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Abstract: Let a = {am : m ∈ N} be a periodic multiplicative sequence of complex numbers and
L(s; a), s = σ + it a Dirichlet series with coefficients am. In the paper, we obtain a theorem on the
approximation of non-vanishing analytic functions defined in the strip 1/2 < σ < 1 via discrete shifts
L(s + ihtk; a), h > 0, k ∈ N, where {tk : k ∈ N} is the sequence of Gram points. We prove that the
set of such shifts approximating a given analytic function is infinite. This result extends and covers
that of [Korolev, M.; Laurinčikas, A. A new application of the Gram points. Aequat. Math. 2019, 93,
859–873]. For the proof, a limit theorem on weakly convergent probability measures in the space of
analytic functions is applied.
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1. Introduction

Let, as usual, P, N, Z, Q, R and C denote the sets of all prime, positive integers,
integers, rational, real and complex numbers, respectively. The main object of the analytic
number theory—Riemann zeta function ζ(s), s = σ+ it in the half-plane σ > 1 is defined by

ζ(s) =
∞

∑
m=1

1
ms = ∏

p∈P

(
1− 1

ps

)−1

and has a meromorphic continuation to the whole complex plane. The point s = 1 is its
simple pole with residue 1.

Let Γ(s) denote the Euler gamma function. The Riemann zeta function satisfies the
functional equation

π−s/2Γ
( s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s).

Suppose that ϕ(t), t > 0 is the increment of the argument of the function π−s/2Γ(s/2) along
the segment connecting the points s = 1/2 and s = 1/2 + it. Since the function ϕ(t) is
unbounded and monotonically increases for t > t∗ (it is well known that t∗ = 6.289836 . . .
and ϕ(t∗) = −3.530573 . . . ), the equation

ϕ(t) = (k− 1)π, k ∈ N, (1)

for t > t∗ has the unique solution tk. Gram was the first investigator of the numbers tk;
therefore, they are now called Gram points. The Gram points are important in the analytic
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number theory because they are closely related with imaginary parts of non-trivial zeros of
the function ζ(s). For more information, see [1–4].

Without other important properties, the function ζ(s) has the universality property
obtained by Voronin [5]. In other words, this property means that a wide class of analytic
functions uniformly on compact sets can be approximated by shifts ζ(s + iτ), τ ∈ R. The
initial Voronin theorem [5] states that if 0 < r < 1/4, and f (s) is a continuous and non-
vanishing function on the disc |s| 6 r and analytic in the interior of that disc, then, for all
ε > 0, there exists a number τ = τ(ε) ∈ R such that

max
|s|6r

∣∣∣∣ f (s)− ζ

(
s +

3
4
+ iτ

)∣∣∣∣ < ε.

A lot of authors, among them Gonek, Bagchi, Matsumoto, Pańkowski, Steuding, Laurinči-
kas, Garunkštis, Macaitienė, Kačinskaitė, and others, improved and extended the above
Voronin theorem. Let D = {s ∈ C : 1/2 < σ < 1}, K be the class of compact subsets
of the strip D with connected complements, and let H0(K), K ∈ K, denote the class of
continuous non-vanishing functions on K that are analytic in the interior of K andMA
denote the Lebesgue measure of a measurable set A ⊂ R. Then the modern version of the
Voronin theorem, see, for example, refs. [6–8] and informative paper [9], says that if K ∈ K,
f (s) ∈ H0(K), then, for all ε > 0,

lim inf
T→∞

1
T
M
{

τ ∈ [0, T] : sup
s∈K
| f (s)− ζ(s + iτ)| < ε

}
> 0.

The latter inequality means that the set of shifts ζ(s + iτ) approximating a given function
f (s) ∈ H0(K) has a positive lower density.

Now, we will define the Dirichlet series with periodic coefficients. Let a = {am : m ∈ N}
be the periodic sequence of complex numbers with minimal period l ∈ N. The Dirichlet
series with periodic coefficients L(s; a), for σ > 1 is defined by the series

L(s; a) =
∞

∑
m=1

am

ms .

Since the sequence a is periodic, we have

L(s; a) =
1
ls

l

∑
q=1

aqζ
(

s,
q
l

)
, (2)

where ζ(s, α) is the classical Hurwitz zeta function with parameter α ∈ (0, 1], which has, as
ζ(s), a meromorphic continuation to the whole complex plane with a unique simple pole at
the point s = 1 with residue 1. Hence, the function L(s; a) can be analytically continued to
the whole complex plane, except for a simple pole at the point s = 1 with residue

a def
=

1
l

l

∑
q=1

aq.

If a = 0, L(s; a) is an entire function. If the sequence a is multiplicative (amn = aman for
(m, n) = 1, and a1 = 1), then, for σ > 1, the function L(s; a) has the Euler product

L(s; a) = ∏
p∈P

(
1 +

∞

∑
k=1

apk

pks

)
.

Universality for the function L(s; a), i.e., approximation of a wide class of analytic
functions by shifts L(s + iτ; a), τ ∈ R, was investigated by various authors, among them,



Mathematics 2023, 11, 4615 3 of 14

Bagchi [10], Steuding [8,11], and others. The universality of the function L(s; a) with a
multiplicative sequence a was obtained in [12].

Theorem 1 ([12]). Suppose that the sequence a is multiplicative, and, for all p ∈ P,

∞

∑
α=1

|apα |
pα/2 6 c < 1. (3)

Let K ∈ K, and f (s) ∈ H0(K). Then, for all ε > 0,

lim inf
T→∞

1
T
M
{

τ ∈ [0, T] : sup
s∈K
| f (s)− L(s + iτ; a)| < ε

}
> 0.

Note that the requirement (3) is technical and can be removed.
The universality of the Dirichlet series with periodic coefficients is a complicated

problem. Kaczorowski in [13] observed that not all Dirichlet series with periodic coefficients
are universal in the Voronin sense. He obtained the necessary and sufficient conditions of
the universality for L(s; a) with prime period l.

Theorem 2 ([13]). Let l be a prime number and let a 6= 0. The corresponding Dirichlet series
with periodic coefficients are universal in the sense of Voronin if and only if one of the following
possibilities holds:

1. Not all numbers a1, . . . , al−1 are equal;
2. We have a1 = · · · = al−1 = 0;
3. We have a1 = · · · = al−1 6= 0 and∣∣∣∣1− al

a1

∣∣∣∣ 6 √l or
∣∣∣∣1− a1

al

∣∣∣∣ > l.

The discrete universality for zeta functions was proposed by Reich [14]. The first result
on the approximation of analytic functions by discrete shifts L(σ + ikh; a), with a fixed
number h > 0 such that exp

{
2πk

h

}
is rational for all k ∈ Z, has been obtained in [15] and a

more general result in [16]. Theorem 2 of [17] with w(u) ≡ 1 implies the following result.
Let CardA denote the number of elements of the set A, and, for h > 0,

L(P, h, π) =

{
(log p : p ∈ P), 2π

h

}
.

Theorem 3 ([17]). Suppose that the set a is multiplicative and the set L(P, h, π) is linearly
independent over the field of rational numbers Q. Let K ∈ K and f (s) ∈ H0(K). Then, for
all ε > 0,

lim inf
N→∞

1
N + 1

Card

{
0 6 k 6 N : sup

s∈K
| f (s)− L(s + ikh; a)| < ε

}
> 0.

The universality of zeta functions is a very surprising and useful phenomenon which,
in some sense, reduces a study of a class of analytic functions to that of a comparatively
simple one and the same zeta function. Moreover, universality theorems are applied in
a lot of number-theoretical problems as the functional independence, zero distribution,
denseness, and the moment problems, etc. This is the motivation to study and extend the
notion of universality for zeta functions. One of the ways in this direction is to prove the
universality theorems for new classes of zeta functions. The Linnik–Ibragimov conjecture
(or programme), see [8], Section 1.6, asserts that all functions given by the Dirichlet series,
having analytic continuation and satisfying some natural growth conditions, are universal
in the Voronin sense. On the other hand, there are examples of non-universal Dirichlet
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series; Theorem 2 confirms this, and there are also Dirichlet series in which universality is
an open problem.

Using the generalized shifts, there is an another way to extend the universality for the
Dirichlet series. This idea, for Dirichlet L-functions, was proposed by Pańkowski in [18]
with function ν(τ) = τα(log τ)β with certain α, β ∈ R. In [19], the universality for the
Dirichlet series with periodic coefficients with multiplicative sequence a using generalized
shifts L(s + iaγ(τ); a), where a 6= 0 is a real number, and γ(τ) is increasing to an ∞
continuously differentiable function with monotonic derivative γ′(τ) on [T0, ∞), T0 > 0,
such that

γ(2τ) max
τ6u62τ

1
γ′(u)

� τ, τ → ∞,

was obtained. Now, let {γk : k ∈ N} be a sequence of imaginary parts of non-trivial zeros
of the Riemann zeta function and let the hypothesis

∑
γk ,γl6T

|γk−γl |<c/ log T

1� T log T, c > 0, (4)

be satisfied. This estimate is the weak form of the Montgomery pair correlation con-
jecture [20]. Then, in [21], it was obtained that, under (4), for a fixed number h > 0,
multiplicative sequence a, K ∈ K, f (s) ∈ H0(K) and all ε > 0,

lim inf
N→∞

1
N

Card

{
1 6 k 6 N : sup

s∈K
|L(s + ihγk; a)− f (s)| < ε

}
> 0.

In [22], Korolev and Laurinčikas in approximating shifts of the Riemann zeta function
involved the Gram points, and in [23], developed their result in short intervals. We notice
that Gram points tk are asymptotically connected to the numbers γk by the equality [22]

lim
k→∞

tk
γk

= 1.

Moreover, using the points tk for generalized shifts is more convenient than γk because tk
has a continuous differentiable version tu, u ∈ R, see Lemma 4 bellow, and the analogue
of (4) is not needed. The aim of this paper is to generalize the latter result for the Dirichlet
series with periodic coefficients. The main result of the paper is the following theorem.

Theorem 4. Suppose that the sequence a is multiplicative. Let K ∈ K, f (s) ∈ H0(K), and h > 0
be a fixed number. Then, for all ε > 0,

lim inf
N→∞

1
N

Card

{
1 6 k 6 N : sup

s∈K
|L(s + ihtk; a)− f (s)| < ε

}
> 0.

Moreover, “lim inf” can be replaced by “lim” for all but at most, countably many ε > 0.

Theorem 4 implies that the set of shifts L(s + ihtk; a) approximating a given function
f (s) with accuracy ε is infinite for every K ∈ K.

The class of functions L(s; a) is sufficiently wide; for example, it includes all Dirichlet
L-functions which are the main analytic tool for the investigation of prime numbers in
arithmetic progressions. When am ≡ 1, we obtain the Riemann zeta function ζ(s). Therefore,
Theorem 4 extends and covers the main result of [22].

Theorem 4 is theoretical, it is not connected to specific numerical calculations, and can
be considered as an impact to the Linnik–Ibragimov programme.

Theorem 4 is stated in density terms (lower density and density), the expression
1/NCard{1 6 k 6 N : sups∈K |L(s + ihtk; a)− f (s)| < ε} with respect to ε is a probabilistic
distribution function. Therefore, for its proof, it is convenient to use a probabilistic approach.
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More precisely, for the proof of Theorem 4, we apply a limit theorem on weakly convergent
probability measures in the space of analytic functions with an explicitly given probability
limit measure.

2. Limit Theorems

The space of analytic functions on D endowed with the topology of uniform conver-
gence on compacta is denoted by H(D), and the Borel σ-field of a topological space T is
denoted by B(T). In this section, we will prove a theorem on the weak convergence of
the measure

PN(A)
de f
=

1
N

Card{1 6 k 6 N : L(s + ihtk; a) ∈ A}, A ∈ B(H(D)),

as N → ∞.
Let y = {s ∈ C : |s| = 1}. Define the set

Y = ∏
p∈P

yp,

where yp = y for all p ∈ P. With the product topology and operation of pointwise
multiplication, the torus Y, in view of the classical Tikhonov theorem, see, for example,
ref. [7], is a compact topological Abelian group. Therefore, on (Y, B(Y)), we can define the
probability Haar measure µH . Thus, we can construct the probability space (Y, B(Y), µH).
Denote by y(p) the pth component of an element y ∈ Y, p ∈ P. Now, on the probability
space (Y, B(Y), µH), define the H(D)-valued random element

L(s, y; a) = ∏
p∈P

(
1 +

∞

∑
α=1

apα yα(p)
pαs

)
,

and let PL denote the distribution of L(s, y; a), i. e.,

PL(A) = µH{y ∈ Y : L(s, y; a) ∈ A}, A ∈ B(H(D)).

We can now formulate the main theorem of this section.

Theorem 5. The measure PN converges weakly to PL as N → ∞.

We divide the proof of Theorem 5 into separate lemmas. At first, for A ∈ B(Y), define

VN(A) =
1
N

Card
{

1 6 k 6 N :
(

p−ihtk : p ∈ P
)
∈ A

}
.

Lemma 1. The measure VN converges weakly to the Haar measure µH as N → ∞.

Proof. The character χ of the group Y, see, for example, ref. [7], has the representation

χ(y) = ∏
p∈P

ykp(p), y ∈ Y,

where only a finite number of integers kp are distinct from zero and does not depend on
the sequence a. Therefore, the proof of the lemma applies the Fourier transform method
and coincides with the proof of Lemma 3.2 from [22].

From Lemma 1, we can obtain a limit lemma in the space H(D) for the absolutely
convergent Dirichlet series. Let, for fixed β > 1/2,

vn(m) = exp
{
−
(m

n

)β
}

, m, n ∈ N,
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and

Ln(s; a) =
∞

∑
m=1

amvn(m)

ms .

Since vn(m)� m−L/nβ
with all L > 0 and am � 1, the latter series is absolutely convergent

for all s ∈ C. Moreover, let

Ln(s, y; a) =
∞

∑
m=1

amy(m)vn(m)

ms ,

where
y(m) = ∏

pk |m
pk+1-m

yk(p), m ∈ N.

Then, the latter series is also absolutely convergent for all s ∈ C because |y(m)| = 1. For
B(H(D)), define

TN,n(A) =
1
N

Card{1 6 k 6 N : Ln(s + ihtk; a) ∈ A}.

Let un : Y→ H(D) be defined by the formula

un(y) = Ln(s, y; a).

For the proof of the limit lemma for the absolutely convergent Dirichlet series, we need a
lemma on the preservation of probability measures under continuous mappings. Let P be a
probability measure on (T, B(T)) and u : T→ T1 be a measurable mapping. Then, Pu−1

is defined, for A ∈ B(T1), by Pu−1(A) = P(u−1 A).

Lemma 2. Let P and Pn, n ∈ N, be probability measures on (T1, B(T1)), and u : T1 → T2 be a
continuous mapping. The measure Pnu−1 converges weakly to Pu−1 as n→ ∞ if the measure Pn
converges weakly to P as n→ ∞.

The lemma is a partial case of the Theorem 2.7 from [24].

Lemma 3. The measure TN,n, as N → ∞, converges weakly to a measure Tn
def
= µHu−1

n .

Proof. Seeing that the series for Ln(s, y; a) is absolutely convergent for σ > 1/2, then the
function un is continuous. From the definitions of the measures VN , TN,n and mapping
un, we have TN,n = Vnu−1

n . Therefore, from Lemmas 1 and 2, we have the assertion of
the lemma.

The next step is the approximation of L(s; a) by Ln(s; a) in the mean. For the proof of
this fact, we need the following lemmas. The first of them is devoted to asymptotics of the
function tu with arbitrary u > 0.

Lemma 4 ([3]). Suppose that tu, u > 0, denotes the unique solution of the equation

ϕ(tu) = (u− 1)π

satisfying ϕ′(tu) > 0 and that u→ ∞. Then

tu =
2πu
log u

(
1 +

log log u
log u

(1 + o(1))
)
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and

t′u =
2π

log u

(
1 +

log log u
log u

(1 + o(1))
)

.

Also, we recall the Gallagher lemma. This lemma connects discrete and continuous
second moments of some functions. For details, see, for example, Lemma 1.4 of [25].

Lemma 5 ([25]). Let T0 > δ, T > δ, δ > 0, T be a non-empty finite set in the interval
[T0 + δ/2, T0 + T − δ/2], and

dδ(τ) = ∑
t∈T
|t−τ|<δ

1, τ ∈ T .

Moreover, let the function F (t) be continuous on [T0, T0 + T], which takes complex values, and
have a continuous derivative on (T0, T0 + T). Then

∑
t∈T

d−1
δ (t)|F (t)|2 6

1
δ

T0+T∫
T0

|F (t)|2 dt +

 T0+T∫
T0

|F (t)|2 dt
T0+T∫
T0

|F ′(t)|2 dt

1/2

.

On D, there exists a sequence {Kq : q ∈ N} of compact subsets such that

D =
∞⋃

q=1

Kq,

Kq ⊂ Kq+1, ∀q ∈ N, and K ⊂ Kq for some q if K ⊂ D is a compact set. Then, the formula

ρ(w1, w2) =
∞

∑
q=1

2−q
sups∈Kq

|w1(s)− w2(s)|
1 + sups∈Kq

|w1(s)− w2(s)|
, w1, w2 ∈ H(D),

gives a metric in H(D). This metric induces its topology of uniform convergence on
compacta. To move from the function Ln(s; a) to L(s; a), we need the following lemma.

Lemma 6. For fixed h > 0, the following statement

lim
n→∞

lim sup
N→∞

1
N

N

∑
k=1

ρ(L(s + ihtk; a), Ln(s + ihtk; a)) = 0

holds.

Proof. First, we obtain some discrete second moment estimates for the function L(s; a). For
σ > 1/2, the bounds

T∫
0

|L(σ + it; a)|2 dt�σ,a T

and
T∫

0

|L′(σ + it; a)|2 dt�σ,a T

are well known. Hence, for σ > 1/2 and t ∈ R, we have

T∫
0

|L(σ + it + ihtu; a)|2 du�σ,a T(1 + |t|) (5)
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and
T∫

0

|L′(σ + it + ihtu; a)|2 du�σ,a T(1 + |t|). (6)

Actually, in view of Lemma 4, the function tu is increasing. Then, by the same lemma, for
X > 1 and σ > 1/2,

2X∫
X

|L(σ + it + ihtu; a)|2 du =

2X∫
X

1
t′u
|L(σ + it + ihtu; a)|2 dtu

�h,σ,a max
X6t62X

1
t′u

2X∫
X

d

 t+htu∫
1

|L(σ + iv; a)|2 dv


�h,σ,a max

X6t62X

1
t′u

t+htu∫
1

|L(σ + iv; a)|2 dv
∣∣∣∣2X

X

�h,σ,a (t2X + |t|) max
X6t62X

1
t′u

�h,σ,a
X

log X
log X + |t| log X �h,σ,a X + |t| log X

�h,σ,a X(1 + |t|).

Now, taking X = T2−l−1 and summing over l = 0, 1, . . . , we obtain (5). Similarly, we
obtain estimate (6).

Now, we will obtain the estimate for the discrete mean value of L(s; a) involving Gram
points. For this, we apply Lemma 5. Let δ = 1, T0 = 1, T = N, and T = {3/2, 2, 3, . . . , N,
N + 1/2}. In this case, dδ(x) = 1. In view of (5) and (6), for t ∈ R, we find

N

∑
k=1
|L(σ + it + ihtk; a)|2 �σ,h,a

N+1/2∫
3/2

|L(σ + it + ihtu; a)|2 du

+

 N+1/2∫
3/2

|L(σ + it + ihtu, ; a)|2 du (7)

×
N+1/2∫
3/2

|L′(σ + it + ihtu; a)|2 du

1/2

�σ,h,aN(1 + |t|).

Let β > 1/2 be from the definition of vn(m), and, for n ∈ N,

bn(s) =
s
β

Γ
(

s
β

)
ns.

Then, for σ > 1/2, by the Mellin formula, the function Ln(s; a) has the expression by the
contour integral

Ln(s; a) =
1

2πi

∞

∑
m=1

am

ms

β+i∞∫
β−i∞

z
β

Γ
(

z
β

)(m
n

)−z dz
z

=
1

2πi

β+i∞∫
β−i∞

(
bn(z)

z

∞

∑
m=1

am

ms+z

)
dz (8)

=
1

2πi

β+i∞∫
β−i∞

L(s + z; a)bn(z)
dz
z

.
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Let K ⊂ D be a fixed compact set and define ε > 0 such that 1/2 + 2ε 6 σ 6 1− ε for
any point s = σ + it ∈ K. Then, for s ∈ K, we obtain

Ln(s; a)− L(s; a) =
1

2πi

−θ+i∞∫
−θ−i∞

L(s + z; a)bn(z)
dz
z

+
abn(1− s)

1− s
,

where
θ = σ− ε− 1

2
, β =

1
2
+ ε.

Hence, we obtain the inequality

|L(s + ihtk; a)− Ln(s + ihtk; a)| 6 1
2π

+∞∫
−∞

|L(s + ihtk − θ + iτ; a)| |bn(−θ + it)|
| − θ + iτ| dτ

+
|abn(1− s− ihtk)|
|1− s− ihtk|

.

Then, shifting t + τ to τ, we have

|L(s + ihtk; a)− Ln(s + ihtk; a)|

6
1

2π

+∞∫
−∞

∣∣∣∣L(1
2
+ ε + i(τ + htk); a

)∣∣∣∣ sup
s∈K

|bn(1/2 + ε− s + iτ)|
|1/2 + ε− s + iτ| dτ

+
|abn(1− s− ihtk)|
|1− s− ihtk|

.

Summing over 1 6 k 6 N, we obtain

1
N

N

∑
k=1

sup
s∈K
|L(s + ihtk; a)− Ln(s + ihtk; a)| � I1 + I2,

where

I1 =
1

2πN

+∞∫
−∞

(
N

∑
k=1

∣∣∣∣L(1
2
+ ε + i(τ + htk); a

)∣∣∣∣
)

sup
s∈K

|bn(1/2 + ε− s + iτ)|
|1/2 + ε− s + iτ| dτ,

and

I2 =
|a|
N

N

∑
k=1

sup
s∈K

|bn(1− s− ihtk)|
|1− s− ihtk|

.

Using the well-known Stirling formula, uniformly for 0 6 ξ 6 1, we obtain the estimate

|Γ(ξ + it)| � (|t|+ 1)ξ−1/2 exp
{
−π|t|

2

}
.

It implies the bound

|bn(1/2 + ε− s + iτ)|
|1/2 + ε− s + iτ| =

n1/2+ε−σ

β

∣∣∣∣Γ(1/2 + ε− σ

β
+

i(t− τ)

β

)∣∣∣∣
� n−ε

β

(
1 +
|t− τ|

β

)(1/2+ε−σ)/β−1/2

exp
{
− π

2β
|t− τ|

}
.
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Define t0 = t0(K) = sups∈K |Im s|+ 1. Then, |t− τ| > |τ| − |t| > |τ| − t0, and hence,

|bn(1/2 + ε− s + iτ)|
|1/2 + ε− s + iτ| � n−ε

β
exp

{
πt0

2β

}
exp

{
−π|τ|

2β

}
�β,K n−ε exp

{
−π|τ|

2β

}
.

As above, we obtain

|bn(1− s− ihtk)|
|1− s− ihtk|

�β,K n1−σ exp
{
−πhtk

2β

}
.

To obtain the estimate for the sum I2, we separate it into two parts I21 and I22: over
1 6 k 6 log N and over log N 6 k 6 N, respectively. It is easily seen that

I21 �β,K
log N

N
n1−σ,

and

I22 �β,K
n1−σ

N ∑
k>log N

exp
{
−πh

2β

2πk
log k

}
�β,K,h

n1−σ

N
exp

{
−π2h

2β

log N
log log N

}
� n1−σ

N
.

Hence,

I2 �β,K,h
log N

N
n1/2−2ε.

Further, using the Cauchy inequality and (7), we have

N

∑
k=1

∣∣∣∣L(1
2
+ ε + i(t + htk); a

)∣∣∣∣ 6
(

N
N

∑
k=1

∣∣∣∣L(1
2
+ ε + i(t + htk); a

)∣∣∣∣2
)1/2

�h,a N(1 + |t|)1/2,

and

I1 �β,K,h,a n−ε

+∞∫
−∞

1
N

N(1 + |τ|)1/2 exp
{
−π|τ|

2θ

}
dτ �β,K,h,a n−ε.

Using the above estimates for I1 and I2, we have

1
N

N

∑
k+1

sup
s∈K
|L(s + ihtk; a)− Ln(s + ihtk; a)| �θ,K,h,a n−ε +

log N
N

n1/2−2ε.

Tending N → ∞, and then n→ ∞, we obtain the assertion of the lemma using the definition
of the metric ρ.

Now, we are ready to prove Theorem 5. For the proof, we will apply the following
assertion, see, for example, [24], Theorem 3.2.

Lemma 7 ([24]). Suppose that (T, ρ̂) is the separable space and the T-valued random elements YN
and X1n, X2,n, . . . are defined on the same probability space with measure P̃. Let, for all l,

Xln
D−−−→

n→∞
Xl ,

and
Xl

D−−→
l→∞

X.

If
lim
l→∞

lim sup
n→∞

P̃{ρ̂(Xln, Yn) > ε} = 0
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for each ε > 0, then

Yn
D−−−→

n→∞
X.

Proof of Theorem 5. Let (Ω̂, B(Ω̂), P̃) be a certain probability space. Suppose that ξN is a
random variable on the above probability space such that

P̃{ξN = htk} =
1
N

, k = 1, . . . , N.

Using ξN , define two H(D)-valued random elements

XN,n = XN,n(s) = Ln(s + iξN ; a)

and
XN = XN(s) = L(s + iξN ; a).

Let Xn = Xn(s) be the H(D)-valued random element of which the distribution is Tn; here,
Tn is the limit measure from Lemma 3. Then, by Lemma 3,

XN,n
D−−−→

N→∞
Xn. (9)

Using a standard method, see, for example, [7], we obtain that the family {Tn : n ∈ N} of
probability measures is tight, i.e., for each ε > 0, there exists a compact subset K = K(ε) of
the set D such that

Tn(K) > 1− ε

for all n ∈ N. From this and the classical Prokhorov theorem, see, for example, Theorem 5.1
of [24], we determine that {Tn : n ∈ N} is relatively compact, i.e., each sequence of Tn
contains a subsequence Tnl which converges weakly to a certain probability measure P on
(H(D), B(H(D))) as l → ∞. Thus,

Xnl
D−−→

l→∞
P. (10)

Now, using Lemma 6, for all ε > 0, we have

lim
n→∞

lim sup
N→∞

P̃{ρ(XN(s), XN,n(s)) > ε} = 0.

This relation, (9), (10), and Lemma 7 prove that

XN
D−−−→

N→∞
P. (11)

This means that, for N → ∞, PN converges weakly to P. Additionally, (11) shows that the
measure P in (10) does not depend on the subsequence Tnl . Therefore, we have that Tn
converges weakly to P as n→ ∞.

Moreover, we need to identify the measure P. In [12], it was received that

1
T
M{τ ∈ [0, T] : L(s + iτ; a) ∈ A}, A ∈ B(H(D)),

as n → ∞, also converges weakly to the limit measure P of Tn, and P coincides with PL.
Thus, PN converges weakly to PL as N → ∞ as well.

3. Proof of Universality Theorem

For the proof of Theorem 4, we need the Mergelyan theorem on the approximation of
analytic functions by polynomials, see [26].
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Lemma 8. Let K ⊂ C be a compact set with a connected complement and h(s) be a continuous
function on K and analytic in the interior of K. Then, for each ε > 0, there exists a polynomial pε(s)
such that

sup
s∈K
|h(s)− pε(s)| < ε.

Before the proof of Theorem 4, we recall some equivalents of the weak convergence
of probability measures, see, for example, [24], Theorem 2.1. Recall that the set A is a
continuity set of the measure P̂ if P̂(∂A) = 0, where ∂A is the boundary of the set A.

Lemma 9. Suppose that P̂n, n ∈ N, and P̂ are probability measures on (T, B(T)). Then, the
following statements are equivalent:

(i) Pn converges weakly to P as n→ ∞;
(ii) For all open sets G ⊂ T,

lim inf
n→∞

P̂n(G) > P̂(G);

(iii) For all continuity sets A of P̂,
lim

n→∞
P̂n(A) = P̂(A).

Proof of Theorem 4. Define

S = {h(s) ∈ H(D) : h(s) 6= 0 or h(s) ≡ 0}.

In [7], it was obtained that the set S is the support of the measure PL (S is a minimal closed
subset of H(D) such that PL(S) = 1). The set S consists of all h(s) ∈ H(D) such that the
inequality P(H) > 0 is satisfied for all open neighborhoodsH of h(s).

Now, we define the set

Hε =

{
h(s) ∈ H(D) : sup

s∈K

∣∣∣h(s)− ep(s)
∣∣∣ < ε

2

}
,

where p(s) is some polynomial. Since ep(s) 6= 0, ep(s) is an element of S . Thus,

PL(Hε) > 0.

Therefore, using Theorem 5 and 9 of Lemma 9, we have

lim inf
N→∞

PN(Hε) > PL(Hε) > 0,

or

lim inf
N→∞

1
N

Card

{
1 6 k 6 N : sup

s∈K

∣∣∣L(s + ihtk; a)− ep(s)
∣∣∣ < ε

2

}
. (12)

In virtue of Lemma 8, we can choose the polynomial p(s) such that

sup
s∈K

∣∣∣ f (s)− ep(s)
∣∣∣ < ε

2
. (13)

This and (12) gives the first assertion of the theorem.
Define one more set

H̃ε =

{
h(s) ∈ H(D) : sup

s∈K
|h(s)− f (s)| < ε

}
.

Then, from (13), we give thatHε ⊂ H̃ε.
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The boundary ∂H̃ε of the set H̃ε is the set{
h(s) ∈ H(D) : sup

s∈K
|h(s)− f (s)| = ε

}
.

Thus, ∂H̃ε1 ∩ ∂H̃ε2 = ∅ for different positive ε1 and ε2. Therefore, PL(∂H̃ε) > 0 for, at most,
countably many ε > 0. Hence, the set H̃ε is a continuity set (∂H̃ε = 0) of the measure PL for
all but at most, countably many ε > 0. Therefore, using Theorem 5 and 9 of Lemma 9, we
have that

lim
N→∞

Pn(H̃ε) = PL(H̃ε),

or

lim
N→∞

1
N

Card

{
1 6 k 6 N : sup

s∈K
|L(s + ihtk; a)− f (s)| < ε

}
= PL(H̃ε)

for all but at most, countably many ε > 0. The last step of the proof is to show that
PL(H̃ε) > 0. However, we have just seen that Hε ⊂ H̃ε. Since PL(Hε) > 0, we have that
PL(H̃ε) > 0 as well, and we prove the theorem.

4. Conclusions

In the paper, we consider the Dirichlet series

L(s; a) =
∞

∑
m=1

am

ms , s = σ + it, σ > 1,

where a = {am : m ∈ N} is a periodic multiplicative sequence of complex numbers with
period l ∈ N. For example, am can be a Dirichlet character modulo l.

We prove a theorem on the approximation of non-vanishing analytic functions defined
on the strip D = {s ∈ C : 1/2 < σ < 1} by shifts

L(s + ihtk; a), h > 0,

where {tk} is the sequence of Gram numbers, i. e., tk is a solution of the equation

ϕ(t) = (k− 1)π, k ∈ N,

and ϕ(t) is the increment of the argument of the function π−s/2Γ(s/2), and Γ(s) is the Euler
gamma function along the segment, connected the points 1/2 and 1/2 + it. We obtain that
the set of the above shifts approximating a given analytic function has a positive lower
density; thus, it is infinite. The problem of a positive density is also discussed. For the
proof, a probabilistic approach based on the weak convergence of probability measures in
the space of analytic functions is applied.

The results obtained cover those of [22].
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