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Abstract: As the ownership of electric vehicles (EVs) continues to rise, EVs are becoming an integral
part of urban microgrids. Incorporating the charging and discharging processes of EVs into the
microgrid’s optimization scheduling process can serve to load leveling, reducing the reliance of the
microgrid on external power networks. This paper proposes a novel two-stage, dual-layer distributed
optimization operational approach for microgrids with EVs. The lower layer is a distributed control
layer, which ensures, through consensus control methods, that every EV maintains a consistent
charging/discharging and state of charge (SOC). The upper layer is the optimization scheduling layer,
determining the optimal operational strategy of the microgrid using the multiagent reinforcement
learning method and providing control reference signals for the lower layer. Additionally, this
paper categorizes the charging process of EVs into two stages based on their SOC: the constrained
scheduling stage and the free scheduling stage. By employing distinct control methods during these
two stages, we ensure that EVs can participate in the microgrid scheduling while fully respecting the
charging interests of the EV owners.

Keywords: microgrid; electric vehicles; consensus control; deep reinforcement learning; microgrid
optimization scheduling

MSC: 68U01; 68U35

1. Introduction

EVs, as clean and efficient means of transportation, not only enhance residents’ mobil-
ity efficiency but also curtail urban pollutant emissions. Consequently, they have garnered
extensive public acclaim. With the progressive refinement of EV technology in recent
years, the ownership of EVs in urban areas has surged, making these vehicles an integral
component of urban microgrids [1]. By judiciously scheduling EVs’ charging and discharg-
ing processes, urban clean energy can be absorbed, thus decreasing the city’s reliance on
traditional energy sources. In addition, this simultaneously cuts the operational costs of
urban electric systems, achieving cleaner and more cost-effective energy utilization [2].
Nowadays, as the call for sustainable urban development amplifies [3,4], EVs, as a novel
form of energy provision, have provided fresh insights for energy transitions in cities
globally, thus receiving escalating attention and support [5].

For instance, the European Union (EU) aspires to attain net-zero emissions by 2035.
It has set forth plans to promote EVs by offering policy and financial incentives and build-
ing charging infrastructure across member states [6,7]. In 2021, the Indian government
announced a hike in the subsidy for electric two-wheelers from 10,000 INR/kWh to 15,000
INR/kWh. It permitted EV manufacturers to offer up to a 40% discount to consumers [8].
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The U.S. government in 2021 introduced incentives for EV deployment in 34 states, includ-
ing exemptions for high-occupancy vehicle (HOV) lanes, financial perks for purchasing EVs
or EV supply equipment, exemptions from vehicle inspections or emissions tests, parking
incentives, and reduced electric rates for off-peak EV charging, among others [9].

Optimal charging/discharging scheduling research for EVs has emerged as a pivotal
direction in the evolution of EV technology. Through optimizing the charging and discharg-
ing processes, stress on the electrical grid can be alleviated, facilitating sustainable energy
utilization. In the foreseeable future, such optimal scheduling technologies will play an
increasingly crucial role in the promotion and widespread adoption of EVs. Evolution-
ary algorithms and swarm intelligence optimization algorithms are considered effective
methods for optimizing the charging and discharging process of EVs. Ref. [10] proposes a
multiobjective optimization operation method based on the nondominated sorting genetic
algorithm II (NSGA-II) for microgrids containing EVs. This method utilizes the charging
and discharging of EVs to reduce the peak-to-valley value of CO2 emissions and bus power
in microgrids while considering the income of EV users. Ref. [11] introduces a scheduling
model for EVs’ charging based on swarm intelligence algorithms. This model contemplates
the dynamic nature of charging demands and the uncertainty of user preferences, ulti-
mately achieving a balance in the power system and maximizing user satisfaction. Ref. [12]
proposes a two-stage ordered charging and discharging strategy for EVs using the particle
swarm optimization (PSO) algorithm. Experimental results indicate that this approach
enables more efficient utilization of grid resources during the EV charging and discharging
stages, curtails peak charging loads, and enhances energy utilization and stability of the
grid. Although evolutionary algorithms and swarm intelligence optimization algorithms
can calculate the optimal decision-making process for charging and discharging EVs, they
can only calculate a fixed decision-making process based on predetermined environmen-
tal conditions. For actual microgrids containing EVs, environmental conditions and EV
charging session types are often uncertain [13]. Therefore, when evolutionary algorithms
and swarm intelligence optimization algorithms are applied to real-world microgrids con-
taining EVs, they often fail to achieve the expected results. To improve the robustness
of microgrid operation strategies in practical environments, the structure of hierarchical
learning, optimization, and control has been widely proposed. Ref. [14] and Ref. [15]
proposed a hierarchical fuzzy control method that utilizes the idea of fuzzy control to
ensure the robustness of the method. At the same time, by using a hierarchical architecture,
the method ensures high accuracy while ensuring computational complexity. Ref. [16]
proposes a multilevel game-theoretic model, where the upper level seeks to minimize the
networkwide energy costs, and the lower level determines the optimal charging and dis-
charging strategy for each EV by balancing cost minimization and revenue maximization.
Experimental findings suggest that when considering demand response mechanisms, this
model can elevate the energy efficiency of the power grid and augment the economic bene-
fits for both EVs and the grid. Ref. [17] presents an EV charging coordination optimization
method rooted in hierarchical optimization and user satisfaction. Considering the intrica-
cies of the medium/low-voltage integrated network and factors like charging needs and
user preferences, this method has proven to heighten user satisfaction while diminishing
the strain on the power system. In Ref. [18], a rapid optimization algorithm is proposed to
address multiple EVs’ combined routing and charging problems. Experiments underscore
that this algorithm can tackle numerous EVs’ combined routing and charging problems,
showing commendable time efficiency and solution quality. Ref. [19] proposes a hybrid
integer linear programming model based on a virtual pricing mechanism to optimize grid
energy efficiency while minimizing EV charging and discharging costs alongside user
travel expenses. Studies illustrate that this model, while ensuring the travel needs of EVs,
can actualize optimal energy allocation and load balance. Ref. [20] proposes an intelligent
charging and discharging strategy for EVs in smart grids rooted in a decision function.
This strategy can dynamically adjust EV charging and discharging timings and power
according to electricity prices, grid load, and the charging needs of EV owners, maximizing
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both owner benefits and grid advantages. Lastly, [21] proposes a real-time method to
control EV charging and discharging in response to variations in renewable energy produc-
tion and EV battery states. Research indicates that this technique can effectively govern
EV charging and discharging, curtail energy consumption, and enhance the operational
efficiency and reliability of charging stations and the grid.

While the aforementioned studies offer reasonable approaches to the optimized opera-
tion of EVs, there are several salient issues that cannot be overlooked:

1. Scheduling strategies are uniquely designated to each EV, making each vehicle’s charging
and discharging status independent of others. This approach can result in significant
disparities in the charging states and energy levels of different EVs at any given time,
potentially leading to perceived unfairness or dissatisfaction among EV owners.

2. Although many methodologies consider user satisfaction for EVs, these metrics
are often premised upon predetermined EV connection and disconnection times.
In reality, the exact disconnection time for EVs is still being determined. Relying on
such methods can, at times, lead to excessive discharging of EVs, rendering them
with critically low energy levels. Should owners need to use their vehicles at such
moments, the residual energy may be insufficient for their travel needs.

3. Existing proposed methods effectively utilize EVs within microgrids for rational
charging and discharging, thus reducing operational costs. However, they undeniably
extend the charging and billing duration for EVs. Consequently, this significantly
diminishes the enthusiasm and satisfaction of EV users participating in microgrid
scheduling. Therefore, the development of a user compensation mechanism specifi-
cally addressing EV participation in microgrid scheduling is both crucial and necessary.
Unfortunately, the existing literature on EV scheduling rarely delves into the economic
compensation aspects related to their involvement in microgrid scheduling.

4. When optimizing operational methods for practical applications, environmental
parameters of microgrids and the operating status of each EV are often difficult
to predict. Therefore, fixed microgrid operational strategies calculated based on
predicted data often fail to achieve the expected results in practical applications.
This requires optimization operational methods to have higher robustness, which
means that the method can autonomously adjust the output action strategy when
facing different environmental conditions and EV operating statuses.

To address these issues, this paper introduces a two-stage, dual-layer optimized
scheduling approach. Firstly, the charging process of EVs is divided into two stages based
on their SOC: a constrained scheduling stage when their SOC is between 0 and 0.8 and a
free scheduling stage when their SOC is between 0.8 and 1. In the constrained scheduling
stage, EVs are only allowed to charge to meet the owners’ charging needs; however, they
can participate in grid scheduling by adjusting the charging power levels. During the
free scheduling stage, EVs can participate in grid scheduling through charge–discharge
processes, but their SOC is required to stay below 0.8. Subsequently, a two-layer opti-
mization operational approach is proposed. The lower layer ensures uniform charging
states for EVs in the constrained scheduling stage and uniform SOC levels for those in
the free scheduling stage. The upper layer calculates the optimal strategy for microgrid
operations using multiagent reinforcement learning, providing control reference signals
for the lower layer. Notably, this article stipulates that within microgrids, only the energy
consumed by EVs during the constrained scheduling stage incurs charges. Conversely, dur-
ing the free scheduling stage, microgrids do not levy fees for EV charging and discharging.
This approach significantly reduces the billing duration for EVs compared to traditional
methods, thereby enhancing user satisfaction with EV participation in microgrid scheduling.
The main research contributions of this paper are as follows:

1. A two-stage control model for EVs within a microgrid is established. This model ini-
tially categorizes the charging process of EVs into a constrained scheduling stage and
a free scheduling stage based on their SOC. During the constrained scheduling stage,
the EVs participate in the microgrid scheduling by adjusting their charging power.
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While in the free scheduling stage, the EVs are involved in microgrid scheduling by
modulating their charge–discharge rates.

2. A two-layer optimized control architecture is introduced. The lower layer is a dis-
tributed control layer, ensuring the uniform state of charging (SOC) for each EV
through consensus control. The upper layer is an optimization scheduling layer, em-
ploying multiagent reinforcement learning to realize the optimal operational strategy
for the microgrid, thus minimizing operational costs.

3. A novel consensus control method is designed for the lower layer. This method
ensures consistent charging states for all EVs in the constrained scheduling stage and
consistent SOC states for those in the free scheduling stage. Moreover, it provides a
smooth transition from the constrained scheduling stage to the free scheduling stage.
In addition, this method also guarantees that only a subset of EVs needs to receive
upper-layer signals to control all EVs.

4. A novel two-stage MAPPO algorithm is presented for the upper layer. In this algo-
rithm, a novel MAPPO pretraining approach is introduced. By combining pretraining
with the training stage, the computational speed and effectiveness of the algorithm
are significantly enhanced.

The remaining sections of this paper are structured as follows: Section 2 establishes the
microgrid model with EVs; Section 3 details the proposed two-layer, two-stage operational
optimization method for EV-integrated microgrids; Section 4 presents simulation analyses
of the proposed method; and Section 5 offers a comprehensive conclusion.

2. Model of Microgrid with EVs

A salient characteristic of microgrids is their incorporation of a diverse array of energy
sources to ensure a consistent supply of power [22]. The microgrid designed in this study
includes microturbines (MTs), energy storage (ES), photovoltaic power generation (PV),
and wind turbine power generation (WT) in addition to EVs. The microgrid is divided
into two areas: the power generation resource area and the user load area. The power
generation resource area contains PV, WT, MTs, and ES. The user load area contains the
microgrid’s power load and EV charging stations. The energy forms that can be scheduled
in this microgrid include MTs, ES, and EVs. This paper adopts two deep reinforcement
learning agents to compute and provide scheduling reference signals for these schedulable
forms of energy. One deep reinforcement learning agent is located in the power generation
resource area and provides scheduling reference signals for MTs and ES. We call it the
distributed power generation agent (DG agent). Another deep reinforcement learning
agent is located in the user load area and provides scheduling reference signals for EVs. We
call it the EV agent. In summary, the composition of the microgrid designed in this paper is
shown in Figure 1.
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2.1. EVs Model

EVs can serve as an ES medium, participating in the energy scheduling of the micro-
grid. However, unlike traditional ES systems, the storage capacity of EVs varies over time.
At any given moment, the storage capacity of EVs is contingent upon the number of EVs
connected to the microgrid. The more EVs that are connected, the larger the schedulable
storage capacity. Moreover, the charging and discharging processes of EVs need to take into
consideration the electricity requirements of the EV owners. The charging and discharging
procedure of each EV can be expressed as follows:

SOCEV, i(t + 1) =

SOCEV, i(t) +
ηEVPEV, i(t)∆t

EEV,i
PES, i(t) > 0

SOCEV, i(t) +
PEV, i(t)∆t
ζEVEEV,i

PES, i(t) ≤ 0
(1)

where SOCEV, i(t) represents the state of charge of the i-th EV at time t; PEV, i(t) denotes the
charging/discharging power of the i-th EV during time interval t; EEV,i signifies the battery
capacity of the i-th EV; and ηEV and ζEV are, respectively, the charging and discharging
efficiencies of the EV.

The charging and discharging of the EVs are subject to the following constraints:{
Pmin

EV, i < |PEV, i(t)| < Pmax
EV, i PEV, i(t) 6= 0

PEV, i(t) = 0 PEV, i(t) = 0
(2)

SOCmin
EV, i < SOCEV, i(t) < SOCmax

EV, i (3)

where Pch.max
EV, i and Pch.min

EV, i represent the maximum and minimum charging power, respec-
tively, for the i-th EV; Pdis.max

EV, i and Pdis.min
EV, i , respectively, denote the maximum and minimum

discharging power for the i-th EV; and SOCmax
EV, i and SOCmin

EV, i are the maximum and min-
imum SOC, respectively, for the i-th EV. In this study, the costs associated with EVs are
limited to the operational costs of the EV charging stations. The costs generated by the
EVs themselves are borne by the EV owners. It is generally accepted that the operating
costs of EV charging stations comprise staff wages and equipment maintenance costs [23].
This paper assumes a constant operational cost, CEV(t), for the EVs in each time interval.

2.2. MT Model

MTs provide an adjustable power supply to the microgrid by combusting fossil fuels,
effectively reducing the microgrid’s dependency on the external grid. Its fuel cost can be
represented by a quadratic function, as shown in Equation (4).

CMT(t) = aMT(PMT(t))
2 + bMTPMT(t) + cMT (4)

where CMT(t) denotes the fuel cost for the MT during time interval t; PMT(t) represents the
electrical power output (in kW) of the microturbine during time interval t; and aMT, bMT,
and cMT are the fuel cost coefficients for the MT.

The output power of the MT is subject to the following constraints:

Pmin
MT < PMT(t) < Pmax

MT (5)

−RMT,down ≤ PMT(t)− PMT(t− 1) ≤ RMT,up (6)

where Pmin
MT and Pmax

MT represent the maximum and minimum output power, respectively,
of the MT, while RMT,down and RMT,up denote the upward ramp and downward ramp
constraints of the MT, respectively.
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2.3. ES Model

The ES is composed of batteries. It can operate in harmony with renewable energy
sources, which possess inherent variability and unpredictability, thus playing a role in
“peak shaving and valley filling.” This ensures both the reliability and economic viability
of the microgrid. Taking into account the charging and discharging power of the batteries,
as well as the SOC of the ES, the charging and discharging expressions for the ES are

SOCES(t + 1) =

{
SOCES(t) +

ηESPES(t)∆t
EES

PES(t) > 0

SOCES(t) +
PES(t)∆t
ζESEES

PES(t) ≤ 0
(7)

where SOCES(t) represents the SOC of the ES at time t; PES(t) denotes the electrical power
either outputted or absorbed by the ES during time interval t; ηES and ζES are the charging
and discharging efficiencies, respectively, of the ES; and EES signifies the rated capacity of
the ES.

The cost of the ES is constituted by both capacity cost and power cost, as elaborated below:

CES(t) = gEEES + gP|PES(t)|∆t (8)

where CES(t) denotes the cost for the ES during time interval t; gE represents the capacity
coefficient for the ES capacity cost; and gP is the power coefficient for the ES power cost.

The charging and discharging of the ES are subject to the following constraints:{
0 < PES(t) < Pch.max

ES PES(t) > 0
Pdis.max

ES < PES(t) < 0 PES(t) ≤ 0
(9)

SOCmin
ES < SOCES(t) < SOCmax

ES (10)

where Pch.max
ES and Pdis.max

ES , respectively, represent the maximum charging and discharging
power of the ES and SOCmax

ES and SOCmin
ES represent the maximum and minimum states of

charge, respectively, for the ES.

2.4. Microgrid Bus Model

To ensure the complete absorption of renewable energy, it is assumed that all WT and PV
in the microgrid are microgrid-connected. The microgrid encompasses various forms of energy,
and power balance must be maintained at the microgrid bus. Assuming there are m EVs in the
microgrid, the power balance relationship at the microgrid bus can be expressed as

Pgrid(t) +
m

∑
i=1

PEV, i(t) + PMT(t) + PPV(t) + PWT(t) + PES(t) = PL(t) (11)

where Pgrid(t) represents the power exchanged between the microgrid and the external
grid; PPV(t) and PWT(t) denote the output power from PV and WT, respectively; and PL(t)
signifies the power consumed by the loads within the microgrid.

The cost incurred by the microgrid when purchasing electricity from the external grid,
or the revenue earned from selling electricity, can be expressed as:{

Cgrid(t) = σb(t)Pgrid(t) Pgrid(t) > 0
Cgrid(t) = σs(t)Pgrid(t) Pgrid(t) ≤ 0

(12)

where Cgrid(t) denotes the cost associated with the energy exchange between the microgrid
and the external grid and σb(t) and σs(t), respectively, represent the electricity prices for
the microgrid when purchasing from and selling to the external grid. Therefore, the total
operational cost for the microgrid as proposed in this paper can be expressed as

F(t) = CEV(t) + CMT(t) + CES(t) + Cgrid(t) (13)
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where F(t) represents the total operational cost of the microgrid.

3. The Two-Stage, Dual-Layer Distributed Optimization Operational Approach
3.1. Framework of the Two-Stage, Dual-Layer Optimization Operation Approach

In practical, everyday life, domestic EVs are predominantly used for intracity trans-
portation. According to [24], approximately 88% of urban EVs do not exceed a daily distance
of 55 km, and over 95% do not travel more than 100 km daily. The energy consumption
of an EV being is around 15 kWh per 100 km [25], which implies that for an EV with a
battery capacity of more than 20 kWh, reaching a 0.8 SOC level would sufficiently cater to
the daily round-trip energy requirements of most domestic EVs. Given this backdrop, to
fully respect EV owners’ charging demands while maintaining EVs’ ability to participate
in grid scheduling, we divide the EV charging process into two stages. When the SOC of
EVs is between 0 and 0.8, this stage is called the “Constrained Scheduling Stage”. In this
stage, we ensure the vehicle remains charging, but its participation in microgrid scheduling
is possible by adjusting the charging power. When the battery charge is between 0.8 and
1, it is called the “Free Scheduling Stage.” Here, the EV is treated as a storage battery,
contributing to the microgrid’s scheduling via its charging and discharging operations. It is
noted that the SOC of EVs cannot fall below 0.8 at this stage.

Given the above context, we propose a two-layer distributed optimization operation
method. The lower layer is the distributed control layer, where we introduce a novel
consensus control method. This method ensures that EVs in the constrained scheduling
stage are allocated charging power proportionally to their capacity, while those in the free
scheduling stage maintain consistent SOC. The upper layer is the optimization scheduling
layer, which employs multiagent reinforcement learning to calculate the optimal operation
strategy of the microgrid. The advantage of this two-layer approach is that it negates
the need to calculate charging and discharging strategies for individual vehicles. Instead,
all EVs are considered collectively for scheduling. Specifically, the upper layer leverages
deep reinforcement learning agents to provide overall EV scheduling strategies, while the
lower layer employs the consistency control method to automatically translate the upper
layer’s strategies into respective charging or discharging reference signals per vehicle.
Furthermore, as the lower layer’s consensus control ensures consistency in the states of all
EVs, it circumvents any contradictions that might arise due to variations in individual EV
charging/discharging patterns.

For the constrained scheduling stage, we designate the reference signal as the charging
power of the EV. Given the limited range of SOC variation during the free scheduling stage
(0.8–1), excessive charging or discharging power could lead the EV’s SOC to exceed the
stipulated range. Conversely, too little charging or discharging power could potentially
harm the EV’s battery. Therefore, for the free scheduling stage, we designate the reference
signal as the SOC value the EV needs to achieve at the end of each scheduling timestep.
By setting these SOC reference values between 0.8 and 1, we ensure that the EV’s charge
neither falls below 0.8 nor surpasses its maximum capacity. Moreover, these SOC reference
values are set as a series of discrete numbers, with the difference between two adjacent
numbers guaranteeing that the EV’s charging or discharging power will not fall below its
minimum power threshold.

Based on the above analysis, the objective of the lower layer is to make the EV’s
charging power follow the power reference signal provided by the upper layer when the
EV’s SOC is between 0 and 0.8. When the EV’s SOC exceeds 0.8, the goal is to ensure a
linear increase in the EV’s SOC and reach the control reference value by the end of each
scheduling timestep. Meanwhile, the upper layer’s objective is to calculate the optimal
operating strategy for the microgrid through interactions between the EV agent and the DG
agent. Furthermore, the upper layer provides control reference signals for the microgrid’s
EVs, MTs, and ES. The framework of the proposed two-stage, dual-layer optimization
operation approach is depicted in Figure 2.
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3.2. Lower-Layer Consensus Control Method
3.2.1. Consensus Control Basics

Each controller of the EV in the microgrid can be regarded as a consensus agent, and the
communication relationships among multiple consensus controllers can be represented by
graph Gu(vu, ψu, Ku, K0

u). Assuming there are nu agents in the graph,
vu = {vu, 1 · · · , vu, nu} represents the set of nodes, each of which represents a consen-
sus agent. ψu ∈ vu × vu represents the set of edges, representing the communication lines
between nodes. Ku = (Ku

ij)(nu−1)×(nu−1)
represents the weights of edges. If there is a

communication connection between vu,i ∈ vu and vu,j ∈ vu, then ku
ij > 0, otherwise, ku

ij = 0.

K0
u = diag(ku

1,0, · · · , ku
nu ,0) represents the leading adjacency matrix. If vu,i ∈ vu can receive

a reference signal, then ku
i0 > 0, otherwise, ku

i0 = 0. Assuming that each node has a scalar
state signal xi, each node can update its state based on its own state and the state signal
of the nodes it communicates with. Based on the consensus control scheme, the rules for
updating the state of the node can be expressed as follows [26]:

.
xi(t) = ∑

j∈vu

[ku
ij(xj(t)− xi(t)) + ku

i0(xre f − xi(t))] (14)

where
.
xi denotes the differential of the state variable xi. According to [26], if the commu-

nication network graph among consensus agents has a spanning tree, then the following
theorem holds.

Theorem 1. If the update rule defined by (13) is employed, then the states of all nodes will converge
to the reference value xre f , i.e.,

lim
t→∞

xi(t) = xre f (15)

The proof process of the theorem mentioned above can be found in [26]. Notably, the
reference value xre f can also possess dynamics.

3.2.2. Lower-Layer Two-Stage Consistency Control Method

Based on the analysis in Section 3.1 the control objectives for the lower layer can be
formulated as follows: for all i and j less than m, we have the following.
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When 0 < SOC(t) < 0.8, it is in the constrained scheduling stage. One of our aims is for
the charging power of the EVs to be allocated in proportion to their capacity, i.e.,

lim
t→∞
|PEV, i(t)/Pmax

EV, i − PEV, j(t)/Pmax
EV, j| = 0 (16)

We set the capacity ratio η = Pmax
EV, i/Pnom, where Pnom is a constant value. Therefore,

Equation (16) can be expressed as

lim
t→∞
|PEV, i(t)/η − PEV, j(t)/η| = 0 (17)

In order to facilitate representation, we let Pk,i(t) = PEV, i(t)/η and treat Pk,i(t) as
the object for consensus control. We aim for Pk,i(t) to follow the control reference signal
provided by the upper layer, that is:

lim
t→∞
|Pk,i(t)− Pre f (t)| = 0 (18)

where Pre f is the power reference signal of the upper-layer EV agent. According to (13),
when 0 < SOC < 0.8, the control expression of the EV can be written as

.
Pk,i(t) =

m

∑
j=1

[kP
ij(Pk,j(t)− Pk,i(t)) + kP

i0(Pre f (t)− Pk,i(t))] (19)

In accordance with Theorem 1, Equation (19) ensures that the charging power of each
EV is allocated proportionally to its capacity and guarantees that Pk,i follows the power
reference signal provided by the upper-layer EV agent.

When 0.8 < SOC(t) < 1, it is in the free scheduling stage. We let the reference signal for the
EV’s SOC be SOCk,i, then the control objective for consensus control can be expressed as

lim
t→∞
|SOCk,i(t)− SOCk,j(t)| = 0 (20)

lim
t→∞
|SOCk,i(t)− SOCk,re f (t)| = 0 (21)

In the equation, SOCk,re f represents the SOC reference signal provided by the upper-
layer EV agent. The updated expression for SOCk,i can be written as

S
.

OCk,i(t) =
m

∑
j=1

[kS
ij(SOCk,j(t)− SOCk,i(t)) + kS

i0(SOCre f (t)− SOCk,i(t))] (22)

It is worth noting that the SOCk,i(t) here does not represent the actual charge of the EV.
Instead, it signifies the SOC that the EV should attain at the end of this scheduling timestep.
Given that only a few controllers are directly connected to the upper-layer agents, based on
Theorem 1, Equation (22) ensures that all EVs can attain the SOC level provided by upper
layer at the end of each scheduling timestep.

As analyzed in Section 3.1, our control objective during the free scheduling stage is to
linearly increase or decrease the SOC of the EV by controlling its charging and discharging
power. The aim is to ensure that at the end of each scheduling timestep, the SOC level of
each EV matches the reference value provided by the upper layer. Hence, we have designed
the charging and discharging formula for the EV during the free scheduling stage as

PEV, i(t) =
Pmax

EV, i · (SOCk,i(t)− SOCEV, i(t))
Ti − t(mod Ti) + κ

(23)

where Ti denotes the length of each scheduling timestep, while t(mod Ti) represents the
remainder when time t is divided by the scheduling timestep length Ti. κ is an extremely
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small positive number that is intended to prevent the divergence of results caused by a
denominator of zero.

In summary, the lower-level controller designed in this study can be expressed as

.
Pk,i(t) =

m
∑

j=1
[kP

ij(Pk,j(t)− Pk,i(t)) + kP
i0(Pre f (t)− Pk,i(t))]

PEV, i(t) = Pk,i(t) · η
0 < SOC(t) < 0.8

S
.

OCk,i(t) =
m
∑

j=1
[kS

ij(SOCk,j(t)− SOCk,i(t)) + kS
i0(SOCre f (t)− SOCk,i(t))]

PEV, i(t) =
Pmax

EV, i ·(SOCk,i(t)−SOCEV, i(t))
Ti−t(mod Ti)+κ

0.8 < SOC(t) < 1

(24)

To enhance the convergence rate of the consensus algorithm, this study adopts the
improved average consensus method as detailed in [27,28] to determine the values of kP

ij,

kS
ij, kP

i0, and kS
i0 in Equation (24). Their expressions are presented as follows:

kP
ij = kS

ij =

{
λ/[(ni + nj)/2] i−th and j−th EVs have communication links.

0 i−th and j−th EVs have no communication links.
(25)

kP
i0 = kS

i0 =

{
λ/[(ni + n0)/2] i−th EV and upper layer have communication links.

0 i−th EV and upper layer have no communication links.
(26)

where ni and nj, respectively, denote the number of communication links connected to
the i and j EVs and n0 represents the number of communication links connected to the
upper-layer EV agent.

3.3. Upper-Layer Optimization Scheduling Method
3.3.1. Markov Decision Process in Microgrids with EVs

The upper-layer optimization scheduling for the microgrid proposed in this study
utilizes a multiagent deep reinforcement learning approach. The decision-making process
of deep reinforcement learning can be described as a Markov decision process (MDP) [29].
An MDP typically comprises five elements, namely,

{
S, A, PS,S′ , r, γ

}
. Specifically, S

represents the state space, which is the set of environment-state information observable
by the agent; A denotes the action space, signifying the set of actions that the agent can
undertake; Ps,s′ indicates the state transition probability, representing the probability that
the environment transitions from state S to state S′ when the agent takes action a; r is the
immediate reward, signifying the immediate reward the environment gives to the agent
upon taking action a in state S; and γ is the discount factor, depicting the influence of the
current action on the rewards obtained by the agent in future timesteps. For the microgrid
discussed in this paper, its state space, action space, and reward function can be designed
as follows:

• State space

The state space refers to the set of environmental information observable by the deep
reinforcement learning agent. The state space of the EV-inclusive microgrid designed
in this study encompasses operational time, user load, WT power, PV power, total EVs
power, microgrid bus power, MT power, ES power, ES SOC, and external grid time-of-use
electricity prices. EVs in the microgrid are controlled by the EV agent, whereas MTs and
ES are controlled by the DG agent. As the EV and DG agents operate in different areas,
the environmental state variables they can observe differ. Variables observable by the EV
agent include system operational time, total EV power, user load, microgrid bus power,
and external grid time-of-use prices. Variables observable by the DG agent include system
operational time, PV power, WT power, MT power, ES power, and ES SOC. Thus, the state
spaces for the EV and DG agents can be separately described as

sEV,t = [t, PEV,sum(t), PL(t), Pgrid(t), σb(t), σs(t)] (27)
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sDG,t = [t, PPV(t), PWT(t), PMT(t), PES(t), SOCES(t)] (28)

where SEV,t denotes the state space of the EV agent; SDG,t represents the state space of the
DG agent; and PEV,sum indicates the total power of the EVs, which can be acquired from
the microgrid bus connected to the EV charging station.

• Action space

In the microgrid designed for this study, the actions output by the EV agent encompass
the power reference signal and the SOC reference signal for EVs. The actions output by the
DG agent comprise the power reference signals for both MTs and ES. Consequently, the
action spaces for the EV and DG agents can be, respectively, defined as

aEV,t = [Pre f (t), SOCre f (t)] (29)

aDG,t = [PMT, re f (t), PES, re f (t)] (30)

where aEV,t denotes the action space of the EV agent at time t; aDG,t represents the action
space of the DG agent at time t; and PMT, re f (t) and PES, re f (t) respectively indicate the
power reference signals for MTs and ES.

• Reward function

After the selection of any action by the deep reinforcement learning agent, the envi-
ronment provides a reward. However, if the chosen action leads the microgrid to operate
outside the environmental constraints, a penalty is given by the environment. In this study,
the environmental constraint penalties arise from the ramping constraints of MT and the
SOC constraints of the energy storage. The penalty expressions are, respectively:

Cc
MT(t) = λc

MT ·max
{

PMT(t)− PMT(t− 1)− Rup, 0
}
− λc

MTmin{PMT(t)− PMT(t− 1) + Rdown, 0} (31)

CS
ES(t) = λS

ES · EESmax{SOCES(t)− SOCmax
ES , 0} − λS

ES · EESmin
{

SOCES(t)− SOCmin
ES , 0

}
(32)

where Cc
MT denotes the penalty when the difference in output power between two consecutive

time instants for MT exceeds its ramping constraints. λc
MT represents the penalty coefficient for

the MT’s ramping constraints. CS
ES(t) signifies the penalty when the SOC of the ES exceeds its

constraints. λS
ES is the penalty coefficient for the energy storage’s SOC constraints.

For ES, the SOC at the final moment of the current scheduling period is taken as
the SOC at the beginning of the next scheduling period. In order to ensure that the SOC
at the end of the current scheduling period does not impact the scheduling ability of
the energy storage in the following period, we desire the SOC at the conclusion of each
scheduling period to be as close as possible to its initial value. Therefore, we have designed
an exponential form for the ES’s SOC reset penalty:

Cr
ES(t) = λr

ES · (eδ·t − 1) · [SOC(t)− SOC(0)]2 (33)

where Cr
ES denotes the ES’s reset penalty; λr

ES represents the penalty coefficient for the reset
penalty; and δ signifies the exponential coefficient for the reset penalty. Within a scheduling
period, the initial reset penalty for ES is minimal. As the scheduling time progresses, the
reset penalty for energy storage will increase, reaching its maximum at the end of the
scheduling period.

In summary, the upper-layer optimization scheduling primarily focuses on economic
considerations. It aims to minimize the operational costs of the microgrid within a schedul-



Mathematics 2023, 11, 4563 12 of 33

ing period by judiciously controlling the EVs, MTs, and ES. Thus, the total reward function
of the EV and DG agents can be expressed as

R = −
T

∑
t=1

[F(t) + Cc
MT(t) + CS

ES(t) + Cr
ES(t)] (34)

where R represents the total reward of the EV and DG agents.

3.3.2. Proximal Policy Optimization Algorithm

Proximal policy optimization (PPO) is an on-policy deep reinforcement learning
method developed by OpenAI in 2017, and it serves as the default deep reinforcement
learning algorithm utilized by OpenAI [30]. Compared with off-policy deep reinforcement
learning algorithms like deep Q-network (DQN) and deep deterministic policy gradi-
ent (DDPG), the PPO algorithm typically exhibits superior stability and convergence.
The PPO algorithm is generally composed of one critic network and two actor networks.
The training process of the PPO algorithm can be divided into three stages: data collection,
data processing, and network training, as illustrated in Figure 3.
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Figure 3. The training process of the PPO algorithm.

As depicted in Figure 3, we have S = {st, st+1, · · · , st+T−1}, a = {at, at+1, · · · , at+T−1},
r = {rt, rt+1, · · · , rt+T−1}, SB = {s1, s2, · · · , sB}, and aB = {a1, a2, · · · , aB}. During the
data collection stage, the agent’s actor network outputs a probability distribution of various
actions based on the environmental state st. Subsequent action at is generated through probability
sampling. The environment then provides the immediate reward rt for action at under state
st. Next, the agent stores the environmental state S, action a, and immediate reward r into the
experience replay buffer D. It is important to note that during this data collection stage, only the
data from the agent’s interaction with the environment is stored in D, and there is no update
occurring within the agent’s neural networks. Once the replay buffer is filled, the data collection
stage ends, and the data processing stage begins.

During the data processing stage, the PPO’s critic network initially generates an
evaluation Vω(st) for each state st based on the states in D. Here, ω represents the neural
network parameters of the critic network during the data processing stage. It is noteworthy
that the critic network does not undergo any parameter updates in this stage; thus, ω
remains constant. Subsequently, immediate rewards r for all timesteps are retrieved from
D. The advantage estimation At for each timestep is then derived using the following two
equations [31]:

δt = rt + γVω(st+1)−Vω(st) (35)

At = δt + γδt+1 + · · ·+ · · ·+ γT−t+1δT−1 (36)
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After obtaining the advantage estimation At for each step, the target value for evalua-
tions across all timesteps, denoted as yt, is computed using the subsequent equation:

yt = At + Vω(st) (37)

In the final step, the obtained At and yt are stored in D to form the dataset
{st, at, rt, At, yt}T

t=1. Subsequently, the data sequences within the replay buffer are ran-
domized, transitioning into the network training stage.

During the network training stage, the PPO algorithm employs two actor networks.
One of these is used for decision-making interactions with the environment post-training;
this is termed the “actor-new” network. The other is used to regulate the magnitude of
updates to the actor-new network, preventing excessive updates that could destabilize the
training process. As this latter actor network remains static during the update of the actor-
new network and only assimilates the updated parameters from the actor-new network
after its update, it is termed the “actor-old” network.

During the training process, the agent sequentially retrieves B batches of data from
the beginning of D and reindexes these data as {si, ai, ri, Ai, yi}B

i=1. Subsequently, all the
action data ai from these B batches are inputted simultaneously into both the actor-new
and actor-old networks. Each actor network then produces the probability distributions
πθ,new(at|st) and πθ,old(at|st) for potential output actions under each state si. The policy
gradient ∆θ for the parameters of the actor-new network, θ, is then computed using the
following formula:

zt(θ) =
πθ,new(at|st)

πθ,old(at|st)
(38)

f (zt(θ), At) = min(zt(θ)At, clip(zt(θ), 1− ε, 1 + ε)At) (39)

∆θ =
1
B

B

∑
i=1
{∇θ f (zi(θ), Ai)} (40)

In (38)

clip(zt(θ), 1− ε, 1 + ε) =


zt(θ) 1− ε ≤ zt(θ) ≤ 1 + ε
1− ε zt(θ) < 1− ε
1 + ε zt(θ) > 1− ε

(41)

where ∇θ f (·) represents the gradient of the function f (·) with respect to the parameter θ.
ε is a positive number between 0 and 1. Subsequently, with the aim of maximizing the
policy gradient ∆θ, the gradient ascent method is employed to update the parameters of
the actor-new network. Concurrent with the update of the actor network, all si from the
B batches are fed into the critic network, which then produces the value estimate Vω(si)
for each state si. The policy gradient ∆ω for the critic network’s parameters ω is then
determined using the following equation:

∆ω =
1
B

B

∑
i=1

{
∇ω(yi −Vω(si))

2
}

(42)

Subsequently, with the objective of minimizing the policy gradient ∆ω, the gradient
descent method is employed to update the parameters of the critic network, thus completing
one training iteration of neural network training within the PPO algorithm. In the next
training iteration, data are fetched from the second dataset onwards in sets of B batches.
This process of parameter updating continues in a similar fashion. Once the data from
these B batches extend to the final set in D and the neural network parameters are updated
accordingly, one cycle of neural network training is finalized. After executing multiple
training cycles, the network training stage concludes. At this juncture, the neural network
parameters θ of the actor-new network are assigned to the neural network parameters θold
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of the actor-old network. D is then emptied, and the system reenters the data collection
stage to newly acquire interaction data between the agent and the environment.

3.3.3. Multiagent PPO Algorithm

To enhance the safety and flexibility of microgrid operations, the microgrid designed
in this study utilizes two distinct deep reinforcement learning agents to compute the
optimal scheduling strategy for the microgrid. The EV agent is responsible for emit-
ting reference signals for EVs, while the DG agent handles the power reference signals
for MT and ES. Designing separate agents to govern various energy units in the micro-
grid offers a key advantage: if one deep reinforcement learning agent malfunctions or
incurs damage, it does not hamper the decision-making capabilities of the other agent.
This structure thus bolsters the safety and flexibility of the microgrid’s operations. More-
over, as distributed energy resources and EV charging stations are located om different
areas within the microgrid, employing distinct agents to manage them can alleviate com-
putational strain and diminish communication costs in the microgrid. Based on the above
analysis, we adapt the centralized training and decentralized decision-making approach,
expanding the PPO algorithm to a multiagent PPO (MAPPO) algorithm in the context of
the microgrid environmental model discussed in this paper.

For notation convenience, the set of state information observed by both the EV and
DG agents is termed as the global state information, while the sets of state information
individually perceived by the EV and DG agents are referred to as their respective local
state information. The training process of the multiagent PPO algorithm is characterized
by the fact that during the data collection stage, the state and action quantities of both the
EV and DG agents are aggregated into D, i.e., st = (sEV,t, sDG,t) and at = (aEV,t, aDG,t).
During the network training stage, the actor networks of the two agents update based
on their local state information, while the critic network updates are influenced by global
state data. Using the EV agent as an example, during the data processing and network
updating stages, the critic network of the EV agent derives evaluation values Vω(st) and
Vω(st) according to the global state information st retrieved from D. Subsequently, the
neural network parameters ω of the critic network are updated based on Vω(st) and
Vω(st). The actor-new and actor-old networks of the EV agent, meanwhile, generate action
probabilities πθ,new(aEV,t|sEV,t) and πθ,old(aEV,t|sEV,t) based on the local observations sEV,t
from D. Finally, the neural network parameters θnew and θold for the actor-new and actor-
old networks are subsequently updated based on πθ,new(aEV,t|sEV,t) and πθ,old(aEV,t|sEV,t),
respectively. Consequently, the neural network parameter update formulas for the critic
networks of the EV and DG agents, ωEV and ωDG, are, respectively, given as

∆ωEV =
1
B

B

∑
i=1

{
∇ωEV(yi −VωEV(si))

2
}

(43)

∆ωDG =
1
B

B

∑
i=1

{
∇ωDG(yi −VωDG(si))

2
}

(44)

The update formulas for the neural network parameters ωEV and ωDG of the critic
networks for the EV and DG agents are, respectively, given as

zEV,t(θEV) =
πθEV,new(aEV,t|sEV,t)

πθEV,old(aEV,t|sEV,t)
(45)

zDG,t(θDG) =
πθDG,new(aDG,t|sDG,t)

πθDG,old(aDG,t|sDG,t)
(46)

∆θEV =
1
B

B

∑
i=1

{
∇θEV f (zEV,i(θEV), Ai)

}
(47)
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∆θDG =
1
B

B

∑
i=1

{
∇θDG f (zDG,i(θDG), Ai)

}
(48)

We assume that each episode of the agent’s training comprises T timesteps, and the training
procedure is repeated M times to guarantee the convergence of the algorithm. The detailed
workflow of the MAPPO algorithm for the microgrid with EVs is illustrated in Algorithm 1.

Algorithm 1: MAPPO-Based Optimized Scheduling Method for Microgrid with EV

1 Initialize the neural networks and the parameter setting for the microgrid model at t = 0.
2 Input : environment, observation space st and action space at.
3 Output: optimal scheduling strategies for EVs, energy storage, and gas turbines
4 for episode = 1 to M do
5 Reset environment (t = 0) to obtain observation sEV,t for EV agent and sDG,t for DG agent.
6 for t = 1 to T do
7 The actor-new network of EV agent and DG agent generates probability distributions for each action.
8 EV agent and DG agent select action aEV,t and aDG,t by probability sampling, respectively
9 EV agent obtain observation sEV,t, action aEV,t and reward rt. DG agent obtain observation sDG,t, action aDG,t and reward rt.
10 Merge {sEV,t, aEV,t, rt} and {sDG,t, aDG,t, rt} into {st, at, rt} and store {st, at, rt} in D
11 end
12 Critic network compute {Vω(st)}T

t=1,
13 Compute {At}T

t=1 and {yt}T
t=1 use (36) and (37), respectively

14 Gat date {st, at, rt, At, yt}T
t=1 and store them in D

15 for k = 1, 2, . . ., K
16 Shuffle the data’s order and renumber in D
17 for j = 0, 1, · · · , T/B− 1
18 Select B group of data {si, ai, ri, yi, Ai}

B(j+1)
t=1+Bj

19 Compute Calculate the gradients ∆ωEV, ∆ωDG, ∆θEV, ∆θDG by Equations (43), (44), (47), and (48).

20
Apply gradient descent on ωEV, ωDG using ∆ωEV, ∆ωDG by Adam
Apply gradient ascent on θEV, θDG using ∆θEV, ∆θDG by Adam

21 end
22 end
23 update θEV, old ← θEV and θDG, old ← θEV
24 Empty D
25 end

3.3.4. Two-Stage PPO Training Approach

Although the PPO algorithm can address nonlinear optimization problems, it still
tends to converge slowly and may easily settle into local optima. To address these issues,
this paper proposes a two-stage PPO agent training method, as depicted in Figure 4.
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Figure 4. The two-stage PPO agent training method proposed in this paper.
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The two-stage PPO agent training method proposed in this paper consists of a pre-
training stage and a training stage, which are described in detail as follows:

• Stage 1: pre-training stage

First, a pretraining agent is prepared for the EV agent and DG agent, i.e., pretraining
EV agent and pretraining DG agent, respectively. For convenience in description, we denote
the pretraining EV agent and pretraining DG agent as pre-agents while defining the EV and
DG agents as proto-agents. The structure of the pre-agents is identical to the proto-agents,
maintaining the same dimensionality in the action space; however, the number of actions
available for selection in each dimension is much less in the pre-agents. We define the action
space of pre-agents as the pretraining action space and the action space of the proto-agents
as the prototype action space.

During the pretraining stage, both pretraining agents and proto-agents observe state
information S from the environment independently and generate actions apre

t and at, respec-

tively, where apre
t =

{
apre

EV,t, apre
DG,t

}
, apre

EV,t = [Ppre
re f (t), SOCpre

re f (t)], and

apre
DG,t = [Ppre

MT, re f (t), Ppre
ES, re f (t)]. Ppre

re f (t), SOCpre
re f (t) represent the reference signal for the

charging and discharging of EVs output by the pretraining EV agent. Ppre
MT, re f (t), Ppre

ES, re f (t)

represent the power reference signals for MTs and ES output by the DG agent. Both apre
t

and at are in discrete action spaces, but the number of available actions in each dimension
of apre

t is much lesser compared to at.
Upon receiving the action information apre

t output by the pretraining agents, the
environment updates its state and provides immediate rewards R as per Equation (33).
Concurrently, utilizing actions apre

t and at, rewards for the EV and DG agents during the
pretraining stage, denoted as REV

pre and RDG
pre , are computed using the following equation:

REV
pre = −K′

T

∑
i=1

[(Ppre
re f (i)− Pre f (i))

2
+ (SOCpre

re f (i)− SOCre f (i))
2
] (49)

RDG
pre = −K′

T

∑
i=1

[(Ppre
MT, re f (i)− PMT, re f (i))

2
+ (Ppre

ES, re f (i)− PES, re f (i))
2
] (50)

Ultimately, the pre-agents update their internal neural networks based on R, and the
EV and DG agents update their internal neural networks independently based on REV

pre

and RDG
pre , respectively. By repeating the above process multiple times, pretrained original

agents are obtained.
It is noteworthy that during the pretraining stage, only the actions output by the

pre-agents interact with the environment and receive rewards R from the environment,
aimed at finding the optimal scheduling strategy under the pretraining action space.
The goal of the proto-agents is to make their output actions as close as possible to the
actions output by the pre-agents. Additionally, both the EV and DG agents within the proto-
and pretraining agents adopt the centralized training method depicted in Algorithm 1,
while a decentralized training method is applied between the proto- and pretraining agents.
Since the number of choices available to the pre-agents is small, the number of policies that
can be composed is also relatively fewer, making it easier for pre-agents to find the optimal
scheduling strategy. Furthermore, from Equations (48) and (49), it can be seen that the reward
function of the proto-agents is linear; thus, their learning process is tantamount to imitation
learning, which means the update process for the proto-agents is also relatively rapid.

• Stage 2: training stage

After the completion of the pretraining process, we extract the pretrained proto-
agents. In the training stage, we allow the proto-agents to interact with the environment,
output actions to the environment, and receive rewards R according to Equation (33).
The EV and DG agents, with the objective of maximizing reward R, employ the centralized
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training method depicted in Algorithm 1 to learn the optimal scheduling strategy within
the prototype action space.

The two-stage training approach described above is conducted in an offline simulation
environment. Upon the completion of the proposed two-stage training, the MT and ES
agents can then proceed to utilize their respective actor networks to make distributed online
decisions in the real-world microgrid environment. In conclusion, the overall flow of the
two-stage, dual-layer optimized operation method for microgrids proposed in this paper is
illustrated in Figure 5.
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4. Simulation Analysis

This paper designs a microgrid structure that incorporates PV, WT, MT, ES, and an
EV charging station. We assume that the number of charging piles in the EV charging
station of the microgrid is sufficient for daily EV usage. We set up 12 EV charging piles
in the microgrid EV charging station, and the adjacent charging piles interact with each
other through communication links to exchange status information. The spatial structure
of the EV charging station is designed as shown in Figure 6. We assume that the microgrid
has three types of EVs with capacities of 40 kWh, 50 kWh, and 60 kWh. The original
arrival time of EVs is simulated based on the distribution of taxi shift time in Beijing [32].
The connection time of EVs is set to 8–11 h. The initial SOC levels of EVs are assumed
to follow a Gaussian distribution with means and standard deviations of 60% and 10%,
respectively [33]. In summary, the relevant connection information for the 12 EVs in the
microgrid is shown in Table 1.
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Table 1. Connection information for 12 EVs in the microgrid.

EV No. EV Battery
Capacity/kW·h Time of Arrival Connection

Duration/h Initial SOC

1 60 08:00 10 0.8
2 50 11:00 10 0.7
3 50 14:00 8 0.7
4 80 16:00 9 0.8
5 60 16:00 10 0.9
6 60 16:00 8 0.8
7 50 18:00 9 0.6
8 80 18:00 10 0.7
9 60 18:00 10 0.8
10 60 20:00 10 0.6
11 80 20:00 11 0.4
12 60 23:00 8 0.5

The PV power, WT power, and load data within the microgrid are depicted in Figure 7.
The electricity prices for buying and selling from the external grid in the microgrid are
illustrated in Table 2 [34]. The key parameters of the major equipment within the microgrid
are presented in Table 3. The state spaces of the pre-agents and the proto-agents are
identical, with the upper and lower bounds of each variable illustrated in Table 4. In this
study, the action spaces of all agents are discrete. The action spaces of the pre-agents differ
from those of the proto-agents, with the possible values of each agent at each dimension
of action presented in Table 5. As can be inferred from Table 5, the pre-agents have only
three possible values at each dimension of action, indicating that the action space of the
pre-agents has significantly fewer possible values at each dimension of action compared to
that of the proto-agents.
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Table 2. Time-of-use pricing for electricity purchase and sale of the microgrid from the external grid.

Time/h Electricity Purchase Price
(CNY/(kW·h))

Electricity Sales Price
(CNY/(kW·h))

1–6, 22–24 0.37 0.28
7–9, 14–17, 20, 21 0.82 0.65

10–13, 18, 19 1.36 0.78

Table 3. The relevant parameters of the devices in the microgrid.

Main Parameters Values Main Parameters Values

Pmin
EV, i 0.02·EEV,i kW R1down 80 kW

Pmax
EV, i EEV,i kW R1up 80 kW

Pmin
MT 20 kW EES 500 kW·h

Pmax
MT 200 kW SOCES(0) 0.5

Pch.max
ES 50 kW α 0.0013

Pdis.max
ES −50 kW β 0.553

SOCmin
EV, i 0.1 c 14.17

SOCmax
EV, i 1 gE 0.5

SOCmin
ES 0.1 gP 10

SOCmax
ES 0.9 ηEV, ηES 1

Pnom 60 kW ζEV, ζES 1

Table 4. The upper and lower boundaries of each variable in the state space.

Variables Agent Lower Boundary Upper Boundary

t EV and DG 0:00 24:00
PEV,sum EV 0 kW 750 kW

PL EV 0 kW 500 kW
Pgrid EV −1000 kW 1000 kW
σb

EV 0 CNY 2 CNY
σs

EV 0 CNY 2 CNY
PPV DG 0 kW 200 kW
PWT DG 0 kW 300 kW
PMT DG 0 kW 200 kW
PES DG −50 kW 50 kW

SOCES DG 0 1

Table 5. All possible values for each variable in the action space.

Variables Agent All Possible Values

Ppre
re f Pre-training EV {3, 15, 30}

SOCpre
re f Pre-training EV {0.8, 0.9, 1}

Ppre
MT, re f Pre-training DG {20, 110, 200}

Ppre
ES, re f Pre-training DG {−50, 0, 50}
Pre f EV {3, 6, 9, 12, ···, 60}

SOCre f EV {0.8, 0.82, 0.84, 0.86, ···, 1}
PMT, re f DG {20, 25, 30, 35, ···, 200}
PES, re f DG {−50, −45, ···, −5, 0, 5, ···, 45, 50}
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We employ the pretraining method proposed in this study for 500 episodes.
During the pretraining stage, the pre-agents interact with the environment to identify
the optimal scheduling strategy of the microgrid under the pretrained action space. Proto-
agents mimic the actions of their respective pre-agents. After the completion of pretraining,
we extract the pretrained proto-agents and allow them to interact with the environment for
800 episodes to seek the optimal scheduling strategy of the microgrid under the prototype
action space. The reward curves of the agent training process during the pretraining and
training stages are illustrated in Figures 8 and 9, respectively.
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Figure 8. The reward curve of pre-agents and proto-agents during pretraining stage. (a) The reward
curve of pre-agents during pretraining. (b) The reward curve of proto-agents during pretraining.
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Figure 9. Reward curve and constraint punishment curve for agents in the training stage.
(a) Reward curve. (b) Constraint punishment curve.

Figure 8 depicts the reward curves of the pre-agents and the proto-agents during the
pretraining stage. As seen in Figure 8a, during the pretraining stage, due to the smaller
action space of the pre-agents, they are able to quickly find the optimal operating strategy for
the microgrid. Concurrently, as evidenced by Figure 8b, through the process of pretraining,
the proto-agents are gradually able to reduce the disparity in output actions with the pre-
agents, thereby initializing the neural networks of the proto-agents. After 300 episodes of
pretraining, the reward curves of the proto- and the pretrained agents essentially stabilize.
After 500 episodes of pretraining, we retain the proto-agents, allowing them to interact with
the microgrid environment to compute the optimal operating strategy for the microgrid
under prototype action space. As indicated by Figure 9, after 600 training episodes, the
reward curve of the proto-agents essentially converges, signifying that the agents have
discovered the optimal operating strategy for the microgrid under the prototype action
space. After training the proto-agents for 800 episodes, we acquire the well-trained proto-
agents. We deploy them for decision-making in the microgrid environment, obtaining the
24 h control reference signals provided by the EV and DG agents as illustrated in Figure 10.
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Figure 10. The 24 h control reference signals provided by the EV and DG agents. (a) Control reference
signal provided by the EV agent. (b) Control reference signal provided by the DG agent.

4.1. Analysis of Optimized Operation Results for EVs

Based on the control reference signals from the EV and DG agents, the charging and
discharging processes of the 12 EVs during the time they are connected to the microgrid
are depicted in Figure 11.
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Figure 11. The charging and discharging processes of the 12 EVs during the time they are connected
to the microgrid. (a) EV1. (b) EV2. (c) EV3. (d) EV4. (e) EV5. (f) EV6. (g) EV7. (h) EV8. (i) EV9.
(j) EV10. (k) EV11. (l) EV12.

According to Table 6, the time when the SOC of 12 EVs is greater than or equal to
0.8 as a percentage of the total time connected to the microgrid can be obtained based on
Figure 11. From Table 6, it can be inferred that the two-stage control architecture ensures
that the SOC of all EVs exceeds 0.8 for over 60% of the time they are connected to the
microgrid. In other words, except for a small period of time when EVs are first connected
to the microgrid, the EVs can meet daily travel needs at any other time. Therefore, this
two-stage control architecture fully respects the rights and interests of EV owners, enabling
them to freely use their EVs for longer periods of time. In addition, the situation where
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the SOC of EVs is less than 0.8 only exists for a period of time immediately after EVs are
connected to the microgrid, and this charging method is also more in line with the driving
habits of most vehicle owners. Finally, due to the stipulations within this paper, microgrids
exclusively levy charges for the electrical energy consumed by EVs during the constrained
scheduling phase, while abstaining from any fees for EV charging and discharging during
the unrestricted scheduling phase. Consequently, Table 6 reveals that the billing duration
for all EVs remains below 40% of the total time they are connected to the microgrid.
Notably, for EVs 1, 4, 5, 6, and 9, the microgrid refrains from imposing any charges.
Furthermore, during the constrained scheduling phase, the optimization methodology
proposed in this study restricts EVs to charging only, thereby precluding any increase in EV
charging costs. In summary, the method posited in this paper ensures both EV participation
in microgrid optimization scheduling and user satisfaction.

Table 6. The SOC of 12 EVs is greater than or equal to 0.8 as a percentage of the total time connected
to the microgrid.

EV No. Percentage EV No. Percentage

1 100% 7 60.97%
2 80.19% 8 79.97%
3 76.21% 9 100%
4 100% 10 74.90%
5 100% 11 63.31%
6 100% 12 77.96%

To demonstrate the superiority of the method for optimizing the operation of EVs
proposed in this article, we compare it with the traditional charging method for EVs in
microgrids. In the traditional charging method for EVs in microgrids, all EVs start charging
immediately upon arrival at the microgrid until they are fully charged. We assume that
the charging speed of each EV is such that the SOC of the EV increases by 0.2 per hour.
The load level of the microgrid with and without EVs within 24 h is shown in Figure 12.
From Figure 12, it can be seen that the connection of EVs will greatly increase the load
fluctuation of the microgrid and increase the operational risk of the microgrid. In addition,
combined with Table 2, it can be seen that the load added by EVs charging is mostly
concentrated in high electricity price periods, which indicates that the connection of EVs
will also greatly increase the cost of purchasing electricity from external power grids for the
microgrid. The load level of the microgrid obtained by the optimization operation method
proposed in this paper is shown in Figure 13. By comparing it with the load level of a
microgrid without an EV scheduling strategy for 24 h, we find that the scheduling strategy
obtained in this article can reduce the load level from 12 to 21 and transfer the load during
this period through EV charging and discharging to other periods. This reduces the load
fluctuation of the microgrid and also reduces its electricity purchasing cost from external
power grids.
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Figure 13. The load level of the microgrid obtained by the optimization operation method proposed
in this paper.

4.2. Analysis of Lower-Layer Consistency Control Effectiveness in the Microgrid

To validate the effectiveness of the lower-layer consensus control for EVs within the
microgrid, we use as examples the charging and discharging power and SOC changes
of EVs numbered 7, 8, and 9. As illustrated in Figure 14, these three EVs connect to
the microgrid at 17:00, with their initial SOCs at the connection being 0.6, 0.7, and 0.8,
respectively. The capacity ratios of the three EVs are 5:8:6. Upon connection, EVs 7 and
8 enter the constrained scheduling stage, as their SOC is less than 0.8. EV 9, whose SOC
equals 0.8 at connection, enters the free scheduling stage postconnection. As depicted in
Figure 14a, the output power of the two EVs in the constrained scheduling stage is allocated
in a 5:8 ratio. As can be seen in Figure 14b, the EV in the free scheduling stage is able
to follow the reference signals provided by the upper-layer deep reinforcement learning
agents effectively.

Mathematics 2023, 11, x FOR PEER REVIEW 25 of 34 
 

 

microgrid at 17:00, with their initial SOCs at the connection being 0.6, 0.7, and 0.8, respec-
tively. The capacity ratios of the three EVs are 5:8:6. Upon connection, EVs 7 and 8 enter 
the constrained scheduling stage, as their SOC is less than 0.8. EV 9, whose SOC equals 
0.8 at connection, enters the free scheduling stage postconnection. As depicted in Figure 
14a, the output power of the two EVs in the constrained scheduling stage is allocated in a 
5:8 ratio. As can be seen in Figure 14b, the EV in the free scheduling stage is able to follow 
the reference signals provided by the upper-layer deep reinforcement learning agents ef-
fectively. 

 
(a) 

  
(b) 

Figure 14. Power changes of the three EVs EV7, EV8, EV9. (a) Changes in PEV,i for three EVs. (b) 
Changes in Pk,i for three EVs. 

As depicted in Figure 15, the SOC of EV 7 reaches 0.8 between 21:00 and 22:00, and 
the SOC of EV 8 reaches 0.8 at 20:00. Once the SOC of the EVs reaches 0.8, they enter the 
free scheduling stage and autonomously adjust their output power according to the SOC 
reference signals. From Figure 15, it can be observed that during the free scheduling stage, 
the three EVs can meet the SOC reference signals at the end of each scheduling timestep, 
with the SOC linearly increasing or decreasing within each scheduling timestep. In addi-
tion, after entering the free scheduling stage, the SOC of all three EVs do not fall below 
0.8. 

 
Figure 15. Changes in SOC of the three EVs EV7, EV8, and EV9. 

In conclusion, based on the foregoing analysis, it can be inferred that the lower-layer 
control method for EVs proposed in this paper is capable of ensuring that the output 
power of EVs in the constrained scheduling stage aligns with the power reference signal 
Pref provided by the upper-layer EV agents. Concurrently, it allows the SOC of EVs in the 
free scheduling stage to undergo linear variations, achieving the SOC reference values 
provided by the EV agent at the end of each scheduling timestep. 

  

−4

−2

0

2

4

6

8

EV7 is connected
EV8 and 9 is connected

Time
11:00 15:00 19:00 23:00 03:00 07:00

PE
V

,i/k
W

EV8
EV7

EV9

−4

−2

0

2

4

6

8

EV7 is connected
EV8 and 9 is connected

EV9
EV8
EV7

Pk
,i/k

W

Time
11:00 15:00 19:00 23:00 03:00 07:00

Pk,ref

0.5

0.6

0.7

0.8

0.9

1

EV7 is connected
EV8 and 9 is connected

SOCref

SO
C

Time
11:00 15:00 19:00 23:00 03:00 07:00

EV9
EV8
EV7

Figure 14. Power changes of the three EVs EV7, EV8, EV9. (a) Changes in PEV,i for three EVs.
(b) Changes in Pk,i for three EVs.

As depicted in Figure 15, the SOC of EV 7 reaches 0.8 between 21:00 and 22:00, and
the SOC of EV 8 reaches 0.8 at 20:00. Once the SOC of the EVs reaches 0.8, they enter
the free scheduling stage and autonomously adjust their output power according to the
SOC reference signals. From Figure 15, it can be observed that during the free scheduling
stage, the three EVs can meet the SOC reference signals at the end of each scheduling
timestep, with the SOC linearly increasing or decreasing within each scheduling timestep.
In addition, after entering the free scheduling stage, the SOC of all three EVs do not fall
below 0.8.
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Figure 15. Changes in SOC of the three EVs EV7, EV8, and EV9.

In conclusion, based on the foregoing analysis, it can be inferred that the lower-layer
control method for EVs proposed in this paper is capable of ensuring that the output power
of EVs in the constrained scheduling stage aligns with the power reference signal Pref
provided by the upper-layer EV agents. Concurrently, it allows the SOC of EVs in the free
scheduling stage to undergo linear variations, achieving the SOC reference values provided
by the EV agent at the end of each scheduling timestep.

4.3. Analysis of Optimized Scheduling Results in the Upper Layers of the Microgrid

To analyze the economic and safety aspects of the scheduling strategies provided
by the two-stage multiagent reinforcement learning method proposed in this paper, the
trained EV and DG agents are deployed within the designed microgrid framework of this
study. The power of various forms of energy and load conditions at each time period are
depicted in Figure 16. The power of EVs in Figure 16 refers to the total power of all EVs.
For convenience of representation, the average power in each time period is used here to
represent the power of EVs and the grid during that period.
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Figure 16. The power of various forms of energy and load conditions at each time period.

As is evident from Figure 16 and Table 2, the period at 7:00 is a high-electricity-
price period, and 8:00–11:00 is a medium-electricity-price period. From 7:00 to 11:00, due
to ramping constraints, the output power of the MT gradually increases from 100 kW.
The external grid supplies power to the microgrid to meet the microgrid’s load demand.
Simultaneously, the EVs and ES charge during this period, utilizing the lower-priced
electricity. From 11:00 to 15:00 is a high-electricity-price period, during which the MT’s
output power reaches its maximum, and the ES discharges while the microgrid sells power
to the external grid for higher profits.
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Between 16:00 and 19:00, another medium-electricity-price period, the output of
the MT decreases, but the renewable energy output within the microgrid is substantial.
During this period, the microgrid buys and sells less power from the external grid, relying
more on internal MTs and renewable energy output to meet its load demand. Meanwhile,
ES and EVs within the microgrid charge utilizing the internal electricity. From 19:00 to
20:00, it reenters a high-electricity-price period, the output of the MT increases, EVs and ES
discharge, and the microgrid sells power to the external grid for profit. From 21:00 to 22:00,
a medium-electricity-price period, the MT output decreases, but due to the high load level
and a considerable number of EVs in the microgrid, the EVs and ES discharge to reduce
the internal load demand. From 23:00 to 6:00 the next day, it enters a low-electricity-price
period again, where the MT operates at its lowest output power. The microgrid uses
low-cost electricity purchased from the external grid to power its internal loads and charge
the ES device and EVs.

The output power of the MT in the microgrid is shown in Figure 17. As seen in
Figure 17, due to the impact of the constraint penalty Formula (31), the output power
of the MT at two adjacent moments does not exceed the MT’s ramp-up and ramp-down
constraints. This implies that the scheduling strategy provided by the method proposed
in this paper can ensure the safe operation of the MT. The charge/discharge power and
SOC change conditions of the ES are illustrated in Figure 18. From Figure 18, it is evi-
dent that throughout the entire scheduling cycle, the SOC of the ES device has neither
exceeded nor fallen below its limits. Moreover, due to the impact of the constraint penalty
Formula (33), at the end of the scheduling cycle, the SOC value of the ES is able to return to
its initial value at the beginning of the scheduling. This demonstrates that the scheduling
strategy provided by the method proposed in this paper can guarantee the safe operation
of the ES device.

Mathematics 2023, 11, x FOR PEER REVIEW 27 of 34 
 

 

below its limits. Moreover, due to the impact of the constraint penalty Formula (33), at the 
end of the scheduling cycle, the SOC value of the ES is able to return to its initial value at 
the beginning of the scheduling. This demonstrates that the scheduling strategy provided 
by the method proposed in this paper can guarantee the safe operation of the ES device. 

 
Figure 17. The output power of the MT in the microgrid. 

 
Figure 18. The charge/discharge power and SOC change conditions of the ES. 

Through the aforementioned analysis, it can be observed that the scheduling strategy 
obtained through the two-stage PPO method proposed in this paper is capable of reason-
ably coordinating the MT, ES, and EVs within the microgrid. It ensures the secure opera-
tion of the microgrid while optimizing economic benefits significantly. 

4.4. Comparative Analysis 
To validate the enhancements achieved by the PPO pretraining method proposed in 

this paper over the original algorithm, this section contrasts the training processes of the 
MAPPO method augmented with our pretraining approach against the traditional 
MAPPO method. The reward curves for both training procedures are illustrated in Figure 
19. As observed from Figure 19, the MAPPO algorithm, without the incorporation of the 
proposed pretraining approach, fails to identify the optimal scheduling strategy within 
800 episodes, and it exhibits substantial fluctuations in its reward curve during training. 
Additionally, between episodes 523 and 773, the agent’s output actions become entrapped 
in a local optimum. By introducing the pretraining method proposed in this paper, there 
is a noticeable acceleration in the convergence speed of the reward curve, which also ex-
hibits reduced oscillations, making the training process significantly more stable. From 
this, we can conclude that the pretraining approach presented in this paper enhances the 
algorithm’s rate of convergence, elevates the stability during the training stage, and pre-
vents the agent’s output actions from converging to local optima. 

0

40

80

120

160

200
 MT power

10 14 18 22 2 6
Time/h

7

P
ow

er
/k

W

−30

−20

−10

0

10

20

30

0.2

0.3

0.4

0.5

0.6

 ES Power
 ES SOC

10 14 18 22 2 6
Time/h

7

P
ow

er
/k

W

S
O

C

Figure 17. The output power of the MT in the microgrid.
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Through the aforementioned analysis, it can be observed that the scheduling strategy
obtained through the two-stage PPO method proposed in this paper is capable of reasonably
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coordinating the MT, ES, and EVs within the microgrid. It ensures the secure operation of
the microgrid while optimizing economic benefits significantly.

4.4. Comparative Analysis

To validate the enhancements achieved by the PPO pretraining method proposed in
this paper over the original algorithm, this section contrasts the training processes of the
MAPPO method augmented with our pretraining approach against the traditional MAPPO
method. The reward curves for both training procedures are illustrated in Figure 19.
As observed from Figure 19, the MAPPO algorithm, without the incorporation of the
proposed pretraining approach, fails to identify the optimal scheduling strategy within
800 episodes, and it exhibits substantial fluctuations in its reward curve during training.
Additionally, between episodes 523 and 773, the agent’s output actions become entrapped
in a local optimum. By introducing the pretraining method proposed in this paper, there is
a noticeable acceleration in the convergence speed of the reward curve, which also exhibits
reduced oscillations, making the training process significantly more stable. From this, we
can conclude that the pretraining approach presented in this paper enhances the algorithm’s
rate of convergence, elevates the stability during the training stage, and prevents the agent’s
output actions from converging to local optima.
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Figure 19. Comparison of training process reward curves for traditional MAPPO and the two-stage
MAPPO proposed in this paper.

The two-stage MAPPO method proposed in this paper is compared to other deep
reinforcement learning algorithms applied to the microgrid scheduling problem in discrete
spaces, including the PPO algorithm [35], DQN algorithm [36], dueling deep Q-network
(DDQN) algorithm [37], dueling double deep Q-network (D3QN) algorithm [38], advantage
actor–critic (A2C) algorithm [39], and asynchronous advantage actor–critic (A3C) algo-
rithm [40]. These algorithms are each applied to the microgrid model designed in this paper
for training for 800 episodes. The reward curves for each of these deep reinforcement learn-
ing algorithms are depicted in Figure 20, and the average rewards of the last 20 episodes
of the training process for each algorithm are illustrated in Figure 21. From Figures 20
and 21, it is evident that the two-stage MAPPO method proposed in this study is capable
of deriving the optimal scheduling strategies compared to other methods. Concurrently,
the proposed method manifests a faster convergence speed and smaller fluctuations in
the reward curves during the training process. This indicates that the two-stage MAPPO
method proposed in this paper exhibits superior optimization performance in addressing
microgrid scheduling problems.
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Figure 20. Comparison of reward curves of different deep reinforcement learning algorithms applied
to the microgrid environment designed in this paper. (a) The proposed method is compared with PPO
and DQN algorithms. (b) The proposed method is compared with DDQN and D3QN algorithms.
(c) The proposed method is compared with A2C and A3C algorithms.
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Figure 21. The average rewards of the last 20 episodes of the training process for each deep reinforce-
ment learning algorithm.

4.5. Robustness Analysis

When optimizing scheduling methods for practical applications, environmental pa-
rameters of microgrids and the operating status of each EV are often difficult to pre-
dict. Therefore, fixed microgrid operational strategies calculated based on predicted
data often fail to achieve the expected results in practical applications. This requires
scheduling algorithms to have higher robustness, which means that the algorithm can au-
tonomously adjust its own action strategy according to different environmental conditions.
Compared with traditional methods used for microgrid optimization decisions (evolu-
tionary algorithms, swarm intelligence algorithms), reinforcement learning methods often
demonstrate stronger robustness. This is because during the training process of the rein-
forcement learning agent, the agent will continue to try to accumulate experience through
its internal neural network, which will become a useful resource for the agent in actual
environments, helping the agent better understand and respond to environmental changes.
This allows the reinforcement learning agent to adaptively adjust its own output action
strategy based on the experience gained during the training process when the environment
changes, thereby exhibiting stronger robustness. Since the two-stage MAPPO algorithm
proposed in this paper enables the intelligent agent to find the optimal operating strategy
of the microgrid faster and more stably, it further improves the robustness of the reinforce-
ment learning agent to a certain extent. To verify the advantage of the two-stage MAPPO
method proposed in this paper in terms of operational decision robustness, we designed
four different microgrid operating scenarios in this section:

• Scenario 1: The microgrid scenario provided above.
• Scenario 2: EVs 3, 5, 7, and 10 arrive one hour early.
• Scenario 3: The initial SOC of EVs 3, 5, 7, and 10 is 0.1 less than the data provided above.
• Scenario 4: EVs 3, 5, 7, and 10 arrive one hour early and their initial SOC is 0.1 less

than the data provided above.

We compared our two-stage MAPPO method with the non-dominated sorting genetic
algorithm III (NSGA-III) algorithm [41] and PSO algorithm [42], which are commonly
used for microgrid optimization scheduling. It is worth noting that NSGA-III algorithm is
typical of evolutionary algorithms and the PSO algorithm is typical of swarm intelligence
algorithms. We applied these three methods to four different microgrid scenarios and
observed the rewards obtained by the microgrid environment model. The results are
shown in Figure 22.
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As shown in Figure 22, compared with the NSGA-III algorithm and PSO algorithm, our
proposed two-stage MAPPO algorithm achieved the highest rewards in all four different
scenarios. This indicates that our proposed method can make relatively good action
decisions when dealing with different microgrid scenarios. In other words, our proposed
two-stage MAPPO method has stronger robustness.

5. Discussion

According to the simulation analysis in Section 4, we can conclude that the proposed
two-stage, dual-layer optimization operation method for microgrids containing EVs has
several advantages, as follows:

1. The proposed two-stage control architecture fully respects the rights and interests
of EV owners by ensuring that if an EV is connected to the microgrid and its SOC is
less than 0.8, it can only be charged until its SOC is greater than 0.8. Once the SOC is
greater than 0.8, as analyzed in Section 3, the EV can support the car owner’s daily
travel needs. After the SOC is greater than 0.8, the proposed control method ensures
that the EV’s SOC will not drop below 0.8. In other words, before the EV can support
the car owner’s daily travel needs, it can only be charged. Once the EV’s SOC rises to
a level that can meet the car owner’s daily travel needs, the car owner can use their
EV at any time to meet their travel needs.

2. The proposed two-stage control architecture retains the ability of EVs to participate
in microgrid optimization and scheduling. When an EV’s SOC is less than 0.8, it
participates in microgrid scheduling by adjusting its charging power; when its SOC
is greater than 0.8, it can participate in microgrid scheduling by charging or dis-
charging. Therefore, the proposed two-stage control architecture fully respects the
charging rights of EV owners while retaining their ability to participate in microgrid
optimization and scheduling.

3. The lower-level control ensures that all EVs are charged uniformly, avoiding conflicts
caused by uneven charging of EVs.

4. The new two-stage MAPPO algorithm-based optimization scheduling method pro-
posed in the upper level has faster calculation speed and better calculation effect
than traditional single-stage MAPPO algorithms because we added a new pretraining
stage for the traditional single-stage MAPPO algorithm. In this pretraining stage,
we introduced pre-agents which have fewer action choices in each dimension of
action space, meaning they can find optimal scheduling strategies more quickly.
Therefore, using proto-agents’ neural network trained with output actions from pre-
agents as a pretraining stage significantly improves calculation speed and effect
during agent training compared to traditional single-stage MAPPO algorithms.
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5. The proposed dual-layer optimization operation method reduces microgrid operating
costs while ensuring the safe operation of microgrids containing EVs.

Attention should be paid to the fact that during the constraint scheduling phase, the
methods proposed may, in order to ensure the overall benefits of the microgrid, reduce the
charging power of EVs significantly, thereby extending the charging time. This trade-off
may potentially diminish the satisfaction of EV owners regarding charging. However, it
represents a balanced choice in this article, considering both the interests of EV owners
and the overall benefits of the microgrid. The fact that scheduling plans still inadvertently
prolong charging durations necessitates the formulation of a more judicious compensation
mechanism for EV users. Such a mechanism should holistically consider factors includ-
ing charging tariffs, initiation time for charging, duration of microgrid connection, and
construction costs of microgrid charging infrastructure. Given the primary focus of this
discourse on microgrid operational costs and scheduling directives, we shall refrain from
excessive elaboration on the EV user compensation mechanism. In subsequent research
endeavors, we intend to delve further into the compensation framework for EV partici-
pation in microgrids. However, it remains undeniable that, as articulated in Section 4.1,
the method proposed herein has significantly curtailed EV billing durations compared to
conventional approaches, thereby ensuring a certain degree of satisfaction among EV users.
In summary, our proposed two-stage, dual-layer optimization operation method considers
both the rights and interests of EV owners and the overall benefits of microgrids contain-
ing EVs, providing a new solution to optimize operation problems for urban microgrids
containing EVs.

6. Conclusions

This paper proposes a two-stage, dual-layer optimization operational method tailored
for microgrids incorporating EVs. The method combines consistency control methods with
deep reinforcement learning methods and simultaneously considers the overall benefits of
microgrid optimization scheduling with EV participation and the charging benefits of EV
owners. In summary, the main innovations of this paper are as follows:

1. A two-stage control architecture is designed to solve the conflict between EV partici-
pation in microgrid optimization scheduling and respecting the charging benefits of
EV owners.

2. A two-layer optimization operation method is proposed, which quickly and accurately
finds the optimal operating strategy of the microgrid while ensuring that all EVs
operate under consistent conditions.

3. Taking into account the different charging objectives of EVs in different charging
stages, a new two-stage consistency control method suitable for the two-stage EV
control architecture is proposed based on the traditional consistency method. This
helps to ensure EV consistent power charging in the constrained scheduling stage and
consistent SOC changes in the free scheduling stage.

4. A new two-stage MAPPO algorithm is proposed by leveraging the speed and accuracy
of reinforcement learning optimization in a discrete action space. The introduction
of a pretrained agent in the discrete action space guides the agent to make optimal
decisions in the discrete action space during the pretraining phase and initializes the
neural network of the agent.

We hope that this study will serve as a valuable reference and guide for the construction of
future urban microgrids. In future work, we will conduct more in-depth research on optimizing
operation problems for microgrids containing larger-scale and different types of EVs.
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Abbreviations

Full terms corresponding to acronyms mentioned in this paper:

EV Electric vehicle
DG Distributed generation
SOC State of charge
MT Microturbine
ES Energy storage
PV Photovoltaic
WT Wind turbine
MDP Markov decision process
EU European Union
HOV High-occupancy vehicle
NSGA-II Non-dominated sorting genetic algorithm II
NSGA-III Non-dominated sorting genetic algorithm III
PSO Particle swarm optimization
DQN Deep Q-network
DDPG Deep deterministic policy gradient
MAPPO Multiagent proximal policy optimization
DDQN Dueling deep Q-network
D3QN Dueling double deep Q-network
A2C Advantage actor–critic
A3C Asynchronous advantage actor–critic
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