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Abstract: Cardiovascular diseases (CVD) are amongst the leading causes of death worldwide. The
Internet of Things (IoT) is an emerging technology that enables the healthcare system to identify car-
diovascular diseases. In this article, a novel cardiovascular disease prediction framework combining
Predator Crow Optimization (PCO) and Deep Neural Network (DNN) is designed. In the proposed
PCO-DNN framework, DNN is used to predict cardiac disease, and the PCO is utilized to optimize
the DNN parameters, thereby maximizing the prediction performances. The proposed framework
aims to predict and classify cardiovascular diseases accurately. Further, an intensive comparative
analysis is performed to validate the obtained results with the existing classification models. The
results show that the proposed framework achieves an accuracy of 96.6665%, a precision of 97.5256%,
a recall of 97.0953%, and an F1-measure of 96.4242% and can outperform the existing CVD predictors.

Keywords: smart healthcare system; cardiovascular disease; Deep Neural Network; high blood
pressure; Predator Crow Optimization

MSC: 92B20

1. Introduction

Cardiovascular diseases or diseases of the heart and circulatory system are a leading
cause of severe illness and death worldwide. Diseases of the cardiovascular system manifest
as cardiovascular events, which are a disruption of the circulatory system presenting
as myocardial infarction, stroke, dizziness, etc. [1]. A number of risk factors, such as
diabetes, high blood pressure, and high cholesterol, have been identified to contribute to
cardiovascular diseases. In spite of technological advancements, it is challenging to detect
early stage cardiac diseases in most settings [2]. The occurrence of a cardiac disease has
the potential to drastically limit a person’s productivity and well-being [3]. Cardiac arrest
can manifest as sudden collapse of the patients. Medical tools, such as defibrillators, help
provide a high-energy shock to the heart during cardiac arrest aiding the reactivation of
the normal heart activity and recovery of the patients [4]. The World Health Organization
(WHO) reports that chronic diseases have significantly increased in wealthy nations in
the past few decades. This has been mainly attributed to lifestyle diseases and the ageing
population. Comorbidity, or multiple illnesses in the same person, is another crucial factor
complicating the management of such patients [5–8]. Comorbid conditions in the elderly
are a matter of greater concern [9]. Newer technology has been increasingly utilized in the
prevention and management of such diseases in recent decades.
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Modern medical milestones are represented by 5G systems, internet services, artificial
intelligence (AI), microelectronics, big data, cloud computing (CC), and smart bioengi-
neering. These techniques are employed at every stage of sophisticated medicine [4].
The Internet of Things (IoT)’, given its capacity to assist in solving diverse health-related
problems in a highly efficient manner, has attracted the attention of scientists desirous of
contributing to this domain [10]. Examples of intelligent healthcare that can profit from the
IoT include elderly care, remote patient monitoring, wellness treatment, chronic disease
control, and supported accommodation [9,11]. Medical devices with sensors are referred to
as smart gadgets. The IoT has been shown to lower equipment costs and increase human
lifespans with the help of healthcare providers [12]. The IoT enables more effective schedul-
ing of scarce resources, facilitating the monitoring of a greater number of patients [9].
Remote healthcare monitoring can be used to predict and identify the condition early, and
people’s clinical records can be stored within the database for future use. With the use of
such technology, patients can have easy and timely access to their health records [5].

When required, patients can monitor their health using portable or wearable devices.
They can utilize remote facilities to control their homes and as virtual aids to obtain medical
advice. Experts in medicine believe that highly developed clinical decision-support tools
could be used to guide and improve medical testing. An innovative concept called the
“Internet of Medical Things” (IoMT) has emerged due to the widespread acceptance and
implementation of modern clinical instruments and support hardware for healthcare
providers [13]. The healthcare industry and the prevalence of IoT-enabled medical devices
have undergone significant transformations, offering new opportunities for healthcare
professionals and researchers [11]. These advancements allow investigators to monitor
a user’s activities through various means, including portable sensors, ingestible devices,
and embedded sensors, as well as tracking smartphone usage and gadget patterns. With
the wealth of data collected, modern technologies like artificial intelligence (AI) and deep
learning (DL) can be harnessed to gain insights into an individual’s health status [1].
Machine learning (ML) techniques, particularly deep learning, have shown promise in
population-based research for assessing cardiovascular risk, predicting cardiac events, and
identifying valuable biomarkers such as ECG signals [14].

Although several machine learning-based methods for predicting and diagnosing
cardiac diseases have emerged in recent times, there are notable limitations. Existing intelli-
gent frameworks often struggle to effectively utilize data from multiple sources, especially
when dealing with high-dimensional datasets [15]. Furthermore, traditional algorithms
typically select features from a dataset and compute their overall significance, which does
not always lead to improved accuracy in diagnosing cardiac diseases. Therefore, there is a
pressing need to address these challenges and enhance the accuracy and computational
efficiency of cardiac disease diagnosis systems, which serves as the primary motivation for
this research.

The Predator Crow algorithm-based DNN classifier is a hybrid optimization technique.
This study introduces the IoT-based identification of cardiovascular illnesses utilizing pa-
tient ECG information. The suggested Predator Crow technique is used to update the
weights of the DNN classifier, which is applied to the classification of cardiovascular dis-
eases. The input signal’s mean, variance, standard deviation, kurtosis, and skewness are
all collected to complete the classification process effectively. The results of this study
also provide a comprehensive description of the proposed paradigm, enabling the verifica-
tion of its efficacy. Additionally, a thorough evaluation of the effectiveness of traditional
categorization systems is offered to assess the superiority of the suggested approach to
cardiovascular disease identification. The proposed methods provide correct accuracy and
decrease computational time. The significant contribution of this research is summarized
as follows:

• The study focuses on designing a hybrid system for predicting cardiovascular dis-
eases, which combines PCO (Predator Crow Optimization) with DNN (Deep Neural
Networks) to create an intelligent healthcare solution.
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• Initially, an ECG (Electrocardiogram) signal database is collected and used as input
for the cardiovascular disease prediction system.

• The system employs a band-pass filter for data preprocessing and feature extraction.
This step helps clean and prepare the data for further analysis.

• The core of the system is an integrated PCO-DNN framework, where DNN is respon-
sible for predicting cardiovascular diseases, and PCO optimizes the DNN parameters
to enhance prediction performance. PCO is a nature-inspired optimization algorithm
inspired by the hunting behaviors of crows.

• The performance of the Predator Crow-DNN model is compared to that of conven-
tional models, using metrics such as accuracy, precision, recall, and F-measure. This
comparative analysis provides insights into the effectiveness of the proposed hybrid
system in predicting cardiovascular diseases.

These points provide an overview of the approach and methodology used in the
study for cardiovascular disease prediction and the evaluation of the proposed model’s
performance against traditional models.

2. Literature Survey

The field of predicting cardiovascular diseases has seen various techniques and models
developed over time, each with its own set of limitations. The need for the suggested model
arises from these limitations, and it aims to address these issues. In the medical domain,
knowledge is derived from data and experiences of medical professionals. The human
body is highly complex and susceptible to various factors, making modeling its functions
and dysfunctions a challenging and time-consuming process.

Machine learning techniques have become instrumental in using medical data for
diagnosing and forecasting various illnesses, playing a vital role in e-health systems. For
instance, in a previous study [4], Mansour et al. introduced the Crow Search Optimization-
based Cascaded Long Short-Term Memory (CSO-CLSTM) framework, which leverages
AI and convergence methodologies to identify illnesses. The CSO-CLSTM model demon-
strated strong classification rates and specificity. However, it faced challenges related to the
complexity and intricacy of the proposed system.

Another approach, as seen in the work of Kumar and Gandhi [3], involved a scaled
three-tier system for managing a large volume of wearable sensor data. Tier 1 focused
on data collected from IoT wearable sensor devices, Tier 2 employed Apache HBase to
store data from integrated IoT devices within the cloud, and Tier 3 used Apache Mahout to
create a probabilistic linear extrapolation heart disease prediction model. However, this
approach could be computationally demanding due to its sequential nature.

These examples highlight the ongoing efforts to improve disease prediction models,
and our suggested model aims to contribute to this area by addressing specific limitations
and providing a novel approach to predicting cardiovascular diseases. Mohan et al. [2] used
machine learning techniques to design a novel strategy for detecting essential traits and
enhancing cardiovascular illness prediction accuracy. The prediction model is developed
with different combinations of attributes and well-known methods to obtain higher perfor-
mance. The revolutionary techniques proposed here are simple and efficient, improving
heart disease prediction while lowering costs. Nevertheless, feature selection methods are
needed to obtain a broader view of the critical information to enhance the accuracy of heart
disease prediction.

Dami and Yahaghizadeh et al. [1] created a deep learning strategy using 5 min (ECG)
recordings. They retrieved the time–frequency characteristics of electrocardiogram data
to predict vascular catastrophes a few days before the occurrence. The Long Short-Term
Memory (LSTM) neural net was used to investigate the prospect of learning long-term
connections in the ability to detect and prevent these events swiftly. The fact that there must
be defined criteria for experimentation and evaluation since the topic is unique, however,
serves as one of the research’s shortcomings.
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Basheer et al. [5] developed a hybrid fuzzy-based tree-based method for the early
diagnosis of cardiac diseases using a constant and remote patient monitoring program.
The mixed fuzzy-based decision tree method successfully detects cardiac disorders com-
pared to previous classification methods. However, there is no fixed system or set of IoT
implementation standards. It cannot be utilized everywhere and needs to offer adequate
solutions to the issues. Kaur et al. [6] developed a healthcare system based on the IoT
and a Random Forest classifier. The developed approach improves interactivity between
patients and doctors. However, developing and deploying a healthcare system via cell
phones involves several challenges. A deep learning-based IoT health surveillance system
has been introduced by Wu et al. recently [7]. This method might help identify dangerous
disorders amongst athletes such as tumors, heart issues, cancers, etc.

On the other hand, the classifier that was used to build the model can result in overfit-
ting, complexity, and high processing costs. For example, an Internet of Things peripheral
heart rate monitoring intelligent sports wristband system was created by Xiao et al. [8] to
track changes in patient’s heart rate while engaging in athletics. The physiological parame-
ters in the constructed model focus primarily on the heart rate. Critical metrics, such as
blood pressure, need to be addressed, which is significant or a flaw in the method. Table 1
summarizes predicting cardiovascular disease using a Predator Crow Optimization-tuned
deep neural network for an intelligent healthcare system.

Table 1. Summary of surveys from the literature.

Refs. Technique Findings Advantages Disadvantages

[1] Long Short-Term Memory (LSTM)
neural net Mean accuracy The accuracy is good Non-continuous feasible

monitoring

[2] Revolutionary methods Accuracy The cost is low Increases computational time

[3] Scaled three-tier system Sensitivity
specificity The technique is simple Difficult to interrupt

[4]

Crow Search Optimization-based
Cascaded Long Short-Term

Memory (CSO–CLSTM)
framework

Accuracy High sensitivity Low recall

[5] Hybrid fuzzy-based tree-based
method

Sensitivity, specificity,
and accuracy Recall is higher When using large datasets,

the training time is extended

[6] Random Forest classifier Maximum accuracy F1-score is higher Difficult to interrupt

[7] Deep learning-based IoT Precision and F1 Decreases
computational time

The weights of the variables
are not constant

[8] The smart sports wristband system Accuracy Higher accuracy Low-dimensional data

[16] MSSO with Random Forest model Accuracy and efficiency
Greater accuracy, and

high classification
efficiency

Depends on the database’s
quality

[17] Correlation-based feature selection
and hyperparameter optimization Accuracy, AUC Increased classification

accuracy
Limitation to transferability,

and generalizability

[18] Smart healthcare system based on
Bi-LSTM

Sensitivity, specificity,
accuracy, and

f-measure

Ability to control
sequential healthcare

database

High computational time
and demands more resources

[19] Cluster-based BiLSTM F-measure, sensitivity,
and accuracy

Robustness and
transferability Instability

[20] Computational method based on
CNN Accuracy Enhanced accuracy

Depends on the consistency
and quality of the input

images
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Cenitta et al. [16] presented an integrated cardiac disease prediction model using
the modified squirrel search optimization (MSSO) and the machine learning model. This
approach incorporated the MSSO with the Random Forest algorithm for optimal feature
extraction and selection. This helps minimize the number of attributes and records in the
classification process. This model was evaluated with the ischemic heart disease database,
and the implementation results demonstrate that the designed model attained greater
efficiency in disease identification. However, the model’s reliability depends on the im-
age dataset’s quality. Reddy et al. [17] designed an effective heart disease identification
model using the optimization and principal components. This method concentrates on
feature extraction and selection. Initially, the feature extraction was performed to track the
principal elements, and then the feature selection was carried out to choose the optimal
principal element in the heart database. Further, an ensemble classification module and
hyperparameter optimization was designed for classification purpose. Optimization inte-
gration enhances the accuracy and area under the curve (AUC) of the system. However,
this method is restricted to generalizability and transferability.

Nancy et al. [18] presented a smart healthcare framework using the bidirectional-LSTM
(Bi-LSTM) to predict heart diseases accurately. This method utilizes the capacity of the
LSTM to control and regulate the sequential time-series healthcare database. The simulation
analysis illustrates that the designed framework gained 88.86% of prediction accuracy, 88.8%
of sensitivity, and 88.86% of specificity. However, this method is computationally intensive
and requires more resources.

Dileep et al. [19] developed cluster-based BiLSTM to identify and classify heart dis-
eases. This model was evaluated with the publicly available UCI heart disorder base. The
experimental outcomes are determined and manifested with the typical classifier models
like K-nearest neighbor, support vector machine, logistic regression, etc. The effectiveness
of the developed model is tested in terms of accuracy, f-measure, and sensitivity. However,
using the clustering algorithm produces various outcomes each time it is applied to the
same database.

Sharma et al. [20] introduced an innovative computational framework for accurately
identifying heart diseases. This framework utilizes the convolutional neural network (CNN)
to categorize heart disease images from the normal classes. This proposed model was
modeled in the TensorFlow platform and attained approximately 96% accuracy. However,
the outcomes of the CNN model depend on the consistency and quality of the input images,
such as noise, imaging techniques, image resolution, etc.

Challenges

• Heartbeat and Pulse Rate Monitoring: The use of a 650 nm green LED as a light source
for pulse rate monitoring is common, allowing light to penetrate various tissues.
However, the output current from photosensitive elements is typically low, making
them susceptible to external electromagnetic interference. Additionally, the electrical
signal generated by photoelectric conversion may be weak, which can pose challenges
in capturing accurate pulse information [8].

• Data Preprocessing and Feature Extraction: To ensure the quality of telemedicine
data and avoid data duplication, extracting meaningful features from raw data using
deep learning and machine learning algorithms is essential. This process helps filter
out duplicate, noisy, and inaccurate data before storage in remote cloud data centers,
thus optimizing resource utilization and avoiding potential negative health-related
consequences [7].

• Real-Time Health Surveillance: Contemporary health surveillance systems rely on
real-time analytics to provide critical information swiftly and improve response times.
However, challenges may arise due to unstable network connections and inconsistent
data flows from remote sensors, potentially affecting the efficiency of these systems [7].

• Deep Learning Model Complexity: Increasing the number of hidden units in a deep
learning model can lead to improved accuracy in training and testing procedures.
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However, it also introduces challenges such as higher processing costs, increased
model complexity, and the risk of vanishing gradient problems, which can hinder the
training process [7].

• These points highlight some of the technical and practical considerations in health
monitoring and data analysis, particularly in remote or telemedicine applications.
Addressing these challenges is crucial for enhancing the accuracy and reliability of
health-related systems and ensuring they deliver meaningful results.

3. Proposed PCO-DNN Approach for Cardiovascular Disease Prediction

A noticeable increase in wearable technology monitoring patient health, fitness, and
activities has occurred. This has long-term effects on healthcare, medical services, and the
storing private patient information. This approach also gives more information regarding
the physical evaluation and daily agenda. During the health monitoring phase, wearable
IoT devices are connected to the body to assess a range of health indicators, including
heart rate, skin temperature, blood circulation, breathing rates, muscle aches, and sugar
levels. Using the data obtained by the IoT portable tech and stored in a clinical database,
critical actions are promptly taken when a participant’s overall health shows signs of
deterioration [21].

The proposed deep neural network and Predator Crow algorithm are two different
approaches for predicting cardiac diseases. While the deep neural network is an artificial
neural network that can learn and model complex relationships between inputs and out-
puts, the Predator Crow algorithm is a nature-inspired optimization algorithm based on the
hunting behavior of predator crows. The major benefits of utilizing the DNN framework
include, the DNN provides remarkable performances on standard machine learning tasks
such as image recognition, natural language processing, etc. Thus, the DNN offers remark-
able performances in cardiac disease classification by identifying the complex patterns and
interrelationships between normal and abnormal images. Moreover, the availability of
pre-trained models in DNN makes the training process faster and reduces the computa-
tional time and resources effectively. In addition, the recent neural network structures are
complex and often create false positives and false negatives in the disease classifications
and they require large data resources for training. However, the simple structure of DNN
does not require large databases and has the tendency to generalize for unseen data. These
advantages of the DNN make it a more reliable choice for disease prediction. On the other
hand, the PCO approach is a nature-inspired optimization technique, which mimics a
crow’s hunting characteristics. It combines the exploitation and exploration methods to
search the parameter space efficiently. This approach has the capability to explore new
search space while exploiting promising areas. Moreover, it finds the global optimum
rather than the local optima and avoids convergence to suboptimal solutions. Unlike other
optimization techniques that rely on gradient data, the PCO does not require objective
function derivatives. Thus, this optimization algorithm is more suitable for optimization of
neural network parameters. Moreover, the PCO approach has fewer tuning parameters
than other optimization techniques. This feature of PCO optimization reduces the model
complexity and eliminates the need for fine-tuning. These advantages of the PCO make it
more effective for optimizing the neural network tuning parameters.

The main difference between these two approaches lies in their underlying methodol-
ogy. The deep neural network uses a supervised learning approach to train the network
with a large dataset of labeled examples. At the same time, the Predator Crow algorithm is
an optimization algorithm that aims to find the optimal set of parameters that maximize or
minimize a given objective function. The sensor readings of patients [22] are used in this
research to present a deep learning model-based technique again for diagnosing cardiac
illnesses. The doctor in the sink node takes the ECG signals to process them in such a way
as to predict the cardiovascular diseases of patients automatically.

The tuning of DNN parameters assists the system in attaining an enhanced perfor-
mance in predicting cardiovascular diseases. Figure 1 shows a graphical representation
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depiction of the suggested seizure forecasting model. Generally, the data are collected using
the BSN, which is processed to detect the presence of cardiovascular diseases. This research
analyzes the cardiac vascular dataset obtained by the IoT system. The raw ECG signal
may include certain ‘noise’ or artifacts due to chest movement during breathing, patient
movements, inadequate skin preparation, etc. These artifacts in the ECG signal affect the
edge function and hence change the shape of the waveform. Therefore, the ECG signal
needs to be pre-processed precisely for further action, such as the extraction of features and
the classification of the signal by using a DNN classifier. Digital filters are significant in
analyzing the low-frequency components in ECG signals. Some biomedical signals possess
low frequency, and removing baseline wander (BLW) and power line interference is an
essential step at the pre-processing stage of the ECG. Thus, the proposed research uses the
band-pass filter to remove unwanted artifacts in the ECG signal [23].
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Extracting characteristics from the pre-processed input ECG data is a crucial next step
in the suggested cardiovascular disease detection phase. The gray-level co-occurrence
matrix (GLCM) feature extraction strategy determines the feature vector from a regular
vector. A matrix that displays various combinations of grey levels that can be found in
a picture is known as a “gray-level co-occurrence matrix” (GLCM). The various areas in
the images could be distinguished due to the textural elements that the GLCM derived
from the images. It involves selecting the features or data that are the most significant
to execute the detection process. The statistical features are the most important for the
proposed cardiovascular disease detection strategy since they reveal even the most minor
changes in the ECG signal, improving classification accuracy [24]. The mean, variance, and
standard deviation can capture changes in the signal’s average, spread, and distribution.
Kurtosis and skewness can capture changes in the shape and symmetry of the distribution.
While these measures may not capture all possible changes in the signal, they can still help
identify patterns and trends in the data. The mean, variance, standard deviation, skewness,
and kurtosis are the statistical properties that support the validity of the results. Further, to
improve cardiac disease detection, it is necessary to extract the time and frequency-based
features. In the proposed work, a Fast Fourier Transform (FFT) was employed for tracking
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and extracting the time and frequency-based features. The statistical and time-frequency
feature analysis enables advanced and precise disease prediction. The accuracy of the
suggested primary heart disease feasibility is improved by carefully choosing essential
features. The DNN network uses the extracted features as an input to classify the ECG
signal as normal or abnormal.

3.1. Procedure for PCO-Tuned DNN

Machine learning’s DNN subfield is motivated by the operations and procedures of
the human mind. The DNN model is chosen above conventional machine learning methods
for various reasons. First, standard learning algorithms only employ a single stacking
processing layer, which cannot handle complex natural data with high nonlinearity. Second,
to select the best data for precise prediction, standard algorithms for machine learning
require technical or human skills [7]. Human skills deal with people, whereas technical
skills deal with things. An instruction set known as a “learning algorithm” is used in
machine learning to enable a software program to mimic how a human becomes more
adept at classifying particular types of information.

The input image, output layer, and multiple hidden layers comprise the bulk of
DNN models. An output connection is a transfer function that mixes the inputs. One or
more weighted input connections formulate a node, additionally known as a neuron or a
perceptron. After that, nodes are arranged into layers to form a network. Epoch count is
regarded as a hyperparameter. It specifies how often the learning algorithm must process
the complete data collection. The underlying model parameters have been updated once
throughout an epoch for each sample in the training dataset. The DNN model’s hidden
units are crucial components and actively participate in learning. Although adding hidden
layers to a model during training can improve its effectiveness, doing so has a price. That
price is in the form of processing time, the complexity of the model, and the prediction
accuracy [25,26]. Equation (1) can be used to formalize the DNN model as

qr = f

(
Gr +

a

∑
w=1

Lwψr
w

)
(1)

where qr represents the output at the layer r, the bias value, and the layer r weight through
the neuron w. The term Lw signifies the feature input and f is the nonlinear activation of
the Tanh function. It can be designed using Equation (2).

f (x) =
ex

1 + ex (2)

Movable weights connect the synapses for each layer. The suggested technique is
utilized to update the weights of the prediction model to improve the forecast accuracy of
the proposed heart disease prediction module. In addition, it inherited the meal-seeking
distinctive traits of both raider search agents and crow search agents.

3.2. Proposed Predator Crow Algorithm in DNN

The proposed Predator Crow Optimization technique involves the tuning of the
weights of the DNN classifier in such a way as to perform an accurate prediction of cardio-
vascular diseases. To provide a better solution for the optimization problem, the algorithm
adopts the hunt characteristics of the raiding iteration of the algorithm [27] and the mem-
ory characteristics of the crow search agent [28]. Predator Crow Optimization (PCO) is a
nature-inspired optimization algorithm that emulates the hunting behavior of predator
crows. Compared to other popular optimization algorithms, such as the genetic algorithm
(GA), particle swarm optimization (PSO), and ant colony optimization (ACO), PCO offers
several advantages. On the other hand, GA, PSO, and ACO are popular optimization
algorithms, and PCO offers distinct benefits in efficiency, robustness, simplicity, conver-
gence, and scalability. These advantages make PCO a promising optimization algorithm
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for solving complex real-world problems. The following are the steps of the Predator Crow
Optimization algorithm:

Step 1: Population Initialization
The raiding search agents’ population is set up. In the initial trial, the initial answer is

dispersed uniformly throughout the search area as

S0 = Smin + rand(Smax − Smin) (3)

where Smin and Smax are the variables’ lower and upper bounds, and rand denotes the
random variable in the range between 0 and 1. The raiding search agents’ population is
formulated as

Srs
s,t; (1 ≤ s ≤ τ) (4)

where τ represents the overall number of raiding search agents, and t denotes the search
area’s size. The prey population is specified in the same way as the search agents, and it is
represented as Sprey

s,t .
Step 2: Process States of Raiding Search Agents
The three stages of the optimization problem are unit speed ratio, high-speed ratio,

and then low flow ratio. Each phase has a specific iteration period, determined by the
raiding search agents’ and prey’s velocity.

Phase 1: High-Velocity Ratio
The raiding search agent moves slower than the prey during this phase, which happens

early in the repetition when the exploring location is crucial. The best strategy for the
raiding search agent is to remain stationary throughout this time, which may be expressed
mathematically as

While Q < 1
3 Qmax

Ssize,i =
→
YA ⊗

(
→
Jrs
i −

→
YA ⊗

→
Jprey
i

)
; i = 1, 2, . . . , s

→
Jprey
i =

→
Jprey
i + C.

→
Y ⊗ Ssize,i


(5)

where Ssize,i represents scalar, YA is a vector of random numbers corresponding with Brow-
nian movement, C is a constant with the value of 0.5, the representation ⊗ demonstrates
entry-wise multiplication, Y is a random number changing between 0 and 1, Q represents
the present iteration, and Qmax represents the extreme iteration. This is the first half of the
cycle, and it entails a faster rate of exploration.

Phase 2: Unit Velocity Ratio
During the optimization process, when the search agent and the prey have similar

velocities while actively pursuing their respective target, there comes a point at roughly the
halfway mark of the process. At this stage, the focus shifts from exploration to exploitation.
In this phase, approximately half of the population engages in the discovery phase, while
the other half takes part in the exploitation phase.

This transition from exploration to exploitation can be expressed mathematically to
formalize how the population is divided and how these agents work during this specific
phase of the optimization process. The specific mathematical expressions and equations
may depend on the optimization algorithm or method being used in the context. This can
be expressed mathematically as follows:

While 1
3 Qmax < Q < 2

3 Qmax

Ssize,i =
→
YR ⊗

(
→
Jrs
i −

→
YR ⊗

→
Jprey
i

)
; i = 1, 2, . . . , s/2

→
Jprey
i =

→
Jprey
i + C.

→
Y ⊗ Ssize,i


(6)
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where Ssize,i represents scalar, and YR is a vector of random numbers whose distribution is
determined by the Levy distribution. The operation for the second half of the population is
written as follows:

While 1
3 Qmax < Q < 2

3 Qmax

Ssize,i =
→
YA ⊗

→YA ⊗
→
Jps
i −

→
Jprey
i

; i = s/2, . . . , s

→
Jprey
i =

→
Jprey
i + C.M⊗ Ssize,i


(7)

M =

(
1− Q

Qmax

)(2 Q
Qmax

)

(8)

where Ssize,i represents scalar, and YA is a vector of random numbers; M is a controllable
parameter that helps regulate the raiding search agent’s speed.

Phase 3: Low-Velocity Ratio
At this stage, the raiding search agent moves more quickly than the prey, which

suggests a strong capacity for exploitation. The following is a description of this stage:

While Q > 2
3 Qmax

Ssize,i =
→
YR ⊗

→YR ⊗
→
Jps
i −

→
Jprey
i

; i = 1, 2, . . . , s

→
Jprey
i =

→
Jprey
i + C.M⊗ Ssize,i


(9)

where Ssize,i represents scalar, and YR is a vector of random numbers. This phase aids raid-
ing search agents in triggering the Levy tactic, which causes the prey to adjust its position.

Step 3: Update of Position
The raiding search agents create long hops over many dimensions to locate the prey.

This longer hop prevents the algorithm from becoming stuck in a locally optimal solution.
As a result, the prey’s location can be updated as follows:

Jprey
i+1 = Jprey

i + M

(
→

Srs
min +

→
Y ⊗

→
Srs

max −
→

Srs
min

)
⊗
→
H (10)

This is the usual equation for updating the prey’s position using raiding search agents,

where
→
H denotes a binary vector with arrays of ones and zeros. The convergence criterion

may not be ensured if only the first stage of the procedure is completed, and the other two
steps are skipped. Raiding search agents are additionally not allowed to catch the fittest
prey, contributing to improved position updating for the best outcome. As a result, the
raiding search agents’ characteristics must be improved, which is why the crow search
agents’ features are included in the suggested optimization system. Regardless of size,
the crow search agents are clever agents with giant brains. They have heightened self-
awareness and the ability to construct tools. Even after several months, they recall the faces
and food locations. Crows are known as effective search agents because they can establish
flocks, remember where food has been placed, follow one another to procure it, and watch
over the young. Consider how a crow search agent e follows a fresh crow search agent
to set up a new location in the search area j from a randomly chosen flock of crow search
agents [25]. The crow search agent’s new position i is stated as follows:

Jcs
e,i+1 = Jcs

e,i + rand× FLe,i ×
(
memj,i − Jcs

e,i
)

(11)
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where Jcs
e,i represents the eth crow search agent position at ith iteration, memj,i denotes the

memory status of the jth crow search agent, rand denotes a random number that varies
between 0 and 1, and FLe,i is the flight length. Finally, the hybridized expression combining
the characteristic features of both the raiding search agent and crow search agent (JPC

i+1)
with equal importance is obtained as

JPC
i+1 = 0.5Jrs

i+1 + 0.5Jcs
i+1 (12)

JPC
i+1 = 0.5

[
Jprey
i + M

(
→

Srs
min +

→
Y ⊗

→
Srs

max −
→

Srs
min

)
⊗
→
H

]
+ 0.5

[
Jcs
e,i + rand× FLe,i ×

(
memj,i − Jcs

e,i
)]

(13)

JPC
i+1 =

1
2

{
Jprey
i + M

(
→

Srs
min +

→
Y ⊗

→
Srs

max −
→

Srs
min

)
⊗
→
H + Jcs

e,i + rand× FLe,i ×
(
memj,i − Jcs

e,i
)}

(14)

The typical equation of the Predator Crow Optimization method, which includes the
properties of the raiding search agent and crow search agent, is given above.

Step 4: Fitness Determination
The ability of all predator crow search agents to recollect the location where superior

foraging occurs determines their fitness. Therefore, the fitness of each iteration is compared
to the current fitness, and if a search agent with higher fitness is found, it is replaced with
the existing one.

Step 5: Termination Condition
Until the terminating condition has been satisfied, the procedure outlined above is

repeated; after that, the algorithm terminates. This approach involves determining the
DNN’s weights to predict cardiovascular diseases accurately. The pseudocode for the
suggested optimization technique is shown in Algorithm 1. Figure 2 presents the flowchart
of the designed model.

Algorithm 1: Pseudocode of the proposed Predator Crow Optimization algorithm

1. Input: Srs
s,t; (1 ≤ s ≤ τ)

2. Initialize the population of predator crow search agents
3. Initialize maximum iteration Qmax
4. Evaluate fitness function for all predator crow search agents
5. Process states of raiding search agents
6. High-velocity ratio
7. If Q < 1

3 Qmax
8. Unit velocity ratio
9. Update position based on Equation (5)
10. Else if 1

3 Qmax < Q < 2
3 Qmax

11. Update position based on Equation (6) for the first half of the population
12. Update position based on Equation (7) for the next half of the population
13. Low-velocity ratio
14. Else if Q > 2

3 Qmax
15. Update position based on Equation (9)
16. Update memory
17. Update position based on Equation (11)
18. Evaluate the fitness of all predator crow search agents
19. If f itnessold < f itnessnew
20. Replace the old solution with the new solution
21. Return JPC

i+1
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4. Results and Discussion
4.1. Experiment Setup

The experiment was conducted using Python programming language, installed on
a 64-bit Windows 10 computer with 32 GB of RAM. The experiment is conducted for a
population size of 100.

4.2. Database Description

The CVD database is the dataset used in the proposed cardiovascular disease pre-
diction module. To evaluate the proposed framework, five different publicly available
databases are used, namely, Heart Disease UCI [29], Cardiovascular Disease Dataset (CDD),
Cleveland Clinic Heart Disease (CCHD), Hungarian Institute of Cardiology Heart Disease
(HICHD), and Swiss Heart Disease (SHD). These databases are collected from the Kaggle
site. The databases contain a total of 76 attributes, but the analysis makes use of only 14 spe-
cific features. These 14 features are sex, cholesterol (chol), exercise-induced angina (exang),
age, thalassemia type (thal), chest pain type (cp), diagnosis of heart disease (num), rest-
ing electrocardiographic results (rstecg), fasting blood sugar (fbs), ST depression induced
by exercise relative to rest (oldpeak), and slope of the peak exercise ST segment (slope).
Among these features, the target parameter “target” is used to represent the presence of
heart disease. It can take values ranging from 0 to 4, but for practical purposes, it is often
simplified into a binary classification problem, where 0 represents the absence of heart
disease, and 1 represents the presence of heart disease.
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This binary representation simplifies the problem, making it easier to classify individ-
uals into two groups: those without heart disease and those with heart disease, which is a
common approach for practical healthcare applications.

In this research, various datasets have been used to evaluate the effectiveness of ma-
chine learning and deep learning models in predicting and classifying cardiovascular heart
disorders. Here’s a brief overview of the datasets: The UCI Heart Disease Database consists
of 303 records and is a well-known resource for studying heart conditions. Cardiovascular
Disease Dataset: This extensive dataset contains a substantial 70,000 instances of cardiovas-
cular disease, making it a valuable resource for researching these conditions. Cleveland
Clinic Heart Disease: While smaller in size with 303 samples, this dataset still provides a
significant amount of data for analysis. Hungarian Institute of Cardiology Heart Disease
Dataset: With 294 cases, this dataset offers additional information for researchers to draw
conclusions from. Swiss Heart Disease Dataset: This dataset includes data from 303 pa-
tient samples and is a valuable resource for researchers studying cardiovascular illnesses.
These datasets serve as the foundation for evaluating the performance of various machine
learning and deep learning models in predicting and classifying cardiovascular disorders.
Table 2 is likely a summary that provides details about the characteristics and attributes of
these datasets, facilitating a better understanding of the data used in this research.

Table 2. Listed dataset attributes.

Sl. No. Attributes Description

1. Sex Gender (Female = 0, and male = 1)

2. Age Patient age

3. Trestbps Pressure of blood

4. Cp Chest pain (Asymptotic = 4, non-anginal pain = 3, atypical angina = 2,
and typical angina = 1)

5. Fbs Blood sugar level
(fasting = 1 > 120 mg/dL and otherwise = 0)

6. Chol Cholesterol sample

7. Thalach Utmost heart rate achieved

8. Restecg ElectroCardioGraphic results (left ventricular hyperthropy = 2, ST-T
wave abnormality = 1 and normal = 0)

9. Oldpeak Depression

10. Exang Induced angina during exercise (yes = 1 and no = 0)

11 Ca Main vessels

12. Thal Thalassemia (reversible defect = 7, fixed defect = 6 and normal = 3)

13. slope Peak of exercise

14. Num Heart disease diagnosis (Present = 1 to 4 and absence = 0)

Ethical Considerations

The utilization of patient data from multiple public datasets for cardiovascular disease
prediction is supported by strict ethical considerations. These considerations encompass
patient privacy, informed consent, and data usage transparency. The data sources, including
the Heart Disease UCI, CDD, CCHD, HICHD, and SHD, have followed ethical protocols in
data collection.

4.3. Training and Testing Performance

The outcome evaluation of the study involves accessing training and testing perfor-
mances. Generally, the DL models are validated in terms of accuracy and loss in the training
and testing. The performance evaluation in the training and testing process determines
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the model’s ability to learn the disease patterns. Moreover, it evaluates the proposed
method’s efficiency for unknown data. The proposed work assesses the training and testing
performances over increasing the epochs (0 to 100). The datasets were arbitrarily divided
into training data (70%) and validation data (30%) for each indicator utilized in prediction
tasks. This partitioning strategy is widespread and commonly used in machine learning to
ensure that models are trained on a substantial portion of the data. In contrast, a distinct
set is used to evaluate their generalization performance. The convergence of the developed
model was evaluated based on training and validation accuracy and losses, which indicate
how well the model suits the data and its ability to make accurate predictions (Figure 3).
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To evaluate how well the proposed PSO-DNN system operates on the training dataset,
we look at its training accuracy. This metric measures how well the model fits the training
data and how correctly it detects and categorizes cardiac disorders given the input data by
comparing the model’s projected outputs to the actual labels in the training set. UCI, CDD,
CCHD, HICHD, and SHD are the databases used to test the convergence model. Accuracy
in training was about 0.96, 0.93, 0.94, 0.9, and 0.95 across these datasets. This accuracy rate
represents the percentage of cases in the training dataset that were properly labeled.

The number of errors made by the proposed model on the training dataset is what we
call the training loss. More precise illness categorization is predicted by a smaller training
loss. The training loss of the model is shown in Figure 4 for several heart disease datasets.
The suggested model produced very low error rates of 0.04, 0.07, 0.06, 0.09, and 0.05 for
UCI, CDD, CCHD, HICHD, and SHD, respectively. This high degree of accuracy during
training is a direct result of the developed model’s ability to reduce training loss, as seen by
the low error rates observed.

The training accuracy of the designed model, as depicted in Figure 3, demonstrates an
increase over the course of iterations. This indicates that, as the model undergoes training,
it becomes more adept at correctly classifying the data in the training set, resulting in
higher accuracy.

Conversely, the training loss reflects the discrepancy between the actual labels and the
labels predicted by the model in the training set. Typically, training loss is computed using
functions such as mean square error (MSE) or entropy loss. These loss functions quantify
the degree of error between the predicted values and the ground truth labels, providing a
measure of how well the model aligns with the training data during the training process.
The observed increase in training accuracy and the monitoring of training loss are common
practices in machine learning and deep learning to assess the model’s learning progress
and convergence towards accurate.
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Figure 4. Training loss validation.

The validation accuracy of the developed PCO-DNN model is presented in Figure 5
and is evaluated in relation to the number of iterations. Validation accuracy reflects the
model’s performance on unseen data, indicating how well it generalizes to previously
unseen samples. This is determined by comparing the actual labels to the labels predicted
by the model on the validation dataset. For various databases, including UCI, CDD,
CCHD, HICHD, and SHD, the designed model achieved high validation accuracy levels.
Specifically, it attained validation accuracy rates of approximately 0.94, 0.90, 0.92, 0.89, and
0.93 for these datasets, respectively. These high accuracy values suggest that the PCO-DNN
model generalizes well to new, previously unseen data, demonstrating its robustness and
effectiveness in making accurate predictions beyond the training dataset.
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The validation loss, like the training loss, measures the disparity between the model’s
predicted labels and the actual labels on the validation dataset. Figure 6 illustrates the
validation loss of the designed model across different databases. It provides an estimate
of how effectively the developed framework performs on unseen data, reflecting the
model’s ability to make accurate predictions on previously unobserved samples. For
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various databases, including UCI, CDD, CCHD, HICHD, and SHD, the designed model
achieved low validation loss values. Specifically, the validation loss for these databases
was approximately 0.05, 0.09, 0.08, 0.1, and 0.7, respectively. These low validation loss
values, in conjunction with the high training and validation accuracy, indicate that the
designed model demonstrates strong performance and effectively minimizes errors on
both the training and validation datasets. This intensive training and testing performance
analysis verified that the proposed framework acquired improved performances like greater
accuracy and reduced loss. This improved performance demonstrates that the proposed
PCO-DNN method learns the disease patterns and offers high generalization ability (it
accurately predicts the unseen ECG data). These improved results illustrate that PCO
integration with DNN accurately predicts CVD on unseen ECG data. This suggests the
model’s ability to generalize well and make accurate predictions on new data, highlighting
its overall effectiveness.
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4.4. Evaluation Matrix

The confusion matrix is a valuable tool used for evaluating the performance of machine
learning and deep learning models by comparing their classifications to the actual true
labels in the dataset. This matrix comprises four significant elements:

True Positive (TP): The number of instances correctly classified as positive (e.g., pres-
ence of a condition) by the model. False Positive (FP): The number of instances incorrectly
classified as positive by the model when they are actually negative (e.g., the model predicts
a condition when it is not present). True Negative (TN): The number of instances correctly
classified as negative (e.g., absence of a condition) by the model. False Negative (FN): The
number of instances incorrectly classified as negative by the model when they are actually
positive (e.g., the model predicts no condition when it is present). These elements form the
basis for evaluating the classification performance of the proposed model in terms of the
following metrics. Accuracy: It measures how many instances are correctly classified (both
positives and negatives) out of the total. Recall: Also known as sensitivity or true positive
rate, it assesses the model’s ability to correctly identify positive instances. Precision: It
evaluates the model’s accuracy in classifying positive instances, minimizing false positives.
F-Measure: A combination of precision and recall, this metric provides a balance between
these two aspects of classification performance. The formulas for calculating these param-
eters are typically expressed mathematically, as denoted by Equations (15)–(18). These
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metrics are fundamental in assessing how well a model performs in its classification tasks
and are essential for gauging its overall effectiveness.

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)

F−measure = 2×
(

Precsion× Recall
Precision + Recall

)
(18)

The confusion matrix for the developed work is represented in Figure 7. TP indicates
the case where the designed model exactly detects the positive class when the true label is
also positive. The TN indicates the presented model correctly detects the negative class
when the true label is negative. Consequently, the FP represents the case where the designed
model incorrectly detects the positive class when the true label is negative. On the other
hand, the TN denotes the case where the designed model incorrectly identifies the negative
class when the true label is negative.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 31 
 

 

Precsion RecallF-measure=2
Precision Recall

 × × + 
 (18)

The confusion matrix for the developed work is represented in Figure 7. TP indicates 
the case where the designed model exactly detects the positive class when the true label 
is also positive. The TN indicates the presented model correctly detects the negative class 
when the true label is negative. Consequently, the FP represents the case where the de-
signed model incorrectly detects the positive class when the true label is negative. On the 
other hand, the TN denotes the case where the designed model incorrectly identifies the 
negative class when the true label is negative. 

 
Figure 7. Confusion matrix. 

The developed model’s performance was assessed individually for five different da-
tabases, and then the average performance was calculated. Here are the results for each 
database: Heart Disease UCI Database: Accuracy 96.12%, Precision 96.43%, Recall 95.59%, 
and F-measure 95.96%; CBB Database: Accuracy 92.47%, Precision 92.32%, Recall 93.42%, 
and F-measure 95.71%; Cleveland Clinic Heart Disease (CCHD) Dataset: Accuracy 95.08%, 
Precision 95.64%, Recall 94.78%, and F-measure 94.45%; Hungarian Institute of Cardiol-
ogy Heart Disease (HICHD) Dataset: Accuracy 93.13%, Precision 93.90%, Recall 94.78%, 
and F-measure 94.45%; Swiss Heart Disease (SHD) Dataset: Accuracy 94.29%, Precision 
94.25%, Recall 94.01%, and F-measure 93.7% 

These performance metrics provide insights into how well the model performs for 
each individual database in terms of accuracy, precision, recall, and F-measure. The aver-
age performance, calculated by considering all these databases, provides a comprehensive 
measure of the model’s overall effectiveness in predicting and classifying cardiovascular 
heart diseases. 

The proposed model performance over different datasets is tabulated in Table 3. Fur-
thermore, the system robustness was determined to evaluate the stability of the model. 
The system robustness defines the capacity of the proposed hybrid PCO-DNN framework 
to consistently produce accurate and reliable predictions across different scenarios and 
conditions. The more robust a system is, the more it can withstand disturbances in the 
environment, variations in the input data, and other stresses. Further, the consistent per-
formance of the system over different datasets demonstrates the robustness of the de-
signed model. 

Figure 7. Confusion matrix.

The developed model’s performance was assessed individually for five different
databases, and then the average performance was calculated. Here are the results for each
database: Heart Disease UCI Database: Accuracy 96.12%, Precision 96.43%, Recall 95.59%,
and F-measure 95.96%; CBB Database: Accuracy 92.47%, Precision 92.32%, Recall 93.42%,
and F-measure 95.71%; Cleveland Clinic Heart Disease (CCHD) Dataset: Accuracy 95.08%,
Precision 95.64%, Recall 94.78%, and F-measure 94.45%; Hungarian Institute of Cardiology
Heart Disease (HICHD) Dataset: Accuracy 93.13%, Precision 93.90%, Recall 94.78%, and
F-measure 94.45%; Swiss Heart Disease (SHD) Dataset: Accuracy 94.29%, Precision 94.25%,
Recall 94.01%, and F-measure 93.7%

These performance metrics provide insights into how well the model performs for each
individual database in terms of accuracy, precision, recall, and F-measure. The average
performance, calculated by considering all these databases, provides a comprehensive
measure of the model’s overall effectiveness in predicting and classifying cardiovascular
heart diseases.
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The proposed model performance over different datasets is tabulated in Table 3.
Furthermore, the system robustness was determined to evaluate the stability of the model.
The system robustness defines the capacity of the proposed hybrid PCO-DNN framework
to consistently produce accurate and reliable predictions across different scenarios and
conditions. The more robust a system is, the more it can withstand disturbances in the
environment, variations in the input data, and other stresses. Further, the consistent
performance of the system over different datasets demonstrates the robustness of the
designed model.

Table 3. Proposed model performance over different datasets.

Databases Accuracy
(%)

Precision
(%)

Recall
(%) F-Measure (%)

Heart disease UCI 96.12 96.43 95.59 95.96

CDD 92.47 92.32 93.42 93.17

CCHD 95.08 95.64 94.98 95.71

HICHD 93.13 93.90 94.78 94.45

SHD 94.29 94.25 94.01 93.70

Average performance 93.6738 92.2160 91.5012 93.5935

4.5. Performance Analysis

The findings of the comparative study, which was carried out to show the value of the
suggested cardiovascular disease prediction module, are covered in this part. This section
discusses the Predator Crow-performance DNN’s training % and K-fold value evaluation.
The techniques utilized for the comparative study include random forest (RF) [30,31],
K-nearest neighbor (KNN) [32,33], Deep Neural Network (DNN) [34,35], Marine Predator–
Deep Neural Network (MPA-DNN) [36,37], and Crow Search Algorithm-Based Deep
Neural Network (CSA–DNN) [38].

4.5.1. Performance Analysis in Terms of Training Percentages

In this module, the developed model performances such as accuracy, precision, recall,
and F-measure are evaluated at different training percentages as 40%, 50%, 60%, 70%,
80%, and 90%. Similarly, the overall results of the proposed method for different training
percentages at epoch 100 are tabulated in Figure 8. From the 100 epochs, 40% attains
92.8423, 50% attains 93.8721, 60% attains 94.2598, 70% attains 94.2841, 80% attains 94.6311,
and 90% attains 94.8129. It can be seen from the 100 epochs that 40% attains 92.9053, 50%
attains 93.9698, 60% attains 94.5135, 70% attains 94.5988, 80% attains 95.8849, and 90%
attains 96.6394. It can be seen from the 100 epochs that 40% attains 90.5086, 50% attains
91.4834, 60% attains 91.5337, 70% attains 91.7043, 80% attains 91.7576, and 90% attains
92.4937. It can be seen from the 100 epochs that 40% attains 93.8579, 50% attains 94.0928,
60% attains 94.5511, 70% attains 95.2771, 80% attains 95.3287, and 90% attains 95.8821.

4.5.2. Performance Evaluation Based on the K-Fold Value

In this module, the performances of the proposed model were evaluated for different
k-fold values as 1, 2, 3, 4, 5, and 6. The k-fold cross-validation represents partitioning
the data into multiple subsets for iterative model training and testing. The results from
different k-fold values offer insights into the model’s consistency and performance under
various conditions. Selecting an appropriate k value is crucial for reliable and consistent
model predictions when applied to new, unseen datasets. The outcome parameters such
as accuracy, precision, recall, and f-measure are examined for different k-fold values at
100 epochs. Similarly, the performances of the system for different k-fold values at epoch
100 are tabulated in Figure 9.
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It can be seen from the 100 epochs that 40% attains 91.0155, 50% attains 91.5571, 60%
attains 91.6385, 70% attains 92.3281, 80% attains 92.5891, and 90% attains 93.0546. It can be
seen from the 100 epochs that 40% attains 90.3522, 50% attains 91.8849, 60% attains 91.9791,
70% attains 91.9062, 80% attains 93.7405, and 90% attains 94.2889. It can be seen from the
100 epochs that 40% attains 90.2731, 50% attains 90.4653, 60% attains 90.8469, 70% attains
91.9062, 80% attains 92.1688, and 90% attains 92.8626. It can be seen from the 100 epochs
that 40% attains 90.4641, 50% attains 91.5405, 60% attains 91.9150, 70% attains 92.7053, 80%
attains 92.7117, and 90% attains 92.9523.

4.6. Performance Comparison

The comparison of approaches that are based on K-fold [39] and training percentages is
discussed in this section. The strategies considered for comparison with the proposed Preda-
tor Crow–DNN are the random forest classifier [30,31], K-nearest neighbor classifier [32,33],
DNN classifier [34,35], marine predator–deep neural network (MPA–DNN) [36,37], and
the Crow search algorithm-based deep neural network (CSA–DNN) [38].
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4.6.1. Performance Evaluation Based on Training Percentage

In this section, we assessed the performance of the proposed model using various
algorithms, including RF, KNN, DNN, MPA-DNN, and CSA-DNN. We evaluated these
performances at different training percentages: 40, 50, 60, 70, 80, and 90. The results of our
comparative analysis against traditional algorithms are depicted in Figure 10. Figure 10a
specifically presents a comparison of system accuracy with conventional algorithms. The
comparison of accuracy performance clearly demonstrates that the PCO-DNN algorithm,
which we proposed, achieved higher accuracy compared to existing models. Furthermore,
it is worth noting that as the training percentage increases (indicating a higher training
ratio), the model’s accuracy also increases. This suggests that the model performs better
when it has access to more training data.
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Next, we turn our attention to the precision performances of the various algorithms,
as demonstrated and compared in Figure 10b. This evaluation of precision indicates that
the approach we designed achieved a superior precision rate when compared to existing
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models. This highlights the effectiveness of our approach in predicting cardiovascular
diseases in comparison to conventional models.

Similarly, the recall and f-measure of these algorithms are assessed in Figure 10c,d. The
comparison of recall and f-measure reveals that our model outperformed existing models
in both these aspects, further emphasizing the enhanced performance of our designed
approach in predicting cardiovascular diseases.

4.6.2. Performance Evaluation Based on K-Fold Value

In this section, we conducted an evaluation of the proposed model’s performance
alongside established techniques, including RF, KNN, DNN, MPA-DNN, and CSA-DNN.
These assessments were carried out with varying K-fold values, specifically 1, 2, 3, 4, 5, and
6. Figure 11 serves as a platform for comparing the system performances with traditional
deep learning (DL) algorithms. Figure 11a specifically illustrates the accuracy performance
in comparison with existing techniques.
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Our comparative analysis of K-fold values demonstrates that the proposed model
consistently achieved higher accuracy than the other models. Consequently, Figure 11b
showcases a comparison of precision performance when evaluated against existing tech-
niques. The comparison of the presented model recall with existing techniques is presented
in Figure 11c. The recall comparison illustrates that the designed model attained a greater
recall rate than the existing algorithms. This states that the proposed algorithm is more
efficient in predicting cardiovascular diseases. Finally, the F-measure of the proposed
model is evaluated with conventional models, as displayed in Figure 11d.

Table 4 presents the comparison of average performances of different techniques in
terms of training percentage and k-fold value. From the intensive comparative study, it
is proven that the proposed algorithm attained better results compared to other models.
This illustrates that the designed algorithm is more effective and accurate in predicting
cardiovascular diseases than the conventional models.

Table 4. Comparative discussion with DL methods.

Sl. No. Evaluation
Means

Metrics

Methods

RF K–NN DNN MPA–DNN CSA–DNN
Proposed
Predator

Crow–DNN

1
Training

percentage

Accuracy(%) 85.3002 88.1145 89.2505 92.2818 89.8319 93.6738

Precision(%) 81.2108 82.9088 85.5113 89.0796 86.7082 92.2160

Recall(%) 83.7403 88.0766 89.2590 90.2271 89.3416 91.5012

F1-measure(%) 78.2058 80.8334 85.8663 89.8542 88.3338 93.5935

2 K-fold
value

Accuracy (%) 79.2787 81.5035 87.5954 95.2882 90.4716 96.6665

Precision (%) 79.9980 84.6887 89.8256 96.7134 95.5438 97.5256

Recall(%) 82.1228 82.8578 84.1233 95.0752 95.0256 97.0953

F1-measure %) 78.7010 81.0823 85.7137 94.9078 90.0725 96.4242

4.7. Comparison of Model Performances with Existing Techniques

In this section, we conducted a comprehensive comparison of the performance of the
designed model in terms of precision, F-measure, accuracy, and recall. These evaluations
were made in relation to several recent existing techniques, including, Support Vector
Machine with Artificial Neural Network (SVM-ANN) [40], Artificial Neural Network-
based Cardiovascular Disease Prediction (ANNbCDP) [41], Multi-Layer Perceptron for
Enhanced Brownian Motion based on Dragonfly Algorithm (MLP-EBMDA) [42], Ge-
netic Algorithm-based Neural Network (GAbNN) [43], Genetic Algorithm with Particle
Swarm Optimization (GA-PSO) [44], Multi-Label Active Learning-based Machine Learning
(MALbML) [45], Harris Hawk Optimization-based Clustering Algorithm (HHObCA) [46],
Bayesian Optimization-based Extreme Gradient Boosting (BObEGB) [47], and Harris Hawk
Optimization with Fuzzy Long Short-Term Memory (HHO-FbLSTM) [48]. This thorough
comparison allows us to gauge the effectiveness and superiority of the designed model
over these existing techniques across multiple performance metrics.

In the performance evaluation, the designed model exhibited impressive results,
achieving an accuracy of 93.6738%, precision of 92.2160%, recall of 91.5012%, and an F-
measure of 93.5935%. In contrast, existing methodologies such as SVM-ANN, ANNbCDP,
MLP-EBMDA, GAbNN, GA-PSO, MALbML, HHObCA, BObEGB, and HHO-FbLSTM
achieved the following performance metrics. SVM-ANN: Accuracy 87.16%, Precision
88.05%, Recall 86.23%, and F-measure 87.5%; ANNbCDP: Accuracy 85.23%, Precision
84.35%, Recall 85%, and F-measure 84.72%; MLP-EBMDA: Accuracy 89.32%, Precision
90.07%, Recall 90.54%, and F-measure 90.32%; GAbNN: Accuracy 86.98%, Precision 87.46%,
Recall 87.01%, and F-measure 86.92%; GA-PSO: Accuracy 89.21%, Precision 90.23%, Recall
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89.43%, and F-measure 89.56%; MALbML: Accuracy 79.98%, Precision 80.34%, Recall
80.54%, and F-measure 79.31%; HHObCA: Accuracy 85.98%, Precision 87.12%, Recall
86.09%, and F-measure 87.05%; BObEGB: Accuracy 85.49%, Precision 84.37%, Recall 84.95%,
and F-measure 84.42%; HHO-FbLSTM: Accuracy 90.76%, Precision 91.54%, Recall 90.03%,
and F-measure 90.65%. Figure 12 provides a visual representation of the comparative
performance of these different techniques. It is evident from this analysis that the proposed
PCO-DNN framework outperformed the existing intelligent and optimization methods
across multiple performance measures, highlighting its effectiveness in the context of
predicting cardiovascular diseases.
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4.8. Comparison of Computational Time

Computational time refers to the total time required for the designed model to execute
various tasks, encompassing data pre-processing, feature engineering, optimization, and
classification. Notably, the designed model demonstrated exceptional efficiency with a
remarkably low computational time of 1 s. This 1 s duration can be broken down as follows:
data pre-processing 0.2 s, feature engineering 0.3 s, optimization 0.4 s, and classification:
0.1 s. This efficient utilization of time underscores the model’s effectiveness and speed in
carrying out these critical tasks (Table 5).

Table 5. Computational complexity analysis.

Tasks Time (s)

Data pre-processing 0.2

Feature Engineering 0.3

Optimization 0.4

Classification 0.1

Total computational time 1.0

Table 4 demonstrates the efficiency of the proposed model in terms of computational
time, a comparison was made with the computational time required by recent existing tech-
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niques. The following techniques were used for this comparison: SVM-ANN, ANNbCDP,
MLP-EBMDA, GAbNN, GA-PSO, MALbML, HHObCA, BObEGB, and HHO-FbLSTM.
These obtained the following computational times: SVM-ANN 6.98 s, ANNbCDP 7.54 s,
MLP-EBMDA 5.7 s, GAbNN 6.98 s, GA-PSO 7.34 s, MALbML 8.09 s, HHObCA 6.3 s,
BObEGB 6.7 s, and HHO-FbLSTM 5.67 s. Figure 13 illustrates the computational time
comparison, making it evident that the proposed model consumed significantly less time
when compared to these existing techniques. This demonstrates the efficiency and speed of
the proposed model in carrying out its tasks.
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4.9. Experimental Findings

The proposed Predator Crow–DNN model performed well, achieving the best ac-
curacy, recall, F1-measure, and precision results. Consequently, the proposed method
compared with the conventional state of the methods detailed in the literature is given in
Table 6. As a result, the developed scheme eliminate the training flaws at the outset. The
features are then extracted based on the aspects of the cardiovascular disease-affected parts.
As a result, the advanced Predator Crow–DNN technique improves the performance.

Table 6. Overall performance metrics comparison.

Methods
Performance Assessment with Key Metrics

Accuracy Precision Recall F1-Measure

RF 85.3002 81.2108 83.7403 78.2058

K–NN 88.1145 82.9088 88.0766 80.8334

DNN 89.2505 85.5113 89.2590 85.8663

MPA–DNN 92.2818 89.0796 90.2271 89.8542

CSA–DNN 89.8319 86.7082 89.3416 88.3338

LSTM [1] 88.42 92.4 82.4 91.05

Revolutionary methods [2] 88.7 87.5 92.8 90

Scaled three-tier system [3] NE 46.8 62.3 NE

CSO–CLSTM [4] 97.26 NE NE NE

Hybrid fuzzy-based tree-based
method [5] 98.30 NE NE NE

Random Forest classifier [6] 97.26 NE NE NE
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Table 6. Cont.

Methods
Performance Assessment with Key Metrics

Accuracy Precision Recall F1-Measure

Deep learning-based IoT [7] NE 72.65 72.6 62.4

The smart sports wristband
system [8] 98.94 NE NE NE

SVM-ANN 87.16 88.05 86.23 87.5

ANNbCDP 85.23 84.35 85 84.72

MLP-EBMDA 89.32 90.07 90.54 90.23

GAbNN 86.98 87.46 87.01 86.92

GA-PSO 89.21 90.23 89.43 89.56

MALbML 79.98 80.34 80.54 79.31

HHObCA 85.98 87.12 86.09 87.05

BObEGB 85.49 84.37 84.95 84.42

HHO-FbLSTM 90.76 91.54 90.03 90.65

Proposed PCO-DNN 93.6738 92.2160 91.5012 93.5935
NE: Not Evaluated.

The exceptional performance measure comparisons are tabulated in Table 6, and the
proposed Predator Crow–DNN obtained the best results in all parameter validations. The
comparison shows that the state-of-the-art methods are only focused on accuracy metrics;
this lacks the prediction performance for a large amount of data in disease diagnosis. How-
ever, the proposed method achieved 93.6738% accuracy, 92.2160% precision, 91.5012% recall,
and 93.5935 F1-measure. As a result, the proposed Predator Crow–DNN robustness is
confirmed and can efficiently predict cardiovascular diseases.

4.10. Discussion

In this research article, a novel hybrid PCO-DNN framework was developed to accu-
rately predict and classify cardiac diseases. The PCO (Population Crow Optimization) is a
unique meta-heuristic optimization approach inspired by the hunting behaviors of crows.
This approach allows for effective exploration and exploitation of the search space, leading
to improved solutions.

In the PCO-DNN framework, the PCO approach is used to optimize the weights and
parameters of the Deep Neural Network (DNN) model. This combines the optimization
power of PCO with the strong predictive capabilities of DNN. The main objective of this
PCO-DNN model is to enhance the accuracy of cardiac disease classification. By optimizing
the parameters and weights of the DNN through PCO, the system can better capture
the complex relationships and interconnections in the input data, resulting in superior
predictive performance compared to conventional methods.

Furthermore, the PCO technique explores the high-dimensional parameter space of
the DNN and effectively searches for optimal hyper-parameter combinations and network
structures. This, in turn, enhances the DNN’s performance in disease identification. Im-
portantly, this approach addresses the problem of over-fitting often encountered by neural
networks and provides better generalization to unseen data. This makes the developed
model more reliable in real-world scenarios and demonstrates higher robustness in the
disease prediction process.

Additionally, the PCO-DNN model provides interpretability by offering insights into
the most relevant features and their impact on disease classification. These advantages
make the PCO-DNN system an effective and reliable solution for cardiac disease classifica-
tion problems.
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The research conducted a comprehensive performance evaluation by assessing var-
ious metrics, including accuracy, precision, recall, and F-measure, across five different
databases. Furthermore, an extensive comparative assessment was carried out to validate
the obtained results against existing classification models, demonstrating the effectiveness
and superiority of the PCO-DNN approach.

4.11. Limitation and Future Work

While this work presents a promising approach to cardiac disease prediction, it does
have some limitations. These limitations include the following:

Data Requirements: The developed model requires a substantial amount of data
for training and testing, which might not always be readily available, especially in some
healthcare settings or for specific populations.

Feature Selection: This study lacks a comprehensive exploration of feature selection
methods, which could help improve the model’s efficiency and performance by identifying
the most relevant input features.

Execution Measures: The study does not delve into execution measures in depth, which
could provide insights into the model’s computational efficiency and resource requirements.

Despite these limitations, the developed model has the potential for a wide range of
applications in the field of heart disease prediction and healthcare. It can serve as a valuable
starting point for further research and development. Here are some potential avenues for
improvement and expansion:

Data Enrichment: The model could benefit from an expanded dataset, which could
include a more diverse set of patient profiles, medical records, and health-related variables.
Additional data could enhance the model’s accuracy and applicability.

Feature Selection: The implementation of advanced feature selection techniques could
help identify the most informative features, streamlining the model and potentially reduc-
ing data requirements.

Application Diversification: The same methods used in this study could be applied to
predict other diseases in addition to cardiac diseases. This approach can be extended to
predict conditions like coronary artery disease or other health-related issues.

Real-Time Solutions: The development of real-time tools, such as a website or mobile
application, could provide immediate access to disease prediction, improving healthcare
decision making and patient outcomes.

Continuous Improvement: The real-time application can be regularly updated with new
capabilities, ensuring it remains relevant and effective in a dynamic healthcare landscape.

Enhanced Feature Engineering: Further research into feature engineering can help
identify and incorporate the most effective input features to enhance the model’s forecast-
ing capabilities.

Predicting heart disease demands more than a statistical feature-based approach
to localization. Furthermore, cardiac illness cases are categorized into more than ten
classifications, such as Coronary Artery illness (CAD), Arrhythmias, and so on; therefore,
generalizing a single prediction system needs further consideration.

While this work has limitations, it provides a strong foundation for future research and
the development of practical tools for disease prediction and healthcare decision support.

5. Conclusions

Predicting cardiovascular diseases can help in preventing acute, life-threatening car-
diovascular events as well as improve the long-term outcome for patients susceptible to
serious heart diseases. This article suggests a heart disease risk assessment algorithm using
patient data to anticipate heart disorders. Pre-processing is first performed to reduce the
noise from the collected data on heart illnesses. The following stage involves extracting the
important statistical features from the data and creating a feature representation that serves
as the input for the suggested DNN classifier. The proposed Predator Crow Optimization
approach, generated by considering the attributes of raiding search agents and crow search
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agents, is used to tune the DNN classifier’s weights to improve performance optimally.
Performance measures were used to verify the suggested model’s efficacy, and it beat the
competition. The proposed method achieves 96.6665%, 97.5256%, 97.0953%, and 96.4242%
accuracy, precision, recall, and F1-measure, respectively. In the future, to enhance the
precision of heart disease prediction, we will employ a diverse set of feature fusion and
selection techniques to identify the most significant characteristics from high-dimensional
datasets. Additionally, we will explore a predictive approach that leverages the Internet of
Things (IoT). This approach will involve the integration of various data mining strategies
with deep learning models, designed for data preprocessing and heart disease prediction
within fog networks.

This effort is geared towards broadening the applicability of the suggested framework
and increasing its accuracy in making predictions. By incorporating IoT and advanced data
processing methods, we aim to further improve the model’s ability to predict heart diseases
with greater precision.
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