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Abstract: This paper investigates the local stability and stabilization criteria of sampled-data con-
trol systems, taking into account actuator saturation and peak-bounded exogenous disturbances.
Specifically, this study introduces two innovations to extend the maximum upper bound of the sam-
pling interval: two novel time integrals of the weighted state derivative are introduced to formulate
an improved looped-functional; second, the introduction of two supplementary zero-equalities to
improve the relationship among the components of the augmented state. Building on this, a set of
linear matrix inequality-based stabilization conditions is derived. These conditions ensure that a
closed-loop sampled-data system can become exponentially stable and achieve a guaranteed peak-
to-peak performance in the domain of attraction. Finally, the efficacy of the proposed methodology
is substantiated through both simulation and experimental results, focusing on the sampled-data
control of an inverted pendulum system.

Keywords: sampled-data control; peak-to-peak performance; actuator saturation; inverted
pendulum system
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1. Introduction

With the advancement of embedded systems, sampled-data systems (SDSs) have
gained significant attention in the field of control due to their advantages of reliability,
accuracy, ease of installation, and maintenance (refer to [1–4]). In this particular domain,
numerous studies have focused on developing stability and stabilization criteria to extend
the maximum upper bound of sampling interval, which can help reduce the computational
burden and communication capacity. Specifically, ref. [5] proposed an input-delay model
that characterizes SDSs as a class of continuous-time systems with time-delayed control
inputs. Building on this model, ref. [6] explored a looped-functional that is not restricted to
the positivity constraint, thereby offering the potential to relax the stability and stabilization
criteria of the SDSs. Subsequently, ref. [7] introduced a two-sided looped function that
can account for the system state information between two consecutive sampling times.
Recently, ref. [8] extended this framework by including a zero integral function in the
stability analysis process, while ref. [9] introduced novel discontinuous terms to relax
the positive definiteness of the Lyapunov function. Furthermore, by considering single
and double integrals for the state equation over the sampling interval, two previous
papers [8,9] derived four zero-equalities with slack variables, facilitating the derivation of
more flexible stability conditions. However, the methods in [7–9] still have the potential
for improvement, as further system dynamics information associated with the sampling
behavior can be effectively incorporated into the two-sided looped-functional. Moreover,
the aforementioned zero-equalities are formulated in a bilinear form, which restricts their
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direct applicability in deriving linear matrix inequality (LMI)-based stabilization conditions
for SDSs.

Meanwhile, numerous intensive studies have been conducted on the control problem
of inverted pendulum systems (IPSs) due to their wide application in various engineering
fields, including humanoid robots, aerospace engineering, and personal transportation
devices (refer to [10–14]). It is important to note that IPSs, being mechanical systems,
are inevitably influenced by persistent peak-bounded disturbances caused by external
factors such as friction, vibrations, or shaking. However, as in [15–18], the majority of
the sampled-data control techniques, designed using a loop functional approach, have
mainly focused on attenuating the effects of energy-bounded disturbances while ensuring
a guaranteed H∞ performance. To deal with the problem of peak-bounded disturbances,
as demonstrated in [19,20], is to consider the peak-to-peak performance, which allows
for analyzing the ratio of the peak performance output to the peak disturbance input.
Additionally, it is crucial to consider the control saturation problem when designing a
sampled-data control system, taking into account the limitations of real actuators and power
supplies (see [21–24]). However, there is currently a lack of specific research achievements
in the design of saturated sampled-data controllers for IPSs that ensure a guaranteed
peak-to-peak performance.

Based on the aforementioned discussion, this paper aims to develop a method that can
(1) extend the maximum upper bound of the sampling interval for sampled-data control
systems, (2) ensure a guaranteed peak-to-peak performance, and (3) maintain the constraint
of actuator saturation. Furthermore, experimental verification of the proposed method
is conducted by applying it to the sampled-data control synthesis problem of an actual
IPS. Consequently, the significant contributions of this paper toward less conservative
stabilization conditions and results can be highlighted as follows:

• Note that the current time can be represented as two consecutive sampling times by
utilizing additional time-varying parameters. By introducing two novel time integrals
of the weighted state derivative, this paper makes the initial attempt to incorporate
these parameters into the augmented state. This inclusion enables the utilization of the
sawtooth-type characteristics of time-varying parameters during the stability analysis
process. Furthermore, the proposed time integrals of the weighted state derivative
play a crucial role in constructing an improved looped-functional that can contain a
greater amount of system state information between two consecutive sampling times.

• In contrast to [8,9,15], this paper provides two additional zero-equalities that can
improve the relationship among components of the augmented state, resulting in
less conservative stabilization conditions. By reducing the number of zero-equalities,
the proposed method offers the advantage of lowering the overall computational
complexity owing to the utilization of fewer slack variables.

• In contrast to other existing studies that address the stabilization problem of SDSs with
energy-bounded disturbances, this paper presents a set of stabilization conditions
based on linear matrix inequalities (LMIs). These conditions ensure that the closed-
loop sampled-data system achieves exponential stability and guarantees a peak-to-
peak performance within the domain of attraction (DoA). Additionally, to design a
practical sampled-data controller for IPSs, the actuator saturation constraint is also
considered in this paper.

The remaining sections of this paper are structured as follows: Section 2 presents the
objective of this paper. Section 3 provides the criteria for stability and stabilization. Section 4
demonstrates the application of the proposed method to an IPS. Finally, the contributions
and achievements of this paper are summarized in Section 5.

Notations: Throughout this paper, N denotes the set of non-negative integers, Rn is
the n-dimensional Euclidean space, and Rn×m indicates the set of all n×m real matrixes.
For a square matrix Q ∈ Rn×m, the notation Q > 0 means that Q is positive definite,
Q ≥ 0 means that Q is positive semi-definite, He{Q} indicates Q +QT , QT and Q−1

represent the transpose and inverse of Q, respectively. The notation (∗) represents terms
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induced by symmetry in symmetric block matrixes, and ⊗ denotes the Kronecker prod-
uct. The function trace(·) returns the sum of diagonal matrix elements, sign(·) gives the
argument sign, λmin(·) and λmax(·) return the minimum and maximum matrix eigen-
values, respectively. The notation diag{·} stands for the block-diagonal matrix, col{·}
represents the column matrix, 0n×m denotes n × m null matrix, and In represents the
n × n identity matrix. For any positive definite matrix P ∈ Rn×n and vector x(t), the
set E(P, 1) =

{
x(t) ∈ Rn

∣∣ xT(t)Px(t) ≤ 1
}

represents an ellipsoid in Rn; the peak norm
stands for ||w(t)||∞ = supt≥0 ||w(t)||, where ||w(t)|| is the Euclidean norm of w(t); and
Lv

∞ = {w(t) ∈ Rv
∣∣ ||w(t)||∞ < ∞}.

2. Problem Formulation

Let us consider the following continuous-time linear systems:{
ẋ(t) = Ax(t) + Bu(t) + Ew(t)
z(t) = Cx(t)

(1)

where vectors x(t) ∈ Rn, u(t) ∈ Rm, z(t) ∈ Rυ, and w(t) ∈ Lv
∞ indicate the system

state, the control input, the performance output, and the exogenous disturbances with a
known peak norm w̄, i.e., ||w(t)||∞ = w̄, respectively; A ∈ Rn×n, B ∈ Rn×m, C ∈ Rυ×n,
and E ∈ Rn×v are given system matrixes. In particular, as shown in Figure 1, the system
state is measured at discrete sampling time tk such that t0 = 0 and tk < tk+1. Furthermore,
sampling interval hk = tk+1 − tk satisfies that

0 < hk ∈ [hm, hM], ∀k ∈ N (2)

where hm and hM are the lower and upper bounds of the sampling interval.

Plant

Control

Zero-order 

hold

Figure 1. Sampled-data control systems with actuator saturation.

Additionally, this paper considers sampled-data control with respect to the following
actuator saturation:

u(t) = sat
{

u(tk), ū
}

, t ∈ [tk, tk+1) (3)

where u(tk) ∈ Rm indicates the sampled-data control input; ū ∈ Rm denotes the saturation
level; and the `th element of u(t) is given by

u`(t) = sign(u`(tk))×min
{

u`(tk), ū`

}
, ∀` ∈ {1, 2, · · · , m}
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in which u`(tk) and ū` represent the `th element of u(tk) and ū, respectively. Furthermore,
according to Theorem 1 in [25], if there exists an auxiliary control input v(tk) subject to∣∣v(tk)

∣∣ ≤ ū, then (3) can be rewritten as follows:

u(t) =
2m

∑
i=1

φi(tk)
(
Ξiu(tk) + Ξ̄iv(tk)

)
, t ∈ [tk, tk+1) (4)

where Ξi and Ξ̄i = Im − Ξi belong to the set of m×m diagonal matrixes whose diagonal
elements are either 1 or 0, and φi(tk) indicates the weighting function satisfying that

2m

∑
i=1

φi(tk) = 1, 0 ≤ φi(tk) ≤ 1, ∀i ∈ {1, 2, · · · , 2m}. (5)

Subsequently, let us employ the following control law:

u(tk) = Fx(tk), v(tk) = Kx(tk)

where F ∈ Rm×n and K ∈ Rm×n denote the control gains to be designed later. Then,
the resultant closed-loop system is represented from (1) and (4) as follows:ẋ(t) = Ax(t) +

2m

∑
i=1

φi(tk)B̄ix(tk) + Ew(t)

z(t) = Cx(t)
(6)

subject to

x(tk) ∈ L(K, ū) =
{

x(tk) ∈ Rn ∣∣ |Kx(tk)| ≤ ū
}

(7)

where B̄i = B(ΞiF + Ξ̄iK).
The objective of this paper is to design the sampled-data controller (4) that satisfies

both of the following requirements (refer to [19,20]):

1. System (6) is exponentially stable in the absence of disturbances w(t) ≡ 0.
2. For a prescribed scalar γ > 0, an initial condition x(t0) = 0, and any non-zero

disturbances w(t) ∈ Lv
∞, the performance output z(t) satisfies

||z(t)||2∞ − γ2||w(t)||2∞ < 0. (8)

The following free-matrix-based integral inequality is utilized to address the single-
integral quadratic terms arising from the time-derivative of looped-functional.

Lemma 1 ([26]). For a differentiable function x(t) ∈ Rn for all t ∈ [α, β], and a matrix
0 < R = RT ∈ Rn×n, there exits matrixes X ∈ Rn×3n and Y ∈ Rn×3n such that the follow-
ing condition holds:

−
∫ β

α
ẋT(ϕ)Rẋ(ϕ)dϕ ≤ (β− α)

(
ϑTΦϑ− 2

(
xT(β) + xT(α)

)
Yϑ
)

+ 2
((

xT(β)− xT(α)
)
X + 2

∫ β

α
xT(ϕ)dϕY

)
ϑ

where ϑ = col
{

x(β), x(α),
∫ β

α x(ϕ)dϕ
}
∈ R3n, Φ = XT R−1X + (β−α)2

3 YT R−1Y.
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3. Main Results

Let us designate d1(t) = t− tk and d2(t) = tk+1 − t, Then, the following block entry
matrixes and augmented state will be utilized in the process of obtaining the stability and
stabilization criteria:

ep =
[

0n×(p−1)n In 0n×(8−p)n

]
∈ Rn×8n, ∀p ∈ {1, · · · , 8}

ϑ(t) = col
{

x(t), x(tk), x(tk+1),
∫ t

tk

x(ϕ)dϕ,
∫ tk+1

t
x(ϕ)dϕ,∫ t

tk

d1(ϕ)ẋ(ϕ)dϕ,
∫ tk+1

t
d2(ϕ)ẋ(ϕ)dϕ, ẋ(t)

}
∈ R8n (9)

and the following vectors will be used for brevity:

ϑ1(t) = Γ1ϑ(t) ∈ R5n, ϑ̇1(t) = Γ̄1ϑ(t), ϑ2(t) = Γ2ϑ(t) ∈ R2n, ϑ̇2(t) = Γ̄2ϑ(t)

ϑ3(t) = Γ3ϑ(t) ∈ R2n, ϑ̇3(t) = Γ̄3ϑ(t), ϑ4(t) =
[

Γ2
e6

]
ϑ(t) ∈ R3n

ϑ̇4(t) =
[

Γ̄2
d1(t)e8

]
ϑ(t), ϑ5(t) =

[
Γ3
e7

]
ϑ(t), ϑ̇5(t) =

[
Γ̄3

−d2(t)e8

]
ϑ(t) ∈ R3n

ϑ6(t) = Γ6ϑ(t), ϑ7(t) = Γ7ϑ(t) ∈ R3n

where

ΓT
1 =

[
eT

1 eT
2 eT

3 eT
4 eT

5
]
, Γ̄T

1 =
[

eT
8 0 0 eT

1 −eT
1
]

ΓT
2 =

[
eT

1 − eT
2 eT

4
]
, Γ̄T

2 =
[

eT
8 eT

1
]
, ΓT

3 =
[

eT
3 − eT

1 eT
5
]

Γ̄T
3 =

[
−eT

8 −eT
1
]
, ΓT

6 =
[

eT
1 eT

2 eT
4
]
, ΓT

7 =
[

eT
1 eT

3 eT
5
]
.

Remark 1. In contrast to [8,9,15], this paper constructs two novel time integrals of the weighted
state derivative, i.e.,

∫ t
tk

d1(ϕ)ẋ(ϕ)dϕ and
∫ tk+1

t d2(ϕ)ẋ(ϕ)dϕ. Accordingly, more additional
information about (i) the sawtooth-type characteristics of the time-varying parameters d1(t) and
d2(t) and (ii) the system state between two consecutive sampling times can be used to derive less
conservative stability and stabilization criteria.

3.1. Stability Analysis

Now, let us establish the following Lyapunov functional-based candidate:

V(t) =
4

∑
`=1

V`(t), for t ∈ [tk, tk+1) (10)

where

V1(t) = xT(t)Px(t)

V2(t) = 2ϑT
1 (t)

(
d2(t)W1ϑ2(t) + d1(t)W2ϑ3(t)

)
V3(t) = 2ϑT

4 (t)S(t)ϑ5(t)

V4(t) = d2(t)
∫ t

tk

eσ(ϕ−t) ẋT(ϕ)R1 ẋ(ϕ)dϕ− d1(t)
∫ tk+1

t
eσ(ϕ−t) ẋT(ϕ)R2 ẋ(ϕ)dϕ

with 0 < P = PT ∈ Rn×n, W1, W2 ∈ R5n×2n,

S(t) =
[

d1(t)S1 + d2(t)S2 S3
S4 S5

]
∈ R3n×3n
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S1, S2 ∈ R2n×2n, S3 ∈ R2n×n, S4 ∈ Rn×2n, S5 ∈ Rn×n, R1 = RT
1 , and R2 = RT

2 ∈ Rn×n.

Remark 2. It is worth noting that ϑ2(t) = 0 and ϑ4(t) = 0 at t = tk, and ϑ3(t) = 0 and
ϑ5(t) = 0 at t = tk+1. Thus, it is clear that V(tk) = V1(tk), for all k ∈ N. Accordingly,
the positive definiteness requirement of V2(t), V3(t), and V4(t) can be excluded based on the
looped-functional approach [6].

Lemma 2 offers the fundamental peak-to-peak stability criteria for sampled-data
control systems subject to actuator saturation.

Lemma 2. For given positive scalars σ, γ, and ū, system (6) subject to (7) is exponentially stable
with a guaranteed peak-to-peak performance γ in the DoA E(P, 1), if the following conditions hold:

0 > V̇(t) + σV(t) + ||z(t)||2 − γ2||w(t)||2 (11)

E
(

P, 1 +
γ2

σ
w̄2
)
⊂ L

(
K, ū

)
. (12)

Proof of Lemma 2. (Local stability) By multiplying (11) by eσt and integrating it over [tk, tk+1),
we have

V(tk+1) < eσ(tk−tk+1)V(tk)−
∫ tk+1

tk

eσ(ϕ−tk+1)||z(ϕ)||2dϕ + γ2
∫ tk+1

tk

eσ(ϕ−tk+1)||w(ϕ)||2dϕ

which leads to

V(tk) < eσ(tk−1−tk)V(tk−1)−
∫ tk

tk−1

eσ(ϕ−tk)||z(ϕ)||2dϕ + γ2
∫ tk

tk−1

eσ(ϕ−tk)||w(ϕ)||2dϕ

< · · · (13)

< e−σtk V(t0)−
∫ tk

t0

eσ(ϕ−tk)||z(ϕ)||2dϕ + γ2
∫ tk

t0

eσ(ϕ−tk)||w(ϕ)||2dϕ, ∀k ∈ N.

Thus, for w(t) ≡ 0, it follows from (13) that

||x(tk)||2 < e−σtk
λmax(P)
λmin(P)

||x(t0)||2, ∀k ∈ N (14)

which means that system (6) is exponentially stable.
Next, let us consider an initial condition x(t0) ∈ E(P, 1). Then, since ||w(t)||2∞ = w̄2,

condition (13) implies

V(tk) < sup
k∈N

{
e−σtk V(t0)−

∫ tk

t0

eσ(ϕ−tk)||z(ϕ)||2dϕ + γ2
∫ tk

t0

eσ(ϕ−tk)||w(ϕ)||2dϕ

}
≤ V(t0)−||z(t)||2∞ · sup

k∈N

{∫ tk

t0

eσ(ϕ−tk)dϕ

}
+ γ2||w(t)||2∞ · sup

k∈N

{∫ tk

t0

eσ(ϕ−tk)dϕ

}
(15)

≤ 1 +
γ2

σ
w̄2, ∀k ∈ N.

Accordingly, by (12) and (15), it is obtained that

x(tk) ∈ E
(

P, 1 +
γ2

σ
w̄2
)
⊂ L(K, ū), ∀k ∈ N (16)

which means that (7) is ensured despite the presence of peak-bounded disturbances.
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(Peak-to-peak performance) For x(t0) ≡ 0, it follows from (15) that

σV(tk) < −||z(t)||2∞ + γ2||w(t)||2∞, ∀k ∈ N. (17)

Therefore, since V(tk) = V1(tk) > 0, it is satisfied by (17) that

||z(t)||2∞ − γ2||w(t)||2∞ < 0 (18)

which corresponds to (8) with a guaranteed peak-to-peak performance γ for all nonzero
peak-bounded disturbances.

Then, Lemma 3 provides a set of LMIs for stability conditions (11) and (12).

Lemma 3. For given positive scalars σ, γ, hm, hM, and ū, system (6) subject to (7) is exponentially
stable with a guaranteed peak-to-peak performance γ in the DoA E(P, 1), if there exist positive
definite matrixes P ∈ Rn×n, R1, R2 ∈ Rn×n, any matrixes G ∈ Rn×8n, W1, W2 ∈ R5n×2n, S1,
S2 ∈ R2n×2n, S3 ∈ R2n×n, S4 ∈ Rn×2n, S5 ∈ Rn×n, X1, X2 ∈ Rn×3n, Y1, Y2 ∈ Rn×3n, and U1,
U2 ∈ Rn×8n, such that for h ∈ {hm, hM}, q ∈ {1, 2}, and i ∈ {1, 2, · · · , 2m}, the following
conditions hold:

0 >


Ψ∗i + Ψ0 + hΨq (∗) (∗) (∗)

ETG −γ2 I 0 0
Ce1 0 −I 0
hXq 0 0 −hRq

 (19)

0 ≤
[

P (∗)
Λ`K η`

]
, ∀` ∈ {1, 2, · · · , m} (20)

where

Ψ∗i = He
{

GT(−e8 + Ae1 + B̄ie2)
}

Ψ0 = He
{

eT
1 Pe8 − ΓT

1 W1Γ2 + ΓT
1 W2Γ3 + ΓT

2 (S1 − S2)Γ3 + Γ̄T
2 S3e7 + eT

6 S4Γ̄3

+ e−σhM
(
(eT

1 − eT
2 )X1 + 2eT

4 Y1
)
Γ6 +

(
(eT

3 − eT
1 )X2 + 2eT

5 Y2
)
Γ7

− (eT
4 + eT

6 )U1 − (eT
5 − eT

7 )U2 + ΓT
2 σS3e7 + eT

6 σS4Γ3 + eT
6 σS5e7

}
+ eT

1 σPe1

Ψ1 = He
{

Γ̄T
1 W2Γ3 + ΓT

1 W2Γ̄3 + ΓT
1 σW2Γ3 + ΓT

2 σS1Γ3 + Γ̄T
2 S1Γ3 + ΓT

2 S1Γ̄3

+ eT
8 S4Γ3 + eT

8 S5e7 − e−σhM (eT
1 + eT

2 )Y1Γ6 + eT
1 U1

}
+ eT

8 R2e8

Ψ2 = He
{

Γ̄T
1 W1Γ2 + ΓT

1 W1Γ̄2 + ΓT
1 σW1Γ2 + ΓT

2 σS2Γ3 + Γ̄T
2 S2Γ3 + ΓT

2 S2Γ̄3

− ΓT
2 S3e8 − eT

6 S5e8 − (eT
3 + eT

1 )Y2Γ7 + eT
1 U2

}
+ eT

8 R1e8

X1 = col{X1Γ6, hMY1Γ6}, R1 = eσhM diag{R1, 3R1}
X2 = col{X2Γ7, hMY2Γ7}, R2 = diag{R2, 3R2}

Λ` =
[

01×(`−1) 1 01×(m−`)
]
, η` =

ū2
`

1 + γ2

σ w̄2
.

Proof of Lemma 3. The time derivatives of (10) are given as follows:

V̇1(t) = 2ϑT(t)eT
1 Pe8ϑ(t) (21)

V̇2(t) = 2ϑT(t)
(
− ΓT

1 W1Γ2 + ΓT
1 W2Γ3 + d2(t)

(
Γ̄T

1 W1Γ2 + ΓT
1 W1Γ̄2

)
+ d1(t)

(
Γ̄T

1 W2Γ3 + ΓT
1 W2Γ̄3

))
ϑ(t) (22)
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V̇3(t) = 2ϑT(t)
(

ΓT
2 (S1 − S2)Γ3 + Γ̄T

2 S3e7 + eT
6 S4Γ̄3

+ d1(t)
(
Γ̄T

2 S1Γ3 + ΓT
2 S1Γ̄3 + eT

8 S4Γ3 + eT
8 S5e7

)
+ d2(t)

(
Γ̄T

2 S2Γ3 + ΓT
2 S2Γ̄3 − ΓT

2 S3e8 − eT
6 S5e8

))
ϑ(t) (23)

V̇4(t) = ϑT(t)
(

d2(t)eT
8 R1e8 + d1(t)eT

8 R2e8

)
ϑ(t)

− σd2(t)
∫ t

tk

eσ(ϕ−t) ẋT(ϕ)R1 ẋ(ϕ)dϕ −
∫ t

tk

eσ(ϕ−t) ẋT(ϕ)R1 ẋ(ϕ)dϕ
(a)

+ σd1(t)
∫ tk+1

t
eσ(ϕ−t) ẋT(ϕ)R2 ẋ(ϕ)dϕ −

∫ tk+1

t
eσ(ϕ−t) ẋT(ϕ)R2 ẋ(ϕ)dϕ

(b)
. (24)

Additionally, it is worth noting that

σV1(t) = ϑT(t)eT
1 σPe1ϑ(t) (25)

σV2(t) = 2ϑT(t)
(
d2(t)ΓT

1 σW1Γ2 + d1(t)ΓT
1 σW2Γ3

)
ϑ(t) (26)

σV3(t) = 2ϑT(t)
(
d1(t)ΓT

2 σS1Γ3 + d2(t)ΓT
2 σS2Γ3 + ΓT

2 σS3e7 + eT
6 σS4Γ3 + eT

6 σS5e7
)
ϑ(t) (27)

σV4(t) = σd2(t)
∫ t

tk

eσ(ϕ−t) ẋT(ϕ)R1 ẋ(ϕ)dϕ− σd1(t)
∫ tk+1

t
eσ(ϕ−t) ẋT(ϕ)R2 ẋ(ϕ)dϕ. (28)

Furthermore, from ∫ t

tk

d1(t)ẋ(ϕ)dϕ = d1(t)x(t)−
∫ t

tk

x(ϕ)dϕ∫ tk+1

t
d2(t)ẋ(ϕ)dϕ = −d2(t)x(t) +

∫ tk+1

t
x(ϕ)dϕ

two additional zero-equalities are given as follows:

0 = 2ϑT(t)
(

d1(t)eT
1 − eT

4 − eT
6

)
U1ϑ(t) (29)

0 = 2ϑT(t)
(

d2(t)eT
1 − eT

5 + eT
7

)
U2ϑ(t). (30)

Also, from (6), it follows that

0 = 2ϑT(t)GT
(
− e8 + Ae1 +

2m

∑
i=1

φi(tk)B̄ie2

)
ϑ(t) + 2ϑT(t)GTEw(t). (31)

In particular, based on (2), Lemma 1 allows

(a) ≤ −e−σhM

∫ t

tk

ẋT(ϕ)R1 ẋ(ϕ)dϕ

≤ ϑT(t)e−σhM
(

d1(t)
(
ΓT

6 Φ1Γ6 − 2(eT
1 + eT

2 )Y1Γ6
)
+ 2
(
(eT

1 − eT
2 )X1 + 2eT

4 Y1
)
Γ6

)
ϑ(t) (32)

(b) ≤
∫ tk+1

t
ẋT(ϕ)R2 ẋ(ϕ)dϕ

≤ ϑT(t)
(

d2(t)
(
ΓT

7 Φ2Γ7 − 2(eT
3 + eT

1 )Y2Γ7
)
+ 2
(
(eT

3 − eT
1 )X2 + 2eT

5 Y2
)
Γ7

)
ϑ(t) (33)

where

Φq = XT
q R−1

q Xq +
h2

M
3

YT
q R−1

q Yq, ∀q ∈ {1, 2}.
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Thus, by combining (21)–(31), and applying (32) and (33), we have

V̇(t) + σV(t)+||z(t)||2 − γ2||w(t)||2 ≤
2m

∑
i=1

φi(tk)ϑ̄
T(t)Θiϑ̄(t) (34)

where ϑ̄(t) = col{ϑ(t), w(t)} ∈ R8n+v, Υ =
[

I8n 08n×v

]
, and

Θi =

[
Ψ∗i + Ψ0 (∗)

ETG −γ2 I

]
+

[
eT

1 CT

0

][
Ce1 0

]
+

d1(t)
hk

hkΥT(Ψ1 + e−σhM ΓT
6 Φ1Γ6

)
Υ +

d2(t)
hk

hkΥT(Ψ2 + ΓT
7 Φ2Γ7

)
Υ.

As a result, based on (5) and d1(t)
hk

+ d2(t)
hk

= 1, condition (11) is ensured by the following
conditions, for h ∈ {hm, hM} and i ∈ {1, 2, · · · , 2m}:

0 >

[
Ψ∗i + Ψ0 (∗)

ETG −γ2 I

]
+

[
eT

1 CT

0

][
Ce1 0

]
+ hΥT(Ψ1 + e−σhM ΓT

6 Φ1Γ6
)
Υ (35)

0 >

[
Ψ∗i + Ψ0 (∗)

ETG −γ2 I

]
+

[
eT

1 CT

0

][
Ce1 0

]
+ hΥT(Ψ2 + ΓT

7 Φ2Γ7
)
Υ (36)

which are converted into (19) by the Schur complement.
Next, the Schur complement of (20) yields

1

1 + γ2

σ w̄2
P ≥ 1

ū2
`

KTΛT
` Λ̄`K, ∀` ∈ {1, 2, · · · , m}

which implies that E
(

P, 1 + γ2

σ w̄2) ⊂ L
(
K, ū

)
.

Remark 3. It should be noted that the zero-equalities in [8,9,15] cannot be directly applied to
derive stabilization conditions of SDSs since they are formulated in bilinear form. To overcome
these limitations, this paper provides two additional zero-equalities (29) and (30). These two
zero-equalities enhance the relationship among the elements of ϑ(t) and can be utilized to derive
stabilization conditions in a less conservative manner. Further, this paper adopts two fewer zero-
equalitiesthan [8,9,15], which plays a key role in reducing the number of variables (NoVs).

As a consequence of Lemma 3, Corollary 1 offers the LMI-based stability criteria for
the sampled-data systems in the absence of disturbances

ẋ(t) = Ax(t) + Asx(tk), for t ∈ [tk, tk+1), ∀k ∈ N (37)

where A ∈ Rn×n and As ∈ Rn×n are given system matrixes.

Corollary 1. For given positive scalars σ, hm, and hM, system (37) is exponentially stable, if
there exist positive definite matrixes P ∈ Rn×n, R1, R2 ∈ Rn×n, any matrixes G ∈ Rn×8n, W1,
W2 ∈ R5n×2n S1, S2 ∈ R2n×2n, S3 ∈ R2n×n, S4 ∈ Rn×2n, S5 ∈ Rn×n, X1, X2 ∈ Rn×3n, Y1,
Y2 ∈ Rn×3n, and U1, U2 ∈ Rn×8n, such that for h ∈ {hm, hM} and q ∈ {1, 2}, the following
conditions hold:

0 >

[
Ψ∗ + Ψ0 + hΨq (∗)

hXq −hRq

]
(38)

in which Ψ0, Ψq, Xp, andRp are defined in Lemma 3, and

Ψ∗ = He
{

GT(−e8 + Ae1 + Ase2)
}

.
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Proof of Lemma 1. In the absence of disturbances and actuator saturation constraints,
condition (34) can be reduced to

V̇(t) + σV(t) ≤ ϑT(t)Θϑ(t) (39)

where

Θ = Ψ∗ + Ψ0 +
d1(t)

hk
hk
(
Ψ1 + e−σhM ΓT

6 Φ1Γ6
)
+

d2(t)
hk

hk
(
Ψ2 + ΓT

7 Φ2Γ7
)
.

Thus, the exponential stability condition V̇(t) + σV(t) < 0 is equivalent to the following
conditions, for h ∈ {hm, hM}:

0 > Ψ∗ + Ψ0 + h
(
Ψ1 + e−σhM ΓT

6 Φ1Γ6
)

(40)

0 > Ψ∗ + Ψ0 + h
(
Ψ2 + ΓT

7 Φ2Γ7
)

(41)

which are converted into (38) by the Schur complement.

Remark 4. The NoVs required for Corollary 1 are 70.5n2 + 1.5n. On the other hand, the NoVs
for Theorem 1 in [8], Corrollary 1 in [9], Theorem 3 in [15], are 116.5n2 + 4.5n, 70.5n2 + 4.5n,
and 111.5n2 + 4.5n, respectively. Thus, it is clear that the proposed method requires a lower
computational complexity than those of [8,9,15].

3.2. Stabilization Criteria

Based on Lemma 3, Theorem 1 presents the peak-to-peak stabilization conditions for
SDSs subject to actuator saturation, formulated in terms of LMIs.

Theorem 1. For given positive scalars σ, γ, χ1, χ2, µ, hm, hM, and ū, system (6) subject to (7) is
exponentially stable with a guaranteed peak-to-peak performance γ in the DoA E(P, 1), if there exist
positive definite matrixes P̄ ∈ Rn×n, R̄1, R̄2 ∈ Rn×n, any matrixes Ḡ ∈ Rn×n, P0 = PT

0 ∈ Rn×n,
W1, W2 ∈ R5n×2n, S̄1, S̄2 ∈ R2n×2n, S̄3 ∈ R2n×n, S̄4 ∈ Rn×2n, S̄5 ∈ Rn×n, X̄1, X̄2 ∈ Rn×3n,
Ȳ1, Ȳ2 ∈ Rn×3n, Ū1, Ū2 ∈ Rn×8n, F̄ ∈ Rm×n and K̄ ∈ Rm×n, such that for h ∈ {hm, hM},
q ∈ {1, 2}, and i ∈ {1, 2, · · · , 2m}, the following conditions hold:

0 >


Ψ̄∗i + Ψ̄0 + hΨ̄q (∗) (∗) (∗)

ETΓ8 −γ2 I 0 0
CḠe1 0 −I 0
hX̄q 0 0 −hR̄q

 (42)

0 ≤
[

P̄ (∗)
Λ`K̄ η`

]
, ∀` ∈ {1, 2, · · · , m} (43)

0 ≤
[

P0 µI
(∗) He{µḠ} − P̄

]
(44)

where Λ` and η` are given in Lemma 3, and

Ψ̄∗i = He
{

ΓT
8
(
− Ḡe8 + AḠe1 + B(Ξi F̄ + Ξ̄iK̄)e2

)}
, Γ8 = e1χ1 + e2χ2 + e8

Ψ̄0 = He
{

eT
1 P̄e8 − ΓT

1 W̄1Γ2 + ΓT
1 W̄2Γ3 + ΓT

2 (S̄1 − S̄2)Γ3 + Γ̄T
2 S̄3e7 + eT

6 S̄4Γ̄3

+ e−σhM
(
(eT

1 − eT
2 )X̄1 + 2eT

4 Ȳ1
)
Γ6 +

(
(eT

3 − eT
1 )X̄2 + 2eT

5 Ȳ2
)
Γ7

− (eT
4 + eT

6 )Ū1 − (eT
5 − eT

7 )Ū2 + ΓT
2 σS̄3e7 + eT

6 σS̄4Γ3 + eT
6 σS̄5e7

}
+ eT

1 σP̄e1

Ψ̄1 = He
{

Γ̄T
1 W̄2Γ3 + ΓT

1 W̄2Γ̄3 + ΓT
1 σW̄2Γ3 + ΓT

2 σS̄1Γ3 + Γ̄T
2 S̄1Γ3 + ΓT

2 S̄1Γ̄3

+ eT
8 S̄4Γ3 + eT

8 S̄5e7 − e−σhM (eT
1 + eT

2 )Ȳ1Γ6 + eT
1 Ū1

}
+ eT

8 R̄2e8
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Ψ̄2 = He
{

Γ̄T
1 W̄1Γ2 + ΓT

1 W̄1Γ̄2 + ΓT
1 σW̄1Γ2 + ΓT

2 σS̄2Γ3 + Γ̄T
2 S̄2Γ3 + ΓT

2 S̄2Γ̄3

− ΓT
2 S̄3e8 − eT

6 S̄5e8 − (eT
3 + eT

1 )Ȳ2Γ7 + eT
1 Ū2

}
+ eT

8 R̄1e8

X̄1 = col{X̄1Γ6, hMȲ1Γ6}, R̄1 = eσhM diag{R̄1, 3R̄1}
X̄2 = col{X̄2Γ7, hMȲ2Γ7}, R̄2 = diag{R̄2, 3R̄2}.

In addition, the control gains are reconstructed as F = F̄Ḡ−1 and K = K̄Ḡ−1.

Proof of Lemma 1. Let us establish the congruent transformation matrixes as follows:

Ḡκ = Iκ ⊗ Ḡ, κ ∈ {2, 3, 5, 8}, Ω1 = diag{Ḡ8, I, I, Ḡ2}, Ω2 = diag{Ḡ, I}

which satisfy

Γ1Ḡ8 = Ḡ5Γ1, Γ̄1Ḡ8 = Ḡ5Γ1, Γ2Ḡ8 = Ḡ2Γ̄2, Γ̄2Ḡ8 = Ḡ2Γ̄2, Γ3Ḡ8 = Ḡ2Γ̄3

Γ̄3Ḡ8 = Ḡ2Γ̄3, Γ6Ḡ8 = Ḡ3Γ̄6, Γ7Ḡ8 = Ḡ3Γ̄7, Γ8Ḡ8 = ḠΓ3, epḠ8 = Ḡep.

Moreover, note that (43) and (44) ensure that the matrix Ḡ is nonsingular. Then, by letting
G = Ḡ−1Γ8 and using the replacement variables listed below

P̄ = ḠT PḠ, W̄1 = ḠT
5 W1Ḡ2, W̄2 = ḠT

5 W2Ḡ2, S̄1 = ḠT
2 S1Ḡ2, S̄2 = ḠT

2 S2Ḡ2

S̄3 = ḠT
2 S3ḠT , S̄4 = ḠTS4Ḡ2, S̄5 = ḠTS5ḠT , R̄1 = ḠT R1Ḡ, X̄1 = ḠTX1Ḡ3

Ȳ1 = ḠTX1Ḡ3, R̄2 = ḠT R2Ḡ, X̄2 = ḠTX2Ḡ3, Ȳ2 = ḠTX2Ḡ3, Ū1 = ḠTU1Ḡ8

Ū2 = ḠTU2Ḡ8, F̄ = FḠ, K̄ = KḠ

we can obtain

ḠT
8 Ψ∗i Ḡ8 = Ψ̄∗i , ḠT

8 Ψ0Ḡ8 = Ψ̄0, ḠT
8 Ψ1Ḡ8 = Ψ̄1

ḠT
8 Ψ2Ḡ8 = Ψ̄2, ḠT

2XqḠ8 = X̄q, ḠT
2RqḠ2 = R̄q.

Thus, pre- and postmultiplying (19) by ΩT
1 and Ω1 yields (42), and pre- and postmultiply-

ing (20) by ΩT
2 and Ω2 yields (43).

In parallel, to scale the size of the DoA, let us employ an additional ellipsoid E(P0, 1)
satisfying that E(P0, 1) ⊂ E(P, 1), i.e.,

ḠT P0Ḡ ≥ ḠT PḠ = P̄. (45)

Indeed, since it holds that ḠT P0Ḡ ≥ He{µḠ} − µ2P−1
0 , condition (45) is ensured by

0 ≤ He{µḠ} − µ2P−1
0 − P̄

which is transformed to (44) by the Schur complement.

Remark 5. The DoA E(P, 1) can be enlarged by the following LMI solver programming: min trace(P0)
such that LMIs (42)–(44) hold.

4. Numerical Validation

In this section, we utilize Corollary 1 to obtain comparative stability analysis results for
three linear systems. Additionally, we utilize the stabilization criteria derived in Theorem 1
to design a sampled-data controller for a linearized IPS.

4.1. Comparison Examples

Let us consider three sampled-data linear systems, used in [8,9,15]:
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System 1:
[

A As
]
=

[
−1 0 −1 1

1 −2 1 0

]
(46)

System 2:
[

A As
]
=

[
−2 0 −1 0

0 −0.9 −1 −1

]
(47)

System 3:
[

A As
]
=

[
−1 −1 0 0
−1 −2 −1 −2

]
. (48)

For systems (46)–(48) and hm = 10−5, Table 1 lists the maximum upper bound of the
sampling interval h∗M obtained by Theorem 4 in [7], Theorem 1 in [8], Corrollary 1 in [9],
Theorem 3 in [15], Theorem 2 in [26], and Corollary 1 with σ = 0.1. As compared in Table 1,
the proposed method offers a longer sampling interval for each system than [8,9,15] despite
requiring a lower computational complexity.

Table 1. Maximum upper bound of sampling interval for hm = 10−5.

Methods System 1 System 2 System 3 NoVs

Theorem 2 in [26] 2.2236 2.8554 2.1881 156
Theorem 4 in [7] 3.9306 3.2632 6.2279 263

Theorem 3 in [15] – 3.2660 – 455
Theorem 1 in [8] 5.3040 – – 475

Corrollary 1 in [9] – 3.2672 6.3373 291
Corollary 1 6.7461 3.2696 7.8603 285

4.2. Application to Inverted Pendulum System

Let us consider the IPS shown in Figure 2, where xc(t) is the cart position, θ(t) is the
pendulum angle, Fc(t) is the force applied to the cart to keep the pendulum stable around
the equilibrium position, and w(t) indicates the exogenous disturbances due to friction. To
be specific, the IPS parameters and their numerical values are listed in Table 2. As in [27],
the motion dynamics of the inverted pendulum are given by

(Jeq + M)ẍc(t) + Ml cos(θ)θ̈(t)−Ml sin(θ(t))θ̇2(t) = Fc(t)− Deq ẋc(t)− w(t) (49)

Ml cos(θ)ẍc(t) + (J + Ml2)θ̈(t) + Mlg sin(θ(t)) = −Dθ̇(t) + 0.01w(t) (50)

where the force Fc(t) is described as follows:

Fc(t) =
LNt

Rr

(
− LNẋc(t)

r
+ u(t)

)
(51)

in which u(t) indicates the voltage control input applied to the cart motor. Then, by letting
x1(t) = xc(t), x2(t) = θ(t), x3(t) = ẋc(t), and x4(t) = θ̇(t), the linearized model around
the equilibrium position, i.e., sin(θ(t)) ∼= θ(t), cos(θ(t)) ∼= 1, and θ̇2(t) ∼= 0, is derived
from (49)–(51) as follows: {

ẋ(t) = Ax(t) + Bu(t) + Ew(t)
z(t) = Cx(t)

(52)

where

A =


0 0 1 0
0 0 0 1
0 A32 A33 A34
0 A42 A43 A44

, B =


0
0

B31
B41


C =

[
1 0 0 0
0 1 0 0

]
, E =

[
0 0 E31 E41

]T
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in which

A32 =
M2l2g

Jt
, A33 = −

(J + Ml2)Deq

Jt
− L2NtN(J + Ml2)

Rr2 Jt
, A34 = −MlD

Jt

A42 =
(Jeq + M)Mlg

Jt
, A43 = −

MlDeq

Jt
− L2NtNMl

Rr2 Jt
, A44 = −

(Jeq + M)D
Jt

B31 =
LNt(J + Ml2)

RrJt
, B41 =

LNt Ml
RrJt

, E31 = − (J + Ml2)

Jt

E41 =
0.01(Jeq + M)

Jt
, Jt = (Jeq + M)J + Jeq Ml2.

Let us recall (52) subject to ū = 10 and w̄ = 0.45. Then, Theorem 1 with χ1 = 1,
χ2 = 3.5, σ = 1, µ = 15 offers h∗M = 0.205 (s) as the maximum upper bound of the sampling
interval with respect to hm = 0.001 (s). Furthermore, Figure 3 shows the minimum peak-
to-peak performance level that varies according to the upper bound of sampling interval
and the saturation level. It can be found from Figure 3 that the peak-to-peak performance
deteriorates as the upper bound of the sampling interval increases and the saturation level
decreases. In particular, γmin is rapidly increased when the value of hM increases from
0.175 (s) to 0.205 (s). Specifically, for the following three cases:

Case 1: hM = 0.01(s) and γ = 1.6332

Case 2: hM = 0.10(s) and γ = 2.3920

Case 3: hM = 0.175(s) and γ = 4.6247

Remark 5 provides

Case 1 :

F =
[

5.5852 −30.1195 12.8607 −4.3882
]

K =
[

5.4639 −29.6907 12.6716 −4.3251
]

P =


4.5780 −5.2386 2.5633 −0.7720
−5.2386 14.1654 −6.1937 2.0509
2.5633 −6.1937 2.7860 −0.9095
−0.7720 2.0509 −0.9095 0.3002

 (53)

Case 2 :

F =
[

4.1453 −28.4985 12.0733 −4.1541
]

K =
[

4.1437 −28.4934 12.0710 −4.1534
]

P =


4.9204 −5.7146 2.7923 −0.8423
−5.7146 15.5514 −6.8186 2.2565
2.7923 −6.8186 3.0696 −1.0024
−0.8423 2.2565 −1.0024 0.3308

 (54)

Case 3 :

F =
[

2.7485 −25.8155 10.8558 −3.7652
]

K =
[

2.7485 −25.8155 10.8558 −3.7652
]

P =


6.1112 −7.1130 3.4783 −1.0485
−7.1130 18.5068 −8.1869 2.6947
3.4783 −8.1869 3.7047 −1.2050
−1.0485 2.6947 −1.2050 0.3957

. (55)
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Table 2. Inverted pendulum system parameters [27].

Description Symbol Value

Cart mass Mc 0.94 kg
Pendulum mass M 0.1270 kg
Pendulum length l 0.1778 m
Pendulum moment of inertia J 0.0012 N/m
Lumped mass of the cart Jeq 1.0731 kg
Viscous damping coefficient D 0.0024 N s/m
Motor viscous damping Deq 5.40 N s/m
Motor back-EMF constant N 0.0077 V s/rad
Motor torque constant Nt 0.0077 Nm/A
Gearbox gear ratio L 3.71
Motor armature resistance R 2.60 Ω
Motor pinion radius r 0.0064 m
Gravity constant g 9.81 m/s2

Figure 2. Diagram of inverted pendulum system.
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Figure 3. Minimum peak-to-peak performance level for hM and ū.

Based on (53)–(55), Figure 4 plots the state trajectory starting at xc(t0) = 0.0 (mm) and
θ(t0) = 5(deg) for each case, where the exogenous disturbance is given by
w(t) = 0.45× sin(1.66πt). As can be seen from Figure 4, the size of DoA E(P, 1) becomes
smaller and the range of the state trajectory widens as hM increases from 0.01 (s) to 0.175 (s).
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Figure 4. Simulation results: DoA E(P, 1) and state trajectory for three cases: (a) hM = 0.01 (s),
(b) hM = 0.10 (s), and (c) hM = 0.175 (s).

Subsequently, the block diagram and laboratory setup for experimental verification
are depicted in Figure 5 (IP02 Linear Inverted Pendulum, Quanser Inc., 119 Spy Court,
Markham, ON L3R 5H6, Canada), where a cart is driven by a Faulhaber Coreless DC Motor
(2338S006) connected to a Faulhaber Planetary Gearhead Series 23/1; the cart position
and the pendulum angle are measured using a quadrature incremental encoder; and the
amplifier (VoltPAQ-X1) is used to amplify the control input to the motor voltage. At each
sampling time, the cart position and pendulum angle are sampled and transferred to the
controller embedded in the MyRIO instrument. Subsequently, the control input u(t) is
generated according to the state-feedback control law given in (4) and then transferred to the
VoltPAQ amplifier with the saturation level± 10 (V). Ultimately, using the amplified voltage
control input, the cart motor generates the force to balance the pendulum. Practically, based
on (53)–(55), Figure 6 shows the experimental state trajectory starting at xc(t0) = 0.0(mm)
and θ(t0) = 5(deg) for each case, which illustrates that the proposed method has a suitable
ability to stabilize system (52) in the DoA.
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Pendulum 

encoder

Cart 

encoder
Motor

Inverted pendulum

MyRIO + Terminal VoltPAQ Amplifier

Figure 5. Block diagram and laboratory setup.
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Figure 6. Experiment results: DoA E(P, 1) and state trajectory for three cases: (a) hM = 0.01 (s),
(b) hM = 0.10 (s), and (c) hM = 0.175 (s).

In particular, for hM = 0.175 (s), Figure 7a–c present the cart position, the pendulum
angle, and the voltage control input, where w(t) = 0.45 × sin(1.66πt) is used as the
exogenous disturbance acting on this control system. As shown in Figure 7a,b, the cart
position and the pendulum angle are continuously affected by w(t) but operate stably
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within the allowable range. Also, from Figure 7c, it can be observed that the sampled-data
voltage control input is generated subject to the saturation constraint ū = 10.

Figure 7. System state response and sampled-data control input.

Finally, for x(t0) = 0 and w(t) = 0.45× sin(1.66πt), i.e., ||w(t)||2∞ = 0.2025, Figure 8a,b
display the experimental performance output of (52) and its squared Euclidean norm, re-
spectively, which demonstrates that the practical peak-to-peak performance satisfies

||z(t)||2∞
||w(t)||2∞

<
0.05

0.2025
< γ2 = 4.62472.

Remark 6. It should be noted that the linearized model (52) is developed under the assumption
that there is no uncertainty in the system parameters. This assumption can create a gap between the
mathematical model and the actual dynamic system, resulting in some errors between experimental
and simulation results. To overcome this limitation, our future research will focus on developing
robust T-S fuzzy control systems and multidimensional quasi-linear control systems.
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Figure 8. Experiment results: (a) performance output z(t), and (b) peak-to-peak performance.

5. Conclusions

This paper has proposed a method for designing an improved sampled-data controller
for continuous-time linear systems with actuator saturation and peak-bounded exogenous
disturbances. To be specific, two novel time integrals of the weighted state derivative have
been introduced to construct an improved looped-functional. In addition, two additional
zero-equalities have been utilized to obtain less conservative stability analysis criteria.
Following that, a set of LMIs-based stabilization conditions has been developed to ensure
that the closed-loop system achieves exponential stability with a guaranteed peak-to-peak
performance in the DoA. Compared to other existing studies, the proposed method not
only offers an improved maximum upper bound of sampling interval but also requires
lower computational complexity. Finally, the effectiveness of the proposed method has
been demonstrated through its successful implementation in an IPS.
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