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Abstract: Unsupervised classification is used in credit risk assessment to reduce human resource
costs and make informed decisions in the shortest possible time. Although several studies show that
support vector machine-based methods have better performance in unlabeled datasets, several factors
still negatively affect these models, such as unstable results due to random initialization, reduced
effectiveness due to kernel dependencies, and noise points and outliers. This paper introduces an
unsupervised classification method based on a fuzzy unsupervised quadratic surface support vector
machine without a kernel to avoid selecting related kernel parameters for credit risk assessment. In
addition, we propose an innovative fuzzy membership function for reducing noise points and outliers
in line with the direction of sample density variation. Fuzzy Unsupervised QSSVM (FUS-QSSVM)
outperforms well-known SVM-based methods based on numerical tests on public benchmark credit
data. In some real-world applications, the proposed method has significant potential as well as
being effective, efficient, and robust. The algorithm can therefore increase the number of potential
customers of financial institutions as well as increase profitability.

Keywords: credit risk assessment; unsupervised classification; kernel-free quadratic surface SVM;
fuzzy membership function

MSC: 91B05

1. Introduction

With the rapid growth of data mining, classification, also called clustering, has become
an important task for extracting information from the data in machine learning methods.
The support vector machine (SVM) is a well-known supervised classification technique that
introduces an optimal hyperplane to maximize the margin between two labeled classes [1].
In many fields, including credit risk assessment, credit card fraud detection, stock prediction
and disease diagnosis, the SVM has demonstrated exceptional performance [2–5]. The SVM
allows us to classify an arbitrary number of end states without making assumptions about
the distribution of input factors or the target category. Due to this advantage, the SVM
algorithm is widely used in the field of credit risk management [6]. The purpose of credit
risk management is to predict the relative risk of default among borrowers [7]. Financial
institutions can reduce human resource costs and make appropriate decisions within a
short period of time using machine learning.

Although these SVM-based methods are effective on labeled credit datasets, they
cannot solve unsupervised learning problems without labels. Typically, labeling data
points in real-world applications is time-consuming and labor-intensive, while obtaining
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large numbers of unlabeled data points is relatively easy [8]. In addition, a significant
number of small and micro enterprises lack credit histories and have insufficient funding.
In order to increase business opportunities for financial institutions, credit risk management
should be extended to unlabeled datasets. The one-class SVM is a clustering method based
on a single type of label [9]. The algorithm reduces reliance on dataset labels. The weight
one-class SVM and fuzzy one-class SVM further improve the efficiency and accuracy
of the OC-SVM [10,11]. However, OC-SVM-based methods rely heavily on the initial
labeled data points. To overcome this drawback, an unsupervised absolute value inequality
classifier (UAVIC) was proposed, which considers constructing hyperplanes containing
data points [12]. With this unsupervised linear algorithm, dependence on dataset labels
can be completely eliminated. In terms of linearly indivisible datasets, the unsupervised
quadratic surface support vector machine (US-QSSVM) enhances the performance of the
SVM-based unsupervised learning algorithms [8]. However, the classifier directly generated
by UAVIC and the US-QSSVM model may suffer from noise points and outliers. This is
due to the separation plane being positioned between the two planes, which must contain
all samples.

In most supervised and unsupervised classification approaches based on SVM, noise
points negatively affect decision plane learning. Fuzzy membership can be applied to each
input point of the SVM, fuzzy SVM (FSVM), so that different input points can contribute
differently to decision surface learning [13]. Fuzzy membership function based on Fisher
Discriminant Analysis (FDA) further improves FSVM performance. In addition, the num-
ber of support vectors in fuzzy support vector machines can be reduced using the DC
program [14]. It should be noted, however, that all these methods solve the problem of
noise points through binary classification problems. The fuzzy one-class quadratic sur-
face support vector machine (FOC-QSSVM) considers minimizing the within-class scatter,
which solves the noise problem of OC-SVM [11]. However, fuzzy membership equations
do not address the negative impact of noise points and outliers on unsupervised learning
decision planes.

Financial institutions have suffered significant losses over the past few years as con-
sumers and corporations default on loans. SVM models have often achieved superior
performance among them [15]. However, the effectiveness and efficiency of general SVM-
based credit scoring methods are also significantly influenced by the kernel used. Credit
risk assessment therefore requires reducing the impact of kernel function selection on the
robustness of classification results.

The motivation of this research is to propose an unsupervised learning method based
on SVM for classification based on the connection between data points. We present a fuzzy
unsupervised quadratic surface support vector machine (FUS-QSSVM) that optimizes the
hyperplane by weakening outlier points with weak sample connections. This paper has
several main contributions as follows:

• In this study, we propose a fuzzy unsupervised quadratic surface support vector
machine for credit risk assessment. This kernel-free unsupervised learning method
can solve classification problems on unlabeled credit datasets. The algorithm was
tested on several public credit datasets, and its performance was compared with the
previously mentioned unsupervised SVM-based methods. The results showed that
the proposed method outperformed unsupervised classification methods in terms of
accuracy and robustness;

• For weakening outlier points, we propose a fuzzy membership method based on
Tomek link method. In unlabeled datasets, this method effectively reduces the impact
of outliers and noise points on decision-making. With this fuzzy membership function,
we can distinguish noise points that belong to different classes in unlabeled samples
based on their connections and relationships;

• After proving its boundness and convergence, a new DC algorithm (DCA) was de-
veloped to implement the proposed nonconvex model on numerous artificial and
real-world benchmark datasets.
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The rest of the paper is organized as follows. In Section 2, we briefly review DC
programming and the US-QSSVM algorithm. Our method is presented in Section 3, and
then we show its simple reformulation together with the DCA algorithm to solve the
FUS-QSSVM model.

In Section 4, the results of numerical experiments on several public benchmark datasets
are shown to evaluate the performance of our method. Section 5 summarizes the main
findings of this paper and provides suggestions for future work.

2. Review of DC Programming and the Unsupervised Quadratic Surface Support
Vector Machine

In this section, we briefly review DC programming and the US-QSSVM algorithm,
which is solved by DCA [8].

2.1. DC Programming and DCA

Over the past three decades, non-convex programming and global optimization have
seen dramatic developments. There has been considerable research on differential convex
function (DC) programming as one of the major nonconvex optimization problems [16].
According to the literature on mathematical programming and real-life applications, DC
programming optimization problems can be divided into two types [17].

• in f {g(x)− h(x) : x ∈ Rn}, where g and h are convex functions;
• in f {g(x)− h(x) : x ∈ C, f1(x)− f2(x) ≤ 0}, where g, h, f1, f2 and C are convex functions.

Such a function is called a DC function, and g− h is a DC decomposition of a DC
function, while convex functions g and h are DC components [18]. DC algorithms are based
on local optimality conditions and duality in DC programming. This method approximates
the second DC component h(x) using its affine minorization hk(x) := h(xk)+ < x −
xk, yk >, where yk ∈ ∂h(xk) for each iteration k and minimizes its convexity as a result [18].
DCA converges from any starting point as it is a global convergence descent method
without a line search. For a more detailed description, please refer to literature.

2.2. Unsupervised Quadratic Surface Support Vector Machine

Given a dataset of n unlabeled points {xi}, where xi = (xi
1, xi

2, . . . , xi
m)

T ∈ Rm. The
quadratic surface is determined by the parameter set (Q, f , c) in the US-QSSVM algorithm
as follows:

g(x) ,
1
2

xTQx + f Tx + c, (1)

where Q = (qij)m×m ∈ Sm, f = ( fi)m ∈ Rm and c ∈ R. This model tries to include all
unlabeled points between two hyperplanes as 1

2 xTQx + f Tx + c = h and 1
2 xTQx + f Tx +

c = −h as tight as possible. Furthermore, this equates minimizing the distance between
the hyperplanes 1

2 xTQx + f Tx + c = h and 1
2 xTQx + f Tx + c = 0. However, the gradient

directions of hyperplane g(x) = h are different at different points. Then, the US-QSSVM
estimates the distance by calculating the mean geometric margins of all points in the dataset,
where the gradient directions are the directions at each point. Overall, the US-QSSVM
formulations are as follows:

min
1
n

n

∑
i=1

h
‖Qxi + f ‖2

2
+ η̄1

n

∑
i=1

ξi

s.t.
1
2
(x)TQxi + f Txi + c ≤ h + ξi, i = 1, . . . , n, (2)

1
2
(x)TQxi + f Txi + c ≥ −h− ξi, i = 1, . . . , n,

Q ∈ Sm, ( f , c) ∈ Rm+1,

h ≥ 0, ξi ≥ 0, i = 1, . . . , n.
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where the penalty parameter η̄1 > 0 needs to be determined beforehand, and the slack
variable ξi measures the clustering error for xi. The optimal solution (Q∗, f ∗, c∗, h∗, ξ∗1 , . . . , ξ∗n)
determines the classifier g(x) = 0. There are two main disadvantages to the US-QSSVM
model. First, the hyperplane g(x) = 0 may not be an appropriate classifier because there
may be differences in class distributions. Second, the distance between the two hyperplanes
1
2 xTQx + f Tx + c = h and 1

2 xTQx + f Tx + c = −h is influenced by noise points. The
results of the algorithm may not be as reliable as expected.

3. Proposed Method

In this section, we first propose a new fuzzy membership function for unsupervised
learning and then propose the FUS-QSSVM model.

3.1. Fuzzy Membership Function

It is important to choose a suitable fuzzy membership function, as different fuzzy
membership functions may affect the classifier differently. The Euclidean distance between
training points and their class centers is the most common membership function in FSVM
models [11,19,20]. However, this method is not suitable for unsupervised classification.

In this paper, we propose a fuzzy membership function based on the distance between
points, which is derived from the Tomek link method [21]. We define the function d(xi, xj)
as the Euclidean distance between the points xi and xj. For any i ∈ n, we have the distance
between xi and xj, where j = 1, . . . , n and j 6= i. After this, the distances are sorted in
ascending order d1(xi) ≤ d2(xi) ≤ · · · ≤ dn−1(xi). The k-nearest neighbor of xi can be
written as Kn(xi) = {xj|d(xi, xj) ≤ dk(xi), ∀j = 1, . . . , n, &j 6= i}. Therefore, we can define
the k-nearest neighbor link as an indicator function, as follows:

Iij =

{
1 if xi ∈ Kn(xj) & xj ∈ Kn(xi),
0 otherwise.

(3)

If the indicator function with xi and xj is equal to 1, then we call (xi, xj) a k-nearest
neighbor link pair. In other words, point xi and point xj are k-nearest neighbors to each
other. The point closer to the center of the class has a greater number of star link pairs
k-nearest neighbor link pairs.

In this way, we can weaken points that are far from the center of the class by a new
fuzzy membership function, as follows:

r̂i =
∑k

j=t d(xj, xi) ∗ Iij

∑k
j=t d(xj, xi)

(4)

where t is the lower limit. Given a lower limit t, the fuzzy membership r̂i of the noise and
outlier points is as close to 0 as possible, where 0 ≤ r̂i ≤ 1. Figure 1 shows that our fuzzy
membership function can weaken the outlier and noise points, where k = n

2 and t = n
4 . In

essence, fuzzy membership decreases in the direction of sample density reduction. It is an
effective way to reduce the effect of outliers and noise points on the resulting analysis. In
addition, this method is not dependent on the sample center.
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(a) (b)

Figure 1. (a) The results of the fuzzy membership function in a Gaussian simulation dataset. (b) The
results of the fuzzy membership function in a real-world dataset, Bankruptcy.

3.2. Fuzzy Unsupervised Quadratic Surface Support Vector Machine

The fuzzy US-QSSVM model also uses the fuzzy membership r̂i, i = 1, . . . , n, where
0 ≤ r̂i ≤ 1, to deal with datasets containing outliers and noise.

In addition, sample points should be distributed more evenly on both sides of the
separation plane to determine a more suitable hyperplane g(x) = 0. The fuzzy US-QSSVM
model can then be used to create a more accurate prediction of the outcome. Therefore, the
FUS-QSSVM is as follows:

min
1
n

n

∑
i=1

h
‖Qxi + f ‖2

2
+ η3|

n

∑
i=1

(
1
2
(x)TQxi + f Txi + c)r̂i|+ η1

n

∑
i=1

r̂iξi

s.t.
1
2
(x)TQxi + f Txi + c ≤ h + ξi, i = 1, . . . , n,

1
2
(x)TQxi + f Txi + c ≥ −h− ξi, i = 1, . . . , n, (5)

Q ∈ Sm, ( f , c) ∈ Rm+1,

h ≥ 0, ξi ≥ 0, i = 1, . . . , n.

where ξi is the slack variable, and the penalty parameters η1 ≥ 0 and η̂3 ≥ 0 need to
be chosen beforehand. The term |∑n

i=1(
1
2 (x)TQxi + f Txi + c)r̂i| is a penalty function for

balancing points on both sides of the separation plane. However, the objective function
is one term of a nonlinear fraction that is difficult to solve. In this paper, we follow the
literature to solve this issue [8,22]. The term 1

n ∑n
i=1

h
‖Qxi+ f ‖2

2
can be Taylor expanded

as h0
u0

+ 1
uo
(h− h0)− h0

u2
0
(‖Qxi + f ‖2

2 − u0) + R1, where R1 = o(h− h0)
2 + (‖Qxi + f ‖2

2 −
u0)

2 + (h− h0)(‖Qxi + f ‖2
2 − u0) is a first-order Taylor remainder. The Taylor remainder

R1 can be omitted since R0 → 0 with h → h0 and ‖Qxi + f ‖2
2 → u0. Therefore, the term

1
n ∑n

i=1
h

‖Qxi+ f ‖2
2

can be approximated to h0
u0

+ 1
uo
(h− h0)− h0

u2
0
(‖Qxi + f ‖2

2 − u0). Overall,

the objective function can be rewritten as h0
u0

+ 1
u0

h − h0
u2

0
‖Qxi + f ‖2

2+

η3|∑n
i=1(

1
2 (x)TQxi + f Txi + c)r̂i| + η1 ∑n

i=1 r̂iξi, which can be simplified as h0
u0

+ 1
u0
(h −

η̂2‖Qxi+ f ‖2
2 + η̂3|∑n

i=1(
1
2 (x)TQxi + f Txi + c)r̂i|+ η̂1 ∑n

i=1 r̂iξi), where η̂1 , η1u0, η̂2 , h0
nu0

and η̂3 , η3u0. Therefore, the FUS-QSSVM model can be approximated as follows:
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min h− η̂2‖Qxi + f ‖2
2 + η̂3|

n

∑
i=1

(
1
2
(x)TQxi + f Txi + c)r̂i|+ η̂1

n

∑
i=1

r̂iξi

s.t.
1
2
(x)TQxi + f Txi + c ≤ h + ξi, i = 1, . . . , n.

1
2
(x)TQxi + f Txi + c ≥ −h− ξi, i = 1, . . . , n. (6)

Q ∈ Sm, ( f , c) ∈ Rm+1,

h ≥ 0, ξi ≥ 0, i = 1, . . . , n.

The optimal solution (Q∗, f ∗, h∗, c∗, ξ∗1 , . . . , ξ∗n) determines the separation plane g(x) ,
1
2 xTQ∗x+ f ∗Tx+ c∗ = 0. However, the problem in (6) is still difficult to calculate. Therefore,
we can further simplify the problem in (6) by following the literature [8,11]. We create a
vector formulation Θ based on the m2+m

2 elements of the upper triangle of the matrix Q
as follows:

Θ , (q11, q12, . . . , q1m, q22, q23, . . . , q2m, . . . , qmm ∈ R
m2+m

2 ) (7)

Furthermore, we can construct an m × m2+m
2 matrix Mi for the point xi ∈ Rm for

i = 1, 2, . . . , n as follows. For all j = 1, 2, . . . , n, the pth element in the jth row of Mi is
assigned equal to xi

k if the pth element of Θ is qjk or qkj for some k = 1, 2, . . . , m. Otherwise,

the element is equal to 0. After this, we let Hi , (Mi, Im×m) ∈ Rm×(m2+m
2 +m), where

i = 1, 2, . . . , n. Then we have

G ,
n

∑
i=1

HT
i Hi ∈ S

m2+3m
2 , (8)

v , (ΘT , f T)T ∈ R
m2+3m

2 , (9)

si , (
1
2

xi
1xi

1, . . . , xi
1xi

m,
1
2

xi
2xi

2, . . . , xi
2xi

m, . . . ,
1
2

xi
mxi

m, xi
1, xi

2, . . . , xi
m) ∈ R

m2+3m
2 . (10)

Summarizing this, the FUS-QSSVM model in (6) can be reformulated as

min h− η̂2vTGv + η̂3|
n

∑
i=1

(sT
i v + c)r̂i|+ η̂1

n

∑
i=1

r̂iξi

s.t. sT
i v + c ≤ h + ξi, i = 1, . . . , n,

sT
i v + c ≥ −h− ξi, i = 1, . . . , n, (11)

G ∈ S
m2+3m

2 , v ∈ R
m2+3m

2 , c ∈ R,

||v||∞ ≤ δ̂, h ≥ 0, ξi ≥ 0, i = 1, . . . , n.

The matrix G is symmetric and positive semi-definite, which is easy to verify. It is
worth noting that the constraint ||v||∞ ≤ δ̂ (δ̂ ≥ 0 is a large enough constant) avoids the
problem in (11) by becoming unbounded when the term vTGv → −∞ with ||v||∞ → ∞.
However, the FUS-QSSVM model in (11) is not a convex QP problem, making it difficult
to solve.

3.3. Decomposition Algorithm

As mentioned earlier, the problem in (11) is not a convex QP problem, but the dif-
ference between two convex functions. The DCA algorithm was developed to solve such
problems [18,23]. In order to solve the proposed model, a DCA must be designed. At first,
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we turned the problem into (11) from a constrained problem to an unconstrained problem.
We define the function as follows:

S(v, h, c) =

{
|sT

i v + c| − h if |sT
i v + c| > h,

0 otherwise,
(12)

X{h≥0 & c∈R & ||v||∞≤δ̂} =

{
0 if h ≥ 0 & c ∈ R & ||v||∞ ≤ δ̂,
+∞ otherwise,

(13)

g(v, h, c) = η̂1

n

∑
i=1

r̂iSi(v, h, c) + h +X{h≥0 & c∈R & ||v||∞≤δ̂} + η̂3|
n

∑
i=1

(sT
i v + c)r̂i|, (14)

h(v, h, c) = η̂2vTGv. (15)

Hence, the FUS-QSSVM model in (11) can be reformulated as an unconstrained
difference convex (DC) program, as follows:

min
(v,h,c)∈R

m2+3m
2 +2

{g(v, h, c)− h(v, h, c)} (16)

We define the conjugate function of g(v, h, c) as g∗(v, h, c) , sup(v,h,c){(v, h, c)Ty−

g(x)} for y ∈ Rm2+3m
2 +2. Then, we have two constructed sequences, {xk} = {(vk, hk, ck)}

and {yk}, for the DC algorithm (DCA) as follows:

• Step 1: Set an initial estimation x0 = (v0, h0, c0) ∈ dom(g(x)− h(x)) and k = 0.
• Step 2: Calculate yk ∈ ∂h(xk), (i.e., yk = (2η̂2(vk)TG, 0, 0)T).
• Step 3: Calculate xk+1 = arg min{g(x)− < x, yk >} .
• Step 4: If ||xk+1 − xk > ε||, then set k = k + 1 and go to Step 2; otherwise stop and

output xk+1 = (vk+1, hk+1, ck+1) as an optimal solution.

DCA can achieve better accuracy while reducing the complexity of calculations needed
to solve the model. This makes it an ideal optimization technique for calculating FUS-
QSSVM models. The proposed algorithm is shown to converge in the following part.

Theorem 1. For an optimal problem with the objective min{g(x)− h(x)}, it holds that

1. The optimal value of the problem is finite;
2. The sequences xk and yk in the algorithm are bounded;
3. Each limit optimal point x∗ of sequence xk is a local optimal solution of the problem in (11).

The Appendix A contains details of the proof.

4. Results
4.1. Experimental Setup

In order to evaluate the performance of the proposed fuzzy unsupervised QSSVM
(FUS-QSSVM) method, a number of public benchmark datasets were used. Several unsu-
pervised SVM-based methods, such as Unsupervised Absolute Value Inequality Classifier
(UAVIC), Unsupervised Quadratic Surface Support Vector Machine (US-QSSVM), and
Unsupervised Quadratic Surface Support Vector Machine with Gold Rule (US-QSSVM-
GOLD), were also tested on the same benchmark datasets for fair comparison. To improve
the comparability of the results, we also used the well-known unsupervised K-means algo-
rithm. Note that US-QSSVM-GOLD is a technique to optimize plane separation g(x) = hp∗

for the US-QSSVM model.
In order to evaluate the performance of the proposed fuzzy unsupervised QSSVM

(FUS-QSSVM) method, a number of public benchmark datasets were used. Several unsu-
pervised SVM-based methods, such as Unsupervised Absolute Value Inequality Classifier
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(UAVIC), Unsupervised Quadratic Surface Support Vector Machine (US-QSSVM), and
Unsupervised Quadratic Surface Support Vector Machine with Gold Rule (US-QSSVM-
GOLD), were also tested on the same benchmark datasets for fair comparison. In order
to improve the comparability of the results, we also used the well-known unsupervised
K-means algorithm. Note that US-QSSVM-GOLD is a technique to optimize plane separa-
tion g(x) = hp∗ for the US-QSSVM model. The literature provides details for simplicity
of description [8].

To select the best penalty parameters for all the tested methods, the same grid method
was used as follows: First, we selected half of the initial dataset for parameter tuning. Then,
we evaluated the accuracy of all methods based on the actual labels of the points. To ensure
statistical significance, we repeated this process ten times. Ultimately, we choose the most
appropriate parameters based on the average of the 10 predicted results. Considering
that the research in this paper concerns an unsupervised binary classification problem, the
fuzzy membership of noise points and outliers should approach 0. Hence, we used the
parameters k = n

2 and t = n
4 for the fuzzy function (4) in all experiments. According to our

experience, the ratio of the two hyper-parameters η̂1 and η̂3 affects the experimental results;
therefore, we provide a hyper-parameter in (11) as log2η̂3 = 26. Following the literature,
the suitable hyper-parameter η̂1 for the US-QSSVM and US-QSSVM-GOLD is log2η̂1 ∈
{16, 17, . . . , 30} [8]. However, the appropriate hyperparameter for the proposed method
is log2η̂1 ∈ {1, 2, . . . , 10}. FUS-QSSVM, US-QSSVM, and US-QSSVM-GOLD models were
solved by DC algorithm. The UAVIC model was solved by linear programming. In addition,
to avoid different initial values, all variables had unit vectors as their initial values. We
computed all datasets without labels as training sets and tested them with actual labels as
results. All reported results are the average of 20 experiments.

In this paper, five widely used public credit benchmark datasets from the UCI public
database, StatLib and Kaggle, were selected for method validation. As far as possible, the
datasets selected for this paper were diverse and representative of the algorithms being
compared. These five datasets are widely used in many studies [24,25]. The Japanese
(which removes missing data), Australian, and Credit approval datasets come from the
UCI database. The Bankruptcy dataset comes from StatLib. The Prosper lending platform
was founded in 2005 and is the second largest online lending platform in the United States.
Kaggle provides the Prosper dataset, and all low-quality samples are removed. Table 1
shows the information for all tested datasets.

Table 1. Descriptions of the tested datasets.

Dataset #Instances #Negative #Positive #Attributes

Credit approval 690 383 307 15
Bankruptcy 100 50 50 5
Japanese 1 651 357 294 15
Australian 690 383 307 14
Prosper 1 20,222 13,062 7160 49

1 Japanese and Prosper datasets delete missing data.

Due to the FUS-QSSVM, the US-QSSVM and UAVIC assume that the separation plane
must be in the middle of the two separation planes, potentially affecting the accuracy
between the two different classes. However, positive and negative samples are not distin-
guished by accuracy. The losses associated with defaulters’ forecasted errors are far greater
than those associated with other types of forecast errors, particularly in credit classification.
To assess the classifier’s classification ability for both positive and negative classes, we used
four more comprehensive metrics—Accuracy, Recall, Precision, and F1-measure. To explain
their definitions, let us first introduce a confusion matrix, as shown in Table 2, which is the
accuracy evaluation matrix associated with them.
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Table 2. Confusion matrix.

Predicted Label

Positive Negative

Actual label
Positive TP FN

Negative FP TN

From Table 2, the following can be observed:

• TP (True Positive) represents the number of positive class samples that were accurately
predicted by the classifier;

• FN (False Negative) means the number of positive class samples that the classifier
mistakenly predicted to belong to the negative class;

• FP (False Positive) represents instances of the negative class that were incorrectly
identified as members of the positive class by the classifier;

• TN (True Negative) corresponds to the number of negative class samples that were
correctly identified by the classifier.

The definitions provided above clarify the interpretation of these three evaluation metrics.

Recall =
TP

TP + FN
(17)

Precision =
TP

TP + FP
(18)

F1−measure = 2× Recall × Precision
Recall + Precision

(19)

4.2. Experiment Results

Details of the experimental results are presented in Table 3. We compared our proposed
method with several unsupervised algorithms and K-means based on SVM. As shown in
Table 3, FUS-QSSVM performs better than other algorithms in accuracy and F1-measure
except on the Credit approval dataset. First, the fuzzy membership function weakens
the influence of outliers and noise points on the decision plane. Secondly, our objective
function (5) is designed to balance the distance between the two types of samples to stabilize
the separation plane. In addition, linear classifiers (UAVIC) are less efficient when applied
to real-world credit datasets. Due to the linear indivisibility of most real-world credit
datasets, it is worth noting that our method still achieves reasonable performance on large
credit datasets, namely Prosper. The application of our method to credit risk management
demonstrates its practical value.

Table 3. The results of all the tested datasets.

Accuracy Recall Precision F1-Measure

Bankruptcy

FUS-QSSVM 0.7760 0.7560 0.7876 0.7715
US-QSSVM 0.5860 0.5240 0.6366 0.5748
US-QSSVM-GOLD 0.6480 0.4600 0.7801 0.5787
UAVIC 0.6000 0.5600 0.6087 0.5833
K-means 0.6270 0.2540 1.000 0.4051

Japanese

FUS-QSSVM 0.6749 0.6418 0.6400 0.6409
US-QSSVM 0.5777 0.5348 0.5308 0.5328
US-QSSVM-GOLD 0.5841 0.5945 0.5362 0.5638
UAVIC 0.6190 0.8299 0.5520 0.6630
K-means 0.6410 0.7377 0.5809 0.6500
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Table 3. Cont.

Accuracy Recall Precision F1-Measure

Australian

FUS-QSSVM 0.6891 0.8313 0.5754 0.6801
US-QSSVM 0.5675 0.4442 0.4675 0.4556
US-QSSVM-GOLD 0.5684 0.4471 0.4486 0.4478
UAVIC 0.6255 0.0640 0.9286 0.1197
K-means 0.6720 0.6318 0.5846 0.6073

Credit approval

FUS-QSSVM 0.5531 0.5389 0.4987 0.5180
US-QSSVM 0.5499 0.5009 0.4970 0.4990
US-QSSVM-GOLD 0.5428 0.4860 0.4885 0.4860
UAVIC 0.5580 0.0052 1 0.0103
K-means 0.6814 0.6908 0.6275 0.6576

Prosper

FUS-QSSVM 0.6463 0.8322 0.5003 0.6250
US-QSSVM 0.5716 0.4169 0.4282 0.4225
US-QSSVM-GOLD 0.5975 0.3308 0.4358 0.3761
UAVIC 0.5608 0.4824 0.4399 0.4602
K-means 0.5406 0.3507 0.3781 0.3638

The bolds mean the most effective performance methods in this dataset.

In all datasets, the recall and accuracy of US-QSSVM, US-QSSVM-GOLD, and UAVIC
are significantly smaller than accuracy. In other words, these algorithms are inefficient at
classifying minority classes. The reason for this is that the techniques used to construct
the nearest hyperplanes to contain data points achieved more flexible and accurate data
descriptions in some datasets.

However, there is a significant problem with noisy points and outliers in these tech-
niques. Because even a small number of points can lead the separation plane to a certain
class, as shown in Table 3. Moreover, the objective function (5) of our algorithm helps
balance the two classes of sample points, which is one reason why our algorithm is efficient
when judging minorities.

To demonstrate the robustness of our algorithm, we present the results obtained
using the Bankruptcy dataset under different hyperparameters η̂1. The experimental
hyperparameters were selected by calculating the experimental results on half of the
sample points, following the literature [8]. For all the methods tested in this paper, the same
grid method was used to select the best penalty parameters. However, the reported results
in Figure 2 are tested in all samples. As a result, we demonstrated that the hyperparameters
of FUS-QSSVM, US-QSSVM, and US-QSSVM-GOLD are robust within a suitable range.
However, our algorithm is more effective in all hyperparameters than the others.

Figure 2. The results in different hyper-parameters η̂1.
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4.3. Fuzzy Membership

To further prove that our fuzzy membership algorithm has favorable results when
dealing with outliers and noise points, this paper uses a similar technique to add p% sample
points to the Japanese dataset [7]. We assume that the mean and variance of the Japanese
dataset are (µ, σ). The new samples generated from a Gaussian distribution are defined by
(3µ, σ), and the proportion of outliers p is equal to 5 or 10.

As before, the other experimental details remain the same. The results of the experi-
ments are shown in Table 4.

Table 4. The results of the Japanese dataset, which includes outliers and noise points.

Accuracy Recall Precision F1-Measure

Japanese

FUS-QSSVM 0.6749 0.6418 0.6400 0.6409
US-QSSVM 0.5777 0.5348 0.5308 0.5328
US-QSSVM-GOLD 0.5841 0.5945 0.5362 0.5638
UAVIC 0.6190 0.8299 0.5520 0.6630
K-means 0.6410 0.7377 0.5809 0.6500

Japanese-5 1

FUS-QSSVM 0.6962 0.6855 0.6578 0.6714
US-QSSVM 0.5560 0.4343 0.5136 0.4706
US-QSSVM-GOLD 0.5647 0.5727 0.5214 0.5458
UAVIC 0.5837 0.3946 0.5550 0.4613
K-means 0.5453 0.2112 0.2591 0.2327

Japanese-10 2

FUS-QSSVM 0.6846 0.7034 0.6368 0.6684
US-QSSVM 0.5759 0.5329 0.4583 0.4928
US-QSSVM-GOLD 0.5536 0.4719 0.4788 0.4753
UAVIC 0.6175 0.3537 0.6380 0.4551
K-means 0.5716 0.1668 0.2053 0.1840

1 Japanese-5 includes 5% artificial noise samples; 2 Japanese-10 includes 10% artificial noise samples. The bolds
mean the most effective performance methods in this dataset.

In Table 4, FUS-QSSVM produces good results when applied to artificial noise datasets.
However, there is a significant decrease in the performance of other algorithms. Because
fuzzy membership functions (4) weaken the noise points and outliers, our proposed method
shows a balance between the two classes. This makes the classification more reliable and
accurate. In addition, it reduces the risk of misclassification and improves model perfor-
mance. On the other hand, noisy points and outliers negatively affect the F1-measurement
of other algorithms, as shown in Table 4. In this case, our algorithm shows better appli-
cation prospects in the field of credit risk assessment, especially where classification will
result in inconsistent losses.

In addition, the results can be improved by simply adjusting the position of the
separation plane, such as in US-QSSVM-GOLD. However, the impact of noise points on
US-QSSVM-GOLD is greater than that on US-QSSVM. Moreover, UAVIC is not suitable for
datasets with too many noisy samples.

5. Conclusions

In this study, we introduced a novel kernel-free fuzzy unsupervised QSSVM technique
designed specifically for the direct classification of unlabeled data that is nonlinearly
separable for credit risk assessment. In addition, the novel fuzzy membership function
reduces noise points and outliers in line with the direction of variation in sample density.
To perform the proposed model efficiently and effectively, we designed a convergent DCA
for the FUS-QSSVM model. A number of numerical experiments were carried out to study
the performance of the proposed method. Our main findings are summarized below.

• Drawing on comprehensive numerical findings, the proposed FUS-QSSVM approach
is in strong competition with other well-known classification techniques in credit
datasets, including three SVM-based methods and K-means. A key advantage of
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the proposed method is its ability to benefit from the high classification accuracy of
SVM models. In addition, it minimizes the shortcomings associated with classification
algorithms based on SVMs. These include factors such as unstable results due to
random initialization, reduced effectiveness due to kernel dependencies, and noise
points and outliers;

• The fuzzy join function optimizes the hyperplane position and shape by reducing
noise points and outliers. Therefore, this enhancement bolsters both the accuracy and
robustness of the model. Application of this technique is particularly useful when the
dataset contains outliers or uneven distributions between two classes. By minimizing
the impact of such data points, the model captures the underlying structure of the
data. As a result, more robust predictions of the proposed model can be made about
default applicants;

• As a result of the DCA design, the nonconvex FUS-QSSVM model was significantly
more efficient in solving. In addition, this reduces reliance on initial values and tuning
parameters, thus improving calculation efficiency.

Despite the fact that our algorithm performs well under fixed initial values, it suffers
from the local optimal, which is determined by the initial values. In addition, parameter
tuning requires domain-specific knowledge. For future research, we are interested in
designing a global convergence of such a classification algorithm. Another area of research
is the development of multi-classification models or the extension of this method to feature
selection or semi-supervised learning.
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Appendix A

Proof.

1. By the definition, g(x) is non-negative and ||v||∞ ≤ δ̂. Moreover, there exist a
constant κ1 such that ∑n

i=1 ||Hiv||22 ≤ κ1||Hiv||2∞. Therefore, g(x) = 1
n vTGv =

1
n ∑n

i=1 ||Hiv||22 ≤
κ1
n ∑n

i=1 ||Hiv||2∞ ≤
κ1
n ∑n

i=1 ||Hi||2∞||v||2∞ ≤
κ1 δ̂
n ∑n

i=1 ||Hi||2∞. Hence,
the minimum of g(x)− h(x) is finite.

2. The sequence {xk} = (vk, hk, ck) is a solution with arg min{g(x)− < x, yk−1 >};
hence, the sequence {vk} is bounded by the constraint ||v||∞ ≤ δ̂. Furthermore,
the sequence {yk} = (2η̂2(vk)TG, 0, 0)T is bounded. Then, we can prove that the
sequences {hk} and {ck} are bounded. It is simple to verify that the objective value of
the problem min{g(x)− < x, yk−1 >} is finite. There exists a constant κ2 for all k such

https://archive.ics.uci.edu/
https://www.kaggle.com/
https://lib.stat.cmu.edu/datasets/
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that min{g(x)− < x, yk−1 >} ≤ κ2. Since ||v||∞ ≤ δ̂, ∑n
i=1 ||Hivk||22 ≤ κk

1||Hivk||2∞,
ξk

i ≥ 0 and 0 ≤ r̂i ≤ 1 for all k ∈ N, then

hk ≤ η̂2vkT
Gvk−1 − η̂3|

n

∑
i=1

(sT
i vk + ck)r̂i| − η̂1

n

∑
i=1

r̂iξ
k
i + κ2

≤ η̂2vkT
Gvk−1 + κ2

≤ η̂2

n

∑
i=1

(Hivk)T Hivk−1 + κ2

(A1)

≤ η̂2

n

∑
i=1
||(Hivk)T ||2||Hivk−1||2 + κ2

≤ η̂2κk
1κk−1

1

n

∑
i=1
||(Hivk)T ||∞||Hivk−1||∞ + κ2

≤ η̂2κk
1κk−1

1

n

∑
i=1
||Hi||∞||vk||∞||Hi||∞||vk−1||∞ + κ2

≤ η̂2κk
1κk−1

1 δ̂2
n

∑
i=1
||Hi||2∞ + κ2.

Moreover, since sT
i v + c ≤ h + ξi and sT

i v + c ≥ −h− ξi for all k ∈ N, it is obvious
that the sequence ck is bounded. Overall, the sequences xk and yk in the algorithm
are bounded.

3. From a result of 1 or 2, the x∗ = (v∗, h∗, c∗) is a local optimal solution in the problem
in (11) according the DCA’s convergence properties [18,23].
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