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Abstract: Depth estimation from a single image is a significant task. Although deep learning methods
hold great promise in this area, they still face a number of challenges, including the limited modeling
of nonlocal dependencies, lack of effective loss function joint optimization models, and difficulty in
accurately estimating object edges. In order to further increase the network’s prediction accuracy, a
new structure and training method are proposed for single-image depth estimation in this research. A
pseudo-depth network is first deployed for generating a single-image depth prior, and by constructing
connecting paths between multi-scale local features using the proposed up-mapping and jumping
modules, the network can integrate representations and recover fine details. A deep network is also
designed to capture and convey global context by utilizing the Transformer Conv module and Unet
Depth net to extract and refine global features. The two networks jointly provide meaningful coarse
and fine features to predict high-quality depth images from single RGB images. In addition, multiple
joint losses are utilized to enhance the training model. A series of experiments are carried out to
confirm and demonstrate the efficacy of our method. The proposed method exceeds the advanced
method DPT by 10% and 3.3% in terms of root mean square error (RMSE(log)) and 1.7% and 1.6%
in terms of squared relative difference (SRD), respectively, according to experimental results on the
NYU Depth V2 and KITTI depth estimation benchmarks.

Keywords: monocular depth estimation; pseudo-depth net; transformer; encoder–decoder

MSC: 68T07

1. Introduction

Monocular depth estimation (MDE) is a challenging task in the field of autonomous
driving that aims at recovering the depth map from a given single image (see Figure 1).
The estimated depth map is valuable in various intelligent transportation applications,
including scene understanding [1], 3D mapping [2], object recognition [3], and obstacle
avoidance [4]. Traditionally, the method of obtaining high-precision target depth informa-
tion is usually to use LiDAR or structured light reflection on the surface of the object to
obtain the depth point cloud, but because of its high price and the difficulty of synchro-
nization, there is still a certain distance to be applied and deployed on a large scale in the
field of autonomous driving. With the success of Tesla’s pure vision program [5] and the
stunning effect of Tesla AI Day [6], the camera has become one of the more popular sensor
technologies in the field of autonomous driving because of its low price, rich content of
acquired information, and compact size. Accordingly, monocular vision depth estimation
has also been hotly anticipated by research and has received more attention.
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(a) (b)
Figure 1. Depth estimation from a single image. (a) Input a single image. (b) Output the correspond-
ing depth map.

With the advancements in convolutional neural networks (CNNs) [7,8], researchers
have recently adopted various CNN models to enhance the precision of monocular depth
estimation (MDE). Compared to traditional methods, like the approach presented in Saxena
et al. [9], CNNs generally achieve higher accuracy. These CNN studies can be categorized
into three main groups: (1) unsupervised MDE, (2) supervised MDE, and (3) self-supervised
MDE. For instance, supervised MDE methods [10–14] have shown promising results by
utilizing ground-truth labels for training. On the other hand, common unsupervised
methods [15,16] and self-supervised strategies [17–19] aim to reduce reliance on ground-
truth annotations, thereby enabling depth estimation without direct supervision.

CNNs have been the primary tool for depth estimation, using encoder–decoder archi-
tectures [20–22]. While most of the work has focused on the design of decoders [20,22],
recent studies have shown that encoders are more important for accurate depth estima-
tion [21–23]. A competent encoder must be able to efficiently leverage both local informa-
tion, which refers to consistency within an item, and long-range dependencies, which refer
to distance relationships between objects, because of the lack of depth information [24].
The encoder, where convolutional operators are almost unable to simulate long-range cor-
relations in a constrained receptive field, may, therefore, be the bottleneck of existing depth
estimation approaches. As an alternative to CNNs, the Vision Transformer (ViT) [25] has
achieved great success in image recognition tasks, where it demonstrates the advantages
of being a depth estimation encoder. By utilizing attention mechanisms, the transformer
excels in establishing long-range dependency models with global receptive fields. However,
ViT encoders lack spatial inductive bias when modeling local information [26], resulting
in unsatisfactory performance in near-range depth estimation. In contrast, models that
employ convolutional encoders yield better predictions for these regions. Thus, a significant
research problem lies in successfully integrating Transformers and convolutional encoders
for improved performance. In addition, since the depth estimation problem is a standard
regression problem, the loss function is typically the mean square error (MSE) in log space
or one of its variants. Although the optimized regression network produced reasonable
solutions, the convergence rate was found to be rather slow, and the final solution was far
from satisfactory. Therefore, this paper focuses on addressing two problems in existing
monocular depth estimation methods. One is how to effectively integrate the transformer
and convolutional encoder to improve performance. The other is how to design a matching
loss function for the constructed model for better optimization.

To address these challenges, a depth estimation method is proposed based on an
encoder–decoder architecture that combines pseudo-depth estimation and a depth estima-
tion network. The proposed method enables end-to-end learning of the mapping from a
single image to a depth map. The proposed method starts by encoding the input image into
a feature representation. Then, the encoded feature is decoded to generate the correspond-
ing depth map. In order to maintain dense pixel-wise output, the spatial information from
the encoder is directly preserved and transferred to the corresponding decoder, without the
need for additional parameters or operations. This helps preserve the spatial information
and improve the accuracy of the depth estimation process.
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(1) Our method introduces a combined pseudo-depth and depth module network
that aims to provide both coarse and fine features to accurately predict high-quality depth
images from a single RGB image.

(2) The pseudo-depth network utilizes upsampling mapping, residual modules, and
an improved codec to directly obtain a depth map prior. The depth network employs an
effective global Transformer strategy and Unet depth network to enhance the training of
the model, which greatly improves estimation accuracy.

(3) Our method makes collaborative use of several loss functions to improve net-
work training. By using multiple losses, the model can capture different aspects of depth
estimation and improve overall performance.

The structure of the paper is as follows. In Section 2, the pertinent literature and earlier
studies in this area are covered. The proposed method is fully explained in Section 3. In
Section 4, the experimental findings are discussed. Section 6 concludes with a summary of
the research and conclusions made in this work.

2. Related Work
2.1. Traditional Methods

MDE is a mature and challenging research area in computer vision and autonomous
driving. Initially, researchers heavily relied on manual feature engineering and probabilis-
tic graphical models to tackle this problem. For instance, Saxena et al. [24] successfully
employed a combination of absolute and relative depth features, along with the utilization
of Markov random fields (MRFs), to accurately predict the depth of monocular images.
Building upon this work, Saxena et al. [9] extended their approach to 3D scene recon-
struction. Liu et al. [27] used semantic labels as contextual information. Their approach
involved employing a learned MRF to infer the semantic category of each pixel in the
image, followed by the application of the L-BFGS technique to create a pixel-depth image.

Unlike the previously mentioned parameter-dependent approaches, Karsch et al. [28]
treated the MDE as a non-parametric problem. In the pixel shift–based approach proposed
by Karsch et al. [28], given an input image, similar images are first searched for within the
dataset by comparing GIST features. Then, by transferring the labels from the input image
to the matched image, a range of potential depth values for the scene is created. To address
the challenges of over-smoothing and preserving occlusion boundaries in the predicted
depth map, Liu et al. [29] devised a discrete-continuous condition matrix (CRF) approach.
By utilizing this technique, they were able to generate a depth map that avoided excessive
smoothing while maintaining accurate boundaries between occluded regions.

Admittedly, the above methods rely heavily on manually created features to predict
depth values. These features are carefully designed to capture specific characteristics and
patterns in the input data. However, one drawback of such pre-designed features is that
they may not generalize well when applied to new and unfamiliar environments.

2.2. Deep Learning–Based Methods

The success of CNN in various computer vision tasks has also prompted the explo-
ration of CNN-based depth prediction methods. Several notable studies [10,30–33] have
addressed the CNN-based depth prediction problem. A monocular depth estimation
method based on deep learning was pioneered by Eigen et al. [10]. Two networks were
employed in their approach: the first one used the complete input image to predict a global
depth map, and the second network improved the global prediction locally. Building upon
their initial work, Eigen and Fergus [31] extended the method to incorporate multitask
learning, which involved jointly learning depth prediction with other related tasks. Liu et al.
developed DCNF that combines the strengths of the deep CNN and continuous conditional
random fields (CRFs) within a unified framework to achieve accurate depth prediction.
It is worth noting that the above methods [10,32] use fully connected (FC) layers, which
involve numerous parameters and lead to high computational costs. This motivates further
research into exploring more efficient and lightweight network architectures for MDE tasks.
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Laina et al. [11] suggested a fully convolutional residual network (FCRN) for MDE in
order to circumvent the delay brought on by the FC layer. Based on the fully convolutional
portion of ResNet-50, the FCRN encoder creates feature maps at a 1/32 scale relative to the
input image. The final depth map is produced by the FCRN decoder by combining these
feature maps. Further research built upon the FCRN framework by exploring the impact
of the depth of the encoder network on depth estimation accuracy. Studies by [34–38]
increased the depth of the encoder network to over 100 layers. It was found that deeper
networks with a larger reception range resulted in improved performance compared to
using a variant of ResNet-50. Additional enhancements were made by Hu et al. [36] and
Chen et al. [37], who incorporated multiscale features and reconstruction modules into
the network. In order to further enhance performance, Cao et al. [34] developed depth
estimation as a pixel classification job and used a fully connected conditional random field
(CRF) as a post-processing technique. Li et al. [35] utilized multi-scale characteristics to
estimate depth based on the outputs of several layers. Godard et al. [39] utilized the loss of
left–right disparity coherence for the stereo dataset. Bian et al. [16,17,40,41] explored self-
supervised approaches with extensions for scale inconsistency, rotation, dynamic objects,
and object boundary blurring. Klingner et al. [42] improved depth estimation for moving
objects using a novel semantic mask. Lee et al. [21] designed a multiscale local plane
guidance layer. Yang et al. [26] combined transformers and CNNs, while Bhat et al. [22]
proposed a transformer-based architecture for adaptive depth estimation. Ranftl et al. [23]
introduced the dense prediction transformer that utilizes markers from different stages
to improve predictions. These approaches aim to enhance depth estimation results and
incorporate global information. Overall, these research contributions demonstrate the
ongoing efforts to advance monocular depth estimation and address its limitations through
innovative algorithmic strategies and network architectures.

The proposed method aims to reduce complexity and the number of parameters while
improving the depth estimation results. The backbone network plays a crucial role by
constructing a hierarchical representation of linear complexity for the input image. This
hierarchical representation allows for multiscale high-level feature extraction, which is then
fed into a back-end network. The back-end network leverages a multilevel localized planar
bootstrap layer to predict depth. This layer effectively combines the benefits of convolu-
tional neural networks (CNNs) and transformers. It utilizes a transformer representation
learning approach with linear complexity, which helps reduce computational requirements
while maintaining strong inference capabilities. By combining the strengths of CNNs
and transformers, our method aims to achieve accurate depth estimation with reduced
complexity and improved efficiency. This approach demonstrates the ongoing exploration
of hybrid techniques to optimize network architectures for depth estimation tasks.

3. The Proposed Method
3.1. Framework Overview

Figure 2 provides an overview of the proposed method, which involves training two
networks: the Pseudo-depth Net and the Depth Net. These networks are trained jointly
using a large dataset of monocular videos. Given an RGB input I, the pseudo-depth and
depth CNNs first estimate their pseudo-depth maps PD and depth maps D, respectively.
Eachnetwork is then supervised based on the loss between the true depth image Dprime

and the generated image D. In addition, the normal matching loss LN and the edge-aware
loss Ledge between the pseudo-depth image PD and the depth image D provide additional
supervised information to the network. Next, the Pseudo-depth Net (see Figure 3) and
Depth Net networks (see Figure 4) are described separately.
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Figure 2. Network architecture for our depth estimate method.

Figure 3. Network architecture for our Pseudo-depth Net.
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Figure 4. Network structure of Depth Net networks.The width and height of each rectangular block
denote the spatial dimensions of the output channels and feature maps of the corresponding layer,
respectively. Each decrease/increase in size signifies a change by a factor of two, with the exception
of the first to the fourth convolutional layers, which have kernel sizes of 7, 7, 5, and 5. The first
convolutional layer has an output of 32 channels. The Transformer Conv module and an Unet
structure with multiscale side preconditioning are used to process the input color image.

3.2. Pseudo-Depth Net

Pseudo-Depth-Encoder Block. Figure 3 illustrates an overview of the pseudo-depth
network. Pseudo-depth Net uses pre-trained ResNet-50 as an encoder block, which inputs
304× 228 pixels. To overcome the gradient vanishing problem, ResNet-50 constructs a
multilayer structure using jump connections. In addition, ResNet-50 has a large receptive
field to capture a wide range of spatial information from input images, which is lightweight
but has superior performance. The details are listed in Table 1. The encoder block first
performs 7× 7 convolution and 3× 3 max-pooling on the input image with a stride of 2.
Then, the encoder block contains a repeated application of residual learning, including
skip modules and projection modules. The skip module exploits a shortcut connection to
skip three layers and performs residual mapping. As shown in Figure 5a, the skip module
performs identity mapping without extra parameters, which is formulated as

zout = W3σ(W2σ(W1zin)) + zin, (1)
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where zin and zout are the input and output features, respectively. {W1, W2, W3} denote
three convolution operations, and σ is the rectified linear unit (ReLU). The details are listed
in Table 2. As depicted in Figure 5b, the projection module performs a shortcut connection
with linear projection W4, which is formulated as

zout = W3σ(W2σ(W1zin)) + W4zin, (2)

where zin and zout are the input and output features, respectively. {W1, W2, W3, W4} denote
the convolution operations, and σ is the ReLU. The specific details can be found in Table 3.
The original ResNet-50 contains a series of convolutions and pooling operations, which
decrease the resolution of the feature map. To retain the spatial information, the original
ResNet-50 architecture eliminates both the FC layer and the last pooling layer. The encoder
block can be formulated as

u = fen(x) (3)

where u ∈ R10×8×2048 is the output feature map and fen() encodes the input image x. The
encoder block produces 2048 feature maps with a spatial resolution of 10× 8 pixels.

Pseudo-Depth-Decoder Block. The encoder block reduces the spatial resolution of
the input image, which is 304× 228 pixels, to 10× 8 pixels. Reversing the pooling operation
with unpooling layers improves the spatial resolution of the feature map u. The unpooling
layer upscales the feature map by mapping the element into the top-left corner and fills
the holes with zeros. After the 2× 2 unpooling layer, 5× 5 convolution is performed to
avoid zero elements, followed by a ReLU activation function. Inspired by residual learning,
skip connections are considered to propagate context information, which is named the
up-projection module. According to Table 4, a 3× 3 convolution is followed by a 5× 5
convolution.

(a) (b)
Figure 5. The encoder block contains two different residual learning. (a) The skip module; (b) the
projection module.

Additionally, a projection connection is established from the unpooling layer to the
3× 3 convolution. The up-projection module is formulated as

zout = σ(W2σ(W1up(zin)) + W3up(zin)), (4)

where up represents the 2× 2 unpooling operation, {W1, W2, W3} denote three convolution
operations, and σ is the ReLU. zin and zout are the input and output features, respectively.
To estimate the depth maps, four up-projection modules are stacked to upscale the feature
map u (2× resolution per block). As shown in Figure 6, the up-projection module allows
large feature channels, which can propagate context information to the depth map. Our
model uses four up-projection modules to predict an output map with 160× 128 pixels,
which is approximately half the input resolution 304× 228. The prediction maps are up-
sampled using bilinear interpolation to their original size before being compared to the
provided ground truth. The decoder block can be formulated as

ŷ = fde(u), (5)

where fde() decodes the feature map u ∈ R10×8×2048 to reconstruct the depth map ŷ.
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Table 1. The architecture of pseudo-depth-encoder block.

Layer Input Output Details

Input_image - In Input size: 304 × 228 × 3

Convolution_1 In Conv_1 Kernel number: 64, Kernel size: 7 × 7,
stride: 2

Batch Norm_1 Conv_1 BN_1

ReLU_1 BN_1 ReLU_1

Projection_1 ReLU_1 Pro_1 Kernel number: 256

Skip_1 Pro_1 S_1 Kernel number: 256

Skip_2 S_1 S_2 Kernel number: 256

Projection_2 S_2 Pro_2 Kernel number: 512

Skip_3 Pro_2 S_3 Kernel number: 512

Skip_4 S_3 S_4 Kernel number: 512

Skip_5 S_4 S_5 Kernel number: 512

Projection_3 S_5 Pro_3 Kernel number: 1024

Skip_6 Pro_3 S_6 Kernel number: 1024

Skip_7 S_6 S_7 Kernel number: 1024

Skip_8 S_7 S_8 Kernel number: 1024

Skip_9 S_8 S_9 Kernel number: 1024

Skip_10 S_9 S_10 Kernel number: 1024

Projection_4 S_10 Pro_4 Kernel number: 2048

Skip_11 Pro_4 S_11 Kernel number: 2048

Skip_12 S_11 S_12 Kernel number: 2048

Convolution_2 S_12 Conv_2 Kernel number: 1024, Kernel size:
7 × 7, stride: 1

Batch Norm_2 Conv_2 BN_2

Up-projection_1 BN_2 U_1 Kernel number: 512

Up-projection_2 U_1 U_2 Kernel number: 256

Up-projection_3 U_2 U_3 Kernel number: 128

Up-projection_4 U_3 U_4 Kernel number: 64

Convolution_3 U_4 Conv_3 Kernel number: 1, Kernel size: 3 × 3,
stride: 1

ReLU_3 Conv_3 Out

Figure 6. The up-projection module.
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Table 2. The skip module.

Layer Input Output Details

Input_feature - In Input size: M × N × C

Convolution_1 In Conv_1 Kernel size: 1 × 1, stride: 1

Batch Norm_1 Conv_1 BN_1

ReLU_1 BN_1 ReLU_1

Convolution_2 ReLU_1 Conv_2 Kernel size: 3 × 3, stride: 1

Batch Norm_2 Conv_2 BN_2

ReLU_2 BN_2 ReLU_2

Convolution_3 ReLU_2 Conv_3 Kernel size: 1 × 1, stride: 1

Batch Norm_3 Conv_3 BN_3

Skip Connection In, BN_3 SC

ReLU_3 SC Out

Table 3. The projection module.

Layer Input Output Details

Input_feature - In Input size: M × N × C

Convolution_1 In Conv_1 Kernel size: 1 × 1, stride: 1

Batch Norm_1 Conv_1 BN_1

ReLU_1 BN_1 ReLU_1

Convolution_2 ReLU_1 Conv_2 Kernel size: 3 × 3, stride: 1

Batch Norm_2 Conv_2 BN_2

ReLU_2 BN_2 ReLU_2

Convolution_3 ReLU_2 Conv_3 Kernel size: 1 × 1, stride: 1

Batch Norma_3 Conv_3 BN_3

Convolution_4 In Conv_4 Kernel size: 1 × 1, stride: 1

Batch Norma_4 Conv_4 BN_4

Skip Connection BN_3, BN_4 SC

ReLU_3 SC Out

Table 4. The up-projection module.

Layer Input Output Details

Input_feature - In Input size: M × N × C

Up-pooling In Up 2 × 2 upsampling

Convolution_1 Up Conv_1 Kernel size: 5 × 5, stride: 1

ReLU_1 Conv_1 ReLU_1

Convolution_2 ReLU_1 Conv_2 Kernel size: 3 × 3, stride: 1

Convolution_3 Up Conv_3 Kernel size: 5 × 5, stride: 1

Skip Connection Conv_2, Conv_3 SC

ReLU_2 SC Out
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3.3. Depth Net

For depth prediction, the Transformer Conv block and Depth-Unet architecture are
adopted. From a tensor X ∈ RĤ×Ŵ×Ĉ, the initial step in our Transformer Conv module
(as shown in Figure 7) is to create query (Q), key (K), and value (V) projections, which are
improved with local context. The cross-channel context in terms of pixels is collected by a
1× 1 convolutional layer. Then, to represent the spatial context of the channel, a 3× 3 deep
convolutional layer is used. This process ultimately produces the desired output.

Q = FQ
d FQ

p X, (6)

K = FK
d FK

p Y, (7)

V = FV
d FV

p X, (8)

where 1× 1 point-wise convolution is represented by F·p. The 3× 3 depth-wise convolution
is denoted by the symbol F·d. The network uses bias-free convolutional layers. The query
and key projections are then rearranged to form a transposed attention map A of size RĈ×Ĉ.
The transformer conv module is generally described as

X̂ = Wp · V̂ · So f tmax(K̂ · Q̂/α), (9)

where the output feature map is represented by X̂. The learnable parameters are denoted
by the expression W ∈ RC×C. After reshaping tensors from the original size, the following
matrices are produced: Q̂ ∈ RĤŴ×Ĉ, K̂ ∈ RĤŴ×Ĉ, and V̂ ∈ RĤŴ×Ĉ. Before using the
softmax function, the magnitude of the dot product between K̂ and Q̂ is modified using the
learnable scaling parameter α.
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Figure 7. Network structure of Transformer Conv module.

As illustrated in Figure 4, the Depth-Unet architecture uses a skip connection encoder–
decoder design with multi-scale side predictions. ReLU activation is applied to all convolu-
tional layers, aside from the prediction layers. The function 1/(α ∗ sigmoid(x) + β), where
alpha = 10 and beta = 0.1, is used to constrain the depth values in the prediction layers to
be positive within a tolerable range. The Depth-Unet consists of multiple contraction parts
and extension parts that are linked together over a long range. Convolutional layers with
occasional strides of 2 make up the contraction portion, which results in a 64-downsampling
factor overall. This makes it possible for the network to estimate significant depth map
displacements. By hopping connections, the network’s expansion portion gradually and
nonlinearly up-samples the feature map and includes data from the contraction. A number
of up-convolutional and convolutional layers are used to accomplish this. Since information
can also move through long-distance links between the contraction and expansion layers,
there are no data bottlenecks in the network. See Table 5 for more information.
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Table 5. Specification of the Depth-UNet structure. Convolutions conv1 through conv6b make up
the contracting portion. Up convolutions (upconvN), convolutions (iconvN, prN), and loss layers
alternate throughout the expanding portion. Higher-layer features are concatenated with features
from lower levels. pr1 produces the predicted disparity image.

Layer Input Output Details

conv1 - conv1 Kernel size: 7 × 7, stride: 2

conv2 conv1 conv2 Kernel size: 5 × 5, stride: 2

conv3a conv2 conv3a Kernel size: 5 × 5, stride: 2

conv3b conv3a conv3b Kernel size: 3 × 3, stride: 1

conv4a conv3b conv4a Kernel size: 3 × 3, stride: 2

conv4b conv4a conv4b Kernel size: 3 × 3, stride: 1

conv5a conv4b conv5a Kernel size: 3 × 3, stride: 2

conv5b conv5a conv5b Kernel size: 3 × 3, stride: 1

conv6a conv5b conv6a Kernel size: 3 × 3, stride: 2

conv6b conv6a conv6b Kernel size: 3 × 3, stride: 1

pr6+loss6 conv6b conv6b Kernel size: 3 × 3, stride: 1

upconv5 conv6b upconv5+pr6+conv5b Kernel size: 4 × 4, stride: 2

iconv5 upconv5+pr6+conv5b iconv5 Kernel size: 3 × 3, stride: 1

pr5+loss5 iconv5 iconv5 Kernel size: 3 × 3, stride: 1

upconv4 iconv5 upconv4+pr5+conv4b Kernel size: 4 × 4, stride: 2

iconv4 upconv4+pr5+conv4b iconv4 Kernel size: 3 × 3, stride: 1

pr4+loss4 iconv4 iconv4 Kernel size: 3 × 3, stride: 1

upconv3 iconv4 upconv3+pr4+conv3b Kernel size: 4 × 4, stride: 2

iconv3 upconv3+pr4+conv3b iconv3 Kernel size: 3 × 3, stride: 1

pr3+loss3 iconv3 iconv3 Kernel size: 3 × 3, stride: 1

upconv2 iconv3 upconv2+pr3+conv2 Kernel size: 4 × 4, stride: 2

iconv2 upconv2+pr3+conv2 iconv2 Kernel size: 3 × 3, stride: 1

pr2+loss2 iconv2 iconv2 Kernel size: 3 × 3, stride: 1

upconv1 iconv2 upconv1+pr2+conv1 Kernel size: 4 × 4, stride: 2

iconv1 upconv1+pr2+conv1 iconv1 Kernel size: 3 × 3, stride: 1

pr1+loss1 iconv1 output Kernel size: 3 × 3, stride: 1

3.4. Loss Function

There are also several other well-established loss functions [39,43] that have been
found to perform accurate depth estimation and reconstruction tasks using CNN. It has
been demonstrated that structural similarity index measure [44] (SSIM) loss performs well
in these tasks. The anticipated and actual depth maps’ structural and luminance similarities
are both taken into account by the SSIM loss. The loss function offers further in-depth
details on the application and efficiency in complex estimate and reconstruction jobs.

LSSIM(y,ŷ) =
(2 · Avgy · Avgŷ + a)(Convergeyŷ + b)
(Avg2

y + Avg2
ŷ + a)(Var2

y + Var2
ŷ + b)

, (10)

where the values for the anticipated depth map and the ground depth map, respectively,
are y and haty. The average and variance are denoted as Avg and Var2, respectively. The
network’s convergence constants are a and b.
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Another common loss function is the mean squared error:

L2 = ‖y− ŷ‖2
2, (11)

where the predicted map ŷ should be at approximately the ground truth map y. The
network is trained using stochastic gradient descent using the input images x and the
accompanying depth maps y.

The normal matching loss is used to compute the loss between the surface normals of
the predicted depth map and the pseudo-depth map. Formally,

LN =
1
K ∑

k=1
‖ni − n∗i ‖1 +

1
K ∑

k=1
‖ni − n̂i‖1, (12)

where the surface normals based on the predicted depth, pseudo-depth, and ground-truth
map are ni, n∗i , and n̂i, respectively. The entire number of pixels in the image is represented
by N. The overall depth structure is strongly supervised by the pixel loss function.

Normals, essential geometric features, constitute a complimentary modality to depth.
Edge-aware loss is utilized for structure-oriented ordering to improve the clarity of edges
and thus ensure accurate depth estimation. We use surface normal maps to find planar
regions where the normals are nearly identical and regions where the normals change
significantly. We then track and sample paired points [45] on either side of these significantly
varying edges. Within a small distance of the edge points, two points are randomly selected
on each side, ensuring that these four points lie on a line orthogonal to the sampled edge
points. This results in three pairs of points for sorting loss in Figure 8: (a,b), (b,c), and (c,d).
After converting an image to grayscale, the gradient mappings My and Mŷ are obtained,
along with the gradient size map M. The gradient size map is then thresholded in order to
compute the edge E.

E = [M ≥ α ·max(M)], (13)

where α is used to control the threshold of E density. For each edge point e = (x, y) sampled
from E, four edge points e = (x, y) [(xk, yk), k = a, b, c, d] are sampled by{

xk = x + δk Mx(e)/M(e)

yk = y + δk My(e)/M(e),
(14)

We sample them within a moderate distance β from the edge point e to obtain δa <
δb < 0 < δc < δd. The values of α and β are set to 0.1 and 30, respectively. A margin of two
pixels on each side of the edge is also provided in order to avoid sampling points too close
to the edge point e, which would make it difficult to determine the ground-truth depth
value. The whole sampling process is summarized in Algorithm 1.

In planar regions, paired points are also sampled in the same plane. In addition, to
improve the global geometric quality, we globally randomize the sampling of paired points.
Thus, the overall structure is enhanced, and the boundary regions of the object are also
emphasized. More specifically, the approach involves sampling point pairs around the
edges of the image and ensuring that the relative angle of the normal vectors of these
sampled points is consistent with the pseudo-depth. To achieve this, the technique known
as edge-guided sampling [45] is employed to create the point pairs <A, B>. Edge-aware
loss is defined as follows:

Ledge =
1
N

N

∑
i=1
‖nAi · nBi − n∗Ai

· n∗Bi
‖1 +

1
N

N

∑
i=1
‖nAi · nBi − n̂Ai · n̂Bi‖1, (15)

where the normals of the sampled points from the predicted depth map are represented
by nA and nB. n∗A and n∗B stand for the normals of sampled points from the pseudo-
depth map. n̂Ai and n̂Bi are the normal of sampled points from ground-truth map. Edge-
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guided sampling and the relative normal loss can be used together to constrain the depth
estimation in the object border region effectively. This approach ensures that the predicted
depth values accurately represent the depth variations at the edges of the object. By utilizing
the information from the edge-guided sampling, the network can better understand the
object boundaries and refine the depth estimation accordingly. The relative normal loss
further strengthens the consistency of the surface normal between the predicted depth map
and the pseudo-depth map, helping to maintain accurate depth estimation, specifically
in the boundary region of the object. Overall, this combined approach provides a more
precise and reliable depth estimation in the object boundary region.

In summary, our objective function is defined as follows:

L = LSSIM + L2 + LN + Ledge. (16)

Algorithm 1: The procedure for edge-guided sampling
Input: Edge masks E, gradient maps Mx, My and gradient magnitude M, number

of edge pixels L to be sampled
Output: point pair set S

1 Initial: Sampled points S = ∅;
2 for i = 1, 2, . . . , L do
3 Sample an edge point e;
4 Sample 4 points [(xk, yk), k = a, b, c, d] according Equation (14);
5 Add (a, b), (b, c), and (c, d) to S;
6 end
7 return

a

b

c

d

a

b

c

d

Figure 8. The procedure of edge-guided sampling.

4. Experiments
4.1. Experimental Setup

(1) Datasets
We evaluated the proposed method on three benchmark datasets (NYU-Depth-v2 [46],

KITTI [47], and DDAD [48]) in both indoor and outdoor scenarios. About 240,000 RGB and
depth image pairs from 464 distinct indoor settings captured with a Microsoft Kinect camera
make up the NYU-Depth-v2 dataset. Around 48,000 synchronized RGB and depth image
pairs from this dataset were used to train our method. Additionally, 654 images were used
for testing. To align with previous literature [10,11], the original images were first reduced
to half their size from 640× 480 pixels. Then, a region of 304× 228 pixels was centered and
cropped from the images to serve as the input to the network. The KITTI dataset, on the
other hand, focuses on real-world outdoor scenes and consists of high-resolution outdoor
images with dimensions of 375× 1241 pixels. Similar to Eigen et al. [10], we utilized only
the left-side images for our method. The KITTI dataset contains 22,600 training images
and 697 test images. The associated Velodyne data points are projected onto the left image
plane to create ground-truth depth maps. Missing depth values in the ground-truth depth
maps were not taken into account during training or testing. For this study, only the bottom
228× 912 pixel region was utilized as the LiDAR measurements could not capture the upper
part of the image. By using these two diverse datasets, spanning indoor and outdoor scenes,
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we ensured a comprehensive evaluation of the proposed method’s performance in different
environments and scenarios. The DDAD dataset contains 200 driving videos taken in urban
scenes. The point clouds that were scanned by LiDAR are given. Compared to the KITTI
dataset, the DDAD dataset has almost all vehicles traveling on the road and fewer parked
vehicles, which made it more challenging for the model training. We divided the dataset
according to the standard training/testing subset, which contained 150 training scenarios
(totaling 12,650 images) and 50 validation scenarios (totaling 3950 images). We used the
validation scenes for model performance evaluation. During training, the resolution of the
images was scaled to 640 pixels × 384 pixels.

(2) Training details
In our method, the network was trained to predict depth maps using RGB inputs. The

network architecture was implemented using the PyTorch framework. We utilized Python
3.7 and CUDA 11.6 on Ubuntu 20.04 to create an MDE model. The model was trained on
the NYU-Depth-v2 and KITTI datasets using an NVIDIA RTX 3090 with 24 GB of RAM.
Except for the first layer, which included a variable number of input channels, the ResNet
weights in the encoder block were initialized using models that had already been trained
on the ImageNet [49] dataset. The network was trained using the AdamW [50] optimizer
with 100k iterations on each dataset, with the learning rate set to 10−4.

(3) Data Augmentation
Several data augmentation techniques were employed to increase the diversity of the

training samples and the network’s robustness. These techniques, inspired by Eigen et al. [10],
included rotation, scaling, color transformation, flipping, and small translations. By apply-
ing these data augmentation techniques, we could generate a more diverse set of training
samples, which helped improve the network’s generalization capability and robustness.
These techniques contributed to the network’s ability to estimate depth accurately in
various real-world scenarios.

4.2. Evaluation Metrics

We tested and compared the outcomes of our method with various depth estimation
methods on the NYU-Depth-v2, KITTI, and DDAD datasets. Some of the results are shown
in Figures 8 and 9. A colored map is used to visualize the different depths. Blue indicates a
shorter distance, and yellow indicates a longer distance. A well-recognized set of assess-
ment methods proposed by Eigen et al. [10] was used, which included four assessment
indicators: root mean square error (RMSE), RMSE (log), absolute relative difference (ARD)
and squared relative difference (SRD). The evaluation metrics are calculated using the
following:

RMSE(linear) =

√√√√ 1
|N|

N

∑
i=1
‖yi − ŷi‖2, (17)

RMSE(log) =

√√√√ 1
|N|

N

∑
i=1
‖logyi − logŷi‖2, (18)

ARD =

√√√√ 1
|N|

N

∑
i=1

|yi − ŷi|
ŷi

, (19)

SRD =

√√√√ 1
|N|

N

∑
i=1

‖yi − ŷi‖2

ŷi
, (20)

where the sum of the pixels is denoted by N. The ith pixel value of the predicted depth
image is yi. The ground truth depth image’s ith pixel value is denoted by ŷi.
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OursAdaBins DPTFCRN DORN SC-DepthV2 SC-DepthV3 Ground TruthImage OursAdaBins DPTFCRN DORN SC-DepthV2 SC-DepthV3 Ground TruthImage

Figure 9. The visualization results of depth estimation on the NYU-Depth-v2 [46] dataset.

4.3. Evaluation Results

Our method is compared with previous state-of-the-art methods, including DORN [20],
AdaBins [22], DPT [23], FCRN [11], SC-DepthV1 [40], SC-DepthV2 [16], and SC-DepthV3 [17].
The NYU-Depth-v2 dataset was used to evaluate the proposed method. The performance
comparison of the NYU-Depth-V2 dataset is presented in Table 6. As shown in the table, the
RMSE (linear), RMSE (log), ARD, and SRD improvements using the proposed method with
the NYU-Depth-v2 dataset are more than 4%, 9%, 13%, and 16%, respectively, compared to
the published best architecture DPT. The advanced performance of our proposed model on
most evaluation measures is due to the architecture and loss function we propose. Addi-
tionally, the proposed model outperforms other advanced methods with fewer parameters,
such as AdaBins and DPT. The proposed compact pseudo-depth estimation network, in
combination with the transformer depth estimation network, successfully helps achieve the
accurate and efficient estimation of depth maps. The visualization results are displayed in
Figure 9. In comparison to previous methods, our method estimates the depth values of the
example image given accurately and is more resistant to changing lighting circumstances.

Table 6. Objective metrics for depth estimation on the NYU-Depth-v2 [46] dataset. The best results
are bolded.

Method Param
(M)

RMSE
(linear) RMSE (log) ARD SRD GPU 3090(s)

FCRN 63.6 0.573 0.195 0.152 0.121 83.52

SC-DepthV2 40.9 0.554 0.186 0.142 0.112 37.48

DORN 110.3 0.509 0.172 0.115 0.082 925.22

SC-DepthV3 28.7 0.486 0.165 0.123 0.090 44.37

AdaBins 78 0.364 0.122 0.103 0.070 1377.6

DPT 123.1 0.357 0.121 0.110 0.077 81.85

Ours 19.8 0.342 0.110 0.095 0.064 36.24

The depth estimation results for KITTI are demonstrated in Table 7. The RMSE (linear),
RMSE (log), and SRD improvements using the proposed method with the KITTI dataset are
more than 8%, 7%, and 15%, respectively, compared to the DPT MDE method. Furthermore,
Figure 10 provides the visualization results for the KITTI dataset. SC-DepthV1 and SC-
DepthV3 present fuzzy depth maps at the object boundaries, while the methods of DORN,
DPT, and AdaBins fail to preserve fine details, such as distant tiny objects. In contrast, our
method has richer structural and object details and produces visually pleasing results.
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Table 7. Objective metrics for depth estimation on the KITTI [47] dataset. The best results are bolded.

Method Param
(M)

RMSE
(linear) RMSE (log) ARD SRD GPU 3090(s)

SC-DepthV1 27.9 4.997 0.196 0.118 0.870 38.39

SC-DepthV3 28.7 4.699 0.188 0.119 0.756 38.51

DORN 110.3 2.727 0.120 0.072 0.307 985.59

DPT 123.1 2.573 0.092 0.062 0.221 96.91

AdaBins 78 2.360 0.088 0.058 0.190 1504.35

Ours 19.8 2.351 0.085 0.058 0.187 36.27

AdaBinsDORN DPTSC-DepthV1 SC-DepthV3 OursImage AdaBinsDORN DPTSC-DepthV1 SC-DepthV3 OursImage

Figure 10. The visualization results of depth estimation on the KITTI [47] dataset.

Comparisons are made with SC-DepthV1 and SC-DepthV3 methods on DDAD.
Table 8 lists the performance comparison results on the DDAD dataset. Compared with
SC-DepthV1 and SC-DepthV3 methods, the proposed method outperforms all competitors
in all metrics by a significant margin. Specifically, in the DDAD dataset, the proposed
method improves the RMSE (linear), RMSE (log), ARD, and SRD by 14%, 12%, 17%, and
4%, respectively, compared to SC-DepthV3. A qualitative comparison is shown in Figure 11.
The proposed method achieves more accurate and clearer depth estimation results. The cars
in all four images in Figure 11 are better recognized by our method, and the reconstructed
scenes are satisfactory with clear object boundaries and reasonable depth times, which can
be better applied in the field of autonomous driving.

OursSC-DepthV1Image SC-DepthV3 OursSC-DepthV1Image SC-DepthV3

Figure 11. The visualization results of depth estimation on the DDAD [48] dataset.
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Table 8. Objective metrics for depth estimation on the DDAD [48] dataset. The best results are bolded.

Method Param
(M)

RMSE
(linear) RMSE (log) ARD SRD GPU 3090(s)

SC-DepthV1 27.9 16.118 0.279 0.168 3.825 88.04

SC-DepthV3 28.7 15.702 0.248 0.143 3.008 88.27

Ours 19.8 13.427 0.218 0.118 2.861 82.18

4.4. Ablation Study

To confirm the efficacy of the proposed method, comparison tests were carried out on
the NYU-Depth-V2 dataset, i.e., Pseudo-Depth Net and Depth Net. A network architecture
ablation study was conducted. Table 9 presents the results. The first row indicates the
proposed method. The second row indicates the results obtained using the method without
Pseudo-Depth Net. As shown in the table, the absence of Pseudo-Depth Net degraded
the performance of the model. The second row represents the results obtained using the
method without Depth Net. The performance of the network without Depth Net was
significantly reduced. Table 9 demonstrates that joint Pseudo-Depth Net and Depth Net
could greatly improve the accuracy of depth estimation.

Table 9. Ablation experiments for the proposed architecture on the NYU-Depth-v2 [46] dataset. The
best results are bolded.

Method RMSE
(linear) RMSE (log) ARD SRD

Ours 0.342 0.110 0.095 0.064

Ours w/o Pseudo-Depth Net 0.378 0.129 0.194 0.095

Ours w/o Depth Net 0.461 0.142 0.253 0.142

4.5. Running Time

In this subsection, we show the results of testing the runtime on NYU-Depth-v2, KITTI,
and DDAD datasets. For the NYU-Depth-v2 dataset, the experiments were performed on
654 images of size 304× 228. For the KITTI dataset, the experiments were performed on
697 images of size 228× 912. For the DDAD dataset, the experiments were performed on
3950 images of size 640× 384. The test time results are shown in Tables 6–8. All CNN-
based methods were implemented using PyTorch on GPU (GPU was NVIDIA RTX 3090),
belonging to NVIDIA of CA, USA, USA. Among all the methods, the proposed method
was faster than all the competing methods, which shows that real-time depth estimation
is possible.

5. Discussion

In the final section, several aspects of the computational efficiency of our model and
its portability to current network architectures are discussed. The transferability of deep
networks has garnered increasing interest in recent times. Currently, many methods achieve
satisfactory results by training and testing on the same dataset. However, when confronted
with diverse datasets from various fields or captured using different cameras, the perfor-
mance often suffers a significant decline. To tackle this challenge, researchers have turned
their focus toward improving the portability of depth networks. One approach involves
incorporating camera parameters into the depth estimation framework. By considering
specific camera information, like intrinsic and extrinsic parameters, the network can better
adapt to different camera setups, resulting in more accurate depth estimation. Furthermore,
employing domain adaptation techniques during the training process has emerged as a
promising research direction. Domain adaptation aims to bridge the disparity between
different datasets by aligning their feature distributions. This enables the network to gen-
eralize better and enhance performance on unseen datasets. Through the application of
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domain adaptation methods, the network learns to extract more robust and transferable
features, leading to improved portability across diverse datasets or camera configurations.

Indeed, while deep networks have demonstrated impressive performance, their high
computational requirements pose a significant challenge for practical application, par-
ticularly in real-time scenarios. The ability to achieve real-time performance with deep
estimation networks holds great importance in their practical usability. Lightweight net-
works are characterized by their reduced number of parameters, which can impact their
overall performance. Thus, a significant research focus lies in improving the accuracy of
these networks while ensuring real-time performance. Striking a balance between accuracy
and efficiency is a topic that warrants further exploration. Furthermore, questions such as
the depth cues learned by deep networks and the specific cues utilized in the estimation pro-
cess have received little attention in the literature. Investigating these aspects can deepen
our understanding of the inner workings of deep networks for depth estimation tasks.
To summarize, the development of lightweight networks for real-time performance and
further research on the mechanisms underlying monocular depth estimation using deep
learning are both worthwhile directions. These areas of study hold promise in advancing
the practical application and understanding of deep estimation networks.

6. Conclusions

A deep joint network, which consists of a pseudo-depth and a depth network, is
proporsed to provide meaningful coarse and fine features to predict high-quality depth
images from a single RGB image. The pseudo-depth network utilizes upsampling mapping,
residual modules, and a modified codec to obtain high-resolution depth maps directly. The
depth network employs an effective global transformer strategy and Unet depth network
to improve the performance, which greatly improves the estimation accuracy. In addition,
multiple losses are used jointly to improve the training of the network, and the proposed
method attains advanced performance on KITTI and NYU-Depth-v2 datasets.
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