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Abstract: In this paper, we propose a new method to construct energy-minimizing cubic B-spline
interpolation curves by minimizing the approximated stretch energy. The construction of a B-spline
interpolation curve with a minimal approximated stretch energy can be addressed by solving a
sparse linear system. The proof of both the existence and uniqueness of the solution for the linear
system is provided. In addition, we analyze the computational cost of cubic B-spline curves with an
approximated stretch energy, which is close to that of the ordinary interpolation method with cubic
B-splines without the requirement of stretch energy.
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1. Introduction

The construction of interpolation curves through given sampling points is one of
the fundamental problems in the field of computer-aided geometric design (CAGD). The
most frequently utilized parametric representations in the realm of CAGD and geometric
modeling include Bézier, B-spline, and NURBS curves and surfaces. The study of energy-
minimization curves and surfaces has promoted their wider application in CAGD [1].

A study conducted by Wang et al. focused on the interproximation of B-spline curves
using different energy forms and parametrization techniques [2]. Zhang proposed algo-
rithms to fair cubic spline curves and bicubic spline surfaces by minimizing the strain
energy of the new curve or surface [3]. Wallner introduced set-interpolated and energy-
minimizing curves [4]. Using the geometric optimization algorithm, Michael minimized
the energy of curves on arbitrary-dimensional and codimensional surfaces [5]. Yong et al.
studied geometric Hermite curves with minimal strain energy [6]. By using the Dirichlet
function, geodesic and minimal surfaces were combined by Li et al. [7]. A constructive
framework was proposed by Johnson et al. [8] for energy-minimizing curves with a set of
interpolating points. Xu et al. [9] proposed an efficient method for constructing energy-
minimizing B-spline curves using the discrete mask method. Curve fairing is an important
part of generating curved objects, which has many applications (see [10] for an example).
Curve and surface fairing based on the techniques of averaging curvature distribution is
also provided in [11]. In [12], the κ-curve is introduced as an interpolating spline consist-
ing of quadratic Bézier segments that pass through input points at the locations of local
curvature extrema. Miura et al. extend κ-curves to allow for the modification of the local
curvature at the interpolation point through degree elevation of the Bernstein basis in a
new scheme known as extended—or εκ—curves [13]. In addition to fairing techniques
based on the distribution of curvatures, curve interpolation with minimal energy can also
serve as a method for curve fairing (see [3,14,15] and the references therein).
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In this paper, we propose a method for constructing energy-minimizing interpola-
tion B-spline curves by solving a sparse linear system, unlike traditional methods that
solve a dense linear system. The unknown control points of energy-minimizing B-spline
curves can be calculated by solving a sparse linear system. Additionally, the existence
and uniqueness of the solution for the linear system are proven by the theorem presented
in Section 2. The effectiveness of the proposed approach is illustrated through several
modeling examples.

2. Cubic B-Spline Interpolation Curves with the Minimum Stretch Energy

In this section, we discuss a method for interpolating given points by C1 continuous
cubic B-spline curves with the minimum stretch energy.

Given a set of data points Qi = (q̂i,1, q̂i,2, . . . , q̂i,d)
T ∈ Rd, i = 0, . . . , n, d ∈ Z+, the con-

structed B-spline curve q(t) is required to pass through these points at certain parameters
ti. i.e., q(ti) = Qi, i = 0, 1, . . . , n.

In order to obtain q(t), the parameters t0, t1, . . . , tn and the knot vector T need to be
fixed first. The selection of parameters influences the shape of the interpolating curve and
there are various methods for selecting parameters, e.g., uniform, exponential, chord-length
methods, and the modified form of these methods such as universal and hybrid methods
and methods based on exponentials (see [16] and the references therein). In the current
paper, we shall use an averaging approach based on chord-length parameterization, i.e., the
parameters ti are calculated as

t0 = 0, tn = 1, L =
n

∑
i=1
‖Qi −Qi−1‖,

and

tk =
∑k

i=1 ‖Qi −Qi−1‖
L

, k = 1, . . . , n− 1.

With the parameters t0, t1, . . . , tn in hand, we just set the knot vector as

T = {t0, t0, t0, t0, t1, t1, . . . , tn, tn, tn, tn} = {t̃0, t̃1, . . . , t̃2n+5}, (1)

where ti < ti+1, i = 0, . . . , n− 1 and every interior knot has multiplicity two. Hence, the C1

continuous cubic B-spline curve is defined as

q(t) =
2n+1

∑
i=0

Ni,3(t)qi, (2)

where qi = (qi,1, qi,2, . . . , qi,d)
T ∈ Rd are control points and Ni,3(t) are the cubic B-spline

basis functions defined over the knots T . Note that we double the interior knots instead
of setting the multiplicity of each interior knot to be one in (1), as PHT-splines and their
variants use double interior knots in 2D cases [17–19]. PHT-splines, as one of the locally
refinable splines, have numerous applications in geometric modeling and isogeometric
analyses (see [17,20–24] and the references therein).

To ensure q(ti) = Qi, i = 0, 1, . . . , n, the control points in (2) need to satisfy

Qj =
2n+1

∑
i=0

Ni,3(tj)qi = (1− λj)q2j + λjq2j+1, j = 0, 1, . . . , n, (3)

where λj =
tj−tj−1

tj+1−tj−1
, j = 1, . . . , n− 1, λ0 = 0, λn = 1. By (3), we get

q0 = Q0, q2n+1 = Qn
q2j = (Qj − λjq2j+1)/(1− λj), j = 1, . . . , n− 1.

(4)
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Rewrite Equation (4) in the matrix form:(
q0, q1, . . . , q2n+1

)T
= B0

(
q1, q3, . . . , q2n−1, q2n

)T
+ B1

(
Q0, Q1, . . . , Qn

)T , (5)

where

B0 =



0 0 0 0 · · · 0 0 0
1 0 0 0 · · · 0 0 0
0 −λ1

1−λ1
0 0 · · · 0 0 0

0 1 0 0 · · · 0 0 0
...

...
...

. . . . . . . . . . . .
...

0 0 0 0 · · · 1 0 0
0 0 0 0 · · · 0 −λn−1

1−λn−1
0

0 0 0 0 · · · 0 1 0
0 0 0 0 · · · 0 0 1
0 0 0 0 · · · 0 0 0


(2n+2)×(n+1)

,

and

B1 =



1 0 0 0 0 · · · 0 0 0
0 0 0 0 0 · · · 0 0 0
0 1

1−λ1
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
...

...
...

...
. . . . . .

...
...

...
0 0 0 0 0 · · · 0 1

1−λn−1
0

0 0 0 0 0 · · · 0 0 0
0 0 0 0 0 · · · 0 0 0
0 0 0 0 0 · · · 0 0 1


(2n+2)×(n+1)

.

Hence, the control points q0, q1, . . . , q2n+1 are determined by q1, q3, . . ., q2n−1, q2n,
Q0, Q1, . . ., Qn.

In order to make the curve q(t) resist stretching, we chose the remaining free control
points q1, q3, . . . , q2n−1, q2n by minimizing the approximated stretch energy:

Ēstretch(q(t)) =
∫ 1

0
‖q′(t)‖2dt. (6)

Note that the actual stretch energy of the curve is defined as

Estretch(q(t)) =
∫ 1

0
‖q′(t)‖dt, (7)

which would be computationally too expensive when we evaluate and minimize expres-
sion (7).

Let T ′ = {t0, t0, t0, t1, t1, . . . , tn, tn, tn} and Ni,2(t) be the quadratic B-spline basis
functions defined over the knot T ′. Thus, (6) can be rewritten as

Ē =
∫ 1

0
‖q′(t)‖2dt =

∫ 1

0
‖

2n

∑
i=0

3(qi+1 − qi)

t̃i+4 − t̃i+1
Ni,2(t)‖2dt.

=
d

∑
j=1

vT
j WT AWvj, (8)

where vj =
(
q1,j − q0,j, q2,j − q1,j, . . . , q2n+1,j − q2n,j

)T , j = 1, . . . , d, W = diag(ω0, ω1, . . .,
ω2n), ωi = 3/(t̃i+4 − t̃i+1), i = 0, 1, . . . , 2n, and

A = (akl)1≤k≤2n+1,1≤l≤2n+1
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is a symmetric matrix with akl =
∫ 1

0 Nk−1,2(t)Nl−1,2(t)dt.
The element of the matrix A can be expressed explicitly as follows. Note that when

k = 1, 3, . . . , 2n + 1,

Nk−1,2(t) =


(

t−tk/2−3/2
tk/2−1/2−tk/2−3/2

)2, tk/2−3/2 ≤ t < tk/2−1/2,

(
tk/2+1/2−t

tk/2+1/2−tk/2−1/2
)2, tk/2−1/2 ≤ t < tk/2+1/2,

0, else,

(9)

when k = 2, 4, . . . , 2n,

Nk−1,2(t) =

{
2 (t−tk/2−1)(tk/2−t)

(tk/2−tk/2−1)2 , tk/2−1 ≤ t < tk/2,

0, else,

Therefore, when k = 1, 3, . . . , 2n + 1 and 1 ≤ l ≤ n + 1,

akl =
∫ 1

0
Nk−1,2(t)Nl−1,2(t)dt =



(tk/2−1/2 − tk/2−3/2)/30, l = k− 2;
(tk/2−1/2 − tk/2−3/2)/10, l = k− 1;
(tk/2+1/2 − tk/2−3/2)/5, l = k;
(tk/2+1/2 − tk/2−1/2)/10, l = k + 1;
(tk/2+1/2 − tk/2−1/2)/30, l = k + 2;
0, else,

(10)

when k = 2, 4, . . . , 2n and 1 ≤ l ≤ n + 1,

akl =
∫ 1

0
Nk−1,2(t)Nl−1,2(t)dt =


(tk/2 − tk/2−1)/10, l = k− 1;
2(tk/2 − tk/2−1)/15, l = k;
(tk/2 − tk/2−1)/10, l = k + 1;
0, else.

In (9) and (10), t−1 and tn+1 are assigned to be t0 and tn, respectively. Additionally,
if the denominator of a term equals zero, the term is considered as zero, i.e., �

0 = 0. Hence,
the matrix A is sparse. Except for the first and the last rows, there are five nonzero elements
in the odd rows and three nonzero elements in the even rows.

By (8), we can get the minimum of Ē by minimizing

Ēj = vT
j WT AWvj, j = 1, . . . , d

separately. Again by (4) and (8), the function Ēj is a quadratic function with variables
q1,j, q3,j, . . . , q2n−1,j, q2n,j. The Hessian matrix of Ēj is

H(Ēj) = 2MTWT AWM, (11)

where

MT =



1 −1 0 0 0 · · · 0 0 0
0 −λ1

1−λ1
1

1−λ1
−1 0 · · · 0 0 0

...
...

...
. . . . . . . . .

...
...

...
0 0 0 0 0 −λn−1

1−λn−1
1

1−λn−1
−1 0

0 0 0 0 0 · · · 0 1 −1


(n+1)×(2n+1)

.

Theorem 1. Let H(Ēj) be defined as (11). H(Ēj) is symmetric and positive-definite.

Proof. First, it is straightforward to check that A is symmetric. Next, it is known that any
B-spline basis functions of order k are linearly independent [25]. Hence, {Ni,2(t)}2n

i=0 is
linearly independent. Since {Ni,2(t)}2n

i=0 is linearly independent and A is a Gram matrix, it
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follows by Theorem 7.2 of [26] that A is positive-definite. In addition, W and M are full
rank, i.e., rank(W) = 2n + 1 and rank(M) = n + 1. Thus, 2MTWT AWM is also symmetric
and positive-definite.

By Theorem 1, Ēj achieves the unique global minimum when q1,j, q3,j, . . ., q2n−1,j, q2n,j
satisfy the linear system

∇(Ēj) = 2MTWT AWvj = 0. (12)

Next, we shall give an explicit formula for the solution of the system of linear
equations (12). Substituting (5) into (12) yields

2H
(

B0(q1,j, q3,j, . . . , q2n−1,j, q2n,j)
T + B1(q̂0,j, q̂1,j, . . . , q̂n−1,j, q̂n,j)

T) = 0,

where q̂i,j is the j-th coordinate of Qi, j = 1, . . . , d, H = MTWT AWB2, and

B2 =


−1 1 0 0 0 · · · 0
0 −1 1 0 0 · · · 0
0 0 −1 1 0 · · · 0
...

...
. . . . . . . . . . . .

...
0 0 0 0 · · · −1 1


(2n+1)×(2n+2)

.

Thus,

(q1,j, q3,j, . . . , q2n−1,j, q2n,j)
T = −(HB0)

−1(HB1)(q̂0,j, q̂1,j, . . . , q̂n−1,j, q̂n,j)
T . (13)

Remark 1. Since the matrices M, W, A, B0, B1, B2 are expressed explicitly in (13), the main compu-
tational cost comes from solving the linear system with n unknowns. For the ordinary interpolation
method with cubic B-splines, we still need to solve a linear system with n unknowns. Hence,
the computational cost of the cubic curve with minimal stretch energy is close to the computational
cost of the ordinal interpolation method with cubic B-splines.

3. Experimental Results

In this section, we will present several experimental examples to demonstrate the effec-
tiveness of the proposed method in constructing energy-minimizing interpolation curves.

3.1. Energy-Minimizing Interpolation Curves of Planar Graphic Examples

Example 1 (Planar case). The number of interpolation points for this planar shape of the hand is
52. The energy-minimizing interpolation B-spline curve with corresponding interpolation points
by our method is shown in Figure 1a (left). The control polygon is shown in Figure 1a (right).
Three curves obtained by the traditional method and the κ-curve are shown in Figure 1b–d as
comparisons. The approximated stretch energy of our method is approximated and found to be
reduced by approximately 19% compared to the method shown in Figure 1c. It was also found to be
similar to the methods shown in Figure 1b,d. Our results demonstrate improvement, particularly in
the intricate details of the dog graphic at its joints.
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(a)

(b)

(c)

(d)
Figure 1. The energy-minimizing interpolation curve of the shape of a dog with interpolation points
(black points) including two coincident endpoints (green point) (left) and a control polygon (polygon
in red color) (right). (a) Interpolation results of our method. (b) The ordinary cubic interpolation
B-spline curve with chord-length parameters. (c) The ordinary cubic interpolation B-spline curve
with uniform parameters. (d) The interpolation result by κ-curves [12].

Example 2 (Space example). The number of interpolation points for this space shape of the hand
is 43. Figure 2a (left) is the energy-minimizing interpolation B-spline curve with corresponding
interpolation points by our method. The control polygon is shown in Figure 2a (right). To demon-
strate the effectiveness of the proposed method, two curves also obtained by the traditional method
are shown in Figure 2b,c as comparisons. It is obvious that the interpolation results obtained by
traditional methods are not good. In particular, the interpolation of the index and middle finger in
Figure 2c changes the convexity of the graphic to concave. The approximated stretch energy of our
method reduced the energy by approximately 30 percent compared to that of the method shown in
Figure 2c and similar to that of the method shown in Figure 2b.
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(a)

(b)

(c)
Figure 2. The energy-minimizing interpolation curve of the shape of a hand with interpolation points
(black points) including two coincident endpoints (green point) (left) and control polygon (polygon
in red color) (right). (a) Interpolation results of our method. (b) The ordinary cubic interpolation
B-spline curve with chord-length parameters. (c) The ordinary cubic interpolation B-spline curve
with uniform parameters.

3.2. Energy-Minimizing Interpolation Curves in a Font Modeling Example

Example 3. With three sets of interpolation points of the given font as shown in the second
row of Figure 3, the corresponding energy-minimizing interpolation curve shown in Figure 3a
is constructed by our method. As a comparison, the cubic interpolation B-spline curve shown in
Figure 3b is also constructed by the traditional method with the same set of interpolation points.
For this example, the approximated stretch energy of our method reduced by approximately 45 percent
compared to that of the ordinary method. Due to the energy minimization, each segment of the
interpolation curve by our method is straighter than that of the ordinary method. That also means
that our method may be more suitable for interpolating Chinese character fonts, the structures of
which are always complex and many strokes of which are horizontal or vertical.
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(a)

(b)
Figure 3. Interpolating curve construction for font modeling. (a) The energy-minimizing interpola-
tion curve generated by our method. (b) The cubic interpolation B-spline curve generated by the
classical method.

4. Conclusions and Discussion

In this paper, we propose a method to construct energy-minimizing B-spline interpola-
tion curves by solving a sparse linear system. The existence and uniqueness of the linear
system solution are also proven. Some experimental results illustrate the efficiency of the
proposed method. Furthermore, we find our approach is more suitable for interpolating
examples with straighter boundaries and with fewer sampling points. As a part of future
work, the proposed approach can be extended to other applications, such as blending curve
construction and the construction of geodesic curves of two arbitrary points on a surface.
Additionally, we aim to expand our methodology to develop energy-minimizing B-spline
interpolation surfaces within the framework of PHT-splines.
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