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1. Introduction

Fractional calculus has found applications in various fields because of its ability to
describe phenomena involving non-integer order derivatives and integrals. Fractional
calculus is a powerful and versatile tool that extends the capabilities of traditional calculus,
enabling a more accurate representation of complex systems across a wide range of scien-
tific and engineering domains. Its importance lies in its ability to bridge the gap between
theory and real-world observations, providing a more effective representation of natural
problems. Recent times have witnessed the emergence of novel definitions for fractional
derivatives and integrals, extending the classical formulations in various ways. Moreover,
a dynamic realm of research in mathematical analysis has been dedicated to the meticulous
examination of the functional properties inherent in these new definitions. Extensive explo-
ration of systems involving partial differential equations with fractional-order operators
has been conducted from both analytical and numerical perspectives. These systems find
widespread applications in science and technology, seamlessly modeling phenomena in
diverse fields, such as biology, ecology, and chemistry, among others. The physical meaning
of using a fractional derivative in the boundary condition is a complex topic that may be
considered in our future work. However, fractional derivatives are non-local, which makes
fractional calculus more attractive than the classical derivatives for real-world problems.

In [1], the authors delved into the realm of ultra-parabolic equations. Specifically, they
explored equations with a singular lower-order term, showing the applicability of Harnack
inequalities in this context. The paper contributed to the understanding of hypoelliptic ultra-
parabolic equations, providing insights that enhance our comprehension of their behavior
and laying the groundwork for further developments in the field of mathematical analysis.
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In the light of the work of [2], we propose the following problem:
wtt − µ∆w− (λ + µ)∇(divw)

+wt = w|w|p−2ln|w|k y ∈ Ω, t > 0,
∂w
∂ν = −b∂

α,η
t w, y ∈ Γ0, t > 0,

w(y, t) = 0 y ∈ Γ1, t > 0,
w(y, 0) = w0(y), wt(y, 0) = w1(y) y ∈ Ω,

(1)

in which Ω denotes a bounded domain in Rn, where n is a positive integer. The domain
possesses a smooth boundary, denoted as ∂Ω, characterized by a C2 class. Additionally,
ν represents the unit outward normal vector to ∂Ω, which can be expressed as the union
of closed subsets Γ0 and Γ1. Both Γ0 and Γ1 are subsets of ∂Ω and satisfy the condition
that their union, Γ0 ∪ Γ1, is an empty set. Here, nonlinearities occur, which are needed
to obtain “blow-up” solutions. Nonlinear equations are usually difficult to analyze, and
local existence can be established by standard arguments for most reasonable PDEs. How-
ever, global existence is not guaranteed, and blow-up can occur because of the presence
of nonlinearities.

Let µ and λ denote the Lamé constants, satisfying µ > 0 and λ + µ ≥ 0. The parameter
p is greater than two, and the constant k is a small non-negative real number. The space
L2(D) comprises square integrable functions on D with the inner product 〈·, ·〉 and its
associated norm | · |2. Here, b is a nonnegative real number, and ∂

α,η
t represents Caputo’s

generalized fractional derivative with 0 < α < 1. This derivative is defined in [2,3] as
given below:

∂
α,η
t w(t) =

1
Γ(1− α)

∫ t

0
(t− r)−αe−η(t−r)wr(r)dr, η ≥ 0,

in which the Γ is the Euler gamma function. Further, we have the following:

∂
α,η
t w(t) = I1−α,ηwt(t), (2)

in which Iα,η is the exponential integro-differential operator of fractional derivative, given by

∂
α,η
t w(t) =

1
Γ(α)

∫ t

0
(t− r)α−1e−η(t−r)w(r)dr, η ≥ 0.

In the literature, several researchers explored problems of this nature from different
aspects [4,5]. Utilizing the Lyapunov functional, they conducted a comprehensive study
on the global existence of solutions and the overall decay within a bounded domain for a
nonlinear wave equation featuring fractional derivative boundary conditions. Additionally,
these studies delved into the examination of solutions, investigating both non-positive
and positive initial energy and exploring the potential occurrence of blow-up phenomena.
The blow-up issue in extraordinary problems has caused a lot of ink to flow. For instance,
one can mention the paper by Liquing Lu and Shengjia Li [6]. Other authors, like [7],
were interested in the case of such a problem in the frame of a Lamé system since it
is found in quite a number of applications. In [8], the author established the global
nonexistence of solutions for logarithmic wave equations with nonlinear damping and
distributed delay terms. The findings contributed valuable insights into the limitations and
constraints of such equations, enriching our understanding of their dynamic behavior. In
this scenario, Yüksekkaya et al. [9], employing semigroup theory, addressed and established
the well-posedness of an initial-boundary value problem for a logarithmic Lamé system with a
time delay within a bounded domain. They further demonstrated the system’s possession of
global solutions using the well-depth method, subject to suitable assumptions on the weights of
both the time delay and frictional damping. Additionally, they provided an exponential stability
decay result. This work is organized as follows: Section 1 provides a preliminary discussion of
the requisite definitions and statements. Our focus in Section 2 is to illustrate the global existence
and uniqueness of solutions in (1), and Section 3 is dedicated to presenting blow-up results.
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2. Preliminaries

In this section, some basic results and concepts are introduced that are used in the
results of our work. Assume

H1
Γ1
(Ω) = {w ∈ H1(Ω), w = 0 on Γ1 = 0}.

Lemma 1 ([10], Sobolev–Poincaré’ s inequality). Assume a number m in a way that

1 ≤ m ≤ +∞(n = 1, 2) or 1 ≤ m ≤ (n + 2)/(n− 2), (n ≥ 3).

Then, one can find a constant Cs > 0 in a manner that

‖w‖m+1 ≤ Cs‖∇w‖2 for w ∈ H1
0(Ω).

Lemma 2 (Trace-Sobolev embedding. See [11]). The following holds true:

H1
Γ1
(Ω) ↪→ Lq+1(Ω),

if

1 ≤ q ≤ ∞, (n = 1, 2) or 1 ≤ q ≤ n + 2
n− 2

, (n ≥ 3), (3)

i.e.,
‖u‖q+1 ≤ Bq,Ω‖∇u‖2, ∀u ∈ H1

Γ1
(Ω),

where Bq,Ω is the best constant fulfilling the trace-Sobolev embedding.

Definition 1. We define w as a blow-up solution of (1) at a finite time T∗ if

lim
t→T∗−

‖∇w‖2 = +∞.

Lemma 3 ([12], Lemma 4.2). Let t0 ≥ 0 and F(t) be a function of non-increasing nature on
[t0, ∞) satisfying (

F′(t)
)2 ≥ m(F(t))2+1/γ + σ, t0 ≤ t, 0 < γ, (4)

in which m < 0 and σ > 0. Then, there is a finite time T∗ in a way that

lim
t→T∗−

F(t) = 0, (5)

F(t0) < min
{

1,
√
− σ

m

}
,

T∗ ≤ t0 +
1√
−m

ln
√
−σ/m√

−σ/m− F(t0)
. (6)

Theorem 1 ([2], Theorem 2.6). Assume a function ψ as follows:

ψ(ξ) = |ξ|
(2α−1)

2 , 1 > α > 0, ξ ∈ R.

ψ(ξ) = |ξ|
(2α−1)

2 , 1 > α > 0, ξ ∈ R. (7)

Then, we have
I1−α,ηU = O, (8)

which shows a relation between the input U and the output O of the below system:

∂tΦ(ξ, t) + (ξ2 + η)Φ(ξ, t)−U(L, t)ψ(ξ) = 0, 0 < t, η ≥ 0, ξ ∈ R, (9)
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Φ(ξ, 0) = 0, (10)

O(t) =
sin(απ)

π

∫ +∞

−∞
Φ(ξ, t)ψ(ξ)dξ, ξ ∈ R, t > 0. (11)

As a consequence of (2) and Theorem 1, we can obtain the augmented system for
system (1) as follows:

wtt − µ∆w− (λ + µ)∇(divw)

+wt = w|w|p−2ln|w|k y ∈ Ω, 0 < t,
∂tΦ(ξ, t) + (ξ2 + η)Φ(ξ, t)− wt(y, t)ψ(ξ) = 0 y ∈ Γ0, ξ ∈ R, 0 < t,
∂w
∂ν = −b1

∫ +∞
−∞ Φ(ξ, t)ψ(ξ)dξ, y ∈ Γ0, 0 < t,

w(y, t) = 0 y ∈ Γ1, 0 < t,
w(y, 0) = w0(y), wt(y, 0) = w1(y) y ∈ Ω,
Φ(ξ, 0) = 0 ξ ∈ R,

(12)

in which b1 = b
(

sin(απ)
π

)
.

Lemma 4 ([2]). Let β ∈ Dη = {β ∈ C : Imβ 6= 0} ∪ {β ∈ C : Reβ + η > 0}. Then, we have

Aβ =
∫ +∞

−∞

ψ2(ξ)

η + β + ξ2 dξ =
π

sin(απ)
(η + β)α−1.

Let E(t) be the energy functional related to (12) given by

E(t) =
1
2
‖wt‖2

2 +
µ

2
‖∇w‖2

2 +
λ + µ

2
‖divw‖2

2 +
k
p2 ‖w‖

p
p

− 1
p

∫
Ω
|w|pln|w|kdy +

b1

2

∫
Γ0

∫ +∞

−∞
|Φ(ξ, t)|2dξdρ.

(13)

Lemma 5. Assume (u, Φ) is a regular solution to the problem (12). Then, E(t) given in (13) is a
non-increasing function, and

d
dt

E(t) = −‖wt‖2
2 − b1

∫
Γ0

∫ +∞

−∞
(ξ2 + η)|Φ(ξ, t)|2dξdρ. (14)

Proof. Multiply ut with the first equation in (12), and integrating by parts over Ω, we have∫
Ω

wttwtdy− µ
∫

Ω
∆wwtdy− (λ + µ)

∫
Ω
∇(divw)wtdy + ‖wt‖2

2 =
∫

Ω
w|w|p−2ln|w|kwtdy.

We obtain

d
dt

(
1
2
‖∇wt‖2

2 +
1
2
‖wt‖2

2 +
1
2
‖divw‖2

2 −
1
p

∫
Ω
|w|pln|w|k + k

p2 ‖w‖
p
p

)
= −b1

∫
Γ0

wt(y, t)
∫ +∞

−∞
(ξ2 + η)|Φ(ξ, t)|2dξdρ− ‖wt‖2

2.
(15)

Multiply b1Φ with the second equation in (12), and integrating over Γ0 × (−∞,+∞),
we have

b1

∫
Γ0

wt(y, t)
∫ +∞

−∞
Ψ(ξ)Φ(ξ, t)dξdρ =

b1

2
d
dt

∫
Γ0

∫ +∞

−∞
|Φ(ξ, t)|2dξdρ

+ b1

∫
Γ0

∫ +∞

−∞
(ξ2 + η)|Φ(ξ, t)|2dξdρ.

(16)
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Using (13), (15), and (16) leads to

d
dt

E(t) = −
(

b1

∫
Γ0

∫ +∞

−∞
(ξ2 + η)|Φ(ξ, t)|2dξdρ + ‖wt‖2

2

)
.

Consequently, the energy functional given in (13) is a non-increasing function.

Lemma 6 ([2]). Assume (w, Φ) is a regular solution of (12). Then, we have the following:∫
Γ0

∫ +∞

−∞
(ξ2 + η)Φ(ξ, t)

∫ t

0
Φ(ξ, s)dsdξdρ =

∫
Γ0

w(y, t)
∫ +∞

−∞
Φ(ξ, t)Ψ(ξ)dξdρ

−
∫

Γ0

∫ +∞

−∞
|Φ(ξ, t)|2dξdρ.

Now, we rewrite the system (12) in the following related system:{
Zt(t) = AZ(t) + G(Z),
Z(0) = Z0, 0 < t,

(17)

where Z = (w, v, Φ)T , Z0 = (w0, v0, Φ0)
T . Furthermore, the operator A given by

A =

 0 1 0
µ∆ −1 0
0 Ψ(ξ) −(ξ2 + η)

,

G(Z) =

 0
(λ + µ)∇(divw) + w|w|p−2ln|w|k

0

,

The domain D(A) of A is given by

D(A) =


Z = (w, v, Φ)T ∈ H : w ∈ (H2(Ω) ∩ H1

Γ1
(Ω)), v ∈ H1(Ω), ∂Φ

∂t + (ξ2 + η)Φ− vψ(ξ) = 0
∣∣∣
Γ0

∂w
∂ν + b1

∫ +∞
−∞ Φ(ξ, t)ψ(ξ)dξ = 0

∣∣∣
Γ0

, |ξ|Φ ∈ L2(Ω× (−∞, +∞))

.

Demonstrating characteristics of a sectorial operator, it can be established that −A
holds such properties. Additionally, A gives rise to an analytic contraction semigroup,
denoted as T(t) : t ≥ 0. Furthermore, A exhibits a compact resolvent. The nonlinear
mapping G from the space E to itself is locally Lipschitz-continuous and possesses the
property of mapping bounded sets to bounded sets.

Lemma 7 ([13], Lemma 1). Let Z0 ∈ D(A) and t0 = t0(Z0) > 0 in a manner that the mild
solution Z(t) of (17) with Z(0) = Z0 uniquely exists for t ∈ [0, t0] and

Z ∈ C((0, t0); D(A)) ∩ C1((0, t0); D(A)).

For t ∈ [0, t0], this mild solution is a classical solution of (17), if Z0 ∈ D(A).

3. Global Existence of Solutions

Theorem 2. For every Z0 ∈ D(A) and ξ2 < η, one can find an exclusive global mild solution
Z(t) of (17) for t ≥ 0. This solution exhibits the regularity properties specified in Lemma 7. The
related solution semigroup S(t), with t ≥ 0, demonstrates dissipative characteristics, as evidenced
by the existence of an absorbing set in D(A).

Proof. First, notice that if we take the inner product of (1) by 2v in H, we obtain

d
dt

[
‖v‖2 + µ‖∇w‖2 + (λ + µ)∇‖divw‖2 − 2

p

∫
Ω
|w|pln|w|kdy +

2k
p2

∫
Ω
|w|pdy

]
= −2‖v‖2. (18)
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Thin, integration (18) over [0, t] for any t positive entails that

‖v‖2 + µ‖∇w‖2 + (λ + µ)∇‖divw‖2 − 2
p

∫
Ω
|w|pln|w|k + 2k

p2 ‖w‖
p − 2

∫ t

0
‖v‖2ds = ‖w1‖2

+ µ‖∇w0‖2 + (λ + µ)∇‖divw0‖2 − 2
p

∫
Ω
|w0|pln|w0|kdy +

2k
p2 ‖w0‖p.

(19)

Next, multiplying the second equation of (12) by b1Φ
ξ2+η

and integrating over Γ0 ×
(−∞, +∞), we have

b1

2
d
dt

∫
Γ0

∫ +∞

−∞

|Φ(ξ, t)|2
ξ2 + η

dξdρ + b1‖Φ‖2 − b1

∫
Γ0

∫ +∞

−∞

v(y, t)
(ξ2 + η)

ψ(ξ)Φ(ξ, t)dξdρ = 0. (20)

Now, taking a non-negative number ε and multiplying εu with the first equation of
(12), we obtain

εwttw− εµ∆w w− ε(λ + µ)∇(divw)w + εvw− ε|w|pln|w|k = 0. (21)

By integrating over Ω, we obtain

d
dt

[
ε
∫

Ω
vudx +

ε

2
‖u‖2

]
− ε‖v‖2 + εµ‖∇u‖2 + ε(λ + µ)‖(div u)‖2 − ε

∫
Ω
|u|pln|u|kdx = 0. (22)

From (18), (20), and (22), we have the following:

d
dt
F1(t) +F2(t) = 0, (23)

where

F1(t) =‖v‖2 + µ‖∇w‖2 + (λ + µ)‖divw‖2 − 2
p

∫
Ω
|w|pln|w|kdy

+
2k
p2

∫
Ω
|y|pdx +

b1

2

∫
Γ0

∫ +∞

−∞

|Φ(ξ, t)|2
ξ2 + η

dξdρ + ε
∫

Ω
vwdy +

ε

2
‖w‖2

(24)

and

F2(t) =2‖v‖2 + b1‖Φ‖2 − b1

∫
Γ0

∫ +∞

−∞

v(y, t)
(ξ2 + η)

ψ(ξ)Φ(ξ, t)dξdρ− ε‖v‖2 + εµ‖∇w‖2

+ ε(λ + µ)‖(div w)‖2 − ε
∫

Ω
|w|pln|w|kdy.

Nevertheless, we can estimate 2
εF2(t)−F1(t) by

2
ε
(2− ε)‖v‖2 +

2
ε

b1‖Φ‖2 − b1

2

∫
Γ0

∫ +∞

−∞

|Φ(ξ, t)|2
ξ2 + η

dξdρ + (λ + µ)‖(div w)‖2

+ µ‖∇w‖2 − ε

2
‖w‖2 − 2

ε
b1

∫
Γ0

∫ +∞

−∞

v(y, t)
(ξ2 + η)

ψ(ξ)Φ(ξ, t)dξdρ

− ε
∫

Ω
vwdy− 2k

p2 ‖w‖
p − p− 1

p

∫
Ω
|w|pln|w|kdy.

Then, through Lemma 2 and Young’s inequality, we have, for all non-negative con-
stant δ, ∫

Ω
vwdy ≤ 1

4δ
‖v‖2

2 + B2
1, Ωδ‖∇w‖2

2. (25)

According to the Lemma 2, we obtain

‖w‖2
2 ≤ B2

1, Ω‖∇w‖2
2. (26)
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‖w‖p
p ≤ Bp

p−1, Ω

(
2pE(0)
p− 2

) p−2
2
‖∇w‖2

2. (27)

Again, through Lemma 4 and Young’s inequality, we obtain

∫
Γ0

∫ +∞

−∞

v(y, t)
(ξ2 + η)

ψ(ξ)Φ(ξ, t)dξdρ ≤ 1
4δ

∫
Γ0

∫ +∞

−∞

|Φ(ξ, t)|2
(ξ2 + η)

dξdρ

+ δ
∫

Γ0

|v(y, t)|2
∫ +∞

−∞

|Ψ2(ξ)|2
(ξ2 + η)

dξdρ

≤ 1
4δ

∫
Γ0

∫ +∞

−∞

|Φ(ξ, t)|2
(ξ2 + η)

dξdρ + δ
∫

Γ0

|v(y, t)|2 A0dρ

≤ 1
4δ

∫
Γ0

∫ +∞

−∞

|Φ(ξ, t)|2
(ξ2 + η)

dξdρ + δ‖v(y, t)‖2 A0.

(28)

By using inequality of [8] and Lemma 2, we obtain∫
Ω
|w|pln|w|kdy ≤ k‖∇w‖2

2. (29)

From (25)–(29), we obtain

2
ε
F2(t)−F1(t) ≥

µ− ε

2
B2

1, Ω − εδB2
1, Ω −

2k
p2 Bp

p−1, Ω

(
2pE(0)
p− 2

) p−2
2
− p− 1

p
k

‖∇w‖2
2

+

(
−2 +

4
ε
− 2

b1

ε
δA0 −

ε

4δ

)
‖v‖2

2

+
2b1

ε
‖Φ‖2

2 −
(

b1

2εδ
+

b1

2

) ∫
Γ0

∫ +∞

−∞

|Φ(ξ, t)|2
(ξ2 + η)

dξdρ.

(30)

We choose ε > 0 such that
µ− ε

2 B2
1, Ω − εδB2

1, Ω −
2k
p2 Bp

p−1, Ω

(
2pE(0)

p−2

) p−2
2 − p−1

p k ≥ 0,

−2 + 4
ε −

2b1
ε δA0 − ε

4δ ≥ 0,
ε− 1 < 0,
2
p k− µ + εC2

s ≤ 0.

Consequently,

2
ε
F2(t)−F1(t) ≥ −

(
b1

2εδ
+

b1

2

) ∫
Γ0

∫ +∞

−∞

|Φ(ξ, t)|2
(ξ2 + η)

dξdρ; (31)

then,

F2(t) ≥
ε

2
F1(t)−

εb1

4

(
1
εδ

+ 1
) ∫

Γ0

∫ +∞

−∞

|Φ(ξ, t)|2
(ξ2 + η)

dξdρ. (32)

By substituting (31) into (23), we obtain a differential inequality:
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d
dt
F1(t) +

ε

2
F1(t) ≤

εb1

4

(
1
εδ

+ 1
) ∫

Γ0

∫ +∞

−∞

|Φ(ξ, t)|2
(ξ2 + η)

dξdρ

≤ γF1(t)− γ
(
‖v‖2 + µ‖∇w‖2 + (λ + µ)‖divw‖2 − 2

p

∫
Ω
|w|pln|w|kdy

+
2k
p2

∫
Ω
|w|pdy +

b1

2

∫
Γ0

∫ +∞

−∞

|Φ(ξ, t)|2
ξ2 + η

dξdρ + ε
∫

Ω
vwdy +

ε

2
‖w‖2

)
+

εb1

4

(
1
εδ

+ 1
) ∫

Γ0

∫ +∞

−∞

|Φ(ξ, t)|2
(ξ2 + η)

dξdρ

≤ γF1(t)− γ‖v‖2 − γµ‖∇w‖2 +
2γ

p

∫
Ω
|w|pln|w|kdy− γε

∫
Ω

vwdy

+

[
εb1

4

(
1
εδ

+ 1
)
− γb1

2

] ∫
Γ0

∫ +∞

−∞

|Φ(ξ, t)|2
(ξ2 + η)

dξdρ.

(33)

On the other hand, ∫
Ω

vwdy ≥ −‖w‖2 − ‖v‖2. (34)

Combining with (29), (34), and (33), we have

d
dt
F1(t) +

( ε

2
− γ

)
F1(t) ≤ γ

(
2k
p
− µ + εCs

)
‖∇w‖2 − γ(ε− 1)‖v‖2

+

[
εb1

4

(
1
εδ

+ 1
)
− γb1

2

] ∫
Γ0

∫ +∞

−∞

|Φ(ξ, t)|2
(ξ2 + η)

dξdρ.
(35)

We choose γ such that {
ε
2 − γ > 0,
εb1
4

(
1
εδ + 1

)
− γb1

2 < 0.

Hence,
d
dt
F1(t) +

( ε

2
− γ

)
F1(t) ≤ 0 ≤ ε

2
− γ, (36)

Next, a simple integration of (36) yields

F1(t) ≤ (F1(0)− 1) exp−(
ε
2−γ)t +1. (37)

Since ξ2 < η, we obtain 1
ξ2+η

> 1
2η and deduce that

∫
Γ0

∫ +∞

−∞

|Φ(ξ, t)|2
ξ2 + η

dξdρ ≥ 1
2η
‖Φ‖2

2. (38)

From (29), (34), (38), and (24),

F1(t) ≥ ‖v‖2
2 +

b1

2η
‖Φ‖2

2 + (µ− 2k
p
)‖∇w‖2

2 − ε‖w(t)‖2
2 − ε‖v‖2

2 +
ε

2
‖w(t)‖2

2

≥ c̃‖w(t), v(t), Φ(t)‖2,
(39)

in which c̃ = min
{

1
2 , b1

2η , (µ− 2k
p )Cs − ε

2

}
.

So, by combining (39) with (12), we obtain

c̃‖w(t), v(t), Φ(t)‖2 ≤ F1(t) ≤ (F1(0)− 1) exp−(
ε
2−γ)t +1. (40)
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From the aforementioned inequality, it is deduced that no mild solution Z(t) =
(u(t), v(t), Φ(t)) can experience blow-up. Hence, for t ≥ 0, all the solutions exist globally.
In addition to this, the following is obtained:

t→∞‖(w(t), v(t), Φ(t))‖2
E ≤

1
c̃

. (41)

Then, we have
Br = {z ∈ E : ‖z‖E ≤ r},

which is an absorbing set with constant r >
√

1
c̃ . It is important to observe that the solution

semigroup is characterized by the definition S(t)Z0 = Z(t;Z0), where t is a positive
constant.

4. Blow-Up

Here, our focus is on the blow-up in the case of negative energies. We suppose that

J(t) =
∫ t

0
‖w‖2

2ds + ‖w‖2
2 + b1L(t), (42)

where

L(t) =
∫ t

0

∫
Γ0

∫ +∞

−∞
(ξ2 + η)

(∫ s

0
Φ(ξ, z)

)2
dξdρds. (43)

Lemma 8 ([2], Lemma 5.1). Let us assume that ‖∇w‖2
2 is bounded on [0, T),; then,

L(t) ≤ C < +∞. (44)

More accurately,

L(t) ≤ 1
2

C1B2
1,Γ0

e−ηC2
[
C−α−1

2 α + C−α
2 η

]
Γ(α)T4, (45)

with
C1 =t∈[0, T)

{
1, ‖∇w‖2

2

}
,

where C2 is a positive constant.

Lemma 9. Assume that 2 < p, then,

J′′(t) ≥ p
(
‖v‖2

2 − 2E(0) +
∫ t

0
‖ws‖2

2ds + b1

∫ t

0

∫
Γ0

∫ +∞

−∞
(ξ2 + η)|Φ(ξ, s)|2dξdρds

)
. (46)

Proof. The derivative of J(t) is given by

J′(t) = 2
∫

Ω
w v dy + ‖w‖2

2 + b1L′(t), (47)

where

L′(t) = 2
∫ t

0

∫
Γ0

∫ +∞

−∞
(ξ2 + η)Φ(ξ, s)

∫ s

0
Φ(ξ, z)dzdξdρds.

Then, its second derivative is given by

J′′(t) = 2‖v‖2
2 + 2

∫
Ω
(wtt + v)w dy + b1L′′(t), (48)

where

L′′(t) = 2
∫

Γ0

∫ +∞

−∞
(ξ2 + η)Φ(ξ, t)

∫ s

0
Φ(ξ, s)dsdξdρ.
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From (12), we obtain

J′′(t) = 2
(
‖v‖2

2 − µ‖∇w‖2
2 − (λ + µ)‖divw‖2

2 +
∫

Ω
|w|pln|w|kdy

)
− 2b1

∫
Γ0

w(y, t)
∫ +∞

−∞
Ψ(ξ)Φ(ξ, t)dξdρ + b1L′′(t).

(49)

So, if we integrate (14) over (0, t), then

E(t) = E(0)−
∫ t

0
‖ws‖2

2d s− b1

∫ t

0

∫
Γ0

∫ +∞

−∞
(ξ2 + η)|Φ(ξ, s)|2dξdρd s. (50)

Then, from the definition of E(t), the following is obtained:

2
∫

Ω
|w|pln|w|kdy = 2p

(
−E(0) +

∫ t

0
‖ws‖2

2d s + b1

∫ t

0

∫
Γ0

∫ +∞

−∞
(ξ2 + η)|Φ(ξ, s)|2dξdρd s

)
+ p‖v‖2

2 + µp‖∇w‖2
2 + p(λ + µ)‖divw‖2

2 + 2
k
p
‖w‖p

p

+ b1 p
∫

Γ0

∫ +∞

−∞
|Φ(ξ, t)|2dξdρ.

(51)

By substituting (51) into (49), we obtain

J′′(t) = (p + 2)‖v‖2
2 + µ(p− 2)‖∇w‖2

2 + (p− 2)(λ + µ)‖divw‖2
2 +−2pE(0)

+ 2p
∫ t

0
‖ws‖2

2d s + 2
k
p
‖w‖p

p − 2b1

∫
Γ0

w(y, t)
∫ +∞

−∞
Ψ(ξ)Φ(ξ, t)dξdρ + b1L′′(t)

+ 2pb1

∫ t

0

∫
Γ0

∫ +∞

−∞
(ξ2 + η)|Φ(ξ, s)|2dξdρd s + b1 p

∫
Γ0

∫ +∞

−∞
|Φ(ξ, t)|2dξdρ.

(52)

Using Lemma 6, one can prove that

J′′(t) =(p + 2)‖v‖2
2 + µ(p− 2)‖∇w‖2

2 + (p− 2)(λ + µ)‖divw‖2
2 +−2pE(0)

+ 2p
∫ t

0
‖ws‖2

2d s + 2
k
p
‖w‖p

p + b1(p− 2)
∫

Γ0

∫ +∞

−∞
|Φ(ξ, t)|2dξdρ

+ 2pb1

∫ t

0

∫
Γ0

∫ +∞

−∞
(ξ2 + η)|Φ(ξ, s)|2dξdρd s.

(53)

Since p > 2, we can write

J′′(t) ≥(p + 2)‖v‖2
2 − 2pE(0) + 2p

∫ t

0
‖ws‖2

2d s

+ 2pb1

∫ t

0

∫
Γ0

∫ +∞

−∞
(ξ2 + η)|Φ(ξ, s)|2dξdρd s.

(54)

Since b1 and η are non-negative, one can estimate (54) by

J′′(t) ≥ p
(
‖v‖2

2 − 2E(0) +
∫ t

0
‖ws‖2

2ds + b1

∫ t

0

∫
Γ0

∫ +∞

−∞
(ξ2 + η)|Φ(ξ, s)|2dξdρds

)
.

Lemma 10. For 2 < p, if the initial energy is non-negative, then J′(t) > ‖w0‖2
2, with t >

max
{

0, J′(0)−‖w0‖2
2

2pE(0)

}
.
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Proof. According to the Lemma 9, we obtain

J′′(t) ≥ −2pE(0).

Integrating the above over (0, t), we have

J′(t) ≥ J′(0)− 2pE(0)t. (55)

After that, we have

J′(t)− ‖w0‖2
2 ≥ J′(0)− ‖w0‖2

2 − 2pE(0)t.

Consequently, J′(t) > ‖w0‖2
2, ∀t > max

{
0, J′(0)−‖w0‖2

2
2pE(0)

}
.

Theorem 3. Assume p > 2 and that E(0) < 0. Then, according to Definition 1, the solution
(w, Φ) blows up at T∗, with

T∗ ≤ t0 −
ϕ(t0)

ϕ′(t0)
, (56)

where T∗ is finite time and

ϕ(t) =
(

J(t) + (T − t)‖w0‖2
2

)−γ1
. (57)

Moreover, if ϕ(t0) < min
{

1,
√

σ
−m

}
, we have

T∗ ≤ t0 +
1√
−m

ln
√
−σ/m√

−σ/m− ϕ(t0)
, (58)

where m and σ are two constants to be determined later.

Proof. From ϕ(t), we have the following:

ϕ′(t) = −γ1

(
J′(t)− ‖w0‖2

2

)(
J(t) + (T − t)‖w0‖2

2

)−γ1−1

= −γ1

(
J′(t)− ‖w0‖2

2

)
(ϕ(t))1+(1/γ1).

(59)

Then, ϕ′(t) implies that

ϕ′′(t) = −γ1 ϕ1+2/γ1(t)
(

J′′(t)
(

J(t) + (T − t)‖w0‖2
2

)
− (1 + γ1)

(
J′(t)− ‖w0‖2

2

)2)
, (60)

and set
H(t) = J′′(t)

(
J(t) + (T − t)‖w0‖2

2

)
− (1 + γ1)

(
J′(t)− ‖w0‖2

2

)2
.

By applying the Lemma 9 and (47), we obtain

H(t) ≥ −p
(

b2 − ac + 2E(0)ϕ−1/γ1
)

, (61)

where

a =

(
‖w‖2

2 +
∫ t

0
‖w‖2

2ds + b1

∫ t

0

∫
Γ0

∫ +∞

−∞
(ξ2 + η)

(∫ s

0
|Φ(ξ, z)dz

)2
dξdρds

)
,

c =
(
‖v‖2

2 +
∫ t

0
‖ws‖2

2ds + b1

∫ t

0

∫
Γ0

∫ +∞

−∞
(ξ2 + η)|Φ(ξ, s)|2dξdρds

)
,
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and

b2 =

(∫
Ω

wvdy +
∫ t

0

∫
Ω

wswdyds + b1

∫ t

0

∫
Γ0

∫ +∞

−∞
(ξ2 + η)Φ(ξ, s)

∫ s

0
Φ(ξ, z)dzdξdρds

)2
.

∀y ∈ R,

ax2 + 2bx + c = ‖w‖2
2x2 + 2

(∫
Ω

wvdx
)

x + ‖v‖2
2

+
∫ t

0

(
‖w‖2

2x2 + 2
(∫

Ω
wswdy

)
x + ‖ws‖2

2

)
ds

+ b1

∫ t

0

∫
Γ0

∫ +∞

−∞
(ξ2 + η)

[(∫ s

0
Φ(ξ, z)dz

)2
x2

+ 2
(

Φ(ξ, s)
∫ s

0
Φ(ξ, z)dz

)
x + |Φ(ξ, s)|2

]
dξdρds ≥ 0.

(62)

It is clear that b2 − ac is negative. Consequently,

H(t) ≥ −2pE(0)ϕ−1/γ1 , t ≥ t0. (63)

From (60) and (63), we also obtain

ϕ′′(t) ≤ 2pγ1E(0)ϕ1+1/γ1 , (64)

since ϕ′(t) < 0. Furthermore, multiplying the equation in (64) by ϕ′(t) and integrating
over (t∗, t), the following is obtained:

(
ϕ′(t)

)2 ≥
(

ϕ′(t∗)
)2

+
4pγ2

1
2γ1 + 1

E(0)(ϕ(t))2+1/γ1 −
4pγ2

1
2γ1 + 1

E(0)(ϕ(t∗))2+1/γ1) (65)

(
ϕ′(t)

)2 ≥ m(ϕ(t))2+1/γ1 + σ, (66)

where m =
4pγ2

1
2γ1+1 E(0) < 0 and σ =

(
ϕ′(t∗)

)2 − 4pγ2
1

2γ1+1 E(0)(ϕ(t∗))2+1/γ1 σ > 0. By using
Lemma 3, one can find a T∗ in a way that

lim
t→T∗−

ϕ(t) = 0.

Thus, we have
lim

t→T∗−
(J(t))−1 = 0, (67)

that is to say
lim

t→T∗−
J(t) = +∞. (68)

Applying Lemma 8, the definition of J(t), and (68), one can find a T in a manner that

‖∇u‖2
2 → +∞ as t→ T−.

5. Conclusions

In this paper, we use a semigroup theory approach to offer a comprehensive solution
to an initial boundary value problem associated with a wave equation featuring logarithmic
nonlinear source terms and fractional boundary dissipation. Through our analysis, we
not only provide a global solution but also establish a noteworthy blow-up result for the
solution. The identification of a blow-up phenomenon under the condition of non-positive
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initial energy adds a significant dimension to our understanding of the system’s behavior,
shedding light on the intricate interplay of nonlinearities and fractional dissipation in wave
dynamics. This work contributes to the broader exploration of complex mathematical
models, offering insights that advance our comprehension of wave equations with unique
nonlinear and dissipative characteristics.
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