λ1). The c.d.f. FGIPr(·|φ, λ) is given in Equation (2).
For illustrative purposes, we consider the case of the two-sided CRR2,3 chart. Using

the finite Markov chain imbedding (FMCI) method, it is possible to study any other
CRRl,m chart and derive its entire run length distribution. Let {Yi, i ≥ 1} be a sequence
of i.i.d. multistate random variables taking values in the set L = {1, 2, 3, 4} such that
P(Yi = j) = pj, j = 1, 2, 3, 4, where pj are the previously defined probabilities. The CRR2,3
chart gives an OOC signal when either a single point is above the UCL or if two-out-of-three
successive points are in the interval (UWL, UCL] and at most one intermediate point is in
the interval (LWL, UWL] or if k consecutive points are in the interval [0, LWL].

Let W be the waiting time (random variable) until the first occurrence of the compound
pattern:

E = {1, 22, 232, 44 . . . 4︸ ︷︷ ︸
k

}.
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This means that W is the distribution of the number of trials until the occurrence of
one of the following simple patterns for the first time:

“1”, “22”, “232” and “44 . . . 4︸ ︷︷ ︸
k

”.

Then, the distribution of W coincides with the run length distribution of the CRR2,3
chart and can be obtained as follows. First, the simple patterns are decomposed into the
following sub-patterns, defining the k + 3 states of the embedding Markov chain:

1 ≡ “4”, 2 ≡ “44”, 3 ≡ “444”, ..., k− 1 ≡ “44 . . . 4︸ ︷︷ ︸
k−1

”, k ≡ “3”, k + 1 ≡ “2”,

k + 2 ≡ “23”, k + 3 ≡ {1, 22, 232, 44 . . . 4︸ ︷︷ ︸
k

}

The first k + 2 states are the transient states of the Markov chain while state k + 3 is the
unique absorbing state. Let also {Zi, i ≥ 1} be the imbedded Markov chain with state space
T = {1, 2, 3, . . . , k + 2, k + 3}. Then, Zi is in transient state
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to be the block corresponding to value
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Therefore, the transition probability matrix P of the imbedded Markov chain is
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...
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p4 0 0 · · · p3 0 0 p2 + p1
0 0 0 · · · 0 0 0 1


where Q is the (k + 2)× (k + 2) matrix of the transition probabilities between the transient
states of the Markov chain, I is the (k + 2)× (k + 2) identity matrix and 1> is a (k + 2)× 1
vector of ones.

From the theory of Markov chains, the average run length of the chart equals

E(W) = ARL = 1 + v(I−Q)−11>

where v is the 1× (k + 2) initial probabilities vector, with

v= (P(Y1 ∈ 1), P(Y1 ∈ 2), . . . , P(Y1 ∈ k), P(Y1 ∈ k + 1), P(Y1 ∈ k + 2))

= (p4, 0, . . . , p3, p2, 0)
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