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Abstract: In this article, we successfully obtain novel solutions for the coupled Drinfel’d–Sokolov–Wilson
DSW system utilizing various methods. These include soliton solutions characterized by hyperbolic,
rational, and trigonometric functions. Specifically, the generalized exponential rational function
method (GERFM) and a modified version of the new Kudryashov method (MVNK) are employed to
derive diverse soliton solutions for the system. Additionally, we demonstrate numerical solutions
for the coupled Drinfel’d–Sokolov–Wilson system using adaptive moving mesh and uniform mesh
methods. Also, we study the stability and error analysis of the numerical schemes. To validate the
accuracy and reliability of the exact solutions obtained through analytical methods, we compare
them with the numerical solutions both analytically and graphically. The techniques presented in this
article are deemed suitable and acceptable and can be effectively applied to solve other nonlinear
evolution systems.

Keywords: coupled Drinfel’d–Sokolov–Wilson system; exact solution; numerical solution; waves;
adaptive moving mesh method; uniform mesh; monitor function
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1. Introduction

Partial differential equations (PDEs) are powerful tools for modeling and analyzing
various phenomena in nature and physics. These include plasma physics, population
dynamics, fluid and gas flow, electromagnetic fields, wave propagation in liquids, radiation,
optical fibers, heat transfer, and other processes [1–6]. PDEs offer an effective and successful
approach to studying and comprehending these phenomena. Understanding soliton
propagation is critical for grasping important oceanic phenomena, like how nonlinear
waves move in shallow or deep seas, how transverse waves move in shallow water, how
magneto-hydrodynamic waves move in plasma, and how phonon packets behave in
nonlinear crystals. The study of PDEs allows us to better understand the future behavior
of various phenomena accurately by utilizing exact and numerical solutions [7–10]. It
is essential to explore the precise solutions of nonlinear phenomena to gain insight into
their long-term behavior. As a result, the development of systematic methods for deriving
analytical solutions to PDEs has become a captivating and widely studied area of research
among scholars. There are various techniques available to obtain analytical solutions to
partial differential equations. Some of these techniques include the improved Kudryashov
approach, the generalized direct algebraic strategy, the first integral approach, and many
others. To learn more about these techniques and the analytical solutions they generate,
one can refer to references [11–16].
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In this study, we investigate a coupled system of nonlinear partial differential equations
representing a nonlinear (1 + 1)-coupled Drinfel’d–Sokolov–Wilson system [17]{

Γt + aΨΨx = 0,
Ψt + bΨxxx + cΓΨx + dΨΓx = 0,

(1)

where x and t are the space variable and time variable, both of which are, respectively,
independent, and the dependent variables are Γ, Ψ. Finding solutions for the shallow
water equations, also known as DSW equations, has been a significant area of research.
These equations are versatile and can be used to model various water flow situations
that involve gravity and shear stress. They are crucial for simulating significant events
in engineering and physics, such as floods, dam breaks, and flows through vegetated re-
gions. Therefore, much effort has been put into understanding and solving these equations,
which are critical in various scientific and engineering applications. Various studies have
analyzed the the coupled Drinfel’d–Sokolov–Wilson system for its numerical and exact
solutions. For example, direct algebraic techniques, the Adomian decomposition method,
the variational approach, and others, have been used to thoroughly study the the coupled
Drinfel’d–Sokolov–Wilson system [18–21]. Recently, there has been much interest in in-
vestigating the fractional-order coupled Drinfel’d–Sokolov–Wilson system using a variety
of techniques, including the use of conformable derivatives, the homotopy perturbation
method, the G′

G expansion, the F-expansion method, tanh and extended tanh methods,
the truncated Painlevé method, and the exp-function method. Furthermore, the discrim-
ination system for polynomial and Jacobi elliptical functions has been explored [22–26].
In [27], the finite difference method was used to obtain numerical solutions for the coupled
Drinfel’d–Sokolov–Wilson system. Previous studies on Equation (2) have predominantly
concentrated on obtaining numerical solutions without actively addressing or reducing the
resulting errors. In contrast, our study successfully reduced errors and received accurate
numerical solutions for system (1).

This paper is motivated by the recent advancements discussed in the literature review.
The primary objective of this study is to utilize the GERFM technique and the MVNK
technique to develop various traveling wave solutions for the coupled Drinfel’d–Sokolov–
Wilson system. The proposed methods have distinct advantages, which are listed below.
These methods present a diverse range of reliable traveling wave solutions expressed in
trigonometric, hyperbolic, and rational forms. These solutions act as dependable tools
in interpreting intricate phenomena and gaining insights into their underlying dynam-
ics. In addition, this paper aims to apply the adaptive moving mesh and uniform mesh
method to system (1) in order to obtain its numerical solutions. It is worth noting that the
initial condition for the numerical scheme is derived from the constructed exact solutions.
The primary concept behind the employed numerical method is to distribute the mesh
points in the solution curvature regions. While many researchers focus on analytically
finding traveling wave solutions for the coupled Drinfel’d–Sokolov–Wilson system, only
a few scientists have explored the numerical solutions to this problem with a high level
of precision, aiming to minimize the error. The adaptive moving mesh approach ensures
that the points are evenly distributed in areas with high error, effectively reducing the
error. This technique, which is not commonly available in most numerical algorithms,
significantly improves the accuracy of the results. To ensure the accuracy of the solutions,
comparing the exact and numerical solutions is crucial. While some studies focus solely on
finding exact solutions, this study goes a step further by comparing the exact and numerical
solutions to ensure their accuracy and correctness.

The structure of this paper is as follows: Section 2 introduces the analytic solution
for Equation (5). Section 3 focuses on presenting the numerical solution for system (1)
using both fixed mesh and adaptive moving mesh techniques. This section also includes
the results and subsequent discussion. Finally, Section 4 highlights the most significant
findings discovered in this study.
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2. Exact Solutions of the Coupled Drinfel’d–Sokolov–Wilson System

This section introduces the MVNK and the GERFM methods for finding soliton
solutions of nonlinear evolution equations.

P1(Ψ, Ψx, Ψt, Ψxx, Ψxxx, Γ, Γx, . . .) = 0, (2)

where Ψ = Ψ(x, t) is an unknown function, P1 is a polynomial of Ψ(x, t), and various
partial derivatives are involved in Equation (2). The wave transformation is applied as
follows:

Ψ(x, t) = ψ(ζ), Γ(x, t) = Γ(ζ), ζ = x− st,

into Equation (2) to reduce Equation (2) into an ordinary differential equation (ODE)
expressed as

P2(ψ, ψ, ψζ , ψζζ , ψζζζ , Γ, Γζ , . . .) = 0,

after substituting the traveling wave into the system (1), we get the following expression:

−sΓζ + aΨΨζ = 0, (3)

from Equation (3), we have

Γ =
a
2s

Ψ2, (4)

by substituting Equation (4) into system (1), the system is converted into a single equation

Ψt + bΨxxx + αΨ2Ψx = 0, (5)

since
(

ca
2s +

ad
s

)
= α, Equation (5) reduces to an ODE given by

−sΨ + bΨζζ +
1
3

αΨ3 = 0, (6)

balancing Ψζζ with Ψ3 in Equation (6) calculates the value of N = 1.

2.1. The MVNK Method

To apply MVNK [28],Equation (2) can be expressed as follows:

ψ(ζ) = z0 +
N

∑
j=1

(
σ(ζ)

1 + σ2(ζ)

)j−1(
zj

σ(ζ)

1 + σ2(ζ)
+ cj

1− σ2(ζ)

1 + σ2(ζ)

)
, zj 6= 0 or cj 6= 0, (7)

where the values of z0, zj, and cj for j = 1, 2, 3, . . . , N are to be later determined. The fol-
lowing function is satisfied by σ(ζ), and N is the homogeneous balance of numbers

σ(ζ) =
1

(U −Y) sinh(ζ) + (U + Y) cosh(ζ)
, (8)

the Jacobi equation is satisfied by the following expression:

σ′(ζ)2 = σ2(ζ)(1− 4UYσ2(ζ)),

the exact solutions of (5) are

ψ(ζ) = z0 + z1
σ(ζ)

1 + σ2(ζ)
+ c1

(1− σ2(ζ))

1 + σ2(ζ)
, (9)

the constants z0, z1, and c1 in Equation (9) are to be determined, such that z1 6= 0 or c1 6= 0,
and σ(ζ) satisfies Equations (7) and (8). By substituting Equation (9) into Equation (6) and
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rearranging the terms, we obtain a system of algebraic equations. Solving this system gives
us the following soliton solutions.
Family 1: If we set Y = 0 in Equation (8), we have
Cluster-1: When z0 = 0, z1 = ∓ 4

√
3b√

ac+2ad
, c1 = 0, s = b, exact traveling wave solutions are

provided by

Ψ1(x, t) = ∓ 4
√

3 b U√
a(c + 2d)((U2 + 1) cosh(bt− x)− (U2 − 1) sinh(bt− x))

,

Γ1(x, t) =
24 b U2

(c + 2d)((U2 + 1) cosh(bt− x)− (U2 − 1) sinh(bt− x))2 .

If we set U2 = 1 in Equation (8), then we have

Ψ2(x, t) = ∓2
√

3 b sech(bt− x)√
a(c + 2d)

,

Γ2(x, t) =
6 b sech2(bt− x)

c + 2d
.

If we set U2 = −1 in Equation (8), then we have

Ψ3(x, t) = ∓2i
√

3 b csch(bt− x)√
a(c + 2d)

,

Γ3(x, t) = −6 b csch2(bt− x)
c + 2d

.

Cluster-2: When z0 = 0, z1 = 0, c1 = ∓ 2
√

6 b√
ac+2ad

, s = −2b, exact traveling wave solutions
are provided by

Ψ4(x, t) = ∓
2
√

6 b
(
U2(cosh[2bt + x] + sinh[2bt + x])2)−1√

a(c + 2d)((U sinh(2bt + x) + U cosh(2bt + x))−2 + 1)
,

Γ4(x, t) = −
6 b
(
(U2(sinh(2bt + x) + cosh(2bt + x))2)−1 − 1

)2

(c + 2d)((U sinh(2bt + x) + U cosh(2bt + x))−2 + 1)2 .

If we set U2 = 1 in Equation (8), then we have

Ψ5(x, t) = ∓2
√

6 b tanh(2bt + x)√
a(c + 2d)

,

Γ5(x, t) = −6 b tanh2(2bt + x)
c + 2d

.

If we set U2 = −1 in Equation (8), then we have

Ψ6(x, t) = ∓2
√

6 b coth(2bt + x)√
a(c + 2d)

,

Γ6(x, t) = −6 b coth2(2bt + x)
c + 2d

.
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Family 2: If we set Y = −1
2U in Equation (8), we obtain

Cluster-1: When z0 = ± 4
√

3b√
a(c+2d)

, z1 = 0, c1 = ∓ 4
√

3b√
ac+2ad

, s = 4b, exact traveling wave

solutions are provided by

Ψ7(x, t) = ± 32
√

3bU2√
a(c + 2d)((1− 4U4) sinh(8bt− 2x) + (4U4 + 1) cosh(8bt− 2x))

,

Γ7(x, t) =
384bU4

(c + 2d)((1− 4U4) sinh(8bt− 2x) + (4U4 + 1) cosh(8bt− 2x))2 .

If we set U2 = 1
2 in Equation (8), then we have

Ψ8(x, t) = ±8
√

3 b sech(8bt− 2x)√
a(c + 2d)

,

Γ8(x, t) =
24 b sech2(8bt− 2x)

c + 2d
.

If we set U2 = − 1
2 in Equation (8), then we have

Ψ9(x, t) = ∓8
√

3 b sech(8bt− 2x)√
a(c + 2d)

,

Γ9(x, t) =
24 b sech2(8bt− 2x)

c + 2d
.

2.2. The GERFM Method

To apply GERFM [29,30], Equation (2) can be expressed as follows:

ψ(ζ) = r0 +
N

∑
j=1

rjΥ(ζ)j +
N

∑
j=1

ajΥ(ζ)−j, (10)

the Υ(ζ) function satisfies the following differential equation:

Υ(ζ) =
v1 exp(k1ζ) + v2 exp(k2ζ)

v5 exp(k3ζ) + v6 exp(k4ζ)
, (11)

where v1, v2, v5, v6, k1, k2, k3, and k4 are complex (or real) constants. According to the
GERFM, with N = 1, the solutions of Equation (5) are

ψ(ζ) = r0 + r1Υ(ζ) + a1Υ(ζ)−1, (12)

the constants r0, r1, and a1 in Equation (12) are to be determined, such that r1 6= 0 or a1 6= 0,
and Υ(ζ) satisfies Equations (10) and (11). By substituting Equation (12) into Equation (6)
and rearranging the terms, we obtain a system of algebraic equations. Solving this system
gives us the following soliton solutions.
Family 1: When v = [1,−1, 1, 1] and k = [−1, 1,−1, 1], Equation (11) can be expressed as

Υ(ζ) = −tanh(ζ). (13)

The algebraic system is obtained by substituting Equation (13) into Equation (12) and then
inserting the result into Equation (6). The solutions are as follows:
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Cluster-1: When r0 = 0, r1 = 0, a1 = ∓ 2
√

6b√
ac+2ad

, s = −2b, the exact traveling wave
solutions are provided by

Ψ10(x, t) = ±2
√

6 b coth(2bt + x)√
a(c + 2d)

,

Γ10(x, t) = −6b coth2(2bt + x)
c + 2d

.

Cluster-2: When r0 = 0, r1 = ∓ 4
√

3b√
−ac−2ad

, a1 = ± 4
√

3b√
−a(c+2d)

, s = 4b, the exact traveling

wave solutions are provided by

Ψ11(x, t) = ±8
√

3 b csch(8bt− 2x)√
−a(c + 2d)

,

Γ11(x, t) = −24 b csch2(8bt− 2x)
c + 2d

.

Cluster-3: When r0 = 0, r1 = ∓ 4
√

6b√
ac+2ad

, a1 = ∓ 4
√

6b√
a(c+2d)

, s = −8b, the exact traveling

wave solutions are provided by

Ψ12(x, t) = ±
4
√

6 b tanh(8bt + x)
(

coth2(8bt + x) + 1
)

√
a(c + 2d)

,

Γ12(x, t) = −6 b (tanh(8bt + x) + coth(8bt + x))2

c + 2d
.

Cluster-4: When r0 = 0, r1 = ∓ 2
√

6b√
ac+2ad

, a1 = 0, s = −2b, exact traveling wave solutions
are provided by

Ψ13(x, t) = ±2
√

6 b tanh(2bt + x)√
a(c + 2d)

,

Γ13(x, t) = −6 b tanh2(2bt + x)
c + 2d

.

(14)

Family 2: For v = [i,−i, 1, 1] and k = [i,−i, i,−i], Equation (11) becomes

Υ(ζ) = − sinζ

cosζ
. (15)

The algebraic system is obtained by substituting Equation (15) into Equation (12) and then
inserting the result into Equation (6). The solutions are as follows:

Cluster-1: When r0 = 0, r1 = ∓ 4
√

3b√
ac+2ad

, a1 = ± 4
3

(
− 2

√
3abc

(a(c+2d))3/2 − 4
√

3abd
(a(c+2d))3/2 −

√
3b√

a(c+2d)

)
,

s = −4b, the exact traveling wave solutions are provided by

Ψ14(x, t) = ±8
√

3 b csc(2(4bt + x))√
a(c + 2d)

,

Γ14(x, t) = −24 b csc2(2(4bt + x))
c + 2d

.

Cluster-2: When r0 = 0, r1 = 0, a1 = ∓ 2
√

6b√
−ac−2ad

, s = 2b, the exact traveling wave
solutions are provided by
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Ψ15(x, t) = ∓2
√

6 b cot(2bt− x)√
−a(c + 2d)

,

Γ15(x, t) = −6 b cot2(2bt− x)
c + 2d

.

Cluster-3:When r0 = 0, r1 = ∓ 2
√

6b√
−ac−2ad

, a1 = ± 2
3

(
−

√
6abc

(−a(c+2d))3/2 − 2
√

6abd
(−a(c+2d))3/2 −

√
6b√

−a(c+2d)

)
,

s = 2b, the exact traveling wave solutions are provided by

Ψ16(x, t) = ∓2
√

6 b tan(2bt− x)√
−a(c + 2d)

,

Γ16(x, t) = −6 b tan2(2bt− x)
c + 2d

.

Cluster-4: When r0 = 0, r1 = ± 4
√

6b√
−ac−2ad

, a1 = ∓ 4
√

6b√
−a(c+2d)

, s = 8b, the exact traveling

wave solutions are provided by

Ψ17(x, t) = ∓
4
√

6 b tan(8bt− x)
(
cot2(8bt− x)− 1

)√
−a(c + 2d)

,

Γ17(x, t) = −6 b (cot(8bt− x)− tan(8bt− x))2

c + 2d
.

3. Numerical Results

This section uses two techniques (uniform mesh and adaptive moving mesh methods)
to obtain the numerical solutions to the system (1).

3.1. Numerical Solutions Using a Uniform Mesh

In this subsection, we use a fixed mesh technique on a physical domain of size [0, L]
to obtain numerical results for system (1). The domain is divided into Nx subintervals of
uniform width h = L/Nx, denoted by [xj, xj+1], where xj = (j− 1)h for all xj ∈ [0, L] and
j = 1, 2, . . . , Nx + 1. To discretize system (1), we utilize the Crank–Nicolson method in the
following manner:

Γt|nj +
a
2

[
Ψn+1

j Ψx|n+1
j + Ψn

j Ψx|nj
]
= 0,

Ψt|nj +
b
2

[
Ψxxx|n+1

j + Ψxxx|nj
]
+

c
2

[
Γn+1

j Ψx|n+1
j + Γn

j Ψx|nj
]
+

d
2

[
Ψn+1

j Γx|n+1
j + Ψn

j Γx|nj
]
= 0,

where

Γt|nj =
Γn+1

j − Γn
j

k
, Ψt|nj =

Ψn+1
j −Ψn

j

k
, Ψx|j =

Ψj+1 −Ψj−1

2h
,

Γx|j =
Γj+1 − Γj−1

2h
, Ψxxx|j =

Ψj+2 − 2Ψj+1 + 2Ψj−1 −Ψj−2

2h3 ,

the associated boundary conditions of system (1) are

Γt,1 = Γt,Nx+1 = 0,

Ψt,1 = Ψt,Nx+1 = 0,
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the initial condition is selected by calculating Equation (14) at t = 0 as follows:

Ψ = ±2
√

6 b tanh(x)√
a(c + 2d)

,

Γ = −6 b tanh2(x)
c + 2d

,

where a, b, c, d are constants.

3.1.1. Stability

In this section, we will assess the stability of the numerical solution by utilizing
Fourier’s stability technique. To apply this technique, we first need to linearize Equation (5)
as follows:

Ψt + bΨxxx + D0Ψx = 0, (16)

where b and D0 are constants, such that D0 = αΨ2. Fully discretize Equation (16) is
given by

Ψn+1
j −Ψn

j = −b
k
2

[
Ψxxx|n+1

j + Ψxxx|nj
]
− D0

k
2

[
Ψx|n+1

j + Ψx|nj
]
. (17)

Let
Ψn

j = Yneιξ jh and then Ψn+1
j = YΨn

j , j = 1, 2, 3, . . . , Nx. (18)

The following is the result of placing Equation (18) into the scheme (17):

YΨn
j −Ψn

j = −b
k

4h3 [Ye2ιξhΨn
j − 2YeιξhΨn

j + 2Ye−ιξhΨn
j −Ye−2ιξhΨn

j

+ e2ιξhΨn
j − 2eιξhΨn

j + 2e−ιξhΨn
j − e−2ιξhΨn

j ]

− D0
k

4h
[YeιξhΨn

j −Ye−ιξhΨn
j + eιξhΨn

j − e−ιξhΨn
j ],

(19)

by dividing the two sides of Equation (19) by Ψn
j and taking Y as a common factor, we

arrive at

Y− 1 = −(b k
4h3

(
−8ιsin(hξ)sin2

(
hξ

2

))
+ D0

k
4h

2ιsin(hξ))(Y + 1),

let θ = b k
4h3

(
−8ιsin(hξ)sin2

(
hξ
2

))
+ D0

k
4h 2ιsin(hξ). Hence,

|Y| =
∣∣∣∣1− θ

1 + θ

∣∣∣∣ ≤ 1, (20)

according to the analysis and as demonstrated in Equation (20), the numerical scheme
remains stable without any conditions as long as the absolute value of Y is not greater
than one.

3.1.2. Error Analysis

In this section, we use the Taylor series to look at the order of accuracy, which necessi-
tates the initial discretization of Equation (5)

Ψt|nj +
b
2

[
Ψxxx|n+1

j + Ψxxx|nj
]
+

α

2

[
Ψn+1

j Ψx|n+1
j + Ψn

j Ψx|nj
]
= 0. (21)

Next, we determine the order by evaluating the truncation error. Assume that

en+1
j = Ψn+1

j −Ψ(xj, tn+1), (22)
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where en+1
j represents the error, while Ψn+1

j and Ψ(xj, tn+1) = Ψ represent the approximate
and analytical solutions, respectively. Now, we substitute Equation (22) into Equation (21),

en+1
j =

−bk
2

[
en+1

j+2 − 2en+1
j+1 + 2en+1

j−1 − en+1
j−2

2h3 +
en

j+2 − 2en
j+1 + 2en

j−1 − en
j−2

2h3

]

−αk
2

[
en+1

j

(
en+1

j+1 − en+1
j−1

2h

)
+ en

j

(
en

j+1 − en
j−1

2h

)]
+ en

j + Tn
j ,

(23)

where Tn
j represents the truncation error and is written as

Tn
j ≤

k2

6
Ψttt +

7b
40

h2Ψxxxxx +
αk2h2

24
Ψ2

ttΨxxx +
αh4

240
ΨΨxxxxx, (24)

consequently, the numerical scheme’s truncation error is

Tn
j = O(k2, h2).

3.1.3. Convergence

We need to refine two meshes with h and k values equaling zero to compute a sequence
of computations using the initial data. Additionally, we must ensure that a convergent
numerical scheme is used for every fixed point (x∗, t∗) within a selected domain [a, b] and
[0, Te],

xj → x∗, tn → t∗ implies Ψn
j = Ψ(x∗, t∗).

As previously mentioned, the numerical scheme is unconditionally stable. Now, we will
demonstrate that these schemes are also unconditionally convergent. To do so, let us assume
that the error e is defined as en

j = Ψn
j − Ψ(xj, tn). Now, Ψn

j exactly satisfies the scheme
described by Equation (21), while Ψ(xj, tn) omits the error indicated by the truncation
error kTj

en+1
j =

−bk
2

[
en+1

j+2 − 2en+1
j+1 + 2en+1

j−1 − en+1
j−2

2h3 +
en

j+2 − 2en
j+1 + 2en

j−1 − en
j−2

2h3

]

−αk
2

[
en+1

j

(
en+1

j+1 − en+1
j−1

2h

)
+ en

j

(
en

j+1 − en
j−1

2h

)]
+ en

j + kTn
j ,

where Tj is the truncation error; see Equation (24). If we suppose that the maximum error
for the time step is given by

En := max
{
|en

j |, j = 1, 2, . . . , Nx − 1, n ≥ 0
}

, (25)

then substituting Equation (25) into Equation (23) yields

en+1
j ≤ En + kTn

j ,

since the above inequality holds for each j = 1, 2, . . . , Nx − 1, we have

En+1 ≤ En + kTn
j ,

since the given initial data are used, we can identify E0 = 0. Hence, the inequality is
given by

En ≤ n× kTn
j ,

hence, the scheme described by Equation (21) is convergent as h, k→ 0.
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3.2. Numerical Solutions Using an Adaptive Mesh

To obtain the numerical results of system (1), we employ the adaptive mesh method.
The first step is to transform the physical domain [0, L] into the computational domain
[0, 1] using the mapping x = x(η, t) : [0, 1] → [0, L], t > 0. This transformation allows
us to apply the proposed numerical technique. By using the physical coordinate x and
the computational coordinate η, we can represent the solution as Ψ = Ψ(x, t), Γ = Γ(x, t)
where x = x(η, t). When the coordinate x is rearranged, it becomes xj(η) = x(ηj, t) where
ηj = (j − 1)/Nx, j = 1, 2, 3, . . . , Nx + 1. The MMPDE that is most frequently used is
as follows:

MMPDE5 : τ(1− κ∂ηη)xt =
1
Q
(Qxη)η , (26)

assuming that τ and κ are constants, we introduce the function Q(Γ, Ψ, x), which is known
as a monitor function. This function identifies regions in which the solution changes signifi-
cantly, such as areas with large curvatures or high variations in the solution, and assigns
more grid points to those regions. A commonly used monitor function, as proposed by
Alharbi et al. [31], is given by

The arc length : Q(Γ, Ψ, x) =

√
1 +

Γ2
η

x2
η
+

Ψ2
η

x2
η

. (27)

To apply the MMPDE5, we use the initial condition xj = (j− 1)L/Nx and the boundary
conditions x(0, t) = 0 and x(L, t) = L. Additionally, the computational coordinate is
denoted by ηj = (j− 1)hη , where hη = L/Nx and j = 1, 2, . . . , Nx + 1. To discretize the
physical domain, we divide it into Nx equal subintervals x0 < x1 < x2 < . . . < xNx . We
then apply the chain rule to system (1) and obtain:

Γt −
(

Γη

xη

)
xt = −aΨ

(
Ψη

xη

)
,

Ψt −
(

Ψη

xη

)
xt = −b

1
xη

(
1
xη

(
Ψη

xη

)
η

)
η

− cΓ

(
Ψη

xη

)
− dΨ

(
Γη

xη

)
,

(28)

with boundary conditions
Γt,1 = Γt,Nx+1 = 0,

Ψt,1 = Ψt,Nx+1 = 0,
(29)

the initial condition is selected by calculating Equation (14) at t = 0 as follows:

Ψ = ±2
√

6 b tanh(x)√
a(c + 2d)

,

Γ = −6 b tanh2(x)
c + 2d

,

(30)

where a, b, c, d are constants. To clarify, the spatial derivative is semi-discretized while
the temporal derivative remains continuous. This means that the problem described in
system (1) becomes a set of ordinary differential equations, which can be solved using line
methods. We use the MATLAB ODE solver (ode15i) to numerically integrate the resulting
system. The discretization of Equation (28) must be achieved using finite differences in the
following manner:

Γt −
Γj+1 − Γj−1

xj+1 − xj−1
xt = −aΨ2

j+ 1
2

Ψj+1 −Ψj−1

xj+1 − xj−1
,

Ψt −
Ψj+1 −Ψj−1

xj+1 − xj−1
xt = −b

Ψxx,j+1 −Ψxx,j

xj+1 − xj−1
− cΓj+ 1

2

Ψj+1 −Ψj−1

xj+1 − xj−1
− dΨj+ 1

2

Γj+1 − Γj−1

xj+1 − xj−1
,

(31)
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where

Ψxx,j =
2

xj+1 − xj−1

[
Ψj+1 −Ψj

xj+1 − xj
−

Ψj −Ψj−1

xj − xj−1

]
, Ψj+ 1

2
=

Ψj+1 + Ψj

2
, Γj+ 1

2
=

Γj+1 + Γj

2
.

3.3. Results and Discussion

Significant results have been achieved through the successful use of the GERFM
and MVNK methods in extracting multiple exact solutions for Equation (5) in this study.
It is important to mention that Equation (5) was obtained by converting the coupled
Drinfel’d–Sokolov–Wilson system (1). Figures 1 and 2 display the exact solutions for
Ψ2(x, t) and Γ2(x, t) for Equation (5). In Figure 1a,b, we used the MVNK method to create
3D plots of the analytical solution for Equation (5). Meanwhile, in Figure 2c,d, we also
utilized the MVNK method to obtain 3D plots of the analytical solution for Equation (5).
The parameters utilized are b = 1, a = 0.4, c = 0.5, d = 0.7, and N = 1000. Figure 3a,b
demonstrate the behavior of waves when one parameter is changed while keeping others
constant. The parameter being modified in this case is b, which affects both the direction
and amplitude of the waves. It is apparent that when b is negative, the wave direction is
always negative.

This article additionally investigates the numerical solutions of the coupled
Drinfel’d–Sokolov–Wilson system (1) through the utilization of two numerical method-
ologies: the uniform mesh and the adaptive moving mesh methods. The results obtained
are precise and efficient. The results in Figures 4–6 exhibit oscillations, but the adap-
tive moving mesh method effectively minimizes errors and produces acceptable results
without oscillations.

Figure 1. The MVNK method was used to obtain 3D plots of the analytical solution to Equation (5).
The parameters are given by (a,b) b = 1, a = 0.4, c = 0.5, d = 0.7, x0 = 2 with t = 0 → 10 and
x = −20→ 20.

The study presents numerical results from time t = 0→ 10. As shown in Figure 4a,b,
the adaptive moving mesh approach demonstrates more significant agreement with the
analytical solution than the uniform approach. The insets in Figure 4a,b provide a closer
look at the steep front regions of the plot. These regions are characterized by a rapid change
in values and require a higher density of points for accurate representation. In the insets,
these areas are indicated by yellow circles, indicating the need for more data points in
those specific regions. As a result, the outcomes for both Ψ(x, t) and Γ(x, t) seem almost
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identical in these regions. Figure 4c depicts the obtained values of x = (η, t) using the
MMPDE5 Equation (26) along with the monitor function Equation (27). The parameters
employed for this calculation are as follows: b = 1, a = 1, c = 1, d = 1, x0 = −10,
with Nx = 800, L = 20, and t = 10. These figures demonstrate that the monitor function
sends additional points to areas with ∆x = 5× 10−5 curvatures while reducing the mesh
points in other regions with ∆x = 5× 10−2 (where ∆x is the distance between points).
The initial uniform mesh is set to ∆x = 1× 10−3 across all areas. Furthermore, it can be
observed from Figure 4 that the numerical solutions obtained using a uniform mesh exhibit
excellent agreement with the analytical solution. However, it is worth noting that achieving
this level of accuracy requires a very small value of ∆x. Also, Figure 4 shows that numerical
solutions achieved through a uniform mesh require a value of Nx = 10,000 to display
excellent agreement with the analytical solution. On the other hand, adaptive moving mesh
only requires Nx = 1000 to exhibit excellent agreement with the analytical solution.
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Figure 2. The MVNK method was used to obtain 2D plots of the analytical solution to Equation (5).
The parameters are given by (a,b) b = 1, a = 0.4, c = 0.5, d = 0.7, x0 = 2 with t = 0 → 10 and
x = −20→ 20.

It is important to mention that the mesh is redistributed through the use of a monitor
function that regulates its evaluation. The monitor function choice has a big impact on how
the mesh moves. To prevent mesh tangles that often occur with mesh distribution, a special
function called spatial smoothing is used.

Figures 5 and 6 show the results of an analysis that compared the solitary waves of
an analytical solution Equation (5) and a numerical solution that uses an adaptive moving
mesh. In Figure 5, 3D surface plots depict the analytical solutions for Ψ13 and Γ13 in (a)
and (c), while (b) and (d) show the numerical solutions. The analysis used the following
parameters: b = 1, a = 1, c = 1, d = 1, x0 = −10, with Nx = 10,000, and t = 0 → 10.
Figure 6 shows 2D plots of the same solutions. The analytical solutions for Ψ13 and Γ13
are depicted in (a) and (c), while the numerical solutions are shown in (b) and (d). These
figures offer sufficient evidence that the numerical and analytic solutions are highly similar.
The clear implication is that the adaptive moving mesh method surpasses the uniform
mesh approach in terms of accuracy, reliability, and convergence. This study’s methods can
be used to investigate other NPDEs.
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Figure 3. The MVNK method was used to obtain 3D plots of the analytical solutions to Equation (5).
The parameters are given by (a,b) b = −1, a = 0.4, c = 0.5, d = 0.7, x0 = 2 with N = 1000,
t = 0→ 10 and x = −20→ 20.
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Figure 4. Cont.
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Figure 4. The comparison between the exact solutions obtained through Equation (5) and the
numerical results obtained using both an adaptive moving mesh and a uniform mesh is made in (a,b).
In (c), the mesh obtained by applying MMPDE5 and the monitor function is plotted. The following
parameters were used: a = 1, b = 1, c = 1, d = 1, x0 = −10, L = 20, N = 800, and t = 10.

Figure 5. The GERFM method method was used to find the analytical solution for Ψ13 and Γ13,
as shown in (a,c) as 3D surface plots; (b,d) show the adaptive moving mesh numerical solution
results. The study parameters are b = 1, a = 1, c = 1, d = 1, x0 = −10, with t = 0 → 10 and
x = −20→ 20.
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Figure 6. The GERFM method was used to find the analytical solution for Ψ13 and Γ13, as shown
in (a,c) as 2D plots; (b,d) show the adaptive moving mesh numerical solution results. The study
parameters are b = 1, a = 1, c = 1, d = 1, x0 = −10, with t = 0→ 10 and x = −20→ 20.

4. Conclusions

In this study, we used the GERFM and MVNK methods to find some new traveling
wave solutions for Equation (5) by expressing them in trigonometric and hyperbolic func-
tions. We also employed the adaptive moving mesh method and uniform mesh to obtain
numerical solutions while reducing the associated error. We observed that our methods
yield superior outcomes compared to the cosine function approach. Previous studies on
the coupled Drinfel’d–Sokolov–Wilson system mainly focused on generating numerical
solutions without addressing error reduction. However, our study has successfully ob-
tained numerical solutions while reducing the associated error. We found that the adaptive
mesh approach is more reliable than the uniform mesh approach. Our results show that
the adaptive mesh method effectively distributes points in regions with higher error. We
also created 2D and 3D figures to illustrate the effectiveness of the employed approaches.
Also, the investigation reveals that scheme (17) is second-order accurate in both k2 and h2,
and the scheme is unconditionally stable. Overall, the exact and numerical methods used
in this study are flexible and effective in developing specific traveling wave solutions for
nonlinear PDEs.

It is evident from the presented figures that the precise solutions exhibit similar charac-
teristics to the numerical answers. Furthermore, the efficacy of the employed methodologies
is clearly demonstrated in Table 1 and Figure 7. The table presents the L2 error and CPU
time required to achieve a time value of t = 10 using the adaptive approach. The initial
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number of points, Nx, was set to 200. The L2 error was observed to gradually converge
towards a value of approximately 10−5, which is often considered acceptable in this context.
The inaccuracy exhibits a significant decrease with the increase in the number of points.
However, there is a slight increase in the CPU time as the number of points increases.
For example, when the sample size is equal to Nx = 1600, the L2 error reaches a value of
1.85× 10−5 during a duration of t = 10 min. The marginal increase in CPU time can be
attributed to the fact that the utilized functions are computed within the process. Moreover,
Figure 7 illustrates a significant decrease in the relative error for Ψ and Γ as the number
of points increases. The rate of error reduction is swift due to the adaptive process, which
effectively provides the locations with high error with an ample and appropriate number of
points. As a result, the adaptive technique demonstrates an increased processing capacity
and applicability in the resolution of nonlinear partial differential equations.

Table 1. The convergence histories using L2 norm at t = 10.

Nx The Relative Error (Ψ) The Relative Error (Γ)

200 9.20× 10−4 1.00× 10−3

400 2.51× 10−4 5.03× 10−4

800 7.11× 10−5 1.43× 10−4

1600 1.85× 10−5 3.75× 10−5

2000 1.10× 10−5 2.22× 10−5
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Figure 7. This figures (a,b) show the convergence histories using L2 norm as a function of the number
of points Nx. The parameters are given by a = 1, b = 1, c = 1, d = 1, x0 = −10, L = 20, N = 800,
and t = 10.

It has been observed that numerical systems with more mesh points are more precise
than those with fewer mesh points but have more significant differences. By examining
the crucial aspects of the solution’s behavior, it was found that the non-uniform mesh
can produce more accurate results than a fixed uniform mesh. Increasing the number of
mesh points in the non-uniform mesh can improve its precision, but it requires additional
time to solve partial differential equations. For example, when the number of points
in the x direction is increased from 200 to approximately 1000, a non-uniform mesh is
considerably faster than a fixed uniform mesh. This improvement in CPU time is more
beneficial when the desired accuracy is low enough. Implicit non-uniform mesh schemes
have shown promise in some problems due to their efficiency and ease of implementation,
outperforming fixed uniform mesh schemes and h or hp-adaptive methods. But to keep the
uniform mesh from becoming tangled up and disorganized, we need to look into different
ways to make meshes in non-uniform frameworks. These techniques include the adaptive
moving mesh method and optimal transport equations such as the Monge–Ampère and
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parabolic Monge-Ampère equations, which can generate regular meshes without tangling.
Testing these techniques on more complex two-dimensional problems is necessary to
ensure their viability. The numerical resolution of the problem becomes challenging and
computationally demanding for the interior layers related to the capillary ridge region.
Hence, the solution to the two-dimensional equations has been effectively obtained using
the non-uniform moving mesh approach, which relies on moving mesh partial differential
equations. The study’s findings indicate that this approach holds significant promise for
addressing nonlinear equations on a large scale, but further testing is required to confirm
its potential for success.
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