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Abstract: Modern electrical power systems place special demands on the speed and accuracy of tran-
sient and steady-state process control. The introduction of renewable energy sources has significantly
influenced the amount of inertia and uncertainty of transient processes occurring in energy systems.
These changes have led to the need to clarify the existing principles for the implementation of devices
for protecting power systems from the loss of small-signal and transient stability. Traditional methods
of developing these devices do not provide the required adaptability due to the need to specify a list
of accidents to be considered. Therefore, there is a clear need to develop fundamentally new devices
for the emergency control of power system modes based on adaptive algorithms. This work proposes
to develop emergency control methods based on the use of deep machine learning algorithms and
obtained data from synchronized vector measurement devices. This approach makes it possible to
ensure adaptability and high performance when choosing control actions. Recurrent neural networks,
long short-term memory networks, restricted Boltzmann machines, and self-organizing maps were
selected as deep learning algorithms. Testing was performed by using IEEE14, IEEE24, and IEEE39
power system models. Two data samples were considered: with and without data from synchronized
vector measurement devices. The highest accuracy of classification of the control actions’ value
corresponds to the long short-term memory networks algorithm: the value of the accuracy factor
was 94.31% without taking into account the data from the synchronized vector measurement devices
and 94.45% when considering this data. The obtained results confirm the possibility of using deep
learning algorithms to build an adaptive emergency control system for power systems.

Keywords: big data; emergency control; machine learning; phasor measurement units; power system;
small-signal stability; synchronous generator; transient stability

MSC: 68T01

1. Introduction

The emergency control (EC) of electrical power systems (EPSs) is an important part of
ensuring the reliability of power supply to consumers. For modern EPSs, emergency control
is aimed at maintaining small-signal stability (SSS), transient stability (TS), voltage stability,
and maintaining the required level of alternating current frequency and the permissible
current load of electrical network elements [1]. A separate automation is responsible for
each EPS control task by analyzing the parameters of the electrical mode (currents, voltages,
active power flows, reactive power flows, etc.) and issuing control actions (CAs) (load
shedding, shutdown generators, unloading generators, etc.) followed by the specified
logical rules. The operation of automation devices is implemented in stages: the first
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includes the operation of devices protecting local energy areas and the last includes devices
aimed at dividing EPSs.

The EC structure described above shows high reliability and efficiency including the
active introduction of renewable energy sources (RESs) [2-5]. The goal of introducing RESs
is to reduce the impact of the electricity sector on global warming [6] by transitioning from
traditional power plants running on fossil fuels to low-carbon electricity production by
converting solar, wind, tidal, and other renewable energy sources. This goal was partially
achieved in many European countries, the USA, India, and China [7].

The key features of RESs are the stochasticity of electricity generation [8-10], low
inertia [11], and the difficulty of predicting their operating modes. The process of increasing
the share of RESs in EPSs is accompanied by the simultaneous dismantling of traditional
fossil fuel power units. As a result, the characteristics of the properties of modern EPSs
have changed significantly: the speed of transient processes has increased and the accuracy
of predicting steady-state processes has decreased.

Features of EPSs are considered in a complex technical system with a significant
predominance of digital devices for the analysis, control, and planning of steady-state
and transient processes. The digitalization of the electric power industry has led to the
accumulation of large amounts of data and the possibility of their processing using machine
learning (ML) algorithms [12].

Following the tightening of the rules of the electricity market, there is an active
implementation of digital systems that allow for increasing the flow of intersystem active
power flows [13-15], which reduces the stability margin and increases the likelihood of
developing an accident with EPS division.

Table 1 provides an analysis of the features of modern EPSs.

Table 1. Features of modern EPSs.

Specificity Merits Drawbacks
A significant share of RESs Reduc1.ng the impact of the ellectr1c1ty .Increased speed 9f transient processes,
generation process on the environment increased uncertainty of EPS operations
Tightening the rules of the Increasing the financial efficiency of EPSs Reduced stability margin

electricity market

A high degree of digitalization fundamentally new algorithms for managing

Possibility of developing and implementing Increased complexity and labor costs for
and analyzing EPS operations maintaining digital systems

The described features of modern EPSs place new demands on traditional EC systems
in terms of adaptability, accuracy, and speed. Traditional EC systems are based on one of
two principles:

e  The choice of CA is carried out based on a predetermined logic, considering the
worst-case scenario for accident development;

e  The choice of CA is carried out based on the actual operating mode of the EPSin a cyclic
mode based on a mathematical model of the protected section of the electrical network.

To implement both EC principles, a pre-prepared list of examined accidents is used.
This list is compiled manually based on operating experience and EPS accident statistics. In
addition, the logic of operation of traditional EC devices is based on strictly deterministic
approaches by implying a numerical analysis of a system of differential-algebraic equations
that describe the mathematical model of the protected EPS. These features of traditional EC
devices do not meet the requirements of modern EPSs in terms of speed and adaptability.

The development of computer technology, the theory of mathematical statistics, ML
methods, as well as the active implementation of synchronized vector measurement devices
(PMUs) make it possible to develop an adaptive EC EPS system based on big data classifi-
cation algorithms using obtained PMUs during the registration of transient processes. This
approach allows us to ensure the required adaptability and speed of CA selection.
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The purpose of this article is to develop and test the EC EPS methodology based on
the IEEE14 [16], IEEE24 [17], and IEEE39 [18] EPS mathematical models to preserve TS and
SSS, considering a classification algorithm for big data obtained from PMUs.

The scientific contribution of this paper is described as follows:

e A meta-analysis of existing EC EPS methods based on ML algorithms is presented.
The advantages and disadvantages of existing methods are identified.
A comprehensive methodology for using ML algorithms in EC EPSs is proposed.
A study of the accuracy of EC EPS value classification based on ML algorithms is
carried out.

e  The feasibility of using data from synchronized vector measurement devices for use in
data sampling for ML algorithms is proved.

e  The feasibility of using ML algorithms to develop a flexible approach to provide SSS
and TS EPSs is proved.

2. Related Works

From the ML perspective, the task of selecting CAs for EC EPSs to provide SSS and
TS can be considered a multi-class classification problem. Unlike the task of estimating TS
and SSS, the EC task is more complex due to the transition from binary classification [19] to
multi-class. Sets of optimal CAs aimed at ensuring the stability of the post-accident regime
for the accident under consideration are considered as classes. The signs for the EC EPS
problem are pre-emergency values of electrical mode parameters: voltages in EPS nodes,
values of active and reactive power flows across the elements of the electrical network,
load angles of synchronous generators (SGs), etc. In addition, most of the considered
accidents in EPSs do not require EC, i.e., the post-emergency operating mode of EPSs is
stable without the use of CA. Thus, the EC EPS problem based on ML algorithms has the
following features:

A significant number of features in the data sample;
Uneven distribution of classes in the sample (most emergency processes do not require
CA implementation);

e  Significant degree of overlap between classes (one CA can be part of many classes).

These features of the EC problem based on ML algorithms lead to the need for the
pre-processing of data samples through the following actions:

e Reducing the dimension of the problem by reducing the number of features;
e Balancing the distribution of classes in the original data set;
e  Removing outliers from the original data set.

A similar algorithm is described in [20]. In addition to processing the initial data
sample, for the EC EPS task based on ML algorithms, an important step is the collection
and retraining of the model in response to changes in the protected energy region (con-
struction or dismantling of electrical network elements, active power sources, changes in
SG excitation controller algorithms, etc.).

To solve the EC EPS problem based on ML algorithms, the following algorithms
are used:

Decision trees (DTs) [21-23];

Random forest (RF) [24];

Support vector machines (SVMs) [25-27];

Artificial neural networks (ANNSs) [28-31];

Deep learning (DL) [32-35];

Extreme gradient boosting (XGBoost) [36,37].

DT is a logistic classification and regression algorithm that combines logical conditions

into a tree structure [38]. The DT algorithm is based on a description of data in the form of
a tree-like hierarchical structure with a specific classification rule in each node, which is
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determined as a result of training. DT can be constructed based on the analysis of the Gini
coefficient [39]:

AG = Gini(m) — | ™™ Gini(my) + 2" Gini(my) |, )
My My
where Gini(m) is the value of the Gini coefficient, which shows the degree of heterogeneity
of the data set m; AG is the value of the Gini coefficient increments after splitting the data at
a node DT; n,, is the amount of data in the set m; 17 is the amount of data in the set my; n,
is the amount of data in the set my; m; and m; are the data after splitting set m at node DT.
As a result of DT learning, a set of rules is determined at each node in such a way as
to minimize the value of the Gini coefficient. During the training process, logical rules are
determined for only one sample feature in one iteration, so training data with multiple
features is a time-consuming task.
In the study [21], the DT algorithm was used to determine the CA to ensure EPS
stability. To reduce the time delay for algorithm training, the authors used Fisher’s linear
discriminant. When forming DT, the following objective function was used:

ng nr,
Z kcPig + Z kLPjL — min, 2)

ic=1 =1

where n¢ is the number of SGs by disabling which CA can be implemented, 7y, is the
number of loads by disabling which CA can be implemented, P;; is the power SG i, and
Pjp is the load capacity j.

The IEEE39 EPS model [22] was used to train and test the developed algorithm. The
accuracy of the DT algorithm on the training set was 99.43% and on the test set—99.66%.

In [23], an algorithm for ensuring acceptable voltage levels is proposed based on
the DT algorithm and data obtained from PMU devices. Testing was performed using a
mathematical model from Hong Kong.

One way to overcome the disadvantages of the DT algorithm, associated with signifi-
cant time costs for training and the tendency to overtrain, is to combine several shallow DT
algorithms into an ensemble. This method of combining DT algorithms is called RF [40].

In the study [24], the RF algorithm was used to select CAs. The solution to the EC
problem using EPS modes was divided into two stages:

e  Stage 1: determination of the TS reserve for a given emergency process;
e  Stage 2: CA selection using RF algorithms followed by post-emergency prediction
using recurrent neural networks.

The developed algorithm was tested based on the EPS IEEE16 model.

One of the ML algorithms that allows you to solve the classification problem is SVM.
This method is based on searching for separating hyperplanes that maximize the distance
between classes in the data sample. When using SVM, the assumption is made that
classification reliability is increased by increasing the distance between the separating
hyperplanes. To construct hyper-planes, the following objective function is used [41]:

1 N ,
Slwl* +CY & — min, ©
i=1

where | lw| | is the norm of a vector perpendicular to the separating hyperplane, ¢; are
variables describing the classification error, C is a coefficient that provides a compromise
between the training error and the separation boundary, and N is the number of elements
in the data sample.

The authors of [25] used SVMs to analyze the static stability of EPSs based on data
obtained from the PMU. The choice of SVMs is due to the ability to learn on small data
samples, the absence of an obvious over-training problem, and the small number of ad-
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justable parameters compared to ANNS. In this study, stress values at EPS nodes are used
to analyze the control system. To test the proposed algorithm, the EPS IEEE39 mathematical
model was used. The results of 492 simulations were used to form the data sample. The
accuracy of the SVMs was 97% with a delay of 0.042 s for one emergency process.

In [26], an SVM-based algorithm for analyzing the static stability of EPSs was devel-
oped. The paper compares the classification accuracy of SVMs and ANNs on obtained
data during the calculation of a series of transient processes for a mathematical model of
the Brazilian power system, consisting of 2684 nodes. Using SVMs allows you to increase
the accuracy by 2.5 times and reduce the time of analyzing the static stability of EPSs by
2.5 times compared to ANNS.

The authors of the study [27] proposed a method for ensuring acceptable voltage
levels based on the SVM algorithm and data obtained from PMU devices. The proposed
algorithm consists of two stages: training the SVM algorithm on historical data and running
the trained algorithm in real time. The proposed algorithm was tested based on the EPS
IEEE39 mathematical model.

The authors of [28] proposed an algorithm for analyzing SSS EPSs based on deep
learning ANNSs, taking into account RESs. The initial data for the algorithm are retrospec-
tive data on electricity generation from salt and wind power plants, parameters of the
electrical mode of the power system, and a set of CAs for the emergency processes under
consideration. The next stage is a statistical analysis of the resulting sample to reduce its
dimensionality by removing features with a low correlation concerning the classification
object. Next, the sample is divided into tests and training. The final stage is training
the model followed by testing. The proposed algorithm was tested on the EPS IEEE68
mathematical model. The accuracy of the model was 99.89%.

The study [29] presents an EC EPS algorithm based on ANNs and the Lyapunov
function, taking into account the minimization of the cost of CA implementation.

The authors of [30] used the ANN algorithm to ensure acceptable voltage levels in EPS
nodes. To increase the accuracy of the ANNSs, the Proximal Policy Optimization algorithm
was used [31]. Testing was performed based on the EPS IEEE39 mathematical model.

In [32,33], the DL algorithm was used to develop the EC algorithm for EPS modes. This
algorithm is based on the interaction of the agent function with the external environment,
which is modeled as a Markov decision-making process. At each time step of the simulation,
the agent can observe the state of the external environment and receive a reward signal
depending on the influences issued to it. The goal of the algorithm is to apply optimal
influences on the external environment to obtain the maximum total reward.

In [32], to describe the EPS as an external environment for the DL algorithm, the
following system of differential-algebraic equations with restrictions is used:

xi = f(xt,]/t, dt,ﬂt)
0 :_g(xt/yf/ dt/af)
™ <oy < xpMA, 4)
ytmin < Yt < ytmax
atmin <ag < utmax

where x; is the list of variables that determine the dynamic state of the EPS, y; is the list of
variables that determine the steady state of the EPS, 4; is the list of CAs participating in
the EC operating mode of the EPS, d; is the magnitude of the disturbance, and values with
superscripts max and min denote the maximum and minimum limitation of each variable.

To train and test an algorithm that implements EC modes of EPSs based on DL, the
study [32] proposed a platform containing two modules:

e  Module 1 implements the DL algorithm (OpenAl Gym, Python3);
e  Module 2 is used for EPS modeling and EC implementation (InterPSS, Java).

Communication between modules is ensured using the Py4] wrapper function. To
configure the work of Module 1, a pre-prepared training sample is used. Next, in Module 2,
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the EPS transient process is simulated with the transfer of selected operating parameters
to Module 1, in which the CA volume is calculated. To test the proposed platform, the
standard EPS IEEE39 model was used; load shedding, generation shutdown, and the
dynamic braking of generators due to braking resistors were used as CAs to ensure TS. As
a result of a series of mathematical experiments, a high efficiency of the proposed platform
was shown. The average CA-selection time for one emergency process was 0.18 s.

To ensure the required frequency level in isolated EPSs, the authors of [34] proposed
an algorithm based on the use of DL. The proposed algorithm was tested on the EPS
IEEE37 mathematical model. For the considered test scenarios, the results of calculating
the accuracy of CA determination and the time delay required to analyze one emergency
process are not provided. The authors argue that a promising direction for the development
of the proposed algorithm is to reduce its computational complexity. Work [35] discusses
the use of DL to ensure the required frequency level in isolated EPSs with RESs. The
work also does not provide the results of determining the accuracy and time delays of
the algorithm.

The development of the RF algorithm led to the development of the XGBoost algo-
rithm [36], which uses gradient descent for training. Thus, it is possible to overcome the
disadvantages of the RF algorithm.

The authors of the study [37] used the XGBoost algorithm to provide TS EPSs. Testing
was performed on the IEEE39 EPS mathematical model, and real data were obtained from
the South Carolina EPS. For the IEEE39 model, 478 stable modes and 362 unstable modes
were considered, and the EC accuracy was 97.88%. For the South Carolina model, 483 stable
modes and 405 unstable modes were considered, and the CA selection accuracy was 98.62%.

Table 2 provides an analysis of the reviewed ML algorithms used for EC EPSs.

Table 2. Analysis of the considered ML algorithms.

Algorithm References Merits Drawbacks Field of Applicability
~ High reliability and Significant time costs for training
bT [21-23] representativeness of the results the algorithm 15
RE [24] A high degree of parallelism, High random access TS
high performance memory requirements
SVM [25-27] High performange of the Instability wl.'len working with sss
trained algorithm noisy data
ANN [28-31] Resistant to data noise, 51gn1f1cant Ten dency to overtrain 558
fault tolerance
Does not require a sienificant It is possible to select optimal CAs
DL [32-35] quure a sig due to the limited actions of TS
amount of training samples
the agent
XGBoost [36,37] The hlgh speed. of the Difficulty in determining TS
trained algorithm hyperparameters

The considered ML algorithms used to select a CA for storing TS EPSs are characterized
by several disadvantages associated with the suboptimal choice of CAs, significant time
costs for training the model, high requirements for RAM, a tendency to overtrain, and
the complexity of determining hyperparameters. The XGBoost algorithm has the shortest
CA-selection time to store TS EPSs compared to the DL and DT algorithms. For the RF
algorithm, the study does not provide an estimate of time costs. To analyze and store SSS
EPSs, two machine learning algorithms were considered: SVMs and ANNSs. The highest
performance of CA selection was shown for the SVM algorithm. The main disadvantage
of this algorithm is its sensitivity to outliers and noise in the source data, which can
lead to a significant displacement of the separating hyperplane from the optimal position.
This problem can be effectively solved through the use of statistical filters at the data
pre-processing stage.

One of the significant disadvantages of the considered ML algorithms is their non-
universality in terms of choosing a CA only for storing TS or SSS. In addition, for the
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considered algorithms to work, a pre-generated list of accidents is required, for which
the selection of a CA is required. This approach significantly reduces the adaptability of
EC EPSs.

The purpose of this study is to develop and test, on mathematical data, a universal
CA-selection algorithm for saving TS and SSS EPSs based on big data analysis through
the use of DL algorithms. The following algorithms are under consideration: recurrent
neural networks (RNNs), long short-term memory networks (LSTMs), restricted Boltzmann
machines (RBMs), and self-organizing maps (SOMs). The selection of these algorithms was
based on the analysis of the study [42].

The scientific novelty of this research lies in solving the problem of adaptive EC
EPSs based on deep learning methods for preserving TS and SSS. The adaptability of the
proposed method is ensured by the absence of the need to specify a list of accidents under
consideration for which the CA is selected. To increase the accuracy of CA selection in the
original data set, measurements obtained from the PMU are used.

3. Description of the EPS EC Technique Based on the ML Algorithm
For the EC EPS algorithm, the block diagram shown in Figure 1 is used.

Mathematical ‘\
model

=i Data generation

l Real data

‘ Feature selection |

‘ DL model training | aﬁ

Yes Model quality
assessment

Are there any Py
changes to the feati
EPS structure? application

Figure 1. Flowchart of the EC EPS algorithm.

The first step in the flowchart shown in Figure 1 is data generation. To form a data
sample, two sources can be used: the results of mathematical modeling and real data
obtained during the registration of transient processes in real EPSs. The next stage is the
selection of features to increase the speed of training procedures for the DL model. After
training, the DL model is tested, and the classification quality criteria are analyzed. If
the classification quality is unacceptable, the DL model is retrained with the correction of
hyperparameters or a set of features. Once an acceptable classification quality is achieved,
the trained DL model is integrated into the EC EPS process, which runs in real time. When
there is a change in the EPS structure [43], the DL model is retrained. The following is a
detailed description of each of the stages of the flowchart shown in Figure 1.

3.1. Data Generation

The results of mathematical modeling of transient processes can be used as data for
sampling, indicating the selected CA for storing TS or SSS. This modeling is most often
performed using software packages for calculating transient processes in EPSs [44]. The
main advantage of this method of obtaining data for sampling is the ability to simulate
a wide range of transient processes with different electrical network configurations and
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different types of accidents. The main disadvantage of this method of obtaining data is the
possible error in modeling transient processes in EPSs. The occurrence of error is associated
with the use of irrelevant parameters of EPS mathematical models, regulators, and control
devices. The second source of data is records of real transient processes occurring in
the EPS. The registration of accidents can be performed using PMUs [45], which makes
it possible to obtain a description of transient processes with high accuracy. The main
disadvantage of this source of information is related to the difficulty of obtaining data
because a loss of stability accident is a rare event [46]. Therefore, a data sample can be
generated by combining real and simulated data. If there are changes in the EPS structure,
the data sample must be replaced, because adding or removing elements from the EPS
block diagram almost completely changes the nature of the transient processes. The data
selection should be updated when there are changes in the EPS structure (implementation
of new SGs and transmission lines) or when there are new records of accidents occurring in
the EPS.

In this study, numerical modeling performed in the MATLAB/Simulink environment
was used to generate a data sample. The standard mathematical models EPS IEEE14 [16],
IEEE24 [17], and IEEE39 [18] with modified load values and SG powers were used. A
detailed description of the mathematical models used is given in Appendix A, Appendix B,
and Appendix C. To select CAs, an algorithm adapted for the analysis of TS and SSS from
the study [47] was used. To simulate a series of transient processes, a proportional change
in loads and generations was performed in the EPS models used.

After generating the initial data sample, it must be processed to remove outliers, noise,
and features with a high correlation.

3.2. Feature Selection

Feature selection is an important step in preparing a data sample before training an
ML algorithm. Feature selection is performed to reduce the dimensionality of the CA
selection problem being solved and to reduce the model training time. The selection of
features is carried out according to the stages described in Figure 2.

XTI

v

Calculating the Spearman correlation of | If the correlation coefficient is less than
each feature concerning the target - 0.3, then the feature is removed
Calculation of Spearman cross- P If the correlation coefficientis greater
correlation between features h than 0.9, then the feature is removed

v

Feature selection using the RF

Feature removal is determined by the

algorithm structure of regularization decision trees

v
( Finish )

Figure 2. Flowchart of feature selection algorithm.

Thus, a three-step procedure combining the Spearman correlation coefficient analysis
and the use of the RF algorithm [48] is used for feature selection. The Spearman correlation
coefficient is calculated using the following equation:

_ 6/ d*
P—l_mf ®)
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where p is the Spearman correlation value, d is the difference in ranks for pair (X, Y) of two
series of numbers, and 1 is the length of rows X and Y.

3.3. Description of the DL Algorithms Used

This study considers four DL algorithms: RNNs, LSTMs, RBMs, and SOMs. Below
are the basic operating principles of each algorithm. To train and use DL algorithms, the
Python3 programming language was used in conjunction with the TensorFlow, Keras,
scikit-learn, and sklearn_som libraries.

3.3.1. RNNs

The RNN algorithm is based on ANNS, in which the connections between layers are a
directed sequence [49]. The calculations required at each step in an RNN are defined by the
following equations:

W — O-(thx(t) LW (1) 4 bh)

ylt) = softmax(Wyhh(t) + by> ©
where h* is the value in the hidden node at time #, K~ is the value in the hidden node at
time t — 1, x® is the value of input data at time ¢, y®) is the output value at time ¢, W' is the
weight matrix between the input and hidden layers, W is the matrix of weight coefficients
between hidden layers, W/" is the matrix of weighting coefficients between the input and
output, by, is the hidden layer offset vector, b, is the displacement vector of the output layer,
softmax() is the multivariate logistic function, and o is the activation function.

3.3.2. LSTMs

The architecture of LSTMs is similar to that of RNNSs. The difference is that an LSTM
replaces hidden layers with a memory cell. Each memory cell contains a node with a self-
connected recurrent edge of a certain weight [50]. The calculations in LSTMs are defined
by the following equations:

fr = Og (fot + Ufhtfl + bf)
iy = (Tg(Wl‘xt + Uihy_q + bl)
0y = ag(Woxt + Uohy 1 + bo) , ?)
Cr = O'C(cht + Uchy_1 + bc)
c=fioOc1+itOC
hy = o © o3, (ct)

where x; is the input vector; /; is the output vector, ¢; is the state vector; W, U, and b are
the matrices and vector of model parameters; f;, f;, and o; are the gate’s activation vector;
¢ is the sigmoid-based activation function; o and ¢y, are the activation function based on
hyperbolic tangent; and © is the Hadamard product operator.

3.3.3. RBMs

An RBM is a type of generative stochastic ANN in which neurons are divided into
visible and hidden layers and connections are only allowed between neurons of different
types, thus limiting connections [51]. For RBMs, there is a concept of network energy
through which all calculations are performed:

E(u,h) = —aTu —b"h — uTWh, 8)

where E is the network energy value, a is the displacement vector for the visible layer, b
is the displacement vector for the hidden layer, W is the weight matrix, u is the binary
elements of the visible layer, / is the hidden layer’s binary elements, and T is the denotation
of the transposition operation.
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3.3.4. SOMs

An SOM is a type of ANN. The main difference between this technology and neural
networks trained using the backpropagation algorithm is that the training method uses an
unsupervised learning method, that is, the learning result depends only on the structure of
the input data [52]. The SOM operation algorithm can be presented as follows:
Initialization;

Selecting a vector from a data set;

Finding the best matching unit for the selected vector;
Determination of the number of best matching units (BMUs);
Definition of error.

G L

3.4. Algorithm Quality Assessment

To assess the classification quality of the trained algorithm, the following parameters
were used: accuracy (ACC), missed detection rate (MDR), false alarm rate (FAR), and area
under the receiver operating characteristic curve (AUC). The parameters ACC, MDR, and
FAR are expressed through the values true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) [53].

ACC is a coefficient that determines the ratio of correctly classified data to the total
number of classifications:

TP+ TN

ACC= TNt rpr BN OO ©)

MDR is a ratio that determines the ratio of examples that were classified as false
positives to the total number of classifications:

FpP

DR =
M TP+TN+FP+FN

- 100%. (10)
FAR is a ratio that determines the ratio of examples that were classified as false

negatives to the total number of classifications:

B FN
~ TP+ TN+FP+FN

FAR -100%. (11)

AUC is a value that determines the area under the receiver operating characteristic
curve. The AUC metric is used for binary classifications. In multivariate classifications,
AUC can be used for only two classes [54].

3.5. Real-Time Application

In this study, the real-time EC problem is considered only theoretically and is a
direction for future research. A block diagram describing the use of the proposed EC
algorithm based on ML and data received from the PMU is shown in Figure 3. When an
accident occurs (in Figure 3, the accident location is shown with a red arrow), PMU devices
register emergency currents and voltages with transmission (in Figure 3, the process of
transmitting information from the PMU to the data center is shown by blue arrows) to
the data center, which has EC command transmission channels (in Figure 3, the process
of transmitting a command to implement CAs is shown by green arrows) to turn off
SGs and loads in a protected energy region. Based on the obtained values of current
and voltage synchrophasors, the trained DL algorithm selects CAs in the form of a set of
switchable SGs and loads. Next, the set of CAs is transmitted via communication channels
to control objects.
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Figure 3. Flowchart of real-time EC EPS algorithm’s application.

To implement this EC principle, it is necessary to estimate the acceptable time delay
between the transfer of current and voltage synchrophasors to the data center and the
implementation of CAs at power system facilities. This problem can be solved using
real-time EPS transient simulations [55-60].

4. Case Study

For numerical experiments, MATLAB/Simulink was used to simulate transient pro-
cesses, and Python3 was used to train and analyze DL algorithms.

4.1. Data Preparation

To generate data samples for the IEEE14, IEEE24, and IEEE39 models, cyclic calcula-
tions of transient processes with CA selection were used. During the cyclic calculations,
the following model parameters were changed: loads in nodes, values of active- and
reactive-power SGs, and the topology was changed taking into account single repairs of
network elements. When considering repairs of network equipment, situations of isolating
isolated islands were excluded [61]. To generate the data and CA selection, the following
perturbations were considered [47]:

e  Three-phase short circuits of 0.1 and 0.2 s durations;
Two-phase short-circuits of 0.1, 0.2 and 0.3 s durations;
Single-phase short circuits of 0.1, 0.2, 0.3, and 0.4 s durations;
Disconnection of the transmission line;

SG switching off.

Short circuits were considered for selecting CAs to preserve TS. Transmission lines and
SG disconnections were considered for selecting CAs to preserve SSS. The transient calcula-
tions in the considered EPS mathematical models were performed in MATLAB/Simulink.
CA selection was performed by transferring the initial data to a dynamic library imple-
menting CA-selection algorithms.

The following features were considered in the data sample: voltages in nodes, voltage
phases in nodes, current loads of electrical network elements, active power flows, reactive
power flows, active power SGs, reactive power SGs, and load angle SGs. Table 3 shows
the characteristics of the obtained initial data samples: the number of features, the total
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volume of the data sample, the number of scenarios with CAs, the number of scenarios
without CAs, and the degree of class imbalance. A scenario is understood as the result of
calculating the transient process for the considered accident. Figure 4 provides a graphical
representation of class imbalance in the original data samples. The abscissa axis of Figure 4
shows the names of the considered EPS mathematical models.

Table 3. Parameters of initial data samples.

Model Number of Total Data Sample =~ Number of Scenarios Number of Scenarios ID. %
Size with CAs without CAs T
IEEE14 3465 692 2772 19.9
IEEE24 23,940 6548 16,758 27.3
IEEE39 43,470 13,546 30,429 31.1
' ' ‘ I Scenarios without CA
Lr 7 | I Scenarios with CA
5 08} .
Q
)
N 0.6+ _
(72}
ko,
95
8 04+ _
<
A
02} .
0

IEEE14 IEEE24 IEEE39

Figure 4. Imbalance of classes of the original data samples.
The degree of class imbalance (ID) [62] is calculated using the following equation:

Nca

S

ID = - 100%, (12)
where ID is the degree of class imbalance, N¢g4 is the number of scenarios with CAs, and
N is the total number of scenarios considered.
The volume of the initial sample for each model is determined by the following
equation [19]:
Nps = Nsg - Nr - NL - Ny, (13)

where Npg is the initial data sample volume, N is the number of repairs being considered,
Ny is the number of nodes with variable loads, Nsg is the number of SGs with variable
active powers, and Ny is the coefficient characterizing the number of changes in loads and
generations during modeling.

In addition to the imbalance of data for classes with and without CAs in the selection
of data, there is an imbalance of classes describing the composition of CAs, which must
be applied to maintain the stability of EPSs. Therefore, for the initial data sample, it is
necessary to ensure equality between classes with and without CAs, as well as equality
between classes with different sets of CAs. For this purpose, a data sample-thinning
procedure is used to ensure class balance.

Table 4 shows the results of class balancing in the original data set. Figure 5 shows a
graphical representation of the class imbalance in the processed data sample.
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Table 4. Parameters of processed data samples.

Total Data Sample Number of Scenarios Number of Scenarios o
Model Number of Features Size with CAs without CAs ID, %
IEEE14 107 1386 749 637 54.0
IEEE24 244 8618 4412 4206 51.1
IEEE39 313 14,779 8172 6607 55.3
' ' ' I Scenarios without CA
Lr 1 | [ Scenarios with CA
5 0.8 .
a,
)
N0.6 ]
[0}
-
@
N
S 04+ i
<
A
0.2 i
0

IEEE14 IEEE24 IEEE39

Figure 5. Imbalance of classes of processed data samples.

After ensuring the balance of the data sample, feature selection is performed using the
algorithm described in Figure 2. The first stage of this algorithm is the removal of features
with a low correlation concerning the answer. Table 5 shows the results of removing
features that have Spearman correlation values concerning the answer below 0.3.

Table 5. The result of removing features with a low correlation to the target.

The Initial Number of Number of Features Number of Features
Removed Features

Model Features Removed after Processing

Values of current loads of network
IEEE14 107 31 76 elements; Vqltages in nodes 14,' 11,
and 10; reactive powers along lines
adjacent to nodes 9 and 5
Values of current loads of network

IEEE24 244 42 202 elements; voltages in nodes 6, 14, 19,
and 20
Values of current loads of network
IEEE39 313 54 259 elements; voltages in nodes 3, 4, 7,

11-14, and 24

The low correlation value of current loads of electrical network elements to the CA
class, aimed at preserving TS and SSS, is explained by the nature of the phenomenon of
EPS instability [63-65]. The preservation of TS and SSS largely depends on the flow of
active power and voltage levels; there is practically no direct connection with the current
loads of the elements of the electrical network. There is only an indirect connection through
the magnitude of the loading currents of the electrical network and voltage loss. Also,
the low correlation concerning CA class corresponds to node voltages electrically distant
from SGs. Including highly cross-correlated features in the training set can lead to poor
task conditioning and can lead to instability and unreliability in determining the optimal
hyperparameters of the DL model [66]. Table 6 shows the results of removing features that
have Spearman cross-correlation values higher than 0.9.
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Table 6. The result of removing features with high cross-correlations.

Model

The Initial Number of Number of Features Number of Features
Features Removed after Processing

Removed Features

IEEE14
IEEE24
IEEE39

76

2 74 Node voltages 12 and 13

202 1 201 Node voltage 5
259 3 256 Node voltages 18, 27, and 28

In the data sample, a Spearman correlation value higher than 0.9 was obtained for
the voltages of some nodes. Such cases correspond to the low electrical distance between
EPS nodes. As a result of the analysis of the cross-correlation of features, two features
were removed from the sample corresponding to the IEEE14 model, one feature was
removed from the sample corresponding to the IEEE24 model, and three features were
removed from the sample corresponding to the IEEE39 model. The next stage of processing
the data sample is to analyze the importance of features for the RF algorithm. The RF
algorithm allows you to obtain the importance values of each feature during classification.
The RF algorithm was trained by dividing the data sample into two parts: training and
testing. Table 7 shows the values of hyperparameters obtained during the training of the
RF algorithm. To obtain optimal hyperparameters, the standard random search procedure
was used [67].

Table 7. Values of the RF algorithm hyperparameters.

Model

n_Estimators

Max_Features Max_Depth Min_Samples_Split Min_Samples_Leaf

IEEE14
IEEE24
IEEE39

112
214
287

2 3 10 8
7 6 12 9
9 5 30 16

Table 7 uses the following notation: n_estimators are the number of decision trees in
the ensemble, max_features are the maximum number of features considered for splitting a
node, max_depth is the maximum number of levels of the decision tree, min_samples_split
is the minimum amount of data placed in a node before splitting, and min_samples_leaf is
the minimum amount of data placed in a leaf node. Figure 5 shows an example of one of the
decision trees for the IEEE14 model. In Figure 6, the following notations are used: Uy is the
voltage in node 1, U; is the voltage in node 2, U; is the voltage in node 3, Psg; is the active
power of the first SG, Qs is the reactive power of the second SG, and leaf is the value in
the leaf node. Table 8 shows the results of removing features with an importance of less
than 0.2. For the RF algorithm, the minimum significance corresponds to the reactive power
flows indicated in Table 8. Figure 7 shows the process of changing the number of features
in the processing of a data sample. The abscissa axis indicates the stage of processing the
data sample, as described in Figure 2. Step 0 shows the initial value of the features in the
data sample.
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U1<200

yes

leaf =0.12

U2<190

Psci>180 Qsc2>72 leaf =0.17

Us<180
no
leaf = 0.82

leaf = 0.07 leaf = 0.42

Figure 6. One of the decision trees for the IEEE14 model.

leaf =0.24

Table 8. The result of removing features after decision trees analyses.

The Initial Number of Number of Features Number of Features
Model . Removed Features
Features Removed after Processing
[EEE14 74 5 69 Flows of reactw.e power along
branches extending from node 4
Flows of reactive power along
IEEE24 201 12 189 branches extending from nodes 8, 13,
17, and 21
Flows of reactive power along
IEEE39 256 18 238 branches extending from nodes 16, 19,
26, and 28
110 250 T T 320
100+ 300 -
g 2+ é § 280+
5] S 3
g < g
S 5
S 80t s % 260 |
= o o=
70 b 240+
60 180 s s 220
0 1 2 3 0 1 2 3 0 1 2 3
Step Step Step
(a) (b) (c)

Figure 7. Changes in features during the processing of data samples: (a) IEEE14 model; (b) IEEE24
model; (¢) IEEE39 model.

During the processing of the initial data sample, the balance of the sample by class was
ensured and features were selected using the methods of statistical analysis and analysis of
the importance of features for the RF algorithm.

4.2. Training and Testing Algorithms without Taking into Account PMU Data

After preparing the data sample, the stages of training and testing the algorithms
were completed: RNNs, LSTMs, RBMs, and SOMs. The algorithms were trained us-
ing the standard algorithm exhaustive grid search from the TensorFlow, Keras, scikit-
learn, and sklearn_som libraries. Tables 9-12 show the main defined hyperparameters
of the algorithms. In Tables 9-12, the following notations are used: RNN_Size is the size
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of the hidden layer of the RNN, RNN_Layers is the number of layers in the RNN, Se-
quence_Length is the size of the data packet, Batch_Size is the length of the sequence for
the RNN, Epoch_Number is the number of epochs (one pass forward and backward for the
training example), Act_Func is the activation function, LSM_Layer is the number of layers
in the LSM, Weight_Initializer is the method of setting initial weights, glorot_uniform is
the glorot uniform initializer [68], Dropout_Ratio is the regularization coefficient of the
DL model, tanh is the hyperbolic tangent, Relu is the rectified linear unit, Kernel_size
is the kernel size, Hidden_Number is the number of nodes in the hidden-feature layer,
PrimaryCaps_Number is the number of nodes in the PrimaryCaps layer, N_function is the
Neighborhood Distance Function, Gaussian_width is the width of the Gaussian function
used, Learning_Rate is the learning rate, and BMU_Selection is the method for determining
the BMU.

Table 9. Values of hyperparameters of the RNN algorithm.

Model RNN_Size RNN_Layers Sequence_Length Batch_Size Epoch_Number
IEEE14 256 2 25 50 250
IEEE24 256 3 28 55 250
IEEE39 256 5 28 70 250
Table 10. Values of hyperparameters of the LSTM algorithm.
Model Act_Func LSM_Layer Epoch_Number Weight_Initializer Dropout_Ratio
IEEE14 tanh 100 250 glorot_uniform 0.1
IEEE24 tanh 100 250 glorot_uniform 0.2
IEEE39 tanh 150 250 glorot_uniform 0.2
Table 11. Values of hyperparameters of the RBM algorithm.
Model Act_Func Epoch_Number Kernel_Size Hidden_Number PrimaryCaps_Number
IEEE14 Relu 250 10 128 64
IEEE24 Relu 250 10 128 64
IEEE39 Relu 250 24 128 64
Table 12. Values of hyperparameters of the SOM algorithm.
Model Kernel_Size N_Function Gaussian_Width Learning_Rate BMU_Selection
IEEE14 70 Gaussian 7 0.04 Euclidean distance
IEEE24 150 Gaussian 12 0.03 Euclidean distance
IEEE39 210 Gaussian 22 0.01 Euclidean distance

To train the model, an ACC threshold value of 95% was chosen [69,70]. When this
value is reached, the training process stops to prevent overtraining of the DL model. The
ACC threshold value can be selected depending on the requirements of the problem being
solved and changed during the operation of the trained DL algorithm.

Figure 8 shows the changes in ACC depending on the training iteration. Graphs of
changes in ACC for the various considered models (IEEE14, IEEE24, and IEEE39) and for
the various algorithms (RNNs, LSTMs, RBMs, SOMs) are presented. The red dotted line
shows the ACC threshold value of 95%.
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Figure 8. Change in ACC indicator during training of DL models without taking into account
data from PMU: (a) model IEEE14, RNN algorithm; (b) model IEEE24, RNN algorithm; (¢) model
IEEE39, RNN algorithm; (d) model IEEE14, LSTM algorithm; (e) model IEEE24, LSTM algorithm;
(f) model IEEE39, LSTM algorithm; (g) model IEEE14, RBM algorithm; (h) model IEEE24, RBM
algorithm; (i) model IEEE39, RBM algorithm; (j) model IEEE14, SOM algorithm; (k) model IEEE24,
SOM algorithm; (1) model IEEE39, SOM algorithm.

For training and testing, a procedure was performed to divide the sample into test
and training. A total of 80% of the original sample was selected for training and 20% for
testing [71].

Table 13 shows the results of the trained DL algorithms on the test data.
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Table 13. Analysis of the results of DL algorithms on test data samples.

Algorithm
Model Parameter

RNN LSTM RBM SsoM

MDR, % 111 138 1.67 1.73

FAR, % 143 1.65 1.34 1.29

IEEE14 ACC, % 93.87 94.63 94.15 92.29
AUC 0.97 0.95 0.95 0.94

MDR, % 211 1.87 1.61 1.93

FAR, % 225 215 236 1.81

IEEE24 ACC, % 93.83 94.85 93.84 92.17
AUC 0.97 0.96 0.98 0.97

MDR, % 252 1.86 1.68 1.59

FAR, % 210 1.80 1.65 1.16
IEEE39 ACC, % 92.25 93.44 92.74 91.90
AUC 0.97 0.98 0.95 0.96

From the results of testing DL algorithms, it is clear that with an increasing dimension
of the EPS model, the accuracy of CA selection decreases, which can be explained by
an increase in uncertainty due to the significant complexity of considering the entire list
of accidents. It is also clear that the best classification results correspond to the LSTM
algorithm and the worst results correspond to the SOM algorithm. In this section, DL
algorithms were trained and tested without data from the PMU [72], i.e., there were no
voltage phases in the data sample.

4.3. Testing Algorithms by Taking into Account PMU Data

Tables 14-17 show the main defined hyperparameters of the algorithms, taking into
account the data received from the PMU.

Table 14. Values of hyperparameters of the RNN algorithm taking into account PMU data.

Model RNN_Size RNN_Layers Sequence_Length Batch_Size Epoch_Number
IEEE14 256 2 23 48 250
IEEE24 256 3 26 51 250
IEEE39 256 5 28 65 250
Table 15. Values of hyperparameters of the LSTM algorithm taking into account PMU data.
Model Act_Func LSM_Layer Epoch_Number  Weight_Initializer Dropout_Ratio
IEEE14 tanh 90 250 glorot_uniform 0.1
IEEE24 tanh 120 250 glorot_uniform 0.2
IEEE39 tanh 136 250 glorot_uniform 0.2
Table 16. Values of hyperparameters of the RBM algorithm taking into account PMU data.
Model Act_Func Epoch_Number Kernel_Size Hidden_Number PrimaryCaps_Number
IEEE14 Relu 250 8 128 64
IEEE24 Relu 250 8 128 64
IEEE39 Relu 250 20 128 64
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Table 17. Values of hyperparameters of the SOM algorithm taking into account PMU data.

Model Kernel_Size N_Function Gaussian_Width Learning_Rate BMU_Selection

IEEE14 60 Gaussian 6 0.04 Euclidean distance
IEEE24 120 Gaussian 10 0.03 Euclidean distance
IEEE39 200 Gaussian 22 0.01 Euclidean distance

To train the model, an ACC threshold value of 95% was chosen [69,70]. When this
value is reached, the training process stops to prevent overtraining of the DL model.
Figure 9 shows changes in ACC depending on the training iteration. Table 18 shows the
results of the trained DL algorithms on the test data.

IEEE14, RNN IEEE24, RNN IEEE39, RNN
100 ——— 10 ——————
R R
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Figure 9. Change in ACC indicator during the training of DL models with taking into account
data from PMU: (a) model IEEE14, RNN algorithm; (b) model IEEE24, RNN algorithm; (¢) model
IEEE39, RNN algorithm; (d) model IEEE14, LSTM algorithm; (e) model IEEE24, LSTM algorithm;
(f) model IEEE39, LSTM algorithm; (g) model IEEE14, RBM algorithm; (h) model IEEE24, algorithm
RBM,; (i) model IEEE39, RBM algorithm; (j) model IEEE14, SOM algorithm; (k) model IEEE24, SOM
algorithm; (1) model IEEE39, SOM algorithm.
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Table 18. Analysis of the results of DL algorithms on test data samples, taking into account data from

the PMU.
Algorithm
Model Parameter

RNN LSTM RBM SOM

MDR, % 1.08 136 1.62 1.72

FAR, % 143 1.61 133 121

IEEE14 ACC, % 93.72 94.83 94.17 9231
AUC 0.96 0.92 0.95 0.92

MDR, % 208 183 1.60 1.92

FAR, % 212 212 231 1.80

IEEE24 ACC, % 93.65 94.88 93.86 92.14
AUC 0.92 0.94 0.90 0.91

MDR, % 250 1.84 161 1.58

FAR, % 2.07 1.72 1.60 1.14

IEEE39 ACC, % 92.18 93.64 92.76 91.91
AUC 0.98 0.97 0.93 0.96

Taking into account the phases of the voltages of the nodes considered by the EPS leads
to an increase in the accuracy of the CA classification. This fact is explained by the high
degree of dependence of SSS and TS on active power flows, which are determined by the
distribution of voltage phases across EPS nodes. The best classification results correspond
to the LSTM algorithm.

4.4. Testing the Ability to Determine a Set of CA for an Accident That Is Not in the Data Sample

To test the ability of DL algorithms to independently generate an optimal set of CAs
for a given set of characteristics, a calculation of the transient process was performed with
an accident not taken into account in the initial data sample, which consists of a three-phase
short circuit in node 9 of the IEEE14 model. An LSTM algorithm is used to select CAs.
Figure 10 shows the angular speeds of SGs without introducing CAs. In the IEEE14 model,
SG1 is balancing, so its load angle is not shown in Figure 10. Figure 11 shows the angular
speeds of SGs with the introduction of CAs.

14 . . .
SG2
sl sG3| |
SG6
SG8
12| ]
=
Q.
211l ]
1 _— . — — -
0.9 . . .
0 5 10 15 20

Time, s

Figure 10. Changing the angular speeds of SG2, SG3, SG6, and SG8 during a short circuit in node 9
without implementing CAs.
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Figure 11. Change in angular speeds of SG2, SG3, SG6, and SG8 during a short circuit in node 9 with
CA implementation.

The loss of TS on the graph of angular speed SGs is indicated by an excess of 1 p.u. [73].
Figure 10 shows the process of losing the TS EPS, highlighting two groups of generators:
5G3, SG8, SG2, and SG6. As a result of using the LSTM algorithm, the CA was selected in
the form of disabling SG8 to preserve the TS EPS.

4.5. Comparison of Accuracy of DL Algorithms with DT, RF, SVM, and XGBoost Algorithms

The DT, RE, SVM, XGBoost, and DL algorithms” RNNs, LSTMs, RBMs, and SOMs
were selected to perform the comparison of the CA EPS value classification results. The
comparison of the performance of the algorithms was executed on the data obtained for
the IEEE39 mathematical model. The hyperparameters of the DT, RF, SVM, and XGBoost
algorithms were determined using the standard exhaustive grid search approach.

Table 19 shows the obtained values of the hyperparameters of the DT, RF, SVM, and
XGBoost algorithms.

Table 19. Values of hyperparameters of the DT, RE, SVM, and XGBoost algorithms.

Algorithm Hyperparameters

criterion = “gini”

splitter = “best”

max_depth = 10
min_samples_split =2

DT

n_estimators = 25
max_depth =3
RF min_samples_split = 0.01
min_samples_leaf = 0.01
max_features =7

degree =3
SVM gamma = 1
kernel = Radial Basis Function

alpha = 0.05
lambda = 0.05
gamma = 1
max_depth =5
base_score = 0.6
n_estimators = 35
learning_rate =1
max_delta_step =1

XGBoost
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Table 19 assumes the following notations: criterion is the function for measuring the
quality of splitting the DT data sample, splitter is a strategy used for splitting at each DT
node, max_depth is the maximum DT depth, min_samples_split is the minimum number
of samples needed to split the inner DT node, n_estimators is the number of DTs in the
RE, min_samples_leaf is the minimum number of samples needed to be in the leaf node,
max_features is the number of features needed to be considered when searching for the best
separation, degree is the degree of the polynomial kernel function, gamma is the kernel
coefficient, kernel is the kernel type, alpha is the L1 regularization factor, lambda is the
L2 regularization factor, gamma is the minimum loss reduction factor required for node
separation, learning_rate is the learning rate, base_score is the initial prediction score, and
max_delta_step is the maximum delta step.

Table 20 shows the values of the ACC ratio determined by expression (9).

Table 20. Average values of ACC ratio for the considered algorithms.

Algorithm ACC, %
Without PMU data
RNN 92.25
LSTM 93.44
RBM 92.74
SOM 91.90
DT 62.17
RF 71.85
SVM 70.13
XGBoost 80.66
With PMU data

RNN 92.18
LSTM 93.64
RBM 92.76
SOM 91.91
DT 72.54
RF 77.12
SVM 75.43
XGBoost 81.57

Due to the significant number of features in the data set and the high share of hidden
patterns described by the system of algebraic-differential equations of the dynamic state of
EPSs, the accuracy of the DT, RE, SVM, and XGBoost algorithms is 18.6% lower than for the
RNN, LSTM, RBM, and SOM algorithms in the average.

Based on both Tables 13 and 18, the highest accuracy of the CA EPS classification
corresponds to the LSTM algorithm.

5. Conclusions

This study presents the results of developing an EC EPS methodology based on
DL algorithms and obtained data from PMUs. Due to the introduction of a significant
number of RESs and the rules tightening the functioning of the electricity market, there
are significant changes in the speed of transition processes for modern EPSs. Therefore,
traditional EC EPS systems do not meet the requirements for speed and reliability. This
paper proposes a methodology for selecting a CA for storing TS and SSS EPSs.

The following DL algorithms were considered: RNNs, LSTMs, RBMs, and SOMs. To
form a data sample, the following EPS mathematical models were used: EEE14, IEEE24,
and IEEE39. To process the data sample, a three-step algorithm was used, which consists of
a sequential analysis of the Spearman correlation coefficient of each characteristic from the
responses, the cross-Spearman correlation coefficient of the characteristics, and an analysis
of the importance of the characteristics for the RF algorithm. For the IEEE14 model, the
initial number of features in the data set was 107, for the IEEE24 model it was 244, and
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for the IEEE39 model, it was 313. After applying the feature selection algorithm shown in
Figure 2, the number of features was reduced for IEEE14 to 69, for IEEE24 to 189, and for
IEEE39 to 238.

Next, the considered DL algorithms were trained and tested on a processed data
sample, even without considering the voltage phase values that can be measured by PMUs.
During testing, the following classification accuracy characteristics were analyzed: MDRs,
FARs, ACCs, and AUCs. Table 21 shows the average values for the IEEE14, IEEE24, and
IEEE39 models of the ACC ratio of the RNN, LSTM, RBM, and SOM algorithms.

Table 21. Average values of ACC ratio of the RNN, LSTM, RBM, and SOM algorithms.

Algorithm ACC, %
Without PMU data
RNN 93.31
LSTM 94.31
RBM 93.57
SOM 92.12
With PMU data
RNN 93.18
LSTM 94.45
RBM 93.58
SOM 92.12

As a result of testing, it was found that the maximum accuracy corresponds to the
LSTM algorithm. The ACC value for the LSTM algorithm is shown in bold in Table 21.

To test the possibility of selecting a CA for an accident that is missing in the data
sample, for the IEEE14 model, an accident consisting of a short circuit in node 9 was
considered. As a result of modeling this accident, SG8 and SG3 lose stability and operate in
asynchronous mode. To provide TS, the CA was chosen in the form of SG8 shutdown. The
correctness of this CA is confirmed by the results of the calculation of the transient process.

Further research will be aimed at developing a methodology for EC with isolated
EPSs which contains a significant proportion of RESs and energy storage devices. For EPS
data, the CAs are considered to provide the required AC voltage and frequency levels.
Moreover, there are other important directions for future research. For instance, more
detailed testing of the ability of DL algorithms to select optimal CAs for accidents that
are not in the training set; the determination of acceptable values of time delays of DL
algorithms, allowing us to define the optimal value of CAs during the development of the
transient process; the determination of the minimum size of the data set; and the analysis
of the influence of errors in data synchronization from PMU devices based on the accuracy
of CA EPS selection are required.
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Abbreviations

ACC Accuracy

ANN Artificial neural network

AUC Area under receiver operating characteristic curve
BMU Best matching unit

CA Control action

DL Deep learning

DT Decision tree

EC Emergency control

EPS Electrical power system

FAR False alarm rate

FN False negative

FP False positive

1D Imbalance degree

LSTM Long short-term memory networks
MDR Missed detection rate

ML Machine learning

PMU Phasor measurement unit

RBM Restricted Boltzmann machines
RES Renewable sources of energy
RF Random forest

RNN Recurrent neural networks

SG Synchronous generator

SOM Self-organizing maps

SSS Small signal stability

SVM Support vector machine

N True negative

P True positive

TS Transient stability

XGBoost  Extreme gradient boosting

Appendix A

The IEEE14 model parameters used are shown in Tables A1 and A2.
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Figure A1l. IEEE14 model diagram.
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Table A1l. Parameters of SGs used in the IEEE14 model.

SG Number Pmax, MW Pmin, MW Omax, MVAr  Quin, MVAr EC
1 332.4 0.0 10.0 0.0 No
2 140.0 30.0 50.0 0.0 Yes
3 100.0 0.0 40.0 0.0 Yes
6 100.0 0.0 24.0 0.0 Yes
8 100.0 0.0 24.0 0.0 Yes
Table A2. Parameters of IEEE14 model nodes participating in EC.
Bus Number P, MW Q, MVAr Vmax, p-u. Viins pP-u.
2 21.7 12.7 1.05 0.95
3 94.2 19.0 1.05 0.95
4 47.8 3.9 1.05 0.95
5 7.6 1.6 1.05 0.95
10 9.0 5.8 1.05 0.95
11 3.5 1.8 1.05 0.95
12 6.1 1.6 1.05 0.95
13 135 5.8 1.05 0.95
14 14.9 5.0 1.05 0.95
Appendix B

The IEEE24 model parameters used are shown in Tables A3 and A4.
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Table A3. Parameters of SGs used in the IEEE24 model.
SG Number Pmax, MW Pmin, MW Omax, MVAr  Quin, MVAr EC
1 192.0 0.0 96.0 0.0 Yes
2 192.0 0.0 96.0 0.0 Yes
7 300.0 0.0 150.0 0.0 Yes
13 591.0 0.0 290.0 0.0 Yes
15 215.0 0.0 100.0 0.0 Yes
16 155.0 40.0 60.0 0.0 Yes
18 400.0 0.0 200.0 0.0 Yes
21 400.0 20.0 200.0 0.0 Yes
22 300.0 0.0 100.0 0.0 Yes
23 650.0 0.0 300.0 0.0 No
Table A4. Parameters of IEEE24 model nodes participating in EC.
Bus Number P, MW Q, MVAr Vmax, p-u. Vinins p-u.
1 108.0 22.0 1.05 0.95
2 97.0 20.0 1.05 0.95
4 74.0 15.0 1.05 0.95
5 71.0 14.0 1.05 0.95
6 136.0 28.0 1.05 0.95
9 175.0 36.0 1.05 0.95
13 265.0 54.0 1.05 0.95
15 317.0 64.0 1.05 0.95
16 100.0 20.0 1.05 0.95
18 333.0 68.0 1.05 0.95
20 128.0 26.0 1.05 0.95
Appendix C
The IEEE39 model parameters used are shown in Tables A5 and A6.
Table A5. Parameters of SGs used in the IEEE39 model.
SG Number Pmax, MW Pmin, MW Omax, MVAr  Quin, MVAr EC
1 1129.0 0.0 411.0 0.0 No
2 526.0 0.0 257.0 0.0 Yes
3 692.0 50.0 270.0 0.0 Yes
4 638.0 0.0 151.0 0.0 Yes
5 511.0 0.0 177.0 0.0 Yes
6 657.0 0.0 222.0 0.0 Yes
7 605.0 20.0 45.0 0.0 Yes
8 547.0 30.0 74.0 0.0 Yes
9 837.0 0.0 30.0 0.0 Yes
10 301.0 0.0 151.0 0.0 Yes
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Figure A3. IEEE39 model diagram.
Table A6. Parameters of IEEE39 model nodes participating in EC.
Bus Number P, MW Q, MVAr Vmax, p-u. Viins p-u.
3 322.0 2.0 1.05 0.95
4 500.0 184.0 1.05 0.95
6 320.0 153.0 1.05 0.95
8 158.0 30.0 1.05 0.95
12 308.0 92.0 1.05 0.95
15 320.0 153.0 1.05 0.95
18 158.0 30.0 1.05 0.95
22 274.0 115.0 1.05 0.95
23 274.0 85.0 1.05 0.95
25 224.0 47.0 1.05 0.95
26 139.0 17.0 1.05 0.95
27 281.0 75.0 1.05 0.95
28 206.0 28.0 1.05 0.95

29 283.0 27.0 1.05 0.95
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