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Abstract: Rectangular cylinders have the potential to provide valuable insights into the behavior
of fluids in a variety of real-world applications. Keeping this in mind, the current study compares
the behavior of fluid flow around rectangular cylinders with an aspect ratio (AR) of 1:2 or 2:1 under
the effect of the Reynolds number (Re). The incompressible lattice Boltzmann method is used for
numerical computations. It is found that the flow characteristics are highly influenced by changes in
the aspect ratio compared to the Reynolds number. The flow exhibits three different regimes: Regime
I (steady flow), Regime II (initial steady flow that becomes unsteady afterward), and Regime III
(completely unsteady flow). In the case of the cylinder with an aspect ratio of 2:1, vortex generation,
variation in drag, and the lift coefficient occur much earlier at very low Reynolds numbers compared
to the cylinder with an aspect ratio of 1:2. For the cylinder with an aspect ratio of 1:2, the Reynolds
number ranges for Regimes I, II, and III are 1 ≤ Re ≤ 120, 121 ≤ Re ≤ 144, and 145 ≤ Re ≤ 200,
respectively. For the cylinder with an aspect ratio of 2:1, the Reynolds number ranges for Regimes I,
II, and III are 1 ≤ Re ≤ 24, 25 ≤ Re ≤ 39, and 40 ≤ Re ≤ 200, respectively. The cylinder with an aspect
ratio of 1:2 is found to have the ability to stabilize the incoming flow due to its extended after-body
flatness. Generally, it has been found that a cylinder with an AR of 2:1 is subjected to higher pressures,
higher drag forces, higher curvatures of cross-flow rotations, and higher amplitudes of flow-induced
drag, as well as higher lift coefficients and lower shedding frequencies, compared to cylinders with an
AR of 1:2. In Regime III, elliptic and vertically mounted airfoil-like flow structures are also observed
in the wake of the cylinders.

Keywords: rectangular cylinder; aspect ratio; incompressible flow; lattice Boltzmann method;
Reynolds number

MSC: 76D17

1. Introduction

The term “bluff body” refers to a solid object that often interacts with the fluids
passing around it. In recent decades, the analysis of bluff body flows has revealed several
important outcomes. These bodies generally have geometric shapes, such as circles, squares,
rectangles, and triangles. As a result of fluid separation and reattachment around bluff
bodies, interesting fluid dynamics phenomena emerge. The study of such fluid flows is
relevant to various fields, including aerospace engineering, civil engineering, and marine
engineering. Many parameters, including the Reynolds number, the angle of incidence (θ)
of the incoming fluid, the flow entrance, the exit boundary’s location, the blockage ratios
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(B), and the geometrical shapes (e.g., circular or square) of the bodies, have much influence
on bluff body flow characteristics.

Previous studies have highlighted how changing these parameters can lead to different
flow regimes, with a significant impact on fluid forces, vortex shedding, and flow struc-
tures [1–10]. Hamane et al. [1] investigated the vorticity structures in a circular cylinder’s
wake at different Reynolds numbers of 20, 40, 100, and 3000 using the lattice Boltzmann
method (LBM). They observed the steady-state flow at Re = 20 and 40, while at a Re of 100,
vortex shedding appeared. Due to the vortex shedding, the drag and lift became periodic,
with the frequency of drag being double that of the lift force (fl). They attributed the lift
variations to vortex shedding instead of pressure variations, which mainly affect the drag
force (fD).

Park et al. [2] studied the flow past a circular cylinder at Re up to 160 using high-
resolution steady calculations. They reported an inverse relationship between the Re and
drag coefficient (CD), while the pressure drag coefficient (CDP) decreased in steady flow but
increased in unsteady flow. A fluid flow analysis around a two-dimensional (2D) circular
cylinder at various Re values with different incidence angles (θs) of 0◦, 50◦, and 100◦ was
performed by Mehdi et al. [3]. They depicted the pressure (P), CD, and vortex shedding at
different Re values and θs and found a direct relationship between Re, θ, and P.

The impact of side boundary locations on 2D flow past a circular obstacle was investi-
gated by Behr et al. [4]. They reported the significant impact of near-boundary locations
on the Strouhal number (St) and vortex shedding. Yoon et al. [5] analyzed the flow over
a square-shaped cylinder for 5 ≤ Re ≤ 150 and θs ranging from 0◦ to 45◦. According to
the authors, the flow separation points and the critical Re were directly related to the θ.
Jiang et al. [6] conducted a similar study by analyzing the flow separation from a square
cylinder. Their results revealed that at certain moderate Re values, the flow was not seen to
separate from corners. The location of the separation point moved gradually to the front
edges as the Re value increased. Islam et al. [7] systematically inspected the influence of the
locations of domain boundaries on the flow past a square cylinder with a Re value of 100.
They found that with the placement of the cylinder nearer to the inlet boundary location,
the physical quantities such as the mean drag coefficient (CDmean), the root mean square
value of the lift coefficient (CLrms), and the St reached their maxima. According to the
authors, for a smooth vortex shedding phenomenon, the downstream boundary location
must be sufficiently large.

The flow past a square obstacle in a channel with a blockage ratio (B) of 1/8 for
0.5 ≤ Re ≤ 300 was analyzed by Breuer et al. [8]. They concluded that the increasing Re
values result in the separation of the laminar boundary layer from the cylinder surface due
to the weakening effects of viscous forces. Kelkar and Patankar [9] numerically simulated
the 2D vortex shedding characteristics around a square cylinder at different Re values. They
found that an increase in Re results in alterations in the size and strength of the recirculation
regions of the detached shear layers. Sohankar et al. [10] considered unsteady flow in the
case of a square cylinder at θs ranging from 0◦ to 45◦ and Re values ranging from 45 to 200.
They concluded that the flow structure and the stagnation pressure coefficient (CP) were
significantly affected by changing the θ and the Re.

The previous studies also indicated the significant influence of aspect ratios (ARs) on
bluff body flows. The AR defines the dimensions of bluff bodies, such as cylinders, cubes,
or spheres. In some cases, this parameter has severe effects on the flow structures and
fluid forces compared to the previously described fluid flow-affecting parameters. There
have been various investigations regarding the impact of changing aspect ratios on fluid
flows around bluff bodies. Islam et al. [11] investigated the impact of the AR on fluid
forces around a rectangular cylinder at Re values of 100, 150, 200, and 250. They found an
inverse relationship between CD and AR. Ahmed et al. [12] conducted a numerical study
on rectangular cylinders with ARs ranging from 0.03 to 1 and Re ranging from 75 to 150.
Discontinuity in the St was reported in that study at Re = 145 and 150 for 0.5 ≤ AR ≤ 0.6.
Sohankar et al. [13] investigated the unsteady flow around a rectangular cylinder at θs



Mathematics 2023, 11, 4571 3 of 22

ranging from 0◦ to 45◦ with ARs ranging from 1 to 4 and Re values of ≤ 200. It was
found that the point of separation of the flow changed when the Re changed. Further, the
authors observed fully attached separation bubbles for AR > 2. Ohya [14] presented the
base pressure (BP) measurements on a rectangular cylinder with an AR in the range of
0.4 to 0.6. He found that the variation magnitude in BP was low at an AR of 0.5, while a
high magnitude was observed at ARs of 0.4 and 0.6, due to a sudden change in the flow
pattern around the cylinder. Bearman and Trueman [15] experimentally examined the BP,
CD, and St around a rectangular cylinder. They reported the maximum CD at an AR of 0.6.
Sohankar [16] simulated the flow around a rectangular cylinder with different ARs at a Re
of 105. He observed that the St decreased with increasing AR.

In addition to single bluff body flow, multiple bluff body flows have also been analyzed
in some studies in the past. Islam et al. [17] explored the effect of gap ratios (G) on flow
around rectangles placed inline. They found that the upstream cylinder faced higher fD as
compared to the downstream one. The effect of G on flow past five rectangular cylinders
placed side-by-side was explored by Islam et al. [18] at Re = 150 and AR = 1.5. It was
observed that the cylinders’ wakes were significantly affected by the G, resulting in five
distinct flow patterns. The flow structure in this case was found to be different from that
of the square cylinder. Rahman et al. [19] performed numerical simulations regarding the
effects of the AR and Re on the flow around three rectangular cylinders with fixed G = 1.5.
They found that a smaller AR results in higher fD and lower vortex shedding frequencies,
while a larger AR leads to the opposite trends. Islam et al. [20] discussed the effect of AR
ranging from 0.25 to 3 and G ranging from 0.5 to 7 on the flow characteristics of three inline
rectangular cylinders with fixed Re = 150. The results showed that the AR strongly affected
the force coefficients (Cf) of the cylinders. In another study, Islam et al. [21] investigated
the impact of changing G on the flow around three rectangular rods with a fixed AR = 0.25
at Re = 150. According to their findings, G has a significant influence on the flow behavior.
Besides the rectangular bodies, there have also been several investigations into the flow
characteristics around multiple circular/square-shaped bodies in the flow field [22–26].

From the preceding discussions, it can be inferred that the fluid flow analysis around
rectangular cylinders is much less emphasized as compared to their circular/square coun-
terparts. Specifically, studies related to the flows around vertically mounted rectangular
cylinders are rarely found in the literature. Emphasizing this shortcoming, the present
study is devoted to the numerical investigations of flow regime variations around rectan-
gular cylinders with different aspect ratios. The present work’s novelty lies in the usage of
the lattice Boltzmann method to simulate fluid flow around cylinders with varying AR and
Re. In particular, two cases of aspect ratio are considered in the current analysis: the first
case is concerned with the aspect ratio 1:2, i.e., the width of the cylinder is double its height;
the second case is when the width of the cylinder is half its height, i.e., AR = 2:1. How the
change in AR and Re affects the patterns of flow will be taken into account, as well as how
the geometry of the cylinders influences different flow states. The AR effects on vortex
structures, the St, and the fluid force coefficients will be provided both qualitatively and
quantitatively in this work.

2. Numerical Methodology

The results of this work are numerically computed utilizing the lattice Boltzmann
method (LBM). This is a relatively new and common discrete numerical approach for
simulating fluid flow problems. It bridges the gap between micro- and macro-scales of
simulations. It has been found to be very efficient as compared to traditional CFD solvers.
The working rules of the LBM originate from the lattice gas cellular automata (LGCA).
This approach was introduced by McNamara and Zanetti [27] with a focus on addressing
the statistical noise problem that appeared in the LGCA. There are several reasons for its
popularity: for example, as it possesses the characteristics of both macro- and micro-level
scales, it is easily implementable, it can handle complex geometries, and it has parallel
computing abilities due to the locality of streaming and collision processes. To check its
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efficacy, Guo et al. [28] compared LBM results with the gas-kinetic scheme (GKS) for the
flow around a square cylinder. They reported the LBM to be 10 times faster than the GKS
for steady flows and about 3 times faster for unsteady flows. The LBM has its roots in the
famous Boltzmann equation (BE) [29], which is given as follows:

∂ f
∂t

+ e.∇ f = Ω (1)

where e is the velocity vector and f and Ω are the probability distribution function and col-
lision term, respectively. With the Bhatnagar, Gross, and Krook (BGK) approximation [30]
for the collision process, Equation (1) becomes the following:

∂ f
∂t

+ e.∇ f = − 1
τ
( f − f eq) (2)

where feq is the equilibrium distribution of particles and τ is the relaxation time factor.
It serves as the stability controlling parameter associated with the kinematic viscosity as
v = c2

s(τ − 1
2 ) and cs is the lattice sound speed with values cs = 1√

3
and τ > 0.5 for the

D2Q9 model [30,31]. In computational fluid dynamics simulations, the discrete BE given
below replaces the so-called Navier–Stokes equation (NSE).

fi(x + ei∆t, t + ∆t)− fi(x, t) = − 1
τ

(
fi(x, t)− f eq

i (x, t)
)

(3)

where x, t, and ∆t are the particle position, simulation time, and time step, respectively. In
Equation (3), the left and right sides indicate the streaming and collision terms, respectively.
In the current work, we have performed computations based on the D2Q9 (D for dimension
and Q for number of particles) model for simulations (Figure 1).
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The equilibrium distribution function in Equation (3) has the general form of

f eq
i = φ wi

[
A + B(ei .u) + C(ei .u)2 + D(u)2

]
(4)

More specifically, in the D2Q9 model, it takes the following form:

f eq
i = ρ wi

[
1 + 3(ei .u) +

9
2
(ei .u)2 − 3

2
(u)2

]
(5)
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where ρ is density, u is fluid velocity, and wi represents weighting coefficients. The wi for
the D2Q9 model is given below:

wi =


4
9 i = 0
1
9 i = 1, 2, 3, 4
1

36 i = 5, 6, 7, 8
(6)

The discrete velocity directions ei involved in the above equations for the D2Q9 model
are given as follows:

ei =


(0, 0), i = 0
(cos[(i− 1)π/2], sin[(i− 1)π/2]), i = 1, 2, 3, 4√
2(cos[(2i− 9)π/4], sin([(2i− 9)π/4])), i = 5, 6, 7, 8

(7)

In LBM simulations, the relations for macroscopic velocity and density are as follows:

ρ =
8

∑
i=0

fi (8)

ρu =
8

∑
i=0

ei fi (9)

3. Problem Description, Grid Independence, and Code Validation

The schematic of the problem under consideration is given in Figure 2. This figure
illustrates a fixed rectangular cylinder placed inside a channel with length X and width Y.
Here, we will consider two aspect ratios for the cylinder: AR = h/d = 1:2 and 2:1, where
d is the width and h is the height of the cylinder. Specifically, AR = 1:2 indicates that
the width of the cylinder is double its height, while AR = 2:1 indicates that the width of
the cylinder is half its height. In AR = 2:1, the cylinder is mounted vertically, while for
AR = 2:1, the cylinder is placed horizontally. Note that in the case of AR = 1:2, the cylinder
is divided into 10 lattices height-wise, while in the case of AR = 2:1, the cylinder contains
40 lattices height-wise. In both cases, the width, d, is divided into 20 lattices. A domain
size with Xu = 10d upstream, Xd = 20d downstream, and a distance of Yu = Yd = 8d is
selected for lateral boundaries from the cylinder. This domain size is sufficient in terms of
the accuracy of the solution and computational cost independent of domain effects for flow
past a cylinder [11,12].
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3.1. Boundary Conditions

Inlet boundary: Uniform inflow with velocity Uint is considered at the inlet boundary;
that is:

u = Uint, v = 0 (10)

Outlet boundary: The convective boundary condition is considered at the outflow
boundary so that the flow leaves the boundary, thus conserving the momentum. Mathe-
matically, it is expressed as follows:

∂ u
∂ t

+ Uint
∂ u
∂ x

= 0 (11)

Solid walls: Top and bottom boundaries and the cylinder surface are handled with
no-slip boundary conditions. This condition is adopted through the so-called bounce-back
rule in which all particles striking the solid wall reflect in the opposite direction. The
mathematical form of this boundary condition is as follows:

u = 0, v = 0 (12)

3.2. Grid Independence

The grid independence study is an important aspect of the computational fluid dynam-
ics. Through this study, a suitable grid size is selected to ensure a balance between accuracy
and computational time. For this purpose, we tested three different grid sizes (10 points,
20 points, and 40 points) along a square cylinder surface at Re = 100. The computed results
indicate that the physical parameters are significantly affected by the 10-point grid, with a
large percentage difference from the 40-point grid results (see Table 1). The 20-point grid is
able to produce more accurate results than the 10-point grid, while the 40-point grid takes
a longer time to converge and does not show as much improvement over the 20-point grid.
Therefore, we have taken the 20-point grid size for our future analyses.

Table 1. Effect of grid size at Re = 100.

Re = 100 10-Points 20-Points 40-Points

Cdmean 1.4630 (1.34%) 1.4434 (0.2%) 1.4414

St 0.1498 (0.5%) 0.1491 (0%) 0.1491

Clrms 0.1798 (3.1%) 0.1742 (1.2%) 0.1762

3.3. Code Validation

It is important to mention here that the current numerical study utilizes an in-house
developed code based on the FORTRAN language. For the validation of this code, we
conducted simulations for flow around a single square cylinder at Re = 100. When compared
to other studies, a strong agreement can be witnessed between our results and other
researchers’ results (Table 2). This indicates that our code is efficient in calculating important
fluid flow parameters. The minor discrepancies in results are due to different reasons. For
example, it is obvious that the accuracy of underlying numerical schemes affects the results.
Some further parameters affecting the results include the selected grid size, the domain
size, and the position of the obstacle with respect to incoming flow, etc. Due to this, it
is almost impossible to obtain results that match other studies without any differences.
Thus, minor discrepancies always occur in the results, and this is why our data for code
validation display minor differences to those of other researchers. However, there is a good
agreement within the overall range of values. This level of agreement indicates that our
code is suitable for the accurate computation of fluid flow parameters.
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Table 2. Code validation study at Re = 100.

CDmean St

Saha et al. [32] 1.510 0.159

Sohankar et al. [10] 1.444 0.145

Okajima [33] 1.600 0.141

Norberg [34] . . . 0.140

Abograis and Alshayji [35] 1.480 0.140

Present 1.443 0.151

4. Results and Discussion

The numerical computation results for the fluid flow past the rectangular cylinder with
AR = 1:2 and 2:1 are presented and discussed in this section. In both cases, the Re varied in
the range of 1 to 200. Our emphasis is on the observation of the flow mode transition under
the effects of Re and AR. In this study, three main flow regimes emerge around the cylinder
in both AR cases. These flow regimes are categorized based on the different flow states as
the Reynolds number is systematically varied. In particular, the flow regimes are classified
qualitatively in terms of vorticity contours, streamline behavior, variations in the drag and
lift coefficients, phase plots, and power spectrum of lift coefficients. Regime I corresponds
to the steady flow mode in which the flow remains steady for the entire computational
time with no vorticity and constant flow-induced forces. Regime II corresponds to the
transient flow mode in which the flow is initially steady but later exhibits unsteadiness. In
this flow regime, the fluid forces remain constant for a longer amount of computational
time and then vary after that. Regime III corresponds to the unsteady flow mode in which
the vortices appear in the wake with fluctuating fluid forces at comparatively earlier stages
of computational time. Note that in general, the Reynolds number is varied at the intervals
with step size 5 in the current work. However, where transitions occur, simulations are also
performed for the Reynolds number between the intervals in order to exactly locate the
value of the critical Reynolds number where the flow regime changes. Further, to avoid
repetition, only the representative cases of each of the flow regimes are presented and
analyzed.

4.1. Regime I

The discussion of the characteristics of the flow Regime I for both cases of aspect ratio
is presented in this section. That is, when the width of the cylinder is double its height, i.e.,
AR = 1:2, and when the width of the cylinder is half its height, i.e., AR = 2:1. As discussed
earlier, Regime I corresponds to the steady flow state. Its representative vorticity contours,
pressure streamline contours, and drag and lift variations with time for both AR cases are
shown in Figure 3 at Re = 1. This flow regime appeared at very low Re values for both
AR cases. Since the Re is very low, the shear layers remain attached to the cylinder in
the form of bubbles due to dominating viscous effects (Figure 3a,b). The cylinder with a
higher AR has larger recirculating attached bubbles compared to the cylinder with a low
AR. The dashed and solid lines in the vorticity contours correspond to the anticlockwise
and clockwise rotations in the flow. The steady flow indicates the absence of vorticity or
cross-flow variation due to the dominance of viscosity effects. Due to the steadiness in
flow, the streamlines depicted in Figure 3c,d exhibit a constant flow behavior in the wake.
The flow seems to detach from the front corners of the cylinder in both aspect ratio cases
(Figure 3c,d). These figures also indicate that there are no significant pressure differences
because of no variations in the flow state. Higher pressure appears at the front side of
each cylinder, which is reduced in the wake region. Moreover, due to the lack of vorticity
and the absence of significant pressure variations, the CD and CL remain unchanged, as
illustrated in Figure 3e–h. Note that the CD and CL are plotted against the non-dimensional
time T = (Uint t/d). The cylinder with an AR = 2:1 has a higher drag force as compared
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to that with an AR = 1:2 (Figure 3e,f). This difference in drag force is due to the different
cross-sectional areas of both bodies. On the other hand, the lift coefficient value remains
the same for both bodies due to a steady flow. It is worth mentioning here that due to
the steady flow, the power spectrum as well as the phase diagram analysis is not possible.
Note that the Regime I for AR = 1:2 spans over the range 1≤ Re ≤ 120, while in the case of
AR = 2:1, it spans the range of 1 ≤ Re ≤ 24. Similar flow characteristics around a square
cylinder were also reported by Hamane et al. [1] and Kelkar and Patankar [9].
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4.2. Regime II

As mentioned above, the range of Reynolds numbers is different in the case of the
flow Regime I in both aspect ratio cases. This means that the change in AR has a significant
impact on the change in flow regimes. This is similar in the case of flow Regime II. When
the Reynolds number reaches the value of 121 for AR = 1:2 and Re = 25 for AR = 2:1, Regime
I no longer exists and the flow mode changes to Regime II. This flow regime corresponds
to the transient state of the fluid flowing around the cylinder. The shear layers in this case
tend to reach the exit position of the channel instead of remaining attached to the cylinder,
as was observed in Regime I. This is due to an increase in Reynolds number values, which
results in weakening the viscous forces effect. The vorticity contour, pressure streamlines,
drag coefficient, lift coefficient, power spectrum, and phase diagrams for Regime II are
presented in Figure 4. It can be seen that although the vortices do not develop behind the
cylinder with AR = 1:2 at Re = 121, minor cross-flow variations instead appear near the exit
point of the domain (Figure 4a). However, with AR = 1:2, the vortices appear at Re = 25
(Figure 4b). Comparing both these cases, it can be observed that for the vertically mounted
cylinder (AR = 1:2), the unsteadiness in the flow appears much earlier as compared to the
horizontally placed cylinder (Figure 4a,b). This transient behavior of flow is more apparent
in the streamline graphs shown in Figure 4c,d. In the case of AR = 1:2, the streamlines
show transient behavior with two symmetrical eddies in the wake near the back side of
the cylinder, while for AR = 2:1, the streamline graphs show transient behavior with two
eddies of different sizes. The smaller eddy is generated at the lower corner of the trailing
surface, while the large eddy is generated in the middle region near the trailing surface of
the cylinder. Further, the pressure distributions also differ in both AR cases. In the case of
AR = 1:2, the maximum pressure is near the front lower corner of the cylinder, while for
AR = 2:1, the maximum pressure can be observed at the front surface of the cylinder. This
is attributed to the fact that the former is subjected to a small amount of fluid due to the
relatively smaller height, while the latter is subjected to a much higher amount of incoming
fluid due to the increased height of the cylinder. Additionally, it is shown in Figure 4e that
there is no change in CD over time for AR = 1:2 compared to the AR = 2:1 case, where CD
shows an increasing trend after some time (Figure 4f). The impact of the transient flow
state is more visible in the case of CL (Figure 4g,h). It can be observed that the CL displays
transient behavior with initial steadiness and later variations due to instability in the flow
in both AR cases. The oscillation amplitude of CL for the AR = 1:2 case is higher than in
the AR = 2:1 case. Subsequently, the St is generated due to oscillations of the CL and is
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calculated using fast Fourier transform (FFT) (Figure 4i,j). It can be observed that the peak
value of the spectrum energy graph indicates that the St is 0.1983 and 0.0674 in AR = 1:2
and 2:1, respectively. The higher value of St corresponds to the higher amplitude of CL
curves while the lower one indicates smaller amplitude curves. The phase diagram with
variations in CL against CD, corresponding to both AR cases, is shown in Figure 4k,l. The
phase diagram clearly describes the Regime II case, as seen from the vorticity contours.
It represents the vorticity appearance in AR = 2:1, while in AR = 1:2, it indicates minor
oscillations and their resulting impacts on drag and lift patterns.
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Figure 4. (a,b) Vorticity contour; (c,d) pressure streamlines; (e,f) drag coefficient; (g,h) lift coefficient;
(i,j) power spectrum; (k,l) phase diagram corresponding to Regime II.
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4.3. Regime III

When the Re of flow reaches a value of 145 for the cylinder with an AR = 1:2 and
Re = 40 for the AR = 2:1 case, the transient state of flow changes to a completely unsteady
state. This flow state is named Regime III in the current study. In this regime, the fully
developed flow layers detaching from cylinders result in the complete generation of vortices
moving alternately in the wake of cylinders. The corresponding vorticity contour, pressure
streamlines, CD, CL, power spectrum of CL, and phase diagram for Regime III are revealed
in Figure 5. From Figure 5a,b, it is evident that the fully developed vortices exhibit alternate
movement, commonly termed the von Karmann vortex street. The curvature of cross-flow
rotations is higher in the case of AR = 2:1 as compared to AR = 1:2. Note that in the
initial stages of Regime III, comparatively weaker vortices appear in the wake. With the
increment in Re values, the relative strength of the vortices increases, which results in
an increase in the amplitudes of flow-induced forces. Figure 5c,d demonstrate that the
streamlines corresponding to the flow show curvy behavior due to vorticity generation
in the wake. For the case with AR = 1:2, the symmetric bubbles that appeared in the
wake of the cylinder for the Regime II case no longer exist due to unsteadiness in the flow.
Instead, recirculating elliptic or vertically mounted airfoil shapes such as eddies appear in
the near wake region of the cylinder. The structures of these eddies are different in both
AR cases. The streamlines’ contours also indicate that AR = 2:1 causes more disturbance
in the surrounding fluid flow in comparison to the 1:2 case. Due to this disturbance, for
the AR = 2:1 case, the amplitudes of flow-induced drag as well as lift coefficients become
sufficiently higher as compared to the 1:2 aspect ratio case (Figure 5e–h). Both these force
coefficients start periodic behavior at earlier stages as compared to Regime II. The higher
amplitude of CL curves results in a smaller vortex shedding frequency (St = 0.0825), while
the low-amplitude cycles result in higher shedding frequencies (St = 0.2196), as indicated
by the power spectrum of CL for AR = 1:2 and 2:1, respectively (Figure 5i,j). Further, these
figures also indicate that the vertically mounted cylinder (AR = 2:1) has higher spectrum
energy, while the horizontally placed cylinder (AR = 1:2) has low spectrum energy. The
phase diagrams shown in Figure 5k,l illustrate the periodic flow that results in the cyclic
variations of both CD and CL in both AR cases.
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Table 3 describes the complete picture of the Reynolds number range for all three flow
regimes (steady, transient, and unsteady) observed in this study corresponding to both
AR cases. It is evident from this table that for AR = 1:2, the flow exhibits steady behavior
(Regime I) from Re = 1 to 120. This implies that the flow remains relatively stable and
predictable within this range of Re for AR = 1:2. On the other hand, when AR = 2:1, the
steady flow regime spans the Re range from 1 to 24, which is a comparatively low range
of Re when compared to the AR = 1:2 case. This is similar to the cases of flow Regimes II
and III as well and suggests that an AR = 1:2 is more suitable for stabilizing the incoming
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fluid than an AR = 2:1. In the case of AR = 2:1, the unsteadiness in flow starts much earlier
due to its vertical placement. It resists large amounts of incoming fluid, and due to its
shorter width, it is unable to stabilize the shear layers. Guo et al. [36] also categorized the
flow around a square cylinder into three phases. According to them, in phase I, no vortex
shedding appeared and lift remained zero; in phase II, vortex shedding and lift oscillations
started and enhanced with Re; and in phase III, stable vortex shedding occurred. According
to other studies, the flow around a square cylinder remains steady in the range from Re
= 1 to 47, is transient in the range of Re = 48 to 53, and becomes completely unsteady
beyond this value of Re [10,37]. According to Kelkar and Patankar [9], the onset of vortex
shedding around a square cylinder starts at Re = 53. This shows that the change in AR
has a significant effect on the flow mode transitions around sharp-edged bodies. These
findings are also consistent with those of Rastan et al. [38]. According to these authors, the
critical Re for the onset of vortex shedding is lower in cases of vertical flat plates than in
square cylinders.

Table 3. Reynolds number range for different flow regimes regarding both aspect ratios.

Regimes AR = 1:2 AR = 2:1

Regime I 1 ≤ Re ≤ 120 1 ≤ Re ≤ 24

Regimes II 121 ≤ Re ≤ 144 25 ≤ Re ≤ 39

Regimes III 145 ≤ Re ≤ 200 40 ≤ Re ≤ 200

5. Force Statistics: Comparison between AR = 1:2 and 2:1

The comparative analysis of fluid force parameters, including CDmean, St, amplitude
of drag coefficient (CDamp), and amplitude of lift coefficient (CLamp), in both aspect ratio
cases revealed that the change in AR significantly affects the fluid forces. The variation in
these force parameters against different values of Re, ranging from 1 to 200, is demonstrated
in Figure 6. It should be noted that in both cases, the CDmean is higher initially due to
the dominance of viscosity effects (Figure 6a). It decreases sharply in the range of low
Re = 1–19, but later, for AR = 2:1, it exhibits a slight increasing behavior until reaching 200.
Note that after this value of Re, the flow regime changes from Regime I to Regime II in the
AR = 2:1 case, while for AR = 1:2, CDmean is almost constant until Re = 200. This difference
in the variation of the magnitude of CDmean can be attributed to the difference in aspect
ratios of cylinders. The cylinder with a higher aspect ratio bears more unsteadiness in the
flow, and thus more fluctuations in the fluid forces occur. Further, the graph also shows
a higher average drag coefficient for AR = 2:1 as compared to AR = 1:2 for all values of
Re. This is because the unsteadiness in the flow starts much earlier and is more significant
in the case of AR = 2:1, as discussed previously. Rastan et al. [38] reported in their study
that the average drag force decreases with Re for AR > 0.5, and an opposite trend occurs
for AR < 0.5 in the range of Re = 40 to 100. In the present case, at AR = 1:2, the CDmean
remains almost constant, while for AR = 2:1, it increases with Re in the range from 40 to
100. Figure 6b depicts the effect of Re as well as AR on St. Note that for Regime I (steady
flow), the computation of St is not possible due to cross-flow variations. With the increase
in Re, the St for AR = 1:2 rapidly changes compared to that of AR = 2:1. In addition, greater
values of St can be witnessed for AR = 1:2 compared to AR = 2:1. This indicates that
the vortices shedding from the higher aspect ratio cylinder have a low frequency, while
those from the lower AR cylinder have a higher shedding frequency. Figure 7a–d show
the behavior of CDamp and CLamp against Re for both aspect ratios of the cylinder. It is
apparent from these figures that for Regime I, the CDamp and the CLamp are zero due to
the constant drag coefficient. The amplitudes of both of these force coefficients are higher
for AR = 2:1 as compared to the 1:2 aspect ratio case. In addition, for both Regimes II and
III, the amplitudes of drag as well as the lift coefficient increase with the increase in Re,
indicating the higher fluctuations of these forces due to dominating inertial forces.
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6. Conclusions

In this work, we compared the behavior of fluid flow characteristics around rectangular
cylinders with aspect ratios (ARs) = 1:2 and 2:1 under the effect of Reynolds numbers.
Reynolds numbers were varied within the range of 1 to 200, and the computations were
performed using the lattice Boltzmann method. Our main emphasis was to detect the onset
of vortex shedding depending on the Reynolds number for both aspect ratios. This study
indicates that the onset of vortex shedding was much more dependent on AR instead of
Re. Flow characteristics drastically changed by changing the aspect ratios of cylinders.
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For the aspect ratio 2:1, the onset of vortex shedding and fluid force variations occurred
much earlier at very low Reynolds numbers, while for the case of the 1:2 aspect ratio, the
vortex generation began at comparatively high Reynolds numbers. The cylinder with the
aspect ratio of 1:2 was found to have the ability to stabilize the incoming flow due to its
extended after-body flatness. This study revealed three different flow regimes classified
as Regimes I, II, and III for both aspect ratio cases. In Regime I, the flow was found to be
steady; in Regime II, the initially steady flow became unsteady later on; and in Regime III,
a completely unsteady flow was observed. In the case of Regime II, the cylinder with an
AR = 2:1 faced higher pressures and higher drag force but lower lift amplitudes and lower
shedding frequencies than the AR = 1:2 case. For Regime III, the curvature of cross-flow
rotations was found to be higher in the case of AR = 2:1, as compared to the AR = 1:2 case.
Moreover, the flow-induced drag and lift coefficient amplitudes were much higher for
the AR = 2:1 cylinder than the 1:2 cylinder. In Regime III, elliptic and vertically mounted
airfoil-like flow structures were also observed in the wake of the cylinders. The phase
diagrams for Regimes II and III indicated the periodic flow, which resulted in the cyclic
variations of both CD and CL in both AR cases. Based on this study, it can be inferred that if
the height of the cylinder is increased by fixing the width, this will cause early unsteadiness
in the flow, but if the width is increased by fixing the height, the onset of vortex shedding
will be delayed due to the longer flat surface of the cylinder.

In the future, this research could be extended to 3D analysis, as well as considering
more aspect ratio cases for rectangular cylinders and considering multiple rectangular bluff
bodies in the flow field.
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Nomenclature

AR Aspect ratio
LBM Lattice Boltzmann method
Re Reynolds number
St Strouhal number
CD Drag coefficient
CL Lift coefficient
CDrms Root mean square values of drag coefficient
CLrms Root mean square values of lift coefficient
CDP Pressure drag coefficient
DP Pressure drag
θ Angle of incidence
τ Relaxation time parameter
B Blockage ratio
G Gap spacing
CDamp Amplitude of drag coefficient
CLamp Amplitude of lift coefficient
LGCA Lattice gas cellular automata
BGK Bhatnagar, Gross, and Krook
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BE Boltzmann equation
GKS Gas kinetic scheme
CDmean Mean drag coefficient
fD Drag force
2D Two dimensional
fl Lift force
NSE Navier–Stokes equation
P Pressure
CP Coefficient of pressure
CPmean Mean pressure coefficient
BP Base pressure
Cf Force coefficients
FFT Fast Fourier transform
T Non-dimensional time
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