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Abstract: The choice of the factorization rank of a matrix is critical, e.g., in dimensionality reduction,
filtering, clustering, deconvolution, etc., because selecting a rank that is too high amounts to adjust-
ing the noise, while selecting a rank that is too low results in the oversimplification of the signal.
Numerous methods for selecting the factorization rank of a non-negative matrix have been proposed.
One of them is the cophenetic correlation coefficient (ccc), widely used in data science to evaluate
the number of clusters in a hierarchical clustering. In previous work, it was shown that ccc performs
better than other methods for rank selection in non-negative matrix factorization (NMF) when the
underlying structure of the matrix consists of orthogonal clusters. In this article, we show that using
the ratio of ccc to the approximation error significantly improves the accuracy of the rank selection.
We also propose a new criterion, concordance, which, like ccc, benefits from the stochastic nature of
NMF; its accuracy is also improved by using its ratio-to-error form. Using real and simulated data,
we show that concordance, with a CUSUM-based automatic detection algorithm for its original or
ratio-to-error forms, significantly outperforms ccc. It is important to note that the new criterion works
for a broader class of matrices, where the underlying clusters are not assumed to be orthogonal.

Keywords: clustering; dimensionality reduction; machine learning; NMF; cophenetic correlation
coefficient; concordance; CUSUM

MSC: 65F55; 62H30

1. Introduction

Non-negative matrix factorization (NMF) [1,2] is a linear dimensionality reduction
technique that has become popular for its ability to automatically extract sparse and easily
interpretable factors [3], detect similarity between subsets of patients sharing local patterns
of gene expression data [4], cluster the rows or columns of a matrix [5], perform filtering
and deconvolution tasks [6,7], and interpret social phenomena through topic modeling [8],
to name just a few applications.

Let Mn, f ∈ R
n× f
+ be a non-negative matrix. For a given rank c such that

1 ≤ c ≤ min(n, f ), a non-negative factorization of M is given by:

Mn, f = Wn,c ⊗ H f ,c + En, f (1)

with: En, f ∈ argmin(||Mn, f −Wn,c ⊗ H f ,c||2), En, f ∈ Rn× f , Wn,c ∈ Rn×c
+ , H f ,c ∈ R

f×c
+ .

The non-negative matrices Wn,c and H f ,c are called the components of the factorization,
and the tensor product above is the regular product between Wn,c and the transpose of
H f ,c. We use the tensor product notation because it symmetrizes the respective roles of W
and H, and also because it is easily generalized to the context of tensor factorization. In
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order to simplify the notation, in what follows we drop the indices denoting the matrix
size when there is no ambiguity. Each row of M can be seen as a single observation of f
different features or attributes, stored in f distinct columns of M. Equation (1) allows us
to express the observations in M in a more parsimonious way by reducing the original
number f of features to a smaller number c. The tradeoff for this simplified representation
is the presence of the factorization error term represented by matrix E.

Let us refer to the c synthetic features whose values populate the rows of matrix
W as “meta-features”. The transition from the condensed representation in the space of
meta-features to the “physical” representation is provided by the matrix H, which plays
the role of a transition matrix. A single observation from M is represented by its ith row
Oi =de f M(i, :) ∈ R f , and each column of H, say k, yields the decomposition of Oi as a
non-negative linear combination of c meta-features Φ1, . . . , Φc, with Φk =de f H(:, k) being
the kth column of H, such that the following relation holds:

Oi =
c

∑
k=1

wi,kΦk + Ei (2)

Non-negative matrix factorization has a geometric interpretation that makes it easier
to understand: up to a certain approximation error coded in the matrix E, each observation
vector Oi belongs to the non-negative simplex Πc generated by the c Φ1, . . . , Φc vectors.
Non-negative matrix factorization can also be seen as a projection on this simplex, with the
distance d(M, Πc) from the matrix to the simplex being the approximation error ||En, f ||2.
If we add null columns to W and H and obtain W ′ and H′ with the same number of
rows and c′ > c columns, the tensor product of these matrices remains unchanged: W ′ ⊗
H′ = W ⊗ H, hence Πc ⊂ Πc′ . It follows that when the factorization rank increases, the
approximation error d(M, Πc) is non-increasing. As an immediate consequence, an exact
factorization at rank c remains exact at any larger rank c′. If one was only dealing with exact
factorizations, the optimal factorization rank could be defined as the lowest rank for which
the factorization is exact. Unfortunately, the additional noise makes the situation more
complicated: there is no obvious information to extract from the non-increasing series of
approximation errors (d(M, Πc), c = 1, 2, . . . ). Therefore, an important question is whether
the selected rank leads to a “meaningful” decomposition, since choosing a rank that is
too high amounts to adjusting the noise, while choosing a rank that is too low leads to
oversimplification of the signal.

In [9], several methods were evaluated, e.g., Velicer’s Minimum Average Partial,
Minka’s Laplace–PCA, Bayesian Information Criterion (BIC), and Brunet’s cophenetic
correlation coefficient (ccc) [10]. Another method is the minimum description length
approach that selects the rank that ensures the best possible encoding of the data [11]. For
this approach, the encoding also covers the noise, so a low signal-to-noise ratio tends to
inflate the effects of the noise. Cross-validation can also be used to select the rank that
provides the most accurate imputation of missing data [12]. Depending on the method
used, significantly different ranks may be selected [13]. Of course, in principle, using the
results of all available methods together should help with the selection of the proper rank.
Unfortunately, simple heuristic rules to do that have not been found yet, which led to the
idea of using deep learning approaches.

In [14], the starting idea was that several metrics may be potentially useful for rank
selection. The authors included the approximation error as well as penalized versions like
the AIC or BIC criteria. NMF clustering stability metrics, such as the silhouette coefficient,
were also included. Because none of these metrics can indicate on their own which rank
should be selected by simply observing the values taken for different ranks (a graph referred
to as a scree-plot), the authors have entrusted a neural network, taking some candidate
metrics as inputs, with the task of determining a (non-linear) function of the metrics that
can be used to select the correct rank. Because this network has to work well for many types
of matrices, it needs to be trained on a large and diverse set of matrices. These matrices are
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constructed such that their rank is known, and this rank is used as a label in the training
set. The network presented by the authors worked well for matrices of the same type as
those from the training set, but it did not perform well when applied to different types
of matrices. The lack of generalizability to non-synthetic matrices is due to the inherent
limitation of using a simulation framework, which, even if well designed, it is not able to
reproduce all types of matrices that may be encountered in real life. Nevertheless, it is of
interest to determine which specific metrics or combinations of metrics are most useful for
selecting the correct factorization rank for synthetic datasets, even if each individual metric
is not sufficient on its own. Unfortunately, the results from [14] do not provide any insights
with regard to this.

The estimates of the NMF components are inherently stochastic [15]: the NMF esti-
mates are obtained through iterative updating rules that offer no guarantee of converging
to a global minimum, making them sensitive to initial “guessed” values. Yang et al. [16]
propose to alleviate this problem by mutually complementing NMF and Deep Learning.
However, their approach is essentially based on a multilayer NMF, first proposed in [17],
and far beyond the scope of this work, which is focused on a single-layer NMF. By contrast,
the cophenetic correlation coefficient, ccc, fully exploits the stochastic nature of the NMF
estimates without requiring any training: for a given factorization rank, ccc provides an
estimate of the consistency of the co-clustering of observations or features that can be de-
rived from the NMF components over multiple runs of the algorithm, each using a random
initialization [10]. The factorization rank is chosen to maximize this consistency. The wide
use of ccc in practice, thanks to its availability in common NMF packages [18,19], and its
relatively good performance on synthetic matrices with orthogonal underlying factors [9],
has led us to use it as a reference metric while introducing a new criterion, which we call
concordance. The latter also exploits the stochastic nature of the NMF estimates, this time
by examining their stability relative to reference estimates obtained by non-negative double
singular value decomposition (NNDSVD) [20] up to some permutation. To evaluate the per-
formance of our new criterion and compare it to the ccc criterion, we apply a CUSUM-based
automatic detection algorithm to publicly available datasets and to synthetic matrices. In
addition, we show that considering the ratio of ccc or concordance to the approximation
error significantly decreases the rank selection error. Remarkably, our new criterion works
very well with a broader class of matrices than those tested in [9], namely matrices for
which the underlying factors are not assumed to be orthogonal.

2. Materials and Methods
2.1. Public Datasets

In this section we present four publicly available datasets that were used to evaluate
the rank selection methods.

2.1.1. Brunet Dataset

Golub et al. [21] report data on the associations between the gene expression of
7129 genes and disease status. There are 11 patients with acute myeloid leukemia (AML)
and 27 patients with acute lymphoblastic leukemia (ALL). The ALL group is further divided
into T- and B-cell subtypes (19 and 8 patients, respectively). The B-cell subtype group was
further divided into two subgroups in [22]. We consider only the 5000 well-expressed genes
used by Brunet et al. [10]. Prior to performing NMF, we take the logarithm of the gene
expression values and subtract the baseline value, calculated as the minimum expression
value for each gene. The resulting data set is called the Brunet data set, and its rank is 4.

2.1.2. Sausage Dataset

Ellekjær et al. [23] ran a designed experiment where three constituents—fat, salt, and
starch—added when making sausages, were varied according to a single-replicate 6 × 3 × 3
factorial design. For the 54 sausages analyzed, fat had six levels (8%, 12%, 16%, 20%, 24%,
28%); salt had three levels (1.3%, 1.6%, 1.9%); and starch had three levels (1.5%, 4.5%,
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7.5%). The 54 sausages were measured by both sensory analysis and NIR spectroscopy.
We analyze only the spectral data. NIR spectra were measured in 4 nm increments from
wavelengths ranging from 1100 nm to 2498 nm, and so there are 351 measurements per
sausage. Accordingly, the NIR matrix has 54 rows and 351 columns. We refer to this dataset
as the Sausage dataset, and its rank is 3.

2.1.3. Swimmer Dataset

Donoho and Stodden [24] created the Swimmer dataset to illustrate conditions for
uniqueness of the NMF decomposition. It depicts a figure with a fixed torso and four
moving parts (limbs), each able to exhibit four articulations (different positions). Each
image contains 12 pixels in the center (for the fixed torso) and four limbs of 6 pixels each
that can be in one of four positions. All possible combinations of limb positions give us
256 images. The rank of this dataset is 17.

2.1.4. Mnist Dataset

The MNIST dataset [25] consists of 70,000 hand-written Arabic numerals divided into
a 60,000 element training set and a 10,000 element testing set. The MNIST dataset was
originally constructed for the training and testing of machine learning algorithms used to
classify hand-written digits. The rank of this dataset is 10.

2.2. Artificial Matrices with Prespecified Rank

To construct artificial matrices with prespecified rank, we considered two complemen-
tary approaches, which can be summarized as follows:

1. The BouquetsFirst approach: W and H are explicitly structured into clusters with
specified correlation levels within clusters and between clusters. The rank is equal to
the number of clusters. In this approach, the degree of sparsity of the components W
and H is a direct consequence of the number of clusters and specified correlation levels.

2. The Sparsity First approach: The degrees of sparsity for W and H are explicitly
specified. In this approach, the components W and H are structured into clusters that
are more or less clearly defined depending on the degree of sparsity and the size of
the matrix.

3. Mixed approaches, e.g., W (resp. H) is constructed with the bouquets first approach
and H (resp. W) is constructed with the sparsity first approach.

A specified amount of noise is then added to the constructed matrix. Expressed in
relative terms, the noise is drawn from an uniform distribution on (0, 0.25).

2.2.1. Bouquets First

The idea behind the bouquet method is to construct a matrix whose rows (i.e., observa-
tions) are naturally grouped according to the column containing their dominant coefficient.
Let us start with a canonical case: each of the n (resp. f ) rows of the matrix W (resp. H)
are zero everywhere except for one non-zero coordinate among the c dimensions. We can
then group the rows according to the single non-zero coefficient. If we construct a matrix
W and a matrix H based on this method, the product M = W ⊗ H is a matrix containing c
independent blocks, and it is not possible to represent it with fewer than c blocks. Let us
start with a W (resp. H) matrix having the following structure:

W(resp.H) =



1 0 ... 0
1 0 ... 0
0 1 ... 0
0 1 ... 0
... ... ... ...
0 0 ... 1
0 0 ... 1
0 0 ... 1



a1

a2

ac
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where the following compatibility relation holds for W (resp. H):

c

∑
i=1

ai = n(resp. f )

As long as none of the ai is zero, it is clear that the row vectors of W and H need
exactly c dimensions. The matrix M has the following generic structure:

M = W ⊗ H =

n1

n2

nc



1 1 0 ... 0 0
1 1 0 ... 0 0
0 0 1 ... 0 0
0 0 1 ... 0 0
... ... ... ... ... ...
0 0 0 ... 1 1
0 0 0 ... 1 1
0 0 0 ... 1 1


f1 f2 ... fc

In this canonical case, we see that M is a block matrix, made of c non-overlapping
ni × fi matrices. For such matrices, it is clear that exactly c components allow for their
reconstruction, and that their factorization could not be achieved with a smaller rank.
The principle of the bouquet method is to generalize the previous construction by relaxing
the condition of a single non-zero coefficient imposed to the rows of the matrix:

• By replacing the c mutually orthogonal vectors fromRc
+ with c “weakly correlated”

vectors fromRc
+.

• By imposing to each row of the matrix to be “strongly correlated” with exactly one of
the previous vectors.

Algorithm 1 builds a set of vector bouquets. Each bouquet comprises a variable num-
ber of vectors whose correlation with a given vector, identified as the “centroid” of the
bouquet, is higher than a prescribed minimum correlation threshold. The mutual correla-
tions of the centroids have to be less than a prescribed maximum correlation threshold.

Algorithm 1 Build a set of bouquet vectors

Require: c ≥ 1, nbvec ≥ c, 1 ≥ ρmin ≥ 0.8, 0 ≤ ρmax ≤ 1
Build c centroid vectors inRc

+ : v1, ..., vc ← make_centroids(c, ρmax)
Generate a random partition of [1, nbvec] with c integers: n1, ..., nc ←
make_random_partition(nbvec, c)
for i = 1, 2, . . . , c do

Generate ni vectors correlated with centroid vi:
for j = 1, 2, . . . , ni do

Find small random vector vsmall inRc
+, orthogonal to vi such that Correlation(vi,

vi + vsmall) ≥ ρmin and vi + vsmall inRc
+

wi,j ← vi + vsmall
end for

end for
Return nbvec vectors inRc

+ : {wi,j, i ≥ 1, j ≥ 1}

Algorithm 2 returns c random vectors from Rc
+ having a mutual correlation less

than ρmax. These vectors are obtained by adding to each coordinate vector ofRc
+ a value

generated from a uniform distribution on an open interval having 0 as the lower bound
and an upper bound depending on the prescribed maximum correlation.
More precisely, let us use the following notations:

• ei is the ith coordinate vector ofRc
+, for i = 1, ..., c.
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• ui ∈ Rc
+, i = 1, ..., c, are c random vectors with coordinates independently drawn from

the uniform distribution U(0, 2ε).
• vi = ei + ui.
• An upper bound on the cosine of the angle between vectors vi and vj for i 6= j is set by

imposing the condition: E(< vi, vj > −ρ||vi||2||vj||2) ≤ 0.

Using the expressions of the first two moments of a uniform distribution: E(ui) = ε,
E(u2

i ) = 4ε2/3, it is easy to verify that:

• E(< vi, vj >) = cε2 + 2ε.
• E(||vi||2||vj||2) = E(||vi||22) = 1 + 2ε + (4c/3)ε2.
• After substitutions, the upper bound condition stated above yields a quadratic in-

equality in ε: (1− 4ρ/3)cε2 + 2(1− ρ)ε− ρ ≤ 0.
• Provided that 0 ≤ ρ ≤ 3/4, this equation has a unique positive solution in ε, represent-

ing the maximum allowed magnitude of a uniform perturbation applied to orthogonal
unitary vectors, in order to provide an upper bound for their mutual cosine.

Algorithm 2 Make centroids

Require: c ≥ 1, 0 ≤ ρmax ≤ 1
α← c× (1− 4ρmax/3)
β← 2(1− ρmax)
γ← −ρmax
εmax ← Unique positive solution in X of αX2 + βX + γ = 0
for i = 1, 2, . . . , c do

ei ← ith coordinate vector ofRc
+

xi ← ei + uni f orm_random(0, 2εmax)
end for
Return x1, . . . , xc

2.2.2. Sparsity First

Here we generate matrices by controlling the sparsity [26] of the W and H components.
First, each component is randomly generated. Then, sparsity is enforced at the specified
level for each component as described in [27]. Algorithm 3 takes as input a matrix M0 of
size (n, c) and a sparsity level α and returns a sparse matrix Msp where, for each column

y of Msp: sp(y) =
√

m−‖y‖1/‖y‖2√
m−1 = α. For each column of Msp, there are p∗ < m non-

zero values (where p∗ depends on the column), which define a cluster. However, since
the sparsity enforcement is carried out independently for each component, there is no
guarantee that clusters will not overlap between components. Therefore, the sparsity first
approach automatically results in clusters that are more or less clearly defined depending
on the degree of sparsity and the size of the matrix. We have considered 2 versions of this
algorithm, min_sparsity and max_sparsity, where for the first version the sparsity level is
randomly selected from a uniform distribution on [0.5, 1], and so its minimum value is 0.5,
while for the second version it is randomly selected from a uniform distribution on [0, 0.5],
and so its maximum value is 0.5.
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Algorithm 3 Make a sparse matrix

Require: M0, 0 < α < 1
for each column b of M0 do

Set bnorm = ‖b‖2
Normalize: b← b/bnorm
Set k =

√
n− α× (

√
n− 1)

Set a = sort(b) and p∗ = n
Get a mapping π such that ai = bπ(i) and aj ≥ aj+1 for all valid i, j
Compute values of µ(p), λ(p) as follows:
for p = ceiling(k2), . . . , n do

λ(p) = −
√

p ∑
p
i=1 a2

i −(∑
p
i=1 ai)

2

(p−k2)

µ(p) = −∑
p
i=1 ai

p − k
p λ(p)

if a(p) < −µ(p) then
p∗ = p− 1
break

end if
end for
Set xi = −bnorm × ai+µ(p∗)

λ(p∗) , ∀i ∈ {1, · · · , p∗} and to zero otherwise.
Set corresponding column y of Msp: yπ(i) = xi

end for
Return Msp

2.2.3. Overview of the Dataset of Artificial Matrices

The non-parametric approach presented in this article is based on optimizing the
trade-off between stochastic stability (as measured by concordance) and the approximation
error. Given that, a training set of matrices is not necessary. For the purpose of evaluating
the performance of rank selection methods, a dataset of 2500 random matrices has been
built by reverse-engineering the NMF factorization process. One starts with a (W, H) pair
of matrices sharing the same number of columns, equal to the prespecified rank c. A matrix
M = W⊗H + E is then generated (a detailed description is given in Algorithm 4). The rank
c of the matrix M is used as a benchmark for any rank selection method. The performance
of the various methods is statistically evaluated on this set of 2500 random matrices. We
will use the term “rank estimation error” to refer to the rank selection error in the context
of this statistical evaluation.

2.3. Criteria for Rank Selection

It can be argued that the interpretability of NMF factors comes at a certain price:
the lack of a unique solution. This is in contrast to singular value decomposition (SVD),
whose factors, on the other hand, are less interpretable due to their mixed signs. A nice
example of a simple matrix that can be factorized exactly by two completely distinct sets of
non-negative components can be found in [28]. Although conditions for uniqueness of the
solution can be found in [24], they can hardly be checked in practice. With respect to the
rank selection problem, we will see that this lack of uniqueness is actually a blessing, since
it leads to alternative criteria that perform better than the approximation error criterion
commonly used for SVD. Specifically, we present two criteria for NMF rank selection
that benefit from the stochastic nature of the NMF components: the popular cophenetic
correlation coefficient (ccc) and a new criterion we call concordance.
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Algorithm 4 Generate a set of random matrices with prespecified rank

Require: N ≥ 1, 3 ≤ c∗ < c∗, ρ∗ < ρ∗, 0 < ε∗, nmin < nmax
/* c∗ and c∗ are respectively the minimum and maximum ranks of generated matrices,
set here to 3 and 27.*/
/* ρ∗ and ρ∗ are respectively the maximum inter-correlation (of bouquets centroids), and
minimum intra-correlation (of vectors within a bouquet), set here to 0.2 and 0.8. */
/* ε∗ is the maximum level of multiplicative noise applied to an exact factorization, set
here to 25%. */
/* nmin is the minimum number of rows of a W or H matrix, set here to 10 times the
number of components. */
/* nmax is the maximum number of rows of a W or H matrix, set here to 300. */
for i = 1, 2, . . . , N do

c← random_int ∈ [c∗, c∗]
for Part ∈ [w, h] do

part_type← randomchoice ∈ {bouquet, min_sparsity, max_sparsity}
n← random_int ∈ [nmin, nmax]
if part_type == bouquet then

ρmin ← uni f orm_random ∈ [ρ∗, 1]
ρmax ← uni f orm_random ∈ [0, ρ∗]
Part← make_bouquet_matrix(c, n, ρmin, ρmax)

else
if part_type == min_sparsity then

sp← uni f orm_random ∈ [0.5, 1]
else

sp← uni f orm_random ∈ [0, 0.5]
end if
Part← make_sparse_matrix(n, c, sp)

end if
if Part == w then

W ← Part, nW ← n
else

H ← Part, nH ← n
end if

end for
ε← uni f orm_random ∈ [0, ε∗]
N ← normal_random_matrix ∈ RnW×nH

/* Entries of matrix N are independently drawn from a normal distribution N(0, 1) */

Er ← ε× N
/* A multiplicative noise is applied to the product of components */

Mi ← (W ⊗ H) + E =de f (W ⊗ H)(1 + Er)
end for
Return M1, . . . , MN

2.3.1. Cophenetic Correlation Coefficient

Due to their non-convexity, NMF algorithms may not converge to the same solution
depending on the initial conditions. The strategy proposed by Brunet et al. [10] is to run the
algorithm several times with different random initial conditions and, for each run, assign
the observations to clusters based on the relative values in each column of W. If the selected
rank is correct, this assignment is unlikely to change much from run to run, and so the
evaluation of its stability is useful to select the correct rank. To this end, a consensus matrix
C is computed at each run, where the entry is C(i, j) = 1 if observations i and j belong to
the same cluster, and C(i, j) = 0 if they belong to different clusters. C is then averaged
over all runs and ccc is defined as the Pearson correlation of two distance matrices: the
first, 1− C, is the distance between observations induced by the consensus matrix, and the
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second is the distance between observations induced by the linkage used in reordering C.
The pseudocode is given in Algorithm 5. The same approach can be applied to H, and then
the geometric average of the ccc based on W and H can be calculated.

Algorithm 5 ccc calculation for W

Require: c ≥ 1
for iter = 1, 2, . . . do

Run NMF with random initialization
Save component estimates in W (random components)
Calculate consensus matrix Citer
for i = 1, . . . , n− 1, j = i + 1, . . . , n do

Citer(i, j)← 1 if observations i and j belong to the same cluster, else Citer(i, j)← 0
end for

end for
C ← mean(Citer) over all iterations
ccc← Pearson correlation(1− C, Linkage distance(C))

2.3.2. Concordance

In contrast to using random initializations, the non-negative double singular value de-
composition (NNDSVD) has been shown to lead to a rapid reduction of the approximation
error [20]. Taking the NNDSVD estimates as reference, the average distance D between
the W estimates obtained with random initialization and the reference estimates is given
by D = 1− concordance, where concordance is calculated with the pseudocode given in
Algorithm 6. The same approach can be applied to H, and then the geometric average of
concordance based on W and H can be calculated.

Algorithm 6 concordance calculation for W

Require: c ≥ 1
Run NMF with NNDSVD initialization
Save component estimates in Wre f (reference components)
for iter = 1, 2, . . . do

Run NMF with random initialization
Save component estimates in W (random components)
for k = 1, 2, . . . , c do

Look for the reference component in Wre f maximizing correlation with Wk
Save the index lk of the found component and its correlation with the random

component corrk
end for
corriter ← mean(corrk) over indices lk
Set x = number of unique indices lk and y = x(x− 1)/(c− 1)
conciter ←

y
c × corriter

end for
concordance← mean(conciter) over all iterations

Based on Algorithm 6, concordance reaches its maximum value of 1 when each compo-
nent obtained by random initialization corresponds to a unique reference component with
which it is perfectly correlated. If two or more randomly initialized components correspond
to the same reference component, or if the correlation is less than 1, then concordance
decreases.

To prevent a slight bias in algorithm 6, the number of unique indices, which normally
varies between 1 and c, has been adjusted to vary between 0 and c, using the following
transformation: y = x(x− 1)/(c− 1), where x is the number of unique indices.
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2.3.3. Ratio of ccc or Concordance to the Approximation Error

To illustrate why considering the ratio of ccc or concordance to the approximation error
is beneficial, let us return to the Brunet dataset. Brunet et al. [10] have shown that the
hierarchical structure of the leukemia dataset can be retrieved by NMF. With only two
clusters, patients with AML are distinguished from patients with ALL. With three clusters,
ALL patients are further subdivided into T-cell (ALL-T) and B-cell (ALL-B) subtypes.
Finally, with 4 clusters, the ALL-B subtype is further divided into two clusters. Since ccc
decreases significantly only when the number of clusters exceeds 4, any of the ranks 2, 3, or
4 may be selected. However, the approximation error decreases rapidly from rank 2 to 4,
indicating that factorizing the data with rank 2 or 3 leads to an oversimplification of the
underlying biology. However, the ratio of ccc to the approximation error (ccc/error) has a
maximum at rank 4.

2.4. Rank Selection

Our strategy is to compute the criterion over a range of possible ranks. Based on the
obtained values, a CUSUM chart is created to automatically select the rank, as described in
Algorithm 7.

Algorithm 7 CUSUM chart for rank selection

for c = cmin, cmin + 1, . . . , cmax do
Calculate criterion x(c)

end for
CUSUM(cmin − 1)← 0
for c = cmin, cmin + 1, . . . , cmax − 1 do

delta← 1 if x(c) > x(c + 1) else delta← −1
CUSUM(c) = max(CUSUM(c− 1) + delta, 0)
if c ≥ cmin + 2 & CUSUM(c− 2) > 0 & CUSUM(c− 1) > 0 & CUSUM(c) > 0

then
ĉ = c− 2
break

else
continue

end if
end for

To summarize Algorithm 7, CUSUM is incremented by 1 if the criterion is decreasing
between ranks c and c + 1, otherwise 1 is subtracted from CUSUM, which cannot be less
than 0. In fact, the selected rank corresponds to the beginning of two consecutive decreases
of the criterion.

3. Results
3.1. Results on Artificial Matrices
3.1.1. Distribution of the Rank Estimation Error

In this section, we examine the distribution of the rank estimation error as a function
of the criterion used. The quartiles of the distributions are given in Table 1. Panels a and b
in Figure 1 show that the distributions of the rank estimation error using ccc or concordance
indicate a strong tendency to underestimate the actual rank. However, concordance is
better than ccc in this regard: Median for ccc = −6 and Median for concordance = −3. We
observe that both distributions are bimodal, with a second mode around 0 and longer
tails to the right, resulting in an overall positive skewness. However, the main mode
for ccc is the negative one, while the main mode for concordance is the one around 0.
Remarkably, this tendency is significantly reduced when each criterion is divided by the
approximation error: Median for ccc/error = 1 and Median for concordance/error = 0. Panel
c in Figure 1 compares the distributions of the rank estimation error using ccc/error and



Mathematics 2023, 11, 4611 11 of 18

concordance/error, indicating a strong tendency of ccc/error to overestimate the actual
rank: 3rd quartile for ccc/error = 4, while 3rd quartile for concordance/error = 1.

Figure 1. Distribution of the rank estimation error as a function of the criterion used: (a) ccc vs.
ccc/error, (b) concordance (conc) vs. conc/error, and (c) conc/error vs. ccc/error. The negative values
are highlighted in red.

Table 1. Quartiles of the distribution of the rank estimation error as a function of the criterion used.

Quartile ccc Concordance ccc/Error Concordance/Error
75% −2 0 4 1
50% −6 −3 1 0
25% −8 −6 0 −2

3.1.2. Sources of Error

In this section, we examine the main sources of rank estimation error for the best
performing criterion, concordance/error, as shown in the previous Section 3.1.1, using the
analysis of mean representation [29]. In Figure 2, each panel contains a decision chart with
the following elements:

• An upper decision limit (UDL).
• A lower decision limit (LDL).
• The center line position is determined by the overall mean.

The following empirical observations can be drawn from the charts:

• Panel a shows that the estimation error (estimated rank minus real rank) has an overall
decreasing tendency as a function of the real rank (i.e., the number of components
used to generate the matrix), with a maximum value for c = 3 and a minimum value
for c = 21.

• Panel b also shows an overall decreasing tendency of the rank estimation error as a
function of the level of noise used to generate the matrix. In particular, from 15% and
above, the real rank is systematically underestimated.

• Panel c indicates a bias for matrices of moderate size (with the size defined as the
maximum between the number of rows and the number of columns) resulting in an
overall overestimation of the rank.

• Panel d investigates the estimation error as a function of the sparsity level (Algorithm 3)
used to generate the matrix. For sparsity levels less than 0.5 (i.e., dense matrices),
the rank is on average underestimated, while the opposite is true for sparsity levels
above 0.5.

• Panel e shows the average estimation error for each of the six possible generation
methods obtained by combining pairwise the bouquets method, the minimum sparsity
level method, and the maximum sparsity level method for the generation of the
random matrices W and H (Algorithm 4). The results show clearly that:
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– Setting a maximum level of sparsity for one component or both results in a
significant underestimation bias.

– Setting a minimum level of sparsity for one component or both results in a
significant overestimation bias.

Figure 2. Sources of rank estimation error using analysis of means (ANOM) approach. Rank
estimation error vs. (a) real rank, (b) noise intensity, (c) matrix size (in either dimension), (d) sparsity
of underlying components, and (e) algorithms used to generate the artificial matrices.

The preceding empirical observations lead us to consider two types of matrices. The
first type are matrices that have an unambiguous factorization, i.e., linked to a sharp
optimum in Equation (1). These matrices are characterized by a low level of noise and
a high level of parsimony. The second type are matrices that have a factorization linked
to a very flat optimum. These matrices are characterized by a high level of noise and a
high density of coefficients. For the first type of matrices, we expect to observe a very clear
local maximum on the concordance/error criterion around the true rank. This peak can be
observed before the CUSUM condition (i.e., two consecutive drops after the maximum)
is reached, and hence the observed overestimation bias. For the second type of matrices,
the high level of noise creates higher fluctuations in the concordance term around the true
rank. It also makes the decrease in error less marked as a function of the true rank. There is
a significant probability of observing the expected decrease of the concordance before the
true rank, and hence the observed underestimation bias.

3.2. Results on Public Datasets

The results obtained with the synthetic matrices have led us to consider the ratio of ccc
or concordance to the approximation error, while applying automatic rank selection based
on the CUSUM chart.
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3.2.1. ccc

For the MNIST dataset, ccc/error severely underestimates the actual rank of 10 with
an estimated rank of 4. The Sausage and Brunet datasets confirm that ccc/error tends to
overestimate the rank, as was the case in our simulations, with estimated ranks of 4 and 5,
instead of the true ranks of 3 and 4, respectively. For the Swimmer dataset, the estimated
rank of 17 is equal to the actual rank.

3.2.2. Concordance

The estimated ranks are 10, 3, 4, and 17 for the MNIST, Sausage, Brunet, and Swimmer
datasets, respectively, and they are equal to the actual ranks (Figure 3).

Figure 3. CUSUM and concordance/error vs. rank for (a) MNIST, (b) Sausage, (c) Brunet, and
(d) Swimmer datasets. The shaded area corresponds to the first region of the CUSUM chart with
three consecutive positive values. The selected rank is determined by the left edge of this area.

3.2.3. The Roles of the Numerator and the Denominator

On one hand, the ratio ccc/error obviously fails in the rank evaluation of the MNIST
dataset. On the other hand, it succeeds in the rank evaluation of the Swimmer dataset.
It is therefore interesting to take a closer look at the two datasets and, in particular, to
investigate the role of the numerator and the denominator, respectively, regarding the
success or failure of the procedure. Similarly, we consider the respective roles for the ratio
concordance/error, which for both datasets yields the correct rank.

Looking more closely at the MNIST panel a in Figure 3, we see that concordance/error
is actually maximal at rank 20 and then steadily decreases, which is reflected in a steady
increase in the corresponding CUSUM chart. This could be easily explained by the presence
of archetypal handwriting variants of the same figure. The error term being nearly constant
(Figure 4), only the concordance term plays a role in correctly estimating the rank as being
10, unlike ccc, which slowly decreases with rank in the H dimension and remains almost
constant in the W dimension. It is noteworthy that concordance is always quite low, ranging
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from 0 to 0.15. This may be due to the fact that even a single individual never reproduces
exactly the same figure by hand, resulting in a high amount of noise in the MNIST dataset.
Nevertheless, concordance increases significantly at rank 10. This illustrates the robustness
of rank selection using concordance in the presence of noise.

Figure 4. ccc, concordance, and error as a function of the rank in the MNIST dataset. The vertical
dotted line corresponds to the actual rank.

For the Swimmer dataset, it is noteworthy that ccc is stable in the H dimension,
without a maximum at rank 17, and is steadily decreasing in the W dimension (Figure 5).
Nevertheless, ccc/error correctly selects the rank as being 17, thanks to the error term in
the denominator, which is suppressed at rank 17, since an exact solution can be found. In
contrast, concordance has a clear maximum at rank 17 in both dimensions W and H, so both
the numerator and denominator contribute to the success of concordance/error.

3.3. Computational Performance

The maximum number of iterations (denoted by iter_max) of NMF updates plays a
crucial role in the computational performance of the algorithm. This tuning parameter
needs to be set high enough to ensure a stable solution for the reference components
obtained with the NNDSVD initialization, from which the approximation error is calculated.
In contrast, NMF runs used to correlate random and reference components (concordance)
or to co-cluster observations or features (ccc) need not be as precise. Therefore, using the
Swimmer dataset, we compared the performance of concordance/error and ccc/error using
different values for the maximum number of NMF updates following random initialization
(Table 2). The selected rank remained correct down to iter_max = 10 for both criteria. The
difference between the computation times was small, less than one minute, which is due
to the simple and sparse structure of the matrix studied. However, the time required to
compute ccc/error was consistently higher than for concordance/error, and three times
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higher at iter_max = 10, due to the computational complexity of the consensus matrix and
linkage calculations.

Figure 5. ccc and concordance as a function of the rank in the Swimmer dataset. The vertical dotted
line corresponds to the actual rank.

Table 2. Performance (in seconds) of concordance/error and ccc/error as a function of the maximum
number of NMF updates.

Concordance/Error ccc/Error
Iter_Max Time (s) Rank Time (s) Rank

200 82.8 17 124.5 17
20 17.8 17 78.3 17
10 13.1 17 46.9 17
5 11.3 15 36.0 15

The same experiment applied to our simulated data sets using the concordance/error
criterion showed that the distribution of the rank estimation error appears less and less
skewed as the maximum number of iterations increases (Figure 6). A maximum number of
50 updates appears to be a reasonable choice.
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Figure 6. Rank estimation error using the criterion concordance/error as a function of the maximum
number of NMF updates.

All calculations for this article were performed using the scikit-learn NMF package
(https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html, ac-
cessed on 28 September 2023).

4. Conclusions

In this paper, we have introduced a simulation framework that allowed us to generate
a broad class of matrices in terms of shape, correlation structure, and sparsity. Based on
these artificial matrices and public datasets, we evaluated the performance of rank selection
criteria that exploit the stochastic nature of NMF estimates. An automatic evaluation on a
very large set of artificial matrices was made possible by a simple algorithm inspired by
CUSUM charts to determine which rank to select based on the screeplot of the criterion
versus the tentative ranks.

Given the wide use and acceptance of the cophenetic correlation coefficient criterion
among data scientists, the fact that this criterion appears significantly biased toward the
selection of lower ranks was a surprising finding. Considering its ratio to the approximation
error ccc/error, the distribution of the rank estimation error appears less skewed, but still
biased, albeit in the opposite direction. Strikingly, only ccc/error on the public Swimmer
dataset succeeds in selecting the correct rank, unlike ccc.

We have also proposed a new criterion, concordance, that outperforms ccc on both
public and simulated datasets, both in its original form and in its ratio to the approximation
error form. In addition, we have shown that rank determination using concordance is up to
three times faster than with ccc.

This work focuses on metrics that rely on the stochastic nature of the NMF estimates,
as is the case for ccc and concordance. The relatively good performance of ccc on synthetic
matrices with orthogonal underlying factors [9], led us to use it as a reference metric when
introducing the concordance criterion. Non-stochastic metrics, such as those from [14] and
many others, could have also been considered for comparative purposes. We have not
explored that in the context of our current work because our research aims were: (i) to
evaluate the performance of concordance and ccc on a larger class of synthetic matrices with
non-orthogonal underlying factors (with the matrices being generated by using a novel
simulation framework, which is one of the contributions of our study), and (ii) to evaluate
the impact of combining a particular metric with the approximation error by considering

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html
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their ratio. Nevertheless, the evaluation of the performance of other metrics on this larger
class of matrices is an important area for future work.

Incidentally, this study shows that the NNDSVD initialization not only converges
faster, as contended by Boustidis et al. [20], but also provides reliable NMF estimates, in
the sense that they can be used as a reference when calculating the deviation of estimates
obtained with a random initialization.

The fact that the error term in the MNIST dataset does not decrease with rank high-
lights the limitation of matrix generation using known factors and adding noise, where
the error term always tends to decrease with rank. This limitation may explain why
deep-learning models trained on generated matrices, as in [14], do not generalize well.
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