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Abstract: Accurate parameter estimation is crucial and challenging for the design and modeling
of PV cells/modules. However, the high degree of non-linearity of the typical I–V characteristic
further complicates this task. Consequently, significant research interest has been generated in recent
years. Currently, this trend has been marked by a noteworthy acceleration, mainly due to the rise of
swarm intelligence and the rapid progress of computer technology. This paper proposes a developed
Mountain Gazelle Optimizer (MGO) to generate the best values of the unknown parameters of
PV generation units. The MGO mimics the social life and hierarchy of mountain gazelles in the
wild. The MGO was compared with well-recognized recent algorithms, which were the Grey Wolf
Optimizer (GWO), the Squirrel Search Algorithm (SSA), the Differential Evolution (DE) algorithm,
the Bat–Artificial Bee Colony Optimizer (BABCO), the Bat Algorithm (BA), Multiswarm Spiral
Leader Particle Swarm Optimization (M-SLPSO), the Guaranteed Convergence Particle Swarm
Optimization algorithm (GCPSO), Triple-Phase Teaching–Learning-Based Optimization (TPTLBO),
the Criss-Cross-based Nelder–Mead simplex Gradient-Based Optimizer (CCNMGBO), the quasi-
Opposition-Based Learning Whale Optimization Algorithm (OBLWOA), and the Fractional Chaotic
Ensemble Particle Swarm Optimizer (FC-EPSO). The experimental findings and statistical studies
proved that the MGO outperformed the competing techniques in identifying the parameters of
the Single-Diode Model (SDM) and the Double-Diode Model (DDM) PV models of Photowatt-
PWP201 (polycrystalline) and STM6-40/36 (monocrystalline). The RMSEs of the MGO on the SDM
and the DDM of Photowatt-PWP201 and STM6-40/36 were 2.042717 × 10−3, 1.387641 × 10−3,
1.719946 × 10−3, and 1.686104 × 10−3, respectively. Overall, the identified results highlighted that
the MGO-based approach featured a fast processing time and steady convergence while retaining a
high level of accuracy in the achieved solution.

Keywords: metaheuristic algorithm; parameter identification; photovoltaic cells; single-diode;
double-diode; mathematical models; mountain gazelle optimization
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1. Introduction
1.1. Motivation

The last few decades have been marked by a continuous increase in global energy
needs due to demographic, industrial, and agricultural development. On the other hand,
fossil fuels, causing greenhouse gas emissions and an increase in air pollution, such as coal,
oil, and natural gas are experiencing dangerous exhaustion [1]. Faced with this and under
the Kyoto Protocol, energy production is a critical challenge for the coming years, whether
it is for developed countries to meet their needs or for developing countries to carry out
their development.

In this context, several efforts have been made to discover other reliable, profitable,
and renewable sources of energy [2–4]. However, due to the intrinsic volatile nature of
Hybrid Renewable Energy Systems (HRESs), the evaluation of the reliability aspect of such
systems to withstand unpredicted events in loaded power systems was investigated in [5].
To overcome the lack of a comparative assessment of multi-objective optimization sizing
for HRESs equipped with hybrid energy storage, a comparative multi-objective framework
was proposed in [6].

Among these sources are the following: solar energy coming directly from the Sun is
not polluting, has no greenhouse gas emissions, is not dangerous for future generations, and
is, therefore, inimitable as long as it radiates [7]. The solar Photovoltaic (PV) industry is the
most-promising and powerful source of renewable energy. Photovoltaic energy comes from
the direct transformation of part of the solar radiation into electrical energy. This energy
conversion takes place through a PV cell exposed to light based on a physical phenomenon
called the photovoltaic effect, which was discovered by the French physicist Antoine César
Becquerel in 1839 [8]. Since then, several scientific pieces of research (important attempts)
have led to the beginning of the actual use of PV cells to reach maturity in the last few years.

Currently, the expansion of the solar energy market is mainly due to the rising com-
petitiveness associated with growing electricity demand, as well as the growing awareness
of the potential of solar PV worldwide [9]. China is at the top of the world in terms of solar
energy production. In 2022 alone, China installed 87.41 GW of new solar power (60.3%
more than in 2021) to reach a cumulative capacity of 392.61 GW [10].

By the crucial importance of the use of solar energy, several aspects related to PV
systems have attracted the attention of researchers and industrialists, namely the design
of PV cells [11–13], maximum power point tracking [14], fault diagnosis [15,16], modeling
and control [17], and the extraction of the parameters of the PV cells/panels [18]. In this
paper, we are interested in extracting the main characteristic parameters of the Single-Diode
Model (SDM) and the Double-Diode Model (DDM) of a solar cell. This choice of one- and
two-exponential models is justified by their great importance and reputation for studying
the behavior of solar cells.

1.2. Literature Review

Commonly, two famous extraction techniques are deployed: (1) the analytical [19–23]
and (2) numerical ones [18,24,25]. The analytical approach is less complicated, but its
accuracy is inextricably linked to the specification of some key points of the I–V curve.
The accuracy of such an analytical extraction technique depends strongly on the pro-
posed optimizer [18]. As a matter of fact, if the computed parameters are incorrectly
specified, the errors can have very significant adverse effects on the PV system perfor-
mance assessment [25]. Alternatively, the numerical extraction approach rests upon certain
mathematical algorithms, which enables more accuracy since it allows fitting all the I–V
curves. Although it is more beneficial, in terms of precision, its fitting requires more-
sophisticated computation. Also, it is very important to point out that the initial values of
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the parameters to be estimated should be adequately selected to avoid the non-convergence
of the algorithm [26].

Currently, metaheuristic algorithms seen a substantial history to achieve the optimal
solution in fine-tuning machine learning algorithms and solving continuous optimization
problems [27,28]. They have gained great popularity in different application domains
such as smart grid applications [29–31], Green Building Energy-Optimization Systems
(GBEOSs) [32], Electric Vehicles (EVs) [33–35], the Internet of Things (IoT) [36–39], the
military domain [40–42], structural health monitoring applications [43,44], Resilient Cyber–
Physical Systems (RCPSs) [45,46], robotics [47,48], etc. With the growth of solar energy
systems and their various design and control aspects seen as complex problems, where
metaheuristics are the best candidates for addressing them, PV cell parameter identifi-
cation is becoming a wide research discipline, which involves artificial intelligence and
bio-inspired optimization algorithms. In this context, many new trends have been proposed
to offer the possibility of enhanced task performance, high reliability, and decreased com-
plexity and time computation over analytical, numerical, and hybrid algorithms [24,49].
In [50], the Genetic Algorithm (GA) method was the first proposed. The Particle Swarm Op-
timization (PSO) method was also presented in [51]. Nevertheless, the found results showed
relatively high error percentages and premature convergence problems, respectively. For
this, many enhanced versions of the PSO technique have been proposed like [52,53] and [54].
Alternatively, many other methods such as ABC-TRR [55], TLABC [56], and MABC [57]
are intended to avoid the above problems in extracting PV cell parameters. Since the
performance of all these algorithms is highly dependent on many factors like proper tuning,
this makes it extremely difficult to obtain better results.

1.3. Drawbacks and Gaps in the Literature

Different optimization problems suffer from the issue of premature convergence [58,59].
To address this problem, it is mandatory that key parameter settings be well-tuned to
avoid premature convergence by ensuring a balance of exploration and exploitation [60].
The best-known enhancements proposed in recently published works, especially those
focusing on swarm intelligence, have been centered on the following aspects: swarm
size [61], initial population [62,63], inertia weight [64], acceleration coefficients [65,66], and
many others [67–69]. Although such efforts have achieved great success in dealing with
low-dimensional problems [70,71], it is still a big challenge for recent approaches to address
the multi-dimensionality present in the case of large-scale optimization problems.

Keeping in mind the critical trade-off between exploitation and exploration and the
effect on the performance of evolutionary optimization algorithms, the achievement of
the desired performance of such an algorithm relies on different levels of exploration–
exploitation trade-offs at various stages of evolution. In the literature, this issue has been
marked as the main drawback of the recent metaheuristics since exploration and exploita-
tion are considered to be two complementary activities that contribute to the exploration of
the search space [72]. Exploration is the process by which the search algorithm explores as
much of the search space as possible, in order to escape as much as it can from converging
on local optima. Exploitation, on the other hand, is the development of well-targeted
approaches to find the best solutions [73]. In this way, the exploitation activity can be seen
as an optimized result derived from the exploration activity, and the process of finding
additional solutions continues to converge on the most-optimal ones.

To guarantee a trade-off between exploration and exploitation, various techniques
have been envisaged by metaheuristic approaches, depending on their parameters and
design. Indeed, the objective of avoiding premature convergence and stagnation states can
be achieved by selection, replacement, or diversity operators, which ensure the diversity
of solutions in the search population or memory [74]. Furthermore, the alternation of
the intensification and diversification phases enables profitable exploitation of solutions
considered to be the best, as well as the exploration of new search regions [75]. The
alternation between the two phases is very useful, as the first guarantees improved solution
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quality through local search, crossover, or hill climbing, while the second is responsible for
generating new solutions due to mutation, perturbation, or restart phenomena [72].

To dynamically adjust the level of exploration and exploitation of the metaheuristic
optimizer, another solution relies on the adaptation of its components or parameters
according to the feedback of the search process. This solution is known as adaptive
control [76].

1.4. Contribution

Improving the performance of metaheuristic algorithms remains a vital topic for
complex engineering optimization problems. The ensurance of a trade-off between the
exploration and exploitation is crucial to high-performance achievement. In this paper, the
exploitation and exploration phases of the suggested optimizer were performed using the
mountain gazelle optimizer [77], exploiting four mechanisms acting in parallel.

In summary, the main contributions of this work are as follows:

• To use the new MGO-based approach to tackle, for the first time, the problem of the
PV cell/module key parameters’ identification.

• To apply and experimentally validate the proposed approach to accurately approxi-
mate both the single-diode model and the double-diode model and extract their five
and seven unknown parameters, respectively.

• To conduct a thorough comparison of the performance of the MGO-based approach
with that of the well-established optimization algorithms of the BABCO [78], BA [78],
M-SLPSO [79], GCPSO [80], TPTLBO [81], CCNMGBO [82], OBLWOA [82], FC-
EPSO [83], DE [84], GWO [85], and SSA [86].

• The experimentation on two commercialized PV panels (Photowatt-PWP201, and
STM6-40/36) to confirm the accuracy, stability, and convergence speed of the pro-
posed approach.

The remainder of this paper is structured as follows. The modeling of the two different
models of PV cells is presented in Section 2. The problem formulation is proposed in
Section 3. The proposed MGO-based extraction method is suggested in Section 4. The
executed experiments and the found results, as well as the empirical comparison with new
well-known approaches are investigated in Section 5. Section 6 concludes the paper and
reveals future works.

2. Different PV Cell Types’ Modeling
2.1. Single Diode Model

According to the equivalent electric circuit of the SDM PV cell model [18], Kirchhoff’s
Current Law (KCL) can be described by Equation (1):

I = Iph − Id1 − Ish (1)

where Iph (A) is the photocurrent generated in the Standard Test Conditions (STCs), Id1 (A)
is the diode D1 current, and Ish (A) is the current flowing through the shunt resistor Rsh
(Ω). Based on Shockley diode modeling, Id1 is expressed by Equation (2):

Id1 = Isd

(
e
(

V+Rs I
ηVt

)
− 1
)

(2)

In Equation (2), Isd (A) refers to the diode dark saturation current, Rs (Ω) is the series
resistor, and Vt (V) is the junction thermal voltage at STCs.

Vt =
kBTi

q
(3)

where η is the diode ideality factor referring to the measurement of the degree to which the
diode complies with the ideal diode equation, ranging from 1–2, kB (1.3806503 × 10−23 J/K),
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is the Boltzmann constant, Ti (K) is the operating temperature of the PV cell, and q
(1.60217646 × 10−19 C) is the elementary charge.

The last term of Equation (4) evaluates the current flowing through Rsh as described in:

Ish =
V + IRs

Rsh
(4)

Based on the previous assumptions, Equation (1) is rewritten as follows:

I = Iph − Isd

[
e
(

V+IRs
ηVt

)
− 1
]
− V + IRs

Rsh
(5)

The main objective of the PV cell/module model’s key parameters’ identification can be
achieved through optimization algorithms in order to mimic the real performance of such
system. The evolved parameters are: η, Rsh, Rs, Iph, and Isd.

2.2. Double-Diode Model

To describe the double-diode model’s properties, certain assumptions have to be
considered in presenting a simplified version for research applications with regard to the
PVSs. The equation depicting the equivalent circuit diagram of the DDM model is, thus,
given by Equation (6):

I = Iph − Id1 − Id2 − Ish (6)

Herein, the two diodes currents are given by Equation (7) and Equation (8), respectively:

Id1 = Isd1

(
e
(

V+Rs I
η1Vt1

)
− 1
)

(7)

Id2 = Isd2

(
e
(

V+Rs I
η2Vt2

)
− 1
)

(8)

Keeping in mind that Vt1 and Vt2 are expressed similarly as in Equation (3) and Ish as in
Equation (4), the PV cell output current is obtained by Equation (9):

I = Iph − Isd1

[
e
(

V+IRs
η1Vt1

)
− 1
]
− Isd2

[
e
(

V+IRs
η2Vt2

)
− 1
]
− V + IRs

Rsh
(9)

η1 and η2 are the first and second diodes’ ideality factors, respectively.
Taking into account all the previous equations, the main parameters of the DDM to be

identified are: Iph, Isd1, Isd2, Rs, Rsh, η1, and η2. Likewise, these seven parameters will be
estimated by an optimization technique with high precision and robustness.

As the module contains Ns cells, the output voltage and resistance of the module are
adjusted according to specific rules:

V
′
= Ns ·V

R
′
s = Ns · Rs

R
′
sh = Ns · Rsh

(10)

3. Problem Formulation

In the problem of PV module parameter estimation, the main objective is to minimize
the difference between the measured and simulated current data. The difference is usually
quantified by a multitude of errors such as the Root-Mean-Squared Error (RMSE), the RMSE
Deviation (RMSD), the Normalized RMSD (NRMSD), the Mean Absolute Error (MAE), the
MAE in Power (MAEP), the Mean Bias Error (MBE), the Mean-Squared Error (MSE), the
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Sum of Squares Error (SSE), the value of the Residual Error of the Fitness Function (REFF),
etc. In this paper, the objective function is expressed as follows:

RMSE(x) =

√
1
N

n

∑
i=1

( fk(V
′ , I, x))2 (11)

N represents the number of experimental data. Accordingly, (12) represents the SDM
of the PV module:

fk(V
′
, I, xsdm) = Iph − Isd

e

(
V
′
+R
′
s I

ηVt

)
− 1

− V + R
′
s I

R′sh

xsdm =
{

Iph, Isd, R
′
s, R

′
sh, η

} (12)

In a similar form, the representation of the DDM is as follows:
fk(V

′
, I, xddm) = Iph − Isd1

e

(
V
′
+R
′
s I

η1 NsVt1

)
− 1

− Isd2

e

(
V
′
+R
′
s I

η2 NsVt2

)
− 1

− V
′
+ R

′
s I

R′sh

xddm =
{

Iph, Isd1, Isd2, R
′
s, R

′
sh, η1, η2

} (13)

The values of I and V
′
are the current and the voltage vectors measured experimentally

from the PV modules. Thus, the parameters’ estimation is a process that minimizes the
objective function RMSE(x) by adjusting the model parameters’ vector x within the range
of a given bound.

In this paper, the variation of the climatic conditions was taken into account according
to Equations (14)–(19).

Iph,i =
Gi

GSTC
(Iph + αIsc(Ti − TSTC)) (14)

Egap,i = Egap,STC.(1− 0.0002677.(Ti − TSTC)) (15)

Isd,i = Isd.(
Ti

TSTC
)3 · e(

Egap
k.TSTC

− Egap
k.Ti

)
(16)

ηi = η.
Ti

TSTC
(17)

Rs,i = Rs (18)

Rsh,i = Rsh.
Gi

GSTC
(19)

where Gi and GSTC are, respectively, the current irradiance and that under STCs. TSTC is
the module temperature under STCs. αIsc is the temperature coefficient. Egap,i and Egap,STC
are the gap band and that under STCs.

4. Proposed MGO-Based Extraction Method

In order to understand the general concept of the MGO, it is mandatory to bring
forward its basic idea by introducing the following.

4.1. MGO’s Inspiration

The mountain gazelle is a type of gazelle that lives in low densities and is distributed
in large areas of the Arabian Peninsula and its surroundings, especially where Robinia
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trees are grown. The mountain gazelle lives in three groups: the first includes mothers of
offspring; the second includes young males; the third includes the single males’ herd [87].
Although this type of animal lives in remote areas, fighting between certain components
of the herd is an important feature of their coexistence. In fact, horn struggles between
neighboring immature males over the environment when they reach adulthood are even
more intense than those over female possession. In terms of foraging for food, the mountain
gazelle’s tremendous ability to run at speeds of up to 80 km per hour is a very important
property that enables it to migrate distances of 120 km to graze in areas where food
is abundant.

4.2. MGO Mathematical Modeling

The formulation of the MGO mathematical model is based on the simulation of the
fundamental characteristics of the life of mountain gazelles and, more precisely, of their
social and grouping behaviors, along with all the factors that rule the communication
between their herds, reproduction, grazing, etc. [77]. One of the most-important assets of
this algorithm is that the optimization processes are mainly based on more than one factor.
Indeed, four factors are involved in such a dynamic process: maternity herds, solitary,
bachelor male herds, territorialmales, and migration to grazing areas to search for food.

Depending on the nature of the members of the male bachelor group, who are still
in the youth stage and unable to impose their dominance over the females and then carry
out the reproduction process, the research population in the MGO algorithm is selected as
one-third of the total population, which helps to reduce the cost compared to other options
for mathematical modeling [88].

During the optimization process within the MGO, the overall best solution is identified
as the adult male gazelle in the herd territory. Nevertheless, each member (Gi gazelle) can
join the herd of single males, the maternity her, or solitary territorial males. On the other
hand, the birth of a deer can also take place.

However, the mechanism of the MGO algorithm admits the opportunity of other solu-
tions represented primarily by gazelles in the maternity herds. The selection is formulated
so that the total population retains the stronger gazelles considered high-quality solutions
and eliminates the sick and/or aged gazelles, which have a much weaker cost.

4.3. Territorial Solitary Males

Mountain gazelles live in herds that include both males, young, and females. By
adulthood, the young male mountain gazelles have the strength they need to establish their
dominance and continue their life cycle. At this point, newly adult males occupy a remote
solitary territory. During courtship or mating season, fierce battles take place between the
males, who jostle each other using their horns, as the adults try to protect their territories
while the young fight for a spot in these areas, as well as for the possession of females [77].
The territory of the adult male can be established by Equation (20).

TSM = maleG − |(ri1 × BH − ri2 × X(t))× F| × Co f r (20)

Herein, maleG refers to the best global solution representing the position vector of the adult
male. ri1 and ri2 are random integers, which can be taken as 1 or 2. BH is the coefficient
vector of the young male herd. It can be approximated by:

BH = Xra × br1c+ Mpr × dr2e, ra =

{⌈
N
3

⌉
. . . N

}
(21)

with

ra =

{⌈
N
3

⌉
. . . N

}
(22)
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Xra is a random solution in the interval of ra, which represents a young male. r1 and r2
are values chosen randomly between 0 and 1. Mpr is considered as the average number of

randomly selected search agents
⌈

N
3

⌉
, and N is the total number of herd gazelles.

In Equation (20), F is evaluated according to Equation (23).

F = N1(D)× exp
(

2− Iter×
(

2
MaxIter

))
(23)

According to the problem dimensions, N1 is a random number originating from the stan-
dard distribution [77]. Iter and MaxIter are the ongoing iterations’ number and the total
iterations’ number, respectively.

Furthermore, in each iteration, the coefficient vector Co fr initially randomly selected
is updated in order to increase the search capability, as formulated in Equation (24).

Co f i =


(a + 1) + r3,
a× N2(D),

r4(D),
N3(D)× N4(D)2 × cos((r4 × 2)× N3(D))

(24)

The numbers rand, r3, and r4 are randomly chosen in the interval [0, 1]. Also, the num-
bers N2, N3, and N4 are randomly fixed according to the normal range and the problem
dimensions [88]. The parameter a is expressed by:

a = −1 + Iter×
(
−1

MaxIter

)
(25)

4.4. Maternity Herds

As in the life cycle of all animals, maternity herds are the most-important members,
which ensure the continuity of the herd’s life by giving birth to new strong male gazelles.
Male gazelles contribute significantly to the delivery of new gazelles and young males
attempting to acquire female gazelles according to Equation (26).

MH =
(

BH + Co f 1,r

)
+ ( ri3 ×male G − ri4 × Xrand )× Co f 1,r (26)

Consider Equation (21), evaluating the young males’ impact factor vector BH; the selection
of the coefficient vectors Co f 2,r and Co f 3,r is perform at random according to Equation (24).
maleG is the adult male considered as the global solution for the present repetition, while
the vector position of a randomly chosen gazelle is rand. Otherwise, ri3 and ri4 are random
integers of 1 or 2.

4.5. Bachelor Male Herds

Usually and according to the living conditions, the mountain deer lives for about
8 years. The breeding process begins at the age of 18 months for males and 12 months
for females. The onset of winter is the typical period for the breeding season. According
to zoology and sociobiology, mountain gazelles reproduce, like many mammals, by the
practice of male reproduction with several females in what is known as polygamy. Most
often, the female gives birth once a year, usually in April or May. While males seek to
attract females and compete to mate with them, females choose selectively among available
males in the herd. In this context, male dominance becomes a significant factor in the
determination of mating relationships. As they mature, young male gazelles begin to gain
dominance over new territories and defend them vigorously, as well as attempt to mate
with females. In this critical phase, violent behavior increases between the two male groups
to achieve these ends, according to Equation (27).

BMH = (X(t)− D) + (ri5 × male G − ri6 × BH)× Co fr (27)
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Through each iteration, X(t) defines the position of the gazelle vector. As defined pre-
viously, ri5 and ri6 are selected at random to be 1 or 2, and maleG is the best solution.
In addition, Co fr is a randomly selected coefficient vector. D is established according to
Equation (28) [88].

D = (|X(t)|+ |male G |)× (2× r6 − 1) (28)

Here, r6 is a number chosen randomly in the interval [0, 1].

4.6. Migration to Search for Food

Mountain deer sleep most of the night and are awake most of the day, as they are
active especially in the early morning and sunset. In addition to being very territorial
within groups of three to eight individuals, these deer are herbivores that graze and feed
on grass, leaves, or small shrubs. Usually, deer groups travel long distances to graze and
search for food, taking advantage of their agile stature and their great speed in running,
sprinting, and jumping. Among the important characteristics imposed by the environment
in which they live, mountain deer can withstand long periods without drinking water, as
they suffice with fresh herbs, dew drops, young shoots, and low-hanging tree branches,
especially when their range includes the acacia tree. The mathematical formulation of the
mountain gazelles’ behavior is as follows (Equation (29)):

MSF = (ub− lb)× r7 + lb (29)

Here, ub is the upper limit of the treated optimization problem, while ul is the lower limit.
r7 is a random integer ranging in the [0, 1] interval.

Assuming that each generation is equal to a repetition, the production of new genera-
tions of mountain gazelles is ensured by the application of the four mechanisms described
above. The addition of a new era to the total population is also considered to classify all
mountain gazelles at the end of each era. Since the male adult gazelle that dominates the
territory is considered the best gazelle, the classification is performed in increasing order
according to the quality of the solutions. Indeed, weak or old gazelles are eliminated from
the population, and only those considered to cost less and more promising are kept.

4.7. Pseudocode of the Proposed MGO Algorithm

The application of the MGO algorithm to identify the investigated PV cell/modules
model parameters is summarized in Algorithm 1.

Algorithm 1: Pseudocode of the proposed MGO.
Input: The measured I–V data, the population size N, and the maximum number of iterations MaxIter
Output: The best solutions and the fitness value in the search space
Initialize MGO parameters;
Create a random population Xi(i = 1, 2, . . . , N)
Calculate the fitness levels of the gazelles
while Stopping criterion is not satisfied do

for each gazelle (Xi) do
Load the measured I–V data
Compute the TSM by employing Equation (20)
Compute the MH by employing Equation (26)
Compute thee BMH according to Equation (27)
Compute thee MSF by employing Equation (29)
Compute the fitness values of the TSM, MH, BMH, and MSF, then add them to the habitat

Sort the entire population in ascending order
Update the best gazelle
Save the N best gazelles in the Max number of the population
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5. Executed Experiments and Results

In this section, the MGO algorithm was used to extract the parameters of the two
well-known commercial photovoltaic panels Photowatt-PWP201 and STM6-40/36. The
two chosen photovoltaic panels represent the most-popular types, as monocrystalline
and polycrystalline, respectively. These panels were experimented with by adopting both
the SDM and DDM models. Each of these modules consists of a series of 36 connected
cells. The configurations of the lower (LB) and upper (UB) terminals for the Photowatt-
PWP201 (polycrystalline) and STM6-40/36 (monocrystalline) modules are displayed in the
Table 1 [82]. The I–V experimental data used to identify the parameters of the electrical
model of the Photowatt-PWP201 module were obtained under an irradiance of 1000 W/m2

and a cell temperature of 45 ◦C [78,82]. In addition, to estimate the parameters of the
electrical model of the STM6-40/36 module, real experimental data are provided for an
irradiance of 1000 W/m2 and a photovoltaic temperature of 51 ◦C [78,82].

Table 1. Parameter range of the investigated PV modules.

Parameters
Photowatt -PWP201 STP6-40/36

Lb Ub Lb Ub

Iph 0 2 0 2
Isd, Isd1, Isd2 0 50 0 50

Rsh 0 2 0 0.36
Rs 0 2000 0 1000

η, η1, η2 1 50 1 60

The parameters of the MGO algorithm for extracting the PV model parameters
(Photowatt-PWP201 and STM6-40/36) were as follows: N = 30 and MaxIter = 100.
This metaheuristic MGO algorithm was compared with three other optimization methods
implemented under the same conditions: Grey Wolf Optimizer (GWO), Squirrel Search
Algorithm (SSA), and Differential Evolution (DE) algorithm. It is important to emphasize
that all methods were tested assuming the same configuration, i.e., a number of agents of
30 and a maximum number of iterations of 100. This configuration was kept unchanged to
ensure a fair comparison between the different approaches. The results obtained from the
proposed approach (MGO) and the other three algorithms are presented in terms of the
mean, median, minimum, maximum, and standard deviation, based on 30 runs for each
algorithm. These criteria enabled us to assess the MGO’s performance in terms of accuracy,
stability, and efficiency in extracting PV panel’s key parameters.

In keeping with the aim of ensuring a fair and thorough comparison of the perfor-
mance of the MGO method, this comparative study also included other methods reported
in the literature including the Bat–Artificial Bee Colony Optimizer (BABCO) [78], the Bat
Algorithm [78], Multiswarm Spiral Leader Particle Swarm Optimization (M-SLPSO) [79],
the Guaranteed Convergence Particle Swarm Optimization algorithm (GCPSO) [80], Triple-
Phase Teaching–Learning-Based Optimization (TPTLBO) [81], the Criss-Cross-based Nelder–
Mead simplex Gradient-Based Optimizer (CCNMGBO) [82], the quasi-Opposition-Based
Learning Whale Optimization Algorithm (OBLWOA) [82], and the Fractional Chaotic En-
semble Particle Swarm Optimizer (FC-EPSO) [83]. These tests were carried out on a PC
Laptop whose specifications were as follows: AMD Ryzen 7 3750H with Radeon Vega
Mobile Gfx 2.30 GHz, 16 GB RAM, Windows 11, and 64 bit.

The results of identifying the parameters driving the mathematical model of the
Photowatt-PWP201 polycrystalline PV module for the SDM and DDM models are tabulated
in Table 2. According to these results, the MGO method performed best for the SDM, with
an RMSE of 2.042717 × 10−3, closely followed by the BABCO (2.046524 × 10−3), M-SLPSO
(2.046535 × 10−3), and SSA (2.423290 × 10−3) in descending order. For the DDM-based
model, the best RMSE value (1.387641 × 10−3) was also obtained by the MGO.
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Based on the same investigations, the results of the parameter estimation for the STM6-
40/36 monocrystalline PV module are presented in Table 3, for both the SDM and the DDM.
Indeed, the results obtained with the one-diode-based model showed that the MGO method
yielded the best RMSE value (1.719946× 10−3), followed by the BABCO (1.721921× 10−3),
SSA (1.723619 × 10−3), and finally, TPTLOBO (1.729800 × 10−3). For the two-diode-based
model, the best RMSE value (1.686104 × 10−3) was achieved through the MGO approach,
followed by the BABCO (1.686275 × 10−3) and GCPSO (1.688361 × 10−3).

As part of our comparative study of the performance of the different algorithms
previously specified, each algorithm was run for 30 executions, and the descriptive statistics
of the results achieved were collected for each test case about the SDM and the DDM. For
each of these test cases, the following information is provided: the Mean of the best results
(Mean), the Best result (Best), the Worst result (Worst), and the Standard deviation (Std.).
The findings of these two tests are summarized in Tables 4 and 5. From the data presented in
these two tables, it can be concluded that extremely satisfactory results were achieved by the
MGO algorithm for both test cases. Overall, the MGO’s performance clearly outperformed
that of the other competitive algorithms for the two investigated models.

Once the parameters of the various PV module models have been identified, it is
necessary to calculate the output current corresponding to each measured voltage value.
The estimated current values were compared with the measured current values to obtain the
Individual Absolute Error (IAE) for each measurement. Figures 1 and 2 illustrate the results
obtained by the MGO method, where the IAE is presented as a function of the measured
voltage. These plots demonstrate that the IAE, when using the Photowatt-PWP201 module,
did not exceed 4.00 × 10−3 for the SDM and 3.50 × 10−3 for the DDM (Figure 1a,b). For
the STM6-40/36 module, it is clear that the IAE value remained below 6.00 × 10−3 with
both the SDM and the DDM (Figure 2a,b).
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Figure 1. Current Individual Absolute Error (IAE) obtained by the MGO for the Photowatt-PWP-201
module: (a) using the SDM; (b) using the DDM.
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Figure 2. Current Individual Absolute Error (IAE) obtained by the MGO for the STM6-40/36 module:
(a) using the SDM; (b) using the DDM.
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Table 2. Comparison of the results produced by various algorithms when applied to the Photowatt-PWP201 module model.

Model Algorithms
Parameters

RMSE × E−3
Iph (A) Isd (µA) Isd1 (µA) Rs (Ω) Rsh (Ω) η η1 η2

SDM

BABCO [78] 1.032382 2.512893 - 1.239289 744.712668 47.422839 - - 2.046524
BA [78] 1.044856 37.14342 - 1.318087 1495.40620 60.819912 - - 9.771899

M-SLPSO [79] 1.032382 2.512927 - 1.239287 744.715807 01.317305 - - 2.046535
TPTLBO [81] 1.030500 3.482300 - 1.201300 981.982200 48.642800 - - 2.425100

CCNMGBO [82] 1.030514 3.48 × 10−6 - 1.201271 981.981900 48.642830 - - 2.425074
OBLWOA [82] 1.030514 3.48 × 10−6 - 1.201271 981.984500 48.642840 - - 2.425074

DE 1.030515 3.443584 - 1.202534 976.587000 48.599900 - - 2.854231
GWO 1.028367 4.9185403 - 1.158806 1544.30824 50.000000 - - 2.714233
SSA 1.029777 3.529950 - 1.200619 1062.66958 48.693308 - - 2.423290

MGO 1.030231 3.604135 - 1.198040 1033.45081 48.774295 - - 2.042717

DDM

BABCO [78] 1.034753 0.132561 0.312026 1.999999 591.476886 - 47.821141 42.201067 1.397480
BA [78] 0.591915 32.63274 45.26637 0.141905 1706.06090 - 37.685352 2.455933 9.635400

M-SLPSO [79] 1.032382 2.512910 1.00 × 10−6 1.239288 744.713773 - 1.317304 2.499659 2.046535
CCNMGBO [82] 1.030514 2.67 × 10−6 3.48 × 10−6 1.20127 981.998700 - 49.301220 48.642860 2.425000
OBLWOA [82] 1.030514 2.17 × 10−6 3.48 × 10−6 1.201271 981.983200 - 49.9817404 48.642830 2.427000

DE 1.029337 2.425199 1.1064803 1.206851 1113.0658 - 49.585175 47.312278 2.879032
GWO 1.027243 4.787116 32.994732 1.166377 1901.8138 - 50.0000 44.840739 2.736613
SSA 1.030626 3.311942 4.928627 1.207096 953.657 - 48.45034 36.9958 2.430466

MGO 1.030179 3.258267 35.384629 1.1979727 1039.3818 - 48.868761 48.080506 1.387641
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Table 3. Comparison of the results produced by various algorithms when applied to the STM6-40/36 module model.

Model Algorithms
Parameters

RMSE × E−3
Iph (A) Isd (µA) Isd1 (µA) Rs (Ω) Rsh (Ω) η η1 η2

SDM

BABCO [78] 1.663903 2.048509 - 0.004267 15.93149 1.520463 - - 1.721921
GCPSO [80] 1.663904 1.738656 - 0.153855 573.1486 1.520302 - - 1.729814

TPTLOBO [81] 1.663900 1.738700 - 0.004300 15.92830 1.520300 - - 1.729800
DE 1.661559 5.682411 - 0.001573 785.9564 59.84265 - - 2.891765

GWO 1.663878 5.848076 - 0.003536 791.0496 52.56819 - - 3.646006
SSA 1.663668 1.908620 - 0.143125 590.8344 55.10250 - - 1.723619

MGO 1.663931 1.722884 - 0.154881 571.6459 54.69487 - - 1.719946

DDM

BABCO [78] 1.663963 0.241206 6.596730 0.296972 621.1424226 - 1.363856 1.917464 1.686275
BA [78] 1.497952 13.006836 47.796001 0.067902 929.420389 - 17.920435 3.956525 3.716638

GCPSO [80] 1.663948 3.0995227 2.50 × 10−4 0.295269 617.024493 - 1.636433 0.972892 1.688361
DE 1.674689 4.774236 45.00142 0.09731012 530.006 - 59.84157 56.85469 2.819434

GWO 1.661477 5.693952 5.023007 0.0225408 999.3609 - 60.00000 54.7395 3.591568
SSA 1.660818 4.362375 1.246851 0.07989438 983.4837 - 59.73068 59.10384 1.759782

MGO 1.664853 1.577101 0.390000 0.1657537 548.3743 - 57.39241 51.57719 1.686104
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Table 4. RMSE statistical analysis of the Photowatt-PWP201 module for the SDM and the DDM.

Model Algorithms
RMSE

Min Max Mean STD

SDM

BABCO [78] 2.046524 × 10−3 2.046424 × 10−3 2.046524 × 10−3 9.434855 × 10−18

BA [78] 9.771899 × 10−3 1.718934 × 10−1 3.859675 × 10−2. 4.450036 × 10−2

M-SLPSO [79] 2.046535 × 10−3 2.046535 × 10−3 2.046535 × 10−3 3.527834 × 10−11

TPTLBO [81] 2.425100 × 10−3 2.425100 × 10−3 2.425100 × 10−3 1.200000 × 10−17

DE 2.854231 × 10−3 9.453298 × 10−3 4.909067 × 10−3 1.809489 × 10−3

GWO 2.714233 × 10−3 2.752705 × 10−1 4.983853 × 10−2 9.312518 × 10−2

SSA 2.432902 × 10−3 2.742507 × 10−1 4.272723 × 10−2 8.299818 × 10−2

MGO 2.042717 × 10−3 2.0558335 × 10−3 2.045717× 10−3 1.650466 × 10−3

DDM

BABCO [78] 1.397480 × 10−3 1.397488 × 10−3 1.397481 × 10−3 2.907850 × 10−9

BA [78] 9.635465 × 10−3 4.404159 × 10−1 2.362236 × 10−1 1.850432 × 10−1

M-SLPSO [79] 2.046535 × 10−3 2.051405 × 10−3 2.046600 × 10−3 5.093012 × 10−7

ED 2.879032 × 10−3 2.463344 × 10−2 9.559961 × 10−3 5.874627 × 10−3

GWO 2.736613 × 10−3 9.989661 × 10−2 1.287483 × 10−2 2.133245 × 10−2

SSA 2.430466 × 10−3 2.742507 × 10−1 7.527784 × 10−2 1.088360 × 10−1

MGO 1.387641 × 10−3 1.397421 × 10−3 1.3902611 × 10−3 2.992436 × 10−9

Table 5. RMSE statistical analysis of the STM6-40/36 module for the SDM and the DDM.

Model Algorithms
RMSE

Min Max Mean STD

SDM

BABCO [78] 1.721921 × 10−3 1.721921 × 10−3 1.721921 × 10−3 1.637363 × 10−17

BA [78] 4.316935 × 10−2 3.589394 × 10−1 2.805906 × 10−1 1.214878 × 10−1

TPTLOBO [81] 1.729800 × 10−3 1.729800 × 10−3 1.728800 × 10−3 4.960000 × 10−18

DE 2.891765 × 10−3 4.961929 × 10−3 3.406166 × 10−3 3.888576 × 10−4

GWO 3.646006 × 10−3 2.404023 × 10−2 9.813445 × 10−3 5.675926 × 10−3

SSA 1.743619 × 10−3 3.107574 × 10−1 1.367193 × 10−2 5.612953 × 10−1

MGO 1.719946 × 10−3 1.729499 × 10−3 1.718746 × 10−3 7.535025 × 10−17

DDM

BABCO [78] 1.686275 × 10−3 1.698849 × 10−3 1.6912799 × 10−3 3.481031 × 10−6

BA [78] 3.716638 × 10−2 3.536434 × 10−1 1.847427E × 10−1 1.390727 × 10−1

FC-EPSO1 [83] 1.772100 × 10−3 - - 3.071900 × 10−10

DE 2.819434 × 10−3 7.931632 × 10−3 4.289150 × 10−3 1.061135 × 10−3

GWO 3.591568 × 10−3 2.317158 × 10−2 1.179205 × 10−2 6.004844 × 10−3

SSA 1.759782 × 10−3 3.107574 × 10−1 1.836926 × 10−2 5.674788 × 10−2

MGO 1.686104 × 10−3 1.781279 × 10−3 1.69973 × 10−3 4.873634 × 10−17

Figures 3 and 4 show the values of the objective function obtained by the different op-
timization algorithms investigated during the parameter estimation process for the two PV
modules (Photowatt-PWP201 and STM6-40/36) for both the mathematical SDM and DDM.

The results presented in these figures revealed that the MGO stood out for its high
convergence speed right from the first iterations (around 40 iterations). Moreover, its
accuracy was better than that of the other methods. These results proved that the MGO-
based approach is a particularly effective alternative for solving the problems in question.
This performance was due to the ability of the proposed MGO to avoid convergence to
local solutions. In addition, the GWO, SSA, and DE algorithms showed a low convergence
speed, particularly for the first iterations.
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Figure 3. Comparative study of the MGO and other well-known optimization techniques in
terms of the convergence characteristics for the Photowatt-PWP-201 module: (a) using the SDM;
(b) using the DDM.
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Figure 4. Comparative study of the MGO and other well-known optimization techniques in terms of
the convergence characteristics for the STM6-40/36 module: (a) using the SDM; (b) using the DDM.

After obtaining the electrical parameters of the two equivalent models (SDM and
DDM) of the experimented PV panels, the I–V and P–V characteristics of the two PV
modules, Photowatt-PWP-201 and TM6-40/36, estimated by the proposed MGO algorithm
for the SDM and the DDM are plotted.

In fact, the five key parameters of the SDM and the seven ones of the DDM PV
module obtained by implementing the MGO algorithm were used to calculate the generated
currents in accordance with Equations (5) and (9), respectively. As a result, the I–V and P–V
characteristics were easily obtained. Accordingly, Figures 5–8 show such plots highlighting
clearly that the estimated characteristics (I–V and P–V) were in good agreement with the
experimental data points, thereby proving the effectiveness of the MGO compared to the
other algorithms.
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Figure 5. Comparison of measured data and simulated data obtained by the MGO of the Photowatt-
PWP201 module for the SDM: (a) I–V curve. (b) P–V curve.
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Figure 6. Comparison of measured data and simulated data obtained by the MGO of the STM6-40/36
module for the SDM: (a) I–V curve. (b) P–V curve.
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Figure 7. Comparison of measured data and simulated data obtained by the MGO of the Photowatt-
PWP201 module for the DDM: (a) I–V curve. (b) P–V curve.
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Figure 8. Comparison of measured data and simulated data obtained by the MGO of the STM6-40/36
module for the DDM: (a) I–V curve. (b) P–V curve.

6. Conclusions and Future Works

This investigation presented a new application of a Mountain Gazelle Optimizer-
based approach (MGO) for identifying the key parameters of the photovoltaic Single-Diode
Model (SDM) and Double-Diode Model (DDM) of technologies widely used in the literature:
monocrystalline STM6-40/36 and polycrystalline Photowatt-PWP20 photovoltaic panels.
The performance of the suggested MGO was assessed by many statistical indicators such
as the standard deviation, Max RMSE, mean RMSE, Min RMSE, IAE, and the I–V, and P–V
characteristics. The results of the experiment showed that the MGO-based method achieved
superior performance and produced a competitive end result compared with other well-
cited algorithms. Hence, the MGO can be a feasible alternative for parameter estimation of
complex PV cell models. The experimental validation of the parameter estimation of the
tested PV modules used data extracted from the I–V and P–V characteristics. For all models
examined, the suggested MGO outperformed all the selected state-of-the-art optimizers
by achieving the best performance in terms of accuracy, stability, and statistical data and
the lowest RMSE over 30 independent runs. More concretely, the extensive experiments
on the MGO showed that it outperformed the GWO algorithm by 47.17% and 46.94% on
the SDM and DDM of the STM6-40/36 module, respectively. As future prospects, the
MGO will be investigated to deal with many other complex optimization problems such as
the maximum power point tracking issue in photovoltaic- and wind-energy-conversion
systems and economic dispatch in modern power systems and smart grids.
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