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Abstract: In biomedical research, identifying genes associated with diseases is of paramount impor-
tance. However, only a small fraction of genes are related to specific diseases among the multitude of
genes. Therefore, gene selection and estimation are necessary, and the accelerated failure time model
is often used to address such issues. Hence, this article presents a method for structural identification
and parameter estimation based on a non-parametric additive accelerated failure time model for cen-
sored data. Regularized estimation and variable selection are achieved using the Group MCP penalty
method. The non-parametric component of the model is approximated using B-spline basis functions,
and a group coordinate descent algorithm is employed for model solving. This approach effectively
identifies both linear and nonlinear factors in the model. The Group MCP penalty estimation exhibits
consistency and oracle properties under regularization conditions, meaning that the selected variable
set tends to have a probability of approaching 1 and asymptotically includes the actual predictive
factors. Numerical simulations and a lung cancer data analysis demonstrate that the Group MCP
method outperforms the Group Lasso method in terms of predictive performance, with the proposed
algorithm showing faster convergence rates.

Keywords: non-parametric accelerated failure time model; structure identification; B-splines; group
MCP penalty; oracle properties; group coordinate descent algorithm
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1. Introduction

In both economic and biological research, it is a common scenario that many theories
do not prescribe specific functional forms for the relationships between predictors and
outcomes. For example, in biomedical studies, the influence of predictors on survival
time can exhibit nonlinearity. Attempting to fit a linear model in such cases can result
in biased estimates or produce misleading results. However, the functional shape of a
non-parametric model is determined by the available data, eliminating the need for a linear
functional form to describe the influence of a covariate. Additionally, non-parametric
models offer greater flexibility in fitting data compared to parametric models. This paper
delves into the in-depth study of the non-parametric accelerated failure time additive
regression (NP-AFT-AR) model:

ti = u + ∑
j∈S1

β jxij + ∑
j∈S2

f j
(
xij
)
+ εi i = 1, 2, . . . , n (1)

where (ti, xi1, . . . , xip, 1 ≤ i ≤ n) is random sample, ti is the logarithm of the response
variable, that is, ti is the logarithm of survival time. xi1, . . . , xip is a p× 1 vector of covariates,
S1, S2 are mutually independent and complementary subsets of {1, . . . , p},

{
β j : jεS1

}
are
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regression coefficients of the covariates with indices in S1, and
{

f j : jεS2
}

are unknown
functions. The covariates in S1 have a linear relationship with the mean response, whereas
the connection with the other covariates is not determined by a finite number of parameters.
Parameter models require explicit assumption constraints, and they tend to overfit when
there is an excessive number of model parameters. Some of these models are also based
on the assumption of linearity, making them inadequate for capturing complex nonlinear
relationships. However, parameter models offer the advantages of clear interpretability
for explicit parameters, efficiency, and accurate parameter estimation. Hence, this paper
aims to leverage these characteristics of parameter models and explores a hybrid approach
that combines both parameter and non-parameter models to enhance the adaptability
and performance of the model. When the emphasis is on the relationship between ti
and

{
xij : jεS1

}
, which can be approximated by a linear function. It provides enhanced

interpretability compared to a purely non-parametric additive model. The random error
term εi has a mean of zero and a finite variance σ2. Assuming that certain components f j are
zero, our main objective in this research is to distinguish the nonzero components from the
zero components and estimate the nonzero components accurately. A secondary objective
is to elucidate the functional forms of the nonzero components, thereby suggesting a more
concise model. The techniques we have established can readily be expanded to the partly
linear additive AFT regression model, particularly when certain covariates may be discrete
and not amenable to modeling using smoothing techniques like B-splines. We utilize the
lung cancer data example to demonstrate this extension.

The structure identification method is effective in distinguishing linear variables from
nonlinear ones, and numerous scholars have contributed to relevant research methods.
Tibshirani [1] combined the least square estimation technique introduced by Bireman [2]
with minimizing the residual sum of squares under constraints, transforming the solution
into a continuous optimization process. This approach is known as the Lasso method,
where penalties are applied to select variables, and estimated coefficients are continuously
shrunk toward zero to automatically identify important explanatory variables. However,
researchers such as Zhao and Yu [3] and Zou [4] discovered that the Lasso method may
not consistently select the correct model, and the estimated regression coefficients do not
exhibit asymptotic normality. To address this limitation, Fan and Li [5] proposed the SCAD
penalty, which substitutes the penalty in Lasso with a quadratic spline penalty function
to reduce deviations. In the context of linear models, the SCAD method can uniformly
identify the true model and possess oracle properties. Nonetheless, the non-convex nature
of the SCAD penalty makes it challenging to optimize in practical applications, leading to
numerical instability during the solution process. Zhang [6] introduced the non-concave
MCP (smoothly clipped absolute deviation) penalty and developed the MCP penalty
likelihood procedure as an alternative approach. The MCP penalty method replaces the
l1 penalty in Lasso with a quadratic spline penalty function to reduce bias. MCP exhibits
the capability to consistently select the correct model with a probability of 1 and provides
corresponding estimates with oracle properties.

Heller [7] employed the weighted kernel smooth rank regression method to estimate
the unknown parameters in the AFT model, particularly in the case of censored data.
Gu [8] introduced an empirical model selection approach for non-parametric components
based on the Kullback–Leibler geometric structure. Schumaker [9] utilized the Lasso
iterative method for selecting parametric covariates, while non-parametric components
were estimated using the sieve method. Johnson [10] extended the rank-based Lasso-type
estimation, which can encompass a portion of the linear AFT model. Huang and Ma [11]
applied the AFT model to analyze the relationship between gene expression and survival
time, using the bridge penalty method for individual-level regularized estimation and
gene selection. Long et al. [12] established a risk prediction score through regularized rank
estimation within a portion of the linear AFT model. Wei et al. [13] explored the application
extension of subgroup identification methods based on Adaptive Elastic Net and the
AFT model. Wang and Gao [14] conducted empirical likelihood inference for the AFT
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model under right-censored data. Cai et al. [15] compared parametric and semiparametric
AFT models in clustered survival data. Liu et al. [16] introduced a new semiparametric
approach that allows for the simultaneous selection of important variables, model structure
identification, and covariate effect estimation within the AFT model.

Researchers used different methods for variable selection and parameter estimation.
For instance, Fan and Li [5] employed the Newton algorithm to estimate the penalty
likelihood function. Cui et al. [17] introduced the concept of penalty regression spline
approximation and group structure identification within the additive model. However,
their approach faced computational instability issues as they relied on truncated power
series to approximate non-parametric truncation. Huang and Ma [11] proposed a two-step
method where, with a fixed number of predictors, nonzero variables are simultaneously
selected and estimated in the additive model, using Group Lasso in the first stage and
Adaptive Group Lasso in the second stage. Leng and Ma [18] used the COSSO penalty to
handle non-parametric covariate effects in the AFT model. However, due to the non-smooth
nature of the penalty function at the origin, the computation can be challenging, and these
methods require a significant amount of time to calculate the inverse matrix of the Hessian
matrix, especially when dealing with high-dimensional covariates. Therefore, in this paper,
the group coordinate descent (GCD) algorithm is employed to approximate and estimate the
parameters in the non-parametric additive accelerated failure time model. GCD capitalizes
on the assumption of model sparsity, and the algorithm is simple and operates at a fast
pace. The GCD algorithm closely resembles the standard Newton–Raphson algorithm, but
each iteration involves solving a weighted least squares problem with a penalty function.

Under the assumption that the dimensionality of covariates is allowed to diverge, this
paper rigorously proves that the Group MCP penalty estimator in the non-parametric ac-
celerated failure time model exhibits consistency and oracle properties. As the generalized
cross-validation criterion is inconsistent in model selection when the sample size tends
to infinity, meaning it may select irrelevant variables, the Bayesian Information Criterion
(BIC) does not suffer from such issues. BIC, as shown by Golub et al. [19], has the desirable
property of selecting the true model with a probability of 1. Therefore, in the context of
structure identification in the non-parametric accelerated failure time model, this study
opts for tuning based on the BIC criterion.

The remaining sections of the paper are organized as follows. In Section 2, we describe
the construction of the AFT model with penalty estimation and variable selection based on
Group MCP. Section 3 introduces the algorithm and parameter tuning for the effective iden-
tification of both linear and nonlinear factors in the model. In Section 4, we provide proof
of the Group MCP’s selection consistency property, where the selected variable set asymp-
totically tends to include the actual predictive factors with a probability approaching 1.
Section 5 primarily focuses on numerical simulations and empirical analysis, demonstrating
the method’s strong predictive performance. We also apply the method to the analysis of
lung cancer data. Section 6 provides a brief summary of the corresponding conclusions.

2. Penalized Estimation and Variable Selection
2.1. Method

Ti is the natural logarithm of the ith censoring time, Ci is the natural logarithm of the
survival time and δi represents the event indicator, i.e., δi = I(Ti ≤ Ci), which takes value 1
if the event time is observed or 0 if the event time is censored. Yi is the logarithm of the
minimum of the survival time and the censoring time, i.e., Yi = log[min(Ti, Ci)]. Then, the
observed data are assumed to be independent and identically distributed (i.i.d.) samples
from (Y, δ, X), in the form of (Xi, δi, Yi), i = 1, · · · , n. Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) is the order
statistics of Yi

′s, δ(1), · · · , δ(n), and X(1), · · · , X(n) are the respective censoring indicators
and covariates. F represents the distribution of T, and F̂n is its Kaplan–Meier estimator
by [20]. F̂n(y) = ∑n

i=1 wni I
(

Y(i) ≤ y
)

, where the wni
′s are Kaplan–Meier weights calculated

by wn1 = δ(1)/n, and wni =
[
δ(i)/(n− i + 1

)
]∏i−1

j=1((n− j)/(n− j + 1))δ(j) , i = 2, . . . , n.
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After processing Ti and considering whether Ti ≤ Ci is established, transform Ti into
Yi, when other conditions remain unchanged, the above conversion Formula (1) can be
expressed as

Yi = u + ∑
j∈S1

β jxij + ∑
j∈S2

f j
(
xij
)
+ εi i = 1, 2, . . . , n (2)

The following introduces the method of coefficient estimation in Equation (2), assum-
ing that each group is orthonormal, i.e., X′jXk = 0, j 6= k and X′jXj/n = Idj

. z = X′jy/n is
the least squares estimate of θ, where θ is the unknown parameter associated with marker
effects by [21]. Because of X′jXj/n = Idj

, the least squares objective function with penalty

term can be expressed as 2−1 ‖ z− θ ‖2
2 +ρ(‖ θ ‖2; λ, γ). The linear part of Formula (2) is

expressed as a function and then is brought into the additive non-parametric regression
model to obtain:

yi = u + f1(xi1) + · · ·+ fp
(
xip
)
+ εi (3)

To ensure unique identification of the f j
′s, we assume that E f j

(
xij
)
= 0, 1 ≤ j ≤ p. If

some of the f j
′s are linear, then Equation (3) transforms into the partially linear additive

model (2). The problem shifts to determining the linear or nonlinear forms. Therefore, we
decompose f j into a linear part and a non-parametric part f j(x) = β0j + β jx + gj(x). Con-
sider a truncated series expansion for approximating gj, that is gnj = ∑mn

k=1 θjk ϕk(x). Where
{ϕk(x), k = 1, . . . , mn} is a set of basis functions and mn → ∞ at certain rate as n→ ∞ . If
θjk = 0, (1 ≤ k ≤ mn, j = 1, . . . , p), then f j has the linear form. Therefore, based on this

equation, the current task is to ascertain which groups of
{

θjk, j = 1, . . . , p, k = 1, . . . , mn

}
are zero. Let β =

(
β1, . . . , βp

)′ and θn =
(
θ1n
′, . . . , θpn

′)′, where θjn =
(
θj1, . . . , θjmn

)′.
Define the penalized least squares criterion.

L(u, β, θ; λ, γ) = 1
2n

n
∑

i=1
wni

∥∥∥∥yi − u−
p
∑

j=1
β jxij −

p
∑

j=1

mn
∑

k=1
θjk ϕk

(
xij
)
‖2

2

+
p
∑

j=1
ργ(‖θjn‖Aj ;

√
mnλ)

(4)

where ρ is the penalty function based on the penalty parameter λ ≥ 0 and regularization pa-

rameter γ. u represents the intercept. ‖θnj‖Aj =
(
θnj
′Ajθnj

) 1
2 is the norm with respect to the

positive definite matrix Aj. However, it is important to choose a suitable choice of Aj to facil-

itate the computation. Let X̃(i) = (nwni)
1/2
(

X(i) − XW

)
, and Ỹ(i) = (nwni)

1/2
(

Y(i) −YW

)
;

XW = ∑n
i=1 wniX(i)/ ∑n

i=1 wni and YW = ∑n
i=1 wniY(i)/ ∑n

i=1 wni, then the weight wni in
Formula (4) can not be expressed, and Formula (4) can be transformed into

L(β, θ; λ, γ) =
1

2n

n

∑
i=1

∥∥∥∥∥ỹi −
p

∑
j=1

β j x̃ij −
p

∑
j=1

mn

∑
k=1

θjk ϕk(x̃i)‖2
2 +

p

∑
j=1

ργ(‖θj‖Aj ;
√

mnλ) (5)

We apply Group MCP penalty to the penalty term, i.e., ργ(t; λ) = λ
∫ t

0 (1− x/(γλ))+dx,
t ≥ 0.

γ controls the concavity of ρ and λ is the penalty parameter. Here, x+ denotes the
nonnegative part of x, that is, x+ = xI{x≥0}. We require λ ≥ 0 and γ > 1. Taking the
derivative with respect to ργ(t; λ) yields

.
ργ(t; λ) = λ(1− t/(γλ))+, t ≥ 0. It initiates with

the application of group MCP penalization at the same rate as the group lasso, gradually
easing this penalization until, when t > λγ, the rate of group MCP penalization diminishes
to 0. This approach offers a spectrum of penalties, encompassing the l1 penalty at γ = ∞
and the hard-thresholding penalty when γ→ 1+ . Notably, it encompasses the Lasso
penalty as a specific case when γ = ∞.

The penalty in Equation (4) combines the penalty function ργ(·; λ) with a weighted l2
norm of θj. ργ(·; λ) serves as a penalty for individual variable selection, and when applied to
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the norm of θj, it selects the coefficients in θj as a group. This approach is favorable since the
nonlinear components are captured by the coefficients in θj

′s as groups. We term the penalty
function in Equation (4) as the group minimax concave penalty or simply the group MCP.
The penalized least squares estimator is defined by

(
ûn, β̂n, θ̂n

)
= argmin

u,β,θn

L(u, β, θn; λ, γ),

subject to the constraints ∑n
i=1 ∑mn

k=1 θjk ϕk
(
xij
)
= 0, 1 ≤ j ≤ p. These centering constraints

are sample analogs of the identifying restriction E f j
(
xij
)
= 0, 1 ≤ i ≤ n, 1 ≤ j ≤ p. zij =(

ϕj1
(

xij
)
, . . . , ϕjmn

(
xij
))′, zij consists of the centered basis functions at the ith observation

of the jth covariate. Let Z = (Z1, . . . , ZP), where Zj =
(
z1j, . . . , znj

)′ is the n×mn design
matrix corresponding to the jth expansion. Let ỹ = (ỹ1, . . . , ỹn)

′, x̃i =
(

x̃i1, . . . , x̃ip
)
, and

X̃ =
(

x̃1, . . . , x̃p
)
. We can write

(
β̂n, θ̂n

)
= argmin

β,θn

{
L(β, θn; λ, γ) = (1/2n)‖ỹ− X̃β− Zθn‖2

2 +
p

∑
j=1

ργ(‖θnj‖Aj ;
√

mnλ)

}
(6)

Here, we excluded u from the arguments of L, as the intercept is zero as a result of
centering. Therefore, the constrained optimization problem transforms into an uncon-
strained one.

2.2. Penalized Profile Least Squares

The penalized profile least squares approach is used to calculate
(

β̂n, θ̂n
)
. The β̂ that

minimizes L inherently satisfies X̃′
(

ỹ− X̃β− Zθn

)
= 0 for any given θn, resulting in

β = (X̃′X̃)
−1

X̃′(ỹ− Zθn). Define Q = I − PX̃ , PX̃ = X̃(X̃′X̃)
−1

X̃′ represents the projection
matrix onto the column space of X̃. Consequently, the profile objective function of θn
becomes:

L(θn; λ, γ) = (1/2n)‖Q(ỹ− Zθn)‖2 +
p

∑
j=1

ργ(‖θnj‖Aj ;
√

mnλ) (7)

We use Aj = n−1Z′jQ
′Zj, this choice of Aj standardizes the covariate matrices as-

sociated with θnj
′s and leads to an explicit expression for computation in the group co-

ordinate algorithm described below. For any given (λ, γ), the penalized profile least
squares estimator of θn is defined by θ̂n = argminθn L(θn; λ, γ). We compute θ̂n using
the group coordinate descent algorithm. The set of covariates estimated to have a lin-
ear form in the regression model (1) is denoted as Ŝ1 ≡

{
j : ‖θ̂nj‖ = 0

}
. Then, we obtain

ĝnj(x̃) = 0, j ∈ Ŝ1 and ĝnj(x̃) = ∑mn
k=1 θ̂jk ϕk(x̃), j /∈ Ŝ1. Denote X̂(1) =

((
x̃j
)
, j ∈ Ŝ1

)
, Ẑ(2) =(

Zj : j /∈ Ŝ1
)

and θ̂n(2) =
(

θ̂′nj : j /∈ Ŝ1

)′
. We have β̂n = (X̃′X̃)

−1
X̃′
(

ỹ− Ẑ(2) θ̂n(2)

)
. Then,

the estimator of the coefficients of the linear components is β̂n1 =
(

β̂ j : j ∈ Ŝ1
)′

, ĝ(x̃) =(
ĝ1(x̃), . . . , ĝp(x̃)

)′. Then, β̂n1 =
(

X̂′(1)X̂(1)

)−1
X̂′(1)

(
y− ∑

j/∈Ŝ1

ĝj(x̃i)

)
is the estimator of the

coefficient vector of the linear components. The coefficients of the linear and nonlinear parts
can be identified and estimated, and then the structure identification of the non-parametric
can be added to the AFT model.

3. Computation
3.1. Computation Algorithm

Assuming that there is a standard between each group, i.e., X′jXk = 0, j 6= k and
X′jXj/n = Idj

. Let z = X′jy/n is the least squares estimate of θ. We use S(z; t) =

(1− t/‖z‖2)+z to calculate the solution of group Lasso with the group coordinate de-
scent algorithm, and the expression of group Lasso is θ̂gLASSO(z; λ) = S(z, λ). When
γ > 1, the group MCP of the quadratic norm can be expressed as θ̂gMCP(z; λ, γ) =
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{ γ
γ−1 S(z, λ) i f ‖z‖2 ≤ γλ

z i f ‖z‖2 > γλ
. When γ→ ∞ , θ̂gMCP(·; λ, γ)→ θ̂gLasso(·; λ) , for λ > 0 and

γ→ 1 , θ̂gMCP(·; λ, γ)→ H(·; λ) . H(z; λ) ≡
{

0, if ‖z‖2 ≤ λ,
z, if ‖z‖2 > λ.

. So we can use θ̂gMCP(·; λ, γ)

: 1 < γ ≤ ∞ to express hard threshold function of group MCP and when γ = 1 or γ = ∞
can to be soft threshold function.

Group coordinate descent algorithm is used to compute θ̂n in this paper. GCD algo-
rithm is a natural extension of the standard coordinate descent algorithm [22,23] commonly
used in optimization problems involving convex penalties like the Lasso. GCD algorithm
optimizes the target function one group at a time, cycling through all groups iteratively un-
til convergence is achieved. It is particularly well-suited for computing θ̂n because it offers a
straightforward closed-form expression for a single-group model, as presented in (8) below.
Aj = R′jRj for an mn × mn upper triangular matrix Rj via the Cholesky decomposition.

Let bj = Rjθj, ỹ = Qy, Z̃j = QZjR−1
j . Simple algebra shows that L(b; λ, γ) = (1/2n)‖ỹ−

∑
p
j=1 Z̃jbj‖2 + ∑

p
j=1 ργ(‖bj‖;

√
mnλ). Note that n−1Z̃j

′Z̃j = R−1
j
′
(

n−1Z′jQZj

)
R−1

j = Imn .

Let ỹj = ỹ−∑
p
k 6=j Z̃kbk. Denote Lj

(
bj; λ, γ

)
= (1/2n)‖ỹj − Z̃jbj‖2

2 + ργ

(
‖bj‖;

√
mnλ

)
. Let

ηj = Z̃j(Z̃j
′Z̃j)

−1
ỹj = n−1Z̃j

′ỹj. when γ > 1, the value minimizing Lj with respect to bj is

b̃j,GM(λ, γ) = M
(
ηj; λ, γ

)
=


0, i f ‖ηj‖ ≤

√
mnλ

γηj
γ−1

(
1−

√
mnλ
‖ηj‖

)
, i f

√
mnλ < ‖ηj‖ ≤ γ

√
mnλ

ηj i f ‖ηj‖ >
√

mnλ

(8)

In particular, when γ = ∞, we have b̃j,GL =
(
1−√mnλ/‖ηj‖

)
+

ηj, which is the group
Lasso estimate for a single-group model, GCD algorithm can be implemented as follows
based on the above expressions. Let the group coefficient b̃(s)k , k 6= j is given. We want to

minimize L with respect to bj. Define Lj
(
bj; λ, γ

)
= (1/2n)‖ỹ− ∑k 6=j Z̃k b̃(s)k − Z̃j b̃

(s)
j ‖

2 +

ργ

(
‖bj‖;

√
mnλ

)
. Denote ỹj = ∑k 6=j Z̃k b̃(s)k and ηj = n−1Z̃j

′(ỹ− ỹj
)
. Let b̃j denote the

minimizer of Lj
(
bj;
√

mnλ, γ
)
. When γ > 1, we have b̃j = M

(
ηj;
√

mnλ, γ
)
. Equation (8)

is used to iterate through one component at a time for any given (λ, γ). The initial value

is β̃(0) =

(
β̃
(0)′

1 , . . . , β̃
(0)′
p

)′
. The proposed GCD algorithm is as follows: Initialize the

residual vector r = y− ỹ. Let ỹ = ∑j=1,...,p Z̃jbj
(0). For s = 0, 1, . . . , carry out the following

calculation until convergence. For j = 1, . . . , p, repeat the following steps:

(1) Calculate η̃j = n−1Z̃′jr + b̃(0)j .

(2) Update b̃(s+1)
j = M

(
η̃j; λ, γ

)
.

(3) Update r ← r− Z̃j

(
b̃(s+1)

j − b̃(s)j

)
and j← j + 1 .

The final step ensures that r holds the current values of the residuals. While the
objective function may not necessarily be convex, it exhibits convexity concerning an
individual group when the coefficients of all other groups are fixed.

3.2. Tuning Parameter Selection

Methods such as AIC, BIC, and Generalized Cross-Validation (GCV) are widely used
for selection consistency. Let L(·) be the likelihood function, and ‖ · ‖q represents the Lq
norm of the vector, Pλ(·) is a penalty function related to the parameter λ > 0, The penalty
method of structure recognition mainly considers the important variables by finding the
extreme value of the objective function (1/n)L(β)− ∑

p
j=1 Pλ

(∣∣β j
∣∣). Tibshirani [20] used

the L1 norm as the penalty function to obtain Lasso. AIC criterion is used to solve the
over-fitting problem in which the value of the model likelihood function increases with
the increase of the parameters, where AIC = −2log(L) + 2k. BIC criterion penalizes the
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number of parameters more strongly, where BIC = −2log(L) + kln(n). L is the maximum
value of the likelihood function, k is the number of parameters in the model. When λ→0, β
close to ordinary least squares estimation; when λ→∞, almost only penalty items remain
in the selection criteria. Therefore, we use the faster BIC method to select the parameters
of each concave penalty model. The expression of the BIC criterion is BIC(λ, dn) =
log(RSSλ,dn) + logn(d fλ,dn)/n. RSS is the sum of squared residuals, d f is the number
of variables selected for a given (λ,dn). dn is selected from an increasing sequence with
multiple nodes, and then selects λ from a sequence of length 100 for any given dn. The
maximum value of the sequence is λmax = max1≤j≤p

(
‖Z̃′jY‖2/

√
dn

)
, where Z′j is a n× dn

dimensional matrix about the covariate Xj, j = 1, . . . , p, the minimum is 0.01λmax.

4. Theoretical Properties of Group MCP

Let |A| denote the cardinality of any set A ⊆ {1, . . . , p}, and XA = (Xj, j ∈ A, ∑A =
X′AWXA/n, where X is n × p covariance matrix, W = diag(nw1, . . . , nwn). Let β0 ={

β01, . . . , β0p
}

be the true regression coefficient and A1 =
{

j : β0j 6= 0
}

be the set of nonzero
regression coefficients, q = |A1| Represents the number of elements in the set A1, and
satisfies the following conditions:

(C1) Eg
(

xj
)
= 0 and there are constants C1 and C2 such that the density distribution

function ηj(x) of xj satisfies 0 < C1 ≤ ηj(x) ≤ C2 < ∞ on [a,b] for 1 ≤ j ≤ p.
(C2) (Xi, δi, Yi), i = 1, . . . , n is independent and identically distributed (i.i.d), and the

error term ε1, . . . , εi is i.i.d in N
(
0, σ2) and exists K1, K2 > 0, which is constant for all xi ≥ 0,

P(|εi| > xi) ≤ K2exp
(
−K1x2

i
)
.

(C3) The error term (ε1, . . . , εn) is independent of the Kaplan–Meier weight (w1, . . . , wn),
and there is a constant satisfying that for any 1 ≤ i ≤ n, 1 ≤ j ≤ p, there is

∣∣Xij
∣∣ ≤ M, that

is, the covariate is bounded.
(C4) The covariate matrix satisfies the SRC condition, exists 0 < c∗ < c∗ < ∞, q∗ =

(3 + 4C)q, C = C = c∗/c∗, converges to 1 with probability and satisfies c∗ ≤ v′ ∑A v/‖v‖2

≤ c∗.
Condition (C1) can ensure that the model is sparse even when the number of covariates

is large; that is, the number of covariates with nonzero coefficients can be controlled to
a small number; condition (C2) can ensure the tail probability of the model under high-
dimensional linear regression The assumption is still valid; according to condition (C3),
the sub-Gaussian nature of the model is still guaranteed even if the data is censored; (C4)
Ensure that the model meets the SRC condition, that is, ensure that the characteristic root of
matrix X′WX/n is always between c∗ and c∗, and any model with a dimension smaller than
q∗ can be identified. Where β̃ =

(
β̃1, . . . , β̃p

)
represents the estimated coefficient, and Ã1 ={

j, β̃ j 6= 0
}

represents a set of all nonzero coefficients. Denote f j(x) = β0j + β jx + gj(x) is

the regression component of the true value, gnj(x) =
mn
∑

k=1
θjk ϕk(x), j = 1, . . . , p is B-spline

basis function expansion of gnj(x), and S1 =
{

j : ‖gnj(x)‖2 = 0
}

, ‖θnj‖2 = 0. Let q = |S1|
be the cardinality of S1, which is the number of linear components in the AFT regression
model. Define

θ̂n = argmin
θn

{
1

2n
‖Q(y− Zθn)‖2 : θnj = 0, jεS1

}
(9)

This represents the oracle estimator of θ0n under the assumption that the identity
of the linear components is known. It’s worth noting that the oracle estimator cannot
be computed as S1 is unknown. Nevertheless, we employ it as the reference point for
evaluating our proposed estimator. Similar to the actual estimates outlined in Section 2.2,
let’s define the oracle estimators as g̃nj(x) = 0, jεS1 and g̃nj(x) = ∑mn

k=1 θ̃jk ϕk(x), j /∈

S1. Denote X(1) =
(
xj, jεS1

)
, X(2) =

(
xj, jεS2

)
and θ̃n(2) =

(
θ̃′nj, jεS2

)′
. Let f̃ j(x) =

β̃0j + β̃ jx + g̃j(x), jεS2.The oracle estimator of the coefficients of the linear components
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is β̃n1 = (X′(1)X(1))
−1X′(1)

(
y−∑jεS2

f̃ j(x)
)

. Without loss of generality, suppose that

S1 = {1, . . . , q}. Write θ̃n =
(

O′qmn , θ̃′(2)

)′
, where Oqmn is a (qmn)-dimensional vector

of zeros and θ̃n(2) =
(

Z′(2)QZ(2)

)−1
Z′(2)Qy. θ∗ = minjεS1‖θ0nj‖ represents the minimal

coefficient norm in the B-spline expansions of the nonlinear components. Consider a non-
negative integer k and take 0 < α ≤ 1, such that d = k + α > 0.5. Now, let’s define G as the
set of functions g on [0, 1], where the kth derivative g(k) exists and adheres to a Lipschitz
condition of order α:

∣∣∣g(k)(s)− g(k)(t)
∣∣∣ ≤ C|s− t|α for s, tε[a, b].

Theorem 1. Suppose that mn = O
(

n
1

2d+1

)
, 1√

mnγ is less than the smallest eigenvalue of Z′QZ/n,

and 1

m
2d−1

2
n (θ∗−λγ)

+ 1
λ
√

n → 0 .

Then under (C1–C3), P
(

θ̂n 6= θ̃n

)
→ 0 , Consequently, P

(
Ŝ1 = S1

)
→ 1, P

(
β̂n1 = β̃n1

)
→ 1 and P

(
‖ f̂nj(x)− f̃nj(x)‖2 = 0, jεS2

)
→ 1 . Hence, given the conditions specified in

Theorem 1, the proposed estimator can effectively differentiate between linear and nonlin-
ear components with a high probability of accuracy. Additionally, the proposed estimator
exhibits the oracle property, implying that it aligns with the oracle estimator’s performance,
assuming the knowledge of linear and nonlinear component identities, except for events
with vanishingly low probabilities.

Theorem 2. Suppose (C1)–(C3) hold, we have

p

∑
j=1
‖ f̂nj(x)− f0j(x)‖2

2 ≤ Op

(mn

n

)
+ O

(
1

m2d
n

)
+ O(mnλ2)

Theorem 2 provides the convergence rate of the proposed estimator within the non-
parametric additive model, encompassing partially linear models as specific instances. Specif-
ically, if we assume the second-order differentiability (d = 2) of each component and let
mn = O

(
n

1
5

)
and λ = n−

1
2+δ tend toward small δ > 0, then ∑

p
j=1 ‖ f̂nj(x) − f0j(x)‖2

2 =

Op

(
n−4/5

)
, representing the optimal convergence rate in non-parametric regression. We will

now explore the asymptotic distribution of β̂n1. Denote Hj = hj = (hk : kεS1)
′ : Eh2

jk(u) < ∞,
jεS2. Each element of Hj is a |S1|-vector of square-integrable functions with mean zero.

Let the sumspace H =
{

h = ∑jεS2
hj : hjεHj

}
. The projection of the centered covariate

vector x(1) − E
(

x(1)
)

εRq onto the sumspace H is defined to be the
(
h∗1 , . . . , h∗r

)′ with

Eh∗j
(

xj
)

= 0, j ≤ Ŝ2 that minimizes W(h) = E‖x(1) − E
(

x(1)
)
− ∑j∈S2

hj
(
xj
)
‖2. For

x(2) =
(

xj : jεS2
)
, denote h∗

(
x(2)

)
= ∑j∈S2

h∗ j
(
xj
)
. Therefore, the orthogonal projec-

tion h∗ onto H is well-defined and unique. Additionally, each individual component h∗ j is
also well-defined and unique.

Theorem 3. Assuming the conditions stated in Theorem 1 and the fulfillment of (C4), and given

that A is non-singular. Then,
√

n
(

β̂n1 − β(1)

)
d→ N(0, Σ), where β(1) =

(
β j : jεS1

)′ and

Σ = σ2 A−1.

Theorem 3 provides sufficient conditions under which the proposed estimator β̃n1 of
the linear components in the model is asymptotically normal with the same limit normal
distribution as the oracle estimator β̃n1. Suppose that the first q addable parts are important
functions, and the remaining p− q are non-important functions. Let A0 = {q + 1, · · · , p}
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be the set of non-important functions. Let X =
(
X1, · · · , Xp

)
, Σ = X′X/n, for any A ⊆

{1, · · · , p}, XA =
(
Xj, j ∈ A

)
, ΣA = X′AXA/n, |A| represents the cardinality of set A and

dA = |A|dn.

5. Numerical Simulation and Empirical Analysis
5.1. Numerical Simulation

Simulation is employed to assess the performance of the group MCP method in
finite samples. Two examples are included in the simulation. For each of these simulated
models, we consider two sample sizes (n = 100, 200) and conduct a total of 100 replications.
We examine the following four functions defined on [0, 1], f1(X1) = sin(2X1), f2(X2) =
cos(X2), f3(X3) = 5X3, and f4(X4) = e−X4 − 2.5. In the implementation, we utilize
B-splines with seven basis functions to approximate each function.

Based on n = 200, the black solid line is the actual function, and the red dashed line
is the Group MCP estimation function curve. It can be seen from Figure 1 that when the
Group MCP method is used for B-spline expansion, the estimated function fits the real
function well. In addition, we do not consider the intercept term of the model, Xj, j =
1, 2, 3, 4, 5, 6 and ε independent and identically distributed in N(0, 0.1), some functions as
follows: f1(X1) = 3X1, f2(X2) = 2sin(2X2), f3(X3) = X2

3 − 0.75, f4(X4) = e−X4 − 25/12.
Let q = 6. Consider the model y = 3 f1(x1) + 4 f1(x2) − 2 f1(x3) + 8 f2(x4) + 6 f3(x5) +
5 f4(x6) + ε. In this model, the first three variables demonstrate a linear effect, while the
last three variables exhibit a nonlinear effect. When n = 200, the black solid line is the
actual function, and the red dashed line is the Group MCP estimation function curve.
Figure 2 demonstrates that for the non-parametric additive accelerated failure time model,
the non-parametric component estimates fit the true function well after B-spline estimation.
In Figures 1 and 2, the red dashed line represents the estimated function, while the black
solid line represents the real function.
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Table 1 displays simulation results based on 1000 replications. The columns provide
the following information: the average number of selected nonlinear components (NL),
the average model error (ER), the percentage of occasions on which the correct nonlinear
components are included in the selected model (IN%), and the percentage of occasions on
which the exact nonlinear components are chosen (CS%) in the final model. To compare
the computational efficiency of group Lasso and group MCP, using time units in minutes
(Time). The standard errors corresponding to these values are enclosed in parentheses.
The Group MCP penalty outperforms the Group Lasso in terms of both the percentage of
occasions on which the correct nonlinear components are included in the selected model
(IN%) and the percentage of occasions on which the exact nonlinear components are chosen
(CS%) in the final model. As the sample size increases from 100 to 500, both methods
exhibit improved performance in terms of including all the nonlinear components (IN%)
and selecting the exact correct model (CS%). The computational efficiency of group MCP
surpasses that of group Lasso. This improvement is expected as larger sample sizes provide
more information about the underlying model. Table 2 shows the number of times each
component is estimated as a nonlinear function. Table 2 shows that the Group MCP method
is more accurate in distinguishing between linear and nonlinear functions compared to
the Group Lasso. Additionally, the Group MCP penalty method results in smaller mean
squared errors, indicating more accurate estimation. The research demonstrates that the
proposed approach using the Group MCP penalty is effective in distinguishing between
linear and nonlinear components in simulated models, thereby enhancing model selection
and estimation accuracy.
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Table 1. The performance of group LASSO and group MCP.

Method NL ER IN% CS% Time (min)

p = 6 n = 100

group LASSO 1.25 0.31 100 100 2.51
(1.14) (0.16) (0.00) (0.00)

group MCP 2.35 0.24 100 100 1.23
(1.01) (0.15) (0.00) (0.00)

p = 6 n = 200

group LASSO 0.26 0.15 100 100 4.49
(0.51) (0.05) (0.00) (0.00)

group MCP 0.69 0.13 100 100 3.47
(0.67) (0.04) (0.00) (0.00)

p = 6 n = 500

group LASSO 0.19 0.11 100 100 7.36
(0.24) (0.01) (0.00) (0.00)

group MCP 0.36 0.08 100 100 6.18
(0.27) (0.01) (0.00) (0.00)

Note: the corresponding standard errors are in parentheses.

Table 2. Mean square error of important functions.

Method f1(.) f2(.) f3(.) f4(.) f5(.) f6(.)

n = 100

Group Lasso 24.44 52.29 20.00 79.21 18.44 67.58
Group MCP 22.88 45.17 17.79 69.88 20.80 111.05

n = 200

Group Lasso 28.30 43.77 11.48 68.04 10.90 23.08
Group MCP 24.55 38.93 9.68 62.85 15.73 25.45

n = 500

Group Lasso 30.40 23.78 8.17 32.34 4.92 6.13
Group MCP 27.62 16.82 5.46 26.15 2.37 8.54

5.2. Lung Cancer Data Example

This study is based on survival analysis using the survival time data of 442 lung
cancer patients and the gene expression data of 22,283 genes extracted from tumor samples.
These data are available from the official website of the National Cancer Institute (http:
//cancergenome.nih.gov/) (accessed on 12 November 2023). In the original data, a two-
column matrix denoted as T represents the survival data. The first column contains survival
time in months, while the second column serves as an indicator function where 1 represents
the state of death, and 0 represents the state of survival. The measured gene expression
data are represented as X, with 22,283 gene expressions. The objective of this study is to
identify covariates with nonlinear effects on survival time.

Due to the high dimensionality of the original data (p = 22,283, n = 442), it is necessary
to transform the data from high-dimensional to low-dimensional. Assuming that the
correlation coefficient between the independent variable and the dependent variable is
equal to 0, the alternative hypothesis posits that the correlation coefficient between the
independent variable and the dependent variable is not equal to 0. R programming
language program is used to calculate the p-value for the correlation coefficient between
each gene expression and survival time. When the p-value is less than the critical value, the
null hypothesis is rejected in favor of the alternative hypothesis, indicating a significant
correlation between the independent variable and the dependent variable. A smaller p-
value provides stronger evidence of the association between gene expression and survival

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
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time. In this study, the p-values of the independent variables are computed and sorted
in ascending order, and the top 50 independent variables with the smallest p-values are
selected as input variables. The remaining gene expressions are discarded, achieving
initial dimensionality reduction. As a result, the original data are transformed into lower
dimensional data (p = 50, n = 442), and then covariates with nonlinear effects on survival
time are identified.

Figure 3 displays the frequency distribution histograms of four randomly selected gene
expressions, indicating that the distributions of these four gene expressions are all skewed.
Based on the skewed data, this study considered using a non-parametric additive AFT
model, with B-spline basis functions used to expand each covariate in the non-parametric
part. The Group MCP method was employed to select and compress the coefficients of the
B-spline basis functions, ultimately identifying gene expressions with nonlinear effects on
survival time. Furthermore, Table 3 compares the results selected by the Group Lasso and
Group MCP penalization methods. Under the Group Lasso penalization, all gene symbols
were selected, indicating a tendency to over-select nonlinear variables. In contrast, Group
MCP outperformed Group Lasso in selecting nonlinear variables. Genes 219720_s_at,
214991_s_at, and 210802_s_at were simultaneously selected, indicating that these three
gene expressions are nonlinear variables. The three selected genes are associated with lung
cancer research and can potentially be used to identify cancer biomarkers, understand
tumor biology and develop treatment strategies. In order to comprehensively assess the
significance of these specific genes in cancer research, further experimentation and literature
studies are required. This decision may necessitate the support of specialized knowledge
in the field of cancer biology and experimental data. This also represents a future direction
for research.
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Table 3. The genes selected by Group Lasso and Group MCP.

Gene Symbol gLASSO gMCP

208033_s_at
√

212242_at
√

211671_s_at
√

216364_s_at
√

205944_s_at
√

214143_x_at
√

217155_at
√

202734_at
√

219720_s_at
√ √

214991_s_at
√ √

214944_at
√

215544_s_at
√

217106_x_at
√

216180_s_at
√

208917_x_at
√

210802_s_at
√ √

221781_s_at
√

55583_at
√

204446_s_at
√

The analysis compares the selection results of Group Lasso and Group MCP. Table 3
provides that all gene symbols are selected by the Group Lasso penalty, that is,

√
indicates

that the gene has been selected. This suggests that Group Lasso tends to over-select nonlin-
ear variables, potentially including some variables that do not have true nonlinear effects.
However, Group MCP performs better than Group Lasso in selecting nonlinear variables.
It offers a more effective approach to identifying genes with nonlinear relationships with
survival time. Lastly, genes with the symbols 219720_s_at, 214991_s_at, and 210802_s_at are
simultaneously selected by all penalty methods. This consistent selection across different
penalty methods confirms with certainty that these three gene expressions have nonlinear
effects on survival time. These results underscore the superior performance of the Group
MCP penalty method in accurately identifying genes with nonlinear relationships in high
dimensional data, particularly in the context of survival time analysis. The selection of
the same genes by multiple penalty methods strengthens the confidence in their nonlinear
effects on survival time.

6. Concluding Remarks

This paper introduces a semi-parametric regression pursuit method for distinguishing
between linear and nonlinear components in semi-parametric partially linear models.
This approach enables the adaptive determination of parametric and non-parametric
components in the semi-parametric model based on the available data. However, this
method deviates from the standard semi-parametric inference approach, where parametric
and non-parametric components are pre-specified before analysis. The study demonstrated
that the proposed method possesses oracle properties. In other words, it performs as well
as the standard semiparametric estimator, assuming that the model structure is known
with high probability. The authors also conducted a simulation study that confirmed the
effectiveness of the proposed method, particularly in finite sample sizes. It is worth noting
that the semi-parametric regression pursuit method is primarily applied to partially linear
models where the number of covariates (p) is less than the number of observations (n).
However, genomic datasets may have a higher dimension (p > n). In cases where p > n
and the model is sparse, this implies that the number of significant covariates is much
smaller than n; it may be necessary to perform dimensionality reduction first to reduce the
model dimension. Once the dimension is reduced, the proposed semiparametric regression
pursuit method can be applied effectively to distinguish linear from nonlinear components.
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This research provides a valuable tool for model selection and feature identification in
semiparametric modeling, and it highlights the potential need for dimensionality reduction
in high-dimensional datasets.

This paper exclusively investigated the application of the group MCP penalty method
to high dimensional non-parametric additive accelerated failure time models. Further
research can be conducted to study the performance and theoretical properties of the group
MCP penalty method in high-dimensional semiparametric accelerated failure time models.
Additionally, its characteristics can be elucidated based on single-index models.
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