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Abstract: In order to comprehensively evaluate and analyze the effectiveness of various heuris-
tic intelligent optimization algorithms, this research employed particle swarm optimization, wind
driven optimization, grey wolf optimization, and one-to-one-based optimizer as the basis. It ap-
plied 22 benchmark test functions to conduct a comparison and analysis of performance for these
algorithms, considering descriptive statistics such as convergence speed, accuracy, and stability.
Additionally, time and space complexity calculations were employed, alongside the nonparametric
Friedman test, to further assess the algorithms. Furthermore, an investigation into the impact of
control parameters on the algorithms’ output was conducted to compare and analyze the test results
under different algorithms. The experimental findings demonstrate the efficacy of the aforementioned
approaches in comprehensively analyzing and comparing the performance on different types of
intelligent optimization algorithms. These results illustrate that algorithm performance can vary
across different test functions. The one-to-one-based optimizer algorithm exhibited superior accuracy,
stability, and relatively lower complexity.

Keywords: heuristic intelligent optimization; particle swarm optimization; wind driven optimization;
grey wolf optimization; one-to-one-based optimizer; evaluation and analysis
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1. Introduction

In the realm of natural phenomena, diverse biological populations undergo evolu-
tionary processes, resulting in the emergence of distinct sets of operational principles
and behavioral patterns. To tackle complex optimization problems arising in practical
applications, heuristic intelligent optimization algorithms are harnessed. These algorithms
derive inspiration from the collective behavior observed in multi-biological populations
encompassing avian, lupine, and botanical entities. By emulating information exchange
mechanisms observed during group foraging, the heuristic intelligent optimization algo-
rithm facilitates information interaction among individuals.

The inception of the heuristic intelligent optimization algorithm can be traced back
to 1989, marked by the pioneering proposal of the ‘swarm intelligence’ concept by Ger-
ardo Beni and Jing Wang [1]. By studying a large ensemble of uncomplicated individuals,
researchers avoid the need for an intricate and elaborate internal design of the group
system. Relying on simple rules, this method exhibits enhanced adaptability, stability, and
robustness. The heuristic intelligent algorithm possesses the following distinctive character-
istics: accelerated optimization speed and the ability to effectively explore global optimal
solutions for complex optimization problems. The individuals constituting the studied
population are spatially distributed, devoid of central control, and extensible. The distribu-
tion of individuals is straightforward, allowing for convenient functional realization [2].
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Particle swarm optimization (PSO) [3–5], wind driven optimization (WDO) [6,7], and grey
wolf optimizer (GWO) [8,9] constitute a subset of commonly employed heuristic intelligent
optimization algorithms. These algorithms offer researchers the means to tackle a wide
range of problems including the determination of the optimal function values (e.g., the
traveling salesman problem), objective assignment, and job scheduling, among others. The
heuristic intelligent optimization algorithm represents a particular type of optimization
method that often encounters challenges when seeking a precise or even feasible solution in
complex real-world scenarios. As a result, it is applied to approximate the optimal solution
and serve as a representation of the final results.

As time passes, a variety of heuristic intelligent optimization algorithms have emerged.
However, the accurate evaluation of optimization performance and the determination of
suitable circumstances for using corresponding intelligent optimization algorithms remain
significant challenges in the development of these algorithms. Currently, the widely
adopted approach for evaluating heuristic intelligent optimization algorithms involves
utilizing different types of test functions, running the algorithms independently, and then
calculating statistical parameters such as the average value, standard deviation, best value,
and worst value for comparison and evaluation. However, this analysis method tends
to provide one-sided results and lacks a unified qualitative analysis, especially when
dealing with multiple unimodal and multimodal test functions. Due to the abundance
of test data results, accurately evaluating and comparing the performance of heuristic
intelligent optimization algorithms becomes more difficult, rendering this method of limited
significance in guiding practical applications [10].

Therefore, this study aimed to compare and evaluate the performance of four heuris-
tic intelligent optimization algorithms, namely particle swarm optimization (PSO), wind
driven optimization algorithm (WDO), grey wolf optimizer (GWO), and one-to-one-based
optimizer (OOBO), from four perspectives. These perspectives include conducting descrip-
tive statistical analysis of the algorithms in terms of stability and convergence, discussing
the algorithms’ complexity in terms of space and time, and employing the Friedman test in
nonparametric statistics to assess whether there are significant differences be-tween the
algorithms. Simultaneously, this paper also analyzed the influence of the algorithm control
parameters on the optimization results. Finally, through comprehensive comparison, the
strengths and weaknesses of the four algorithms are summarized.

2. Algorithm Description

This paper conducted an analysis of three prominent intelligent optimization algo-
rithms: particle swarm optimization (PSO), wind driven optimization (WDO), and grey
wolf optimization (GWO) algorithms.

2.1. Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm was developed by American aca-
demics to emulate the foraging behavior observed in birds and other animals [11–13]. In the
wild, birds often demonstrate both interpersonal and group cooperation during foraging.
While some birds forage alone, others engage in collective foraging. During this process,
certain dominant birds possess valuable information and guide the others to food sources.

In the particle swarm optimization technique, each solution within the target space is
represented by a bird or particle. The goal of the flock is to find the desired food source,
which corresponds to the optimal solution for the problem at hand. Each particle exhibits
individual and collective behaviors while seeking the best answer. To determine the optimal
solution, each particle learns from the experiences of both its peers and itself. It adapts its
velocity and position based on its own history and the overall best value attained by the
entire swarm. The quality of each position is evaluated using a fitness value, which aligns
with the objective function of the optimization problem [14,15].

The particle swarm optimization technique adheres to the following three guidelines
for ongoing optimization and adjustment [16]:
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1. Particles maintain a safe distance from the nearest individual to prevent collisions
between particles.

2. Each particle aims to approach the target value as closely as possible.
3. The particles strive to converge toward the center of the target population.

2.1.1. Parameter Setting for Particle Swarm Optimization Algorithm

A particle swarm in an E-dimensional target search space consists of M particles.
Each particle is represented by an E-dimensional vector, and its position xi in space can be
described by Formula (1) [17].

xi = {xi1, xi2, · · · , xiE}, i = 1, 2, · · · , M (1)

The spatial position of a particle represents a solution to the target optimization
problem. This position can be evaluated by inputting it into the fitness function, resulting
in a fitness value that indicates the quality of the particle. Additionally, the flying speed Ki
of a particle is represented by an E-dimensional vector, which can be obtained from the
target optimization problem solution and calculated using Formula (2).

Ki = {Ki1, Ki2, · · · , KiE}, i = 1, 2, · · · , M (2)

Within a specified border range, the position and speed of the particle are created
at random.

2.1.2. Physical Model Building and Particle Swarm Updating Method

Formula (3) can be utilized to express the individual i particle’s historical best position
Pbest, which indicates the position it has traversed through with the best fitness value.

pbest = {pbesti1, pbesti2, · · · , pbestiE}, i = 1, 2, · · · , M (3)

Formula (4) can be employed to denote the global historical best position qbest, which
represents the best location that the entire particle swarm has traversed through.

qbest = {qbesti1, qbesti2, · · · , qbestiE}, i = 1, 2, · · · , M (4)

Position update and velocity update are two fundamental operations employed in
particle swarm optimization. The velocity update can be described using Formula (5) [18].

Kij(t + 1) = wKij(t) + c1r1(pbestij(t)− xij(t)) + c2r2(qbestj − xij(t)) (5)

Formula (6) can be utilized to describe the process by which a particle swarm updates
its positions.

xij(t + 1) = xij(t) + Kij(t + 1) (6)

In Formula (5), the subscript i represents the i particle, while the subscript j represents
the j dimension of the particle’s position. The value t corresponds to the current iteration
count. The acceleration constant parameters c1 and c2 typically fall within the range of
0 and 2. The values of the mutually independent parameters r1 and r2, which range
between 0 and 1, are randomly generated. As can be deduced from the representation of
Formula (5), particles adeptly acquire knowledge from their individual exploration as well
as their collective search encounters to gradually approach the most optimal solution. The
synergetic effect of parameters c1 and c2 facilitates the amalgamation of insights gained
through individual learning and group dynamics. w is the inertia coefficient, which takes
the value of 1 for the particle swarm optimization algorithm in this paper.
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2.1.3. Algorithm for Particle Swarm Optimization: Fitness Function Selection

The evaluation of individuals (or solutions) is carried out based on their objective
function values throughout the entirety of the particle swarm optimization search process.
An iterative scheme is then employed to adapt the positions and velocities of the particle
swarm, leveraging these values as guiding principles for updates. This systematic integra-
tion of objective function values ensures the continuous enhancement of initial solutions
toward the attainment of the global optimum.

2.1.4. Identify the Particle Swarm Optimization Algorithm’s Border Range

In order to maintain the integrity of particle placements and speeds within the particle
swarm optimization, boundaries are defined. Consequently, particle units are restricted
to the upper boundary value when surpassing the upper limit, and limited to the lower
boundary value when falling below the lower limit. This adherence to boundary conditions
is expressed by Equation (7), which serves to capture constraints imposed on particle
swarm units.

unew =

{
ub, u > umax
Ib, u < umin

(7)

where ub and Ib in Equation (7) stand for the variable’s upper and lower bounds, respectively.

2.1.5. The Particle Swarm Optimization Algorithm’s Process

Figure 1 illustrates the flowchart of the particle swarm optimization algorithm, pro-
viding a detailed outline of the precise computational steps involved. Here is a refined
expression of the algorithm:
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Figure 1. The particle swarm optimization algorithm flowchart.

Step 1: Set the necessary parameters for the particle swarm, which include the maxi-
mum number of iterations, position boundary range, and velocity boundary range.

Step 2: Calculate the fitness value of each particle based on the given fitness function
and record both the historical best value and the global best value encountered.

Step 3: Update the particle velocities, restricting them within the defined bounds to
prevent exceeding barriers.

Step 4: Update the positions of the particles, constraining them within the specified
boundary limits.
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Step 5: Recalculate the fitness value for each particle using the fitness function.
Step 6: For each individual particle, compare its fitness value to its previous best value.

If the new value is greater, update the historical best value accordingly.
Step 7: For each particle, compare its fitness value to the best value encountered by

the entire swarm. If the current value is higher, update the global best value accordingly.
Step 8: Check if the termination condition has been met. If the maximum number

of iterations has been reached, output the optimal position. If not, repeat Steps 3–8 for
further iterations.

2.1.6. Particle Swarm Optimization Algorithm Calculation Results

By incorporating the aforementioned computational steps, we can leverage the particle
swarm optimization approach to tackle the following problem: Determine the values of x1
and x2 that minimize the function represented by Equation (8).

f (x1, x2) = x1
4 + x2

4 (8)

In Equation (8), the variables x1 and x2 are confined within the range of [–20, 20].
Figure 2 visually depicts the search space of the function represented by Formula (8).
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Figure 2. The search space of function f (x1, x2) = x1
4 + x2

4.

According to Figure 2, intently scrutinizing the function expression and the corre-
sponding search space, it becomes evident that the function’s minimum value is 0. This
finding implies that the optimal solution for this problem is achieved when variables x1
and x2 attain values of 0 each. To facilitate the particle swarm optimization technique’s
implementation in tackling this problem, certain parameters were set. These include a
population size of 50 and a maximum number of iterations capped at 100. Given that x1 and
x2 are the variables being solved, the particle dimension was fixed at 2. Furthermore, the
upper and lower limits for the particles were established as ub = [20, 20] and lb = [−20, −20],
respectively. The velocity of the particles was also controlled within specific bounds, with
the upper and lower limits being set as Kmax = [2, 2] and Kmin = [−2, −2], respectively.

Figure 2 represents the fitness function designed to align with the optimization ob-
jective at hand. On the other hand, Figure 3 depicts the iteration curve of the program,
showcasing the progression of the particle swarm optimization technique over time. After
running the optimization algorithm, the obtained results indicate that x1 was approxi-
mately equal to −0.010188, and x2 was approximately equal to −0.0028668. The function
value corresponding to this ideal solution was calculated to be 1.0841 × 10−8, suggesting
a highly accurate approximation. The final position coordinates (−0.010188, −0.0028668)
derived through the particle swarm optimization algorithm closely approached the theo-
retically ideal values of (0, 0), demonstrating the effectiveness of the algorithm in yielding
close-to-optimal solutions.
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Figure 3. The particle swarm optimization algorithm iteration curve.

Figure 4 offers intermediate results that aid in understanding the dispersion of particles
within each generation during the optimization process. It provides insightful visuals of
the particle positions in each generation including the position of the best particle at each
step. Additionally, Figure 4 highlights that the whole particle swarm gradually converged
toward the optimal position of (0, 0). This clearly demonstrates the persistent movement of
the particle swarm toward the globally optimal solution.
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2.2. Wind Driven Optimization Algorithm

The wind driven optimization method, proposed by Bayraktar Z and others in
2010 [19,20], is an intelligent optimization algorithm that incorporates Newton’s Second
Law of motion force acceleration and the ideal gas equation. By simulating the motion of air
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particles under the influence of forces, this method constructs a simplified model represent-
ing the movement of particles in the air. These equations govern the updates of velocity and
the position of air particles throughout each iteration cycle. As a technique inspired by the
study of forces and the motion of air particles in the atmosphere, wind driven optimization
exhibits a strong physical basis. It possesses the ability to strike a balance between global
exploration and local exploitation, effectively enhancing its optimization capabilities.

2.2.1. Parameterization of the Wind Driven Optimization Algorithm

Given the assumption that the dimension of each air particle in the population X pop
is denoted as E, the population can be represented by a matrix of dimensions pop × E.
This matrix, as described by Formula (9), encapsulates the configuration of the population,
where each row corresponds to an individual particle and its E-dimensional position.

X =

 x1
1 . . . xE

1
...

. . .
...

x1
pop · · · xE

pop

 (9)

Considering the influence of location on air particles, the selection of parameter values
should be based on the specific context of the real-world application. It is customary to
determine the range of values for each parameter that reflects the problem’s characteristics.
In Section 2.2.4, a precise set of ranges is delineated for the parameters, enabling the
generation of the initial air particles. The values for these particles were randomly selected
from their respective ranges, facilitating the exploration of diverse regions within the
search space.

2.2.2. Method for Establishing Physical Models and Updating Air Units

The wind driven optimization technique is a mathematical algorithm that aims to
replicate the movement of the atmosphere caused by changes in the local air pressure.
Eventually, a state of equilibrium is reached through this process. This algorithm models
the motion of an abstract air particle unit, taking into account four forces: gravity, Coriolis
force (resulting from the rotation of the Earth), the air pressure gradient force (directed from
high pressure to low pressure), and the frictional force acting on the air pressure gradient
force. By incorporating Newton’s Second Law and the ideal gas equation, these four forces
are combined into a set of equations. Through this process, a position updating formula
for the wind driven optimization method can be derived [21]. The detailed procedure is
outlined as follows.

Varied air densities and pressures will occur from varied regional temperatures. Air
will go from a high-pressure area to a low-pressure area due to differences in atmospheric
pressure. Pressure gradient, which may be determined by changes in distance, is what
causes gas flow. In the Cartesian coordinate system, this is denoted by Formula (10).

∆P =

(
δP
δx

,
δP
δy

,
δP
δz

)
(10)

Equation (11) is modified by adding a negative sign to represent the direction of
decreasing pressure gradient when air moves from a high-pressure to a low-pressure
region. Equation (11) can be used to depict the pressure gradient FPG while taking into
account the restricted mass and air volume.

To incorporate the directionality of air moving from a high-pressure region to a low-
pressure region, Equation (11) is modified by adding a negative sign. This modification
reflects the decreasing nature of the pressure gradient in such cases. Equation (11) can be
utilized to represent the pressure gradient, denoted as FPG, while considering the restricted
mass and air volume.

FPG = −∆PδV (11)
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In an abstract wind model, we make the assumption that the atmosphere is uni-
form and the fluids are in hydrostatic equilibrium. In a Cartesian coordinate system, the
fluid dynamics equation states that the horizontal airflow is more prominent than the
vertical airflow. This implies that we consider the wind to predominantly move in the
horizontal direction, and changes in horizontal pressure are the primary driver of wind
movement. According to Newton’s Second Law of Motion, the magnitude of the accelera-
tion vector, denoted as a, operating in the direction of the net force on an air unit, can be
expressed as follows.

ρa = ∑ Fi (12)

In this context, we can employ an equation that establishes the relationship between
air pressure, density, and temperature, allowing us to apply the gas laws. The density of
a small air unit can be denoted as ρ, while the force acting on it is represented by Fi. By
utilizing the following gas laws, we can determine the interconnections among air pressure,
density, and temperature.

P = ρRT (13)

In Equation (13), let P represent pressure, R denote the universal gas constant, and T
symbolize temperature.

Equation (14) simplifies the friction force acting on the atmosphere, which serves as
the resistance to the movement of an air parcel, despite the pressure gradient force being
the fundamental force that initiates the movement.

Equation (14) succinctly represents the complex friction force acting on the atmosphere,
which opposes the movement of an air parcel. It is important to note that the primary force
responsible for the motion of an air parcel is the pressure gradient force.

FF = −ρau (14)

In Equation (14), let a symbolize the vector velocity of the wind, and u represent the
friction coefficient.

Gravity, denoted as FG, is a force that acts perpendicular to the Earth’s surface in
three-dimensional space. However, to simplify its representation, we can assume the origin
of the rectangular coordinate system to be located at the center of the Earth.

FG = ρδVg (15)

The rotation of the Earth induces rotation of the reference coordinate system, leading
to an amplification of Coriolis force. The Coriolis force results in the deflection of wind
direction from its original path, with the deflection angle being directly influenced by the
Earth’s rotation. This phenomenon is also influenced by the latitude of the atmosphere and
the velocity of the air unit. The definition of the Coriolis force is as follows.

FG = −2Ω× u (16)

In Equation (16), let Ω symbolize the rotation of the Earth.
By considering various forces acting on the air parcel including the Coriolis force,

gravitational force, frictional force, and pressure gradient, we can substitute Equations (11),
(14)–(16) into the right-hand side of Equation (12) to obtain the expression.

ρ
∆u
∆t

= (ρδVg) + (−∆PδV) + (−ρau) + (−2Ωu) (17)

Equation (9) can be simplified to Equation (18) by introducing the assumption of a
temporal difference.

ρ∆u = ρg + (−∆P) + (−ρau) + (−2Ωu) (18)



Mathematics 2023, 11, 4531 9 of 42

Utilizing Equation (6), the relationship between density ρ and pressure can be estab-
lished. This allows us to express density in terms of pressure. Furthermore, in Equation (19),
the substitution of temperature and the universal gas constant is made.

Pcur

RT
∆u = (

Pcur

RT
g)− ∆P− Pcur

RT
au + (−2Ωu) (19)

The variable Pcur represents current pressure in this context. Equation (20) is derived
by dividing both sides of Equation (11) by the term Pcur/RT.

∆u = g− ∆P
Pcur

RT
− au + (−2ΩuRT/Pcur) (20)

The parameter ucur represents the current velocity value, indicating the velocity for
the present iteration. Equation (21) is obtained by substituting the value of variable w into
Equation (12).

unew = (1− a)ucur + g + (−∆P× RT/Pcur) + (−2Ω× uRT/Pcur) (21)

The vector representing the force of gravity, denoted as g, is given by g = |g|(0 − xcur).
A pressure gradient, denoted as P, can be defined as the force that propels an air unit
toward its ideal pressure point. Hence, the magnitude of P is equal to the difference
between the air unit’s current pressure, Pcur, and its ideal pressure, Popt. The direction
of the pressure gradient points from the current position xcur to the ideal position xopt.
Equations (22) and (23) offer a clear and concise representation of this concept.

∆P =
∣∣Pnew − Popt

∣∣(xcur − xopt) (22)

unew = (1− a)ucur + gxcur −
∣∣Pnew − Popt

∣∣(xcur − xopt)× RT/Pcur − 2Ω× uRT/Pcur (23)

The Coriolis force, as defined in Formula (23), is given by the vector product of
the Earth’s rotational speed and the unit air acceleration. To illustrate the influence of
the Coriolis force, we can consider replacing it with another air unit that possesses the
same velocity uotherdim

cur . By substituting the simplified Coriolis force into Formula (23), the
resulting Formula (24) yields relevant outcomes.

unew = (1− a)ucur + gxcur −
∣∣Pnew − Popt

∣∣(xcur − xopt)× RT/Pcur + (
c× uotherdim

cur
i

) (24)

The efficiency of the wind driven optimization algorithm can potentially be affected
when there is an increase in wind speed to avoid excessively high pressure values. To
address this, all air units can be organized in descending order based on their pres-
sure values [22]. This arrangement allows us to express Equation (16) as Equation (25),
presented below.

unew = (1− a)ucur + gxcur + (xcur − xopt)× RT|1/i− 1|+ (
c× uotherdim

cur
i

) (25)

In Equation (25), the variable i represents the ranking of each individual air unit. From
this, we can derive the subsequent equation for updating the positions of the air units.

xnew = xcur + (unew∆t) (26)

In Formula (26), the variable xcur represents the current position of the air unit in the
search space. On the other hand, unew represents the newly updated position of the cycle
state. During each iteration, all air units within the search area move in random directions
and speeds. The speed and position of each air unit, as given in Equations (17) and (18), are
modified to ensure that it continuously approaches the ideal position.
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2.2.3. Algorithm for the Wind Driven Optimization: Fitness Function Selection

In the wind driven optimization algorithm, the value of the pressure function, also
referred to as the fitness function, plays a crucial role. It not only helps in evaluating the
advantages and disadvantages of a candidate solution, but also forms the basis for updating
the position of the air unit in subsequent iterations. As the algorithm progresses, the initial
solution gradually moves closer to the optimal solution based on the information provided
by the pressure fitness.

2.2.4. Identify the Wind Driven Optimization Algorithm’s Boundary Range

Air units should be able to move within a specific range for each dimension. When
the position of the air unit is above the upper limit, only the upper boundary value is used.
The boundary value is only used when the air unit is lower than the boundary below. As a
result, Formula (27) illustrates the air unit position limits.

To ensure that the movement of the air units remains within a predetermined range for
each dimension, certain constraints are implemented. If the position of an air unit exceeds
the upper limit, the value is set to the upper boundary limit. Similarly, if the position falls
below the lower boundary, only the lower boundary value is taken into account. This
arrangement is illustrated by Formula (27), which captures the position limits imposed on
the air units.

unew =

{
ub, u > umax
Ib, u < umin

(27)

The upper and lower limits of the air unit dimension in Equation (27) are denoted by
ub and Ib, respectively.

2.2.5. The Wind Driven Optimization Algorithm’s Process

Figure 5 represents the flowchart for the wind driven optimization algorithm. It
outlines the precise calculation steps as follows.
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Step 1: Initialize the population size, define the pressure function (fitness func-
tion), set the maximum number of iterations and relevant parameters, and establish the
search boundaries.
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Step 2: Set the initial position and speed of each air unit to zero.
Step 3: Calculate the position and velocity of each air unit for the current iteration.
Step 4: Update the speed of each air unit based on certain criteria.
Step 5: Adjust the positions of the air units according to their updated speed.
Step 6: Verify whether all constraint conditions are met. If yes, determine the best air

unit. If not, repeat Steps 2 to 5 until the conditions are satisfied.

2.2.6. Wind Driven Optimization Algorithm Calculation Results

In addition to the computational framework described previously, the wind driven
optimization algorithm was employed to tackle the given optimization problem, which
involves minimizing the value of the following function (Formula (8)) with respect to a pair
of variables, x1 and x2.

The value ranges of x1 and x2 in Formula (8) can be represented as [−20, 20]. To
visualize the search space for the function in Formula (8), refer to Figure 2.

The minimal value of the Formula (8) function is 0, and the optimal solution is obtained
when x1 = 0 and x2 = 0, as evident from both the function expression and the search space
depicted in Figure 2. To address this problem, we can employ a technique called wind
driven optimization. In this approach, the maximum number of iterations is set to 100,
and the population size is 50. Each individual air unit is characterized by a dimension of
2, with an upper boundary of [20, 20] and a lower boundary of [−20, −20], as the values
of x1 and x2 have already been determined. To facilitate the wind driven optimization,
certain constants are employed such as the gravitational constant g = 0.2, RT = 3 and other
relevant constants associated with this technique. The constant in the update formula
is set to 0.4, and the Coriolis force is denoted as c = 0.4. Additionally, the lower and
upper velocity boundaries are defined as 0.3 times the upper bound (ub) and lower bound
(Ib), respectively.

The fitness function, Formula (8), was devised to align with the objective of the optimization
problem. The program’s iteration curve is depicted in Figure 6. Ultimately, the optimal
solution is achieved with a function value of 7.782 × 10−34 and the corresponding values
of x1 =−1.0462× 10−9 and x2 = −5.2797 × 10−9, as obtained from the output of the wind
driven optimization method. Notably, the final solution (−1.0462× 10−9,−5.2797× 10−9)
determined by the wind driven optimization technique closely approximates the theoretical
optimal value (0, 0). This indicates that the wind driven optimization algorithm exhibits
strong optimization capabilities.
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In order to gain a deeper insight into the distribution of air units within each generation
during both the initial and subsequent iterations, it is beneficial to examine the changes in
the positions of individuals within the air units. These variations are illustrated in Figure 7,
along with the intermediate discoveries made by the algorithm. Additionally, the positions
of the individuals in each generation’s air units can be observed simultaneously. Figure 7
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effectively demonstrates that as the number of iterations increases, the individuals within
the air units progressively converge toward the optimal location (0, 0). This observation
indicates that the air units consistently move toward their ideal positions, showcasing the
algorithm’s ability to converge toward the optimal solution.
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2.3. Grey Wolf Optimization Algorithm

The grey wolf optimizer algorithm (GWO) was introduced by Seyedali Mirjalili, an
esteemed researcher from Australia [23,24]. Inspired by the natural patterns of preda-
tion observed in grey wolf groups, this algorithm utilizes a cooperative process among
wolves to accomplish its optimization objectives. By simulating the behavior of wolves,
the GWO algorithm leverages their hunting strategies and social dynamics to achieve
efficient optimization.

The grey wolf optimizer method is built upon the hierarchical social structure observed
in a grey wolf population, which consists of four levels shaped like pyramids. At the apex
of the hierarchy is the highest-ranking α1 wolf, followed by the α2 wolf, α3 wolf, and finally
the lowest-ranking α4 wolf. The α1 wolf, being the leader of the pack, holds authority over
the α2 wolf, α3 Wolf, and α4 wolf. The α2 wolf, as the second-in-command, is responsible
for overseeing the α3 wolf and α4 wolf, while also providing assistance to the α1 wolf. The
α3 wolf supports the α1 wolf and α2 wolf, and serves as the foundation of the wolf pack.
The majority of the pack consists of α4 wolves, who are subordinate to the α1 wolf, α2 wolf,
and α3 wolf [25].
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2.3.1. Trapping Prey

Formulas (28)–(32) are integral components of the grey wolf optimizer algorithm,
serving the purpose of iteratively updating the positions of the wolves.

B =
∣∣C • Yp(t) − Y(t)

∣∣ (28)

Y(t + 1) = Yp(t) − A • B (29)

A = 2a× r1 − a (30)

C = 2r2 (31)

a = 2− 2t
tmax

(32)

In the grey wolf optimizer algorithm, the prey’s position vector is denoted as Yp, and
it is updated using Formulas (28) to (32). On the other hand, the position vector of the grey
wolf population is represented by Y. The current iteration number is denoted as t. The
random vectors r1 and r2 follow a uniform distribution and range between 0 and 1. The
convergence factors, denoted as a, linearly decrease from 2 to 0 as the number of iterations,
t, increases. The distance between a grey wolf and the prey is calculated using Formula
(28). The modified group position of the grey wolves is determined using Formula (29).
The coefficient vectors involved in the calculations are denoted as A and C.

2.3.2. Hunting Prey

During the iterative calculation process, the movements of theωwolf are guided to
achieve the global optimum. In Equation (33), positions of other members of the pack are
updated based on the positions of the α1 wolf, α2 wolf, and α3 wolf. This equation governs
the updating process, ensuring that remaining members of the pack adjust their positions in
accordance with leaders of the pack to enhance the exploration and exploitation capabilities
of the algorithm. 

Bα1 = |C1∗Yα1−Y|
Bα2 = |C2∗Xα2−Y|
Bα3 = |C3∗Yα3−Y|

(33)

In Formula (33), Bα1 , Bα2 , and Bα3 represent the distances between α4 wolves and
α1 wolves, α2 wolves, and α3 wolves, respectively, within the wolf pack. This equation
calculates specific positions of individuals in the wolf pack after the update. Furthermore,
Formula (34) describes the particular position of an individual within the wolf pack after the
renewal process. Finally, by averaging the values of Y1, Y2, and Y3, Formula (35) is derived.

Y1 = |Yα1−A1Bα1 |
Y2 = |Yα2−A2Bα2 |
Y3 = |Yα3−A3Bα3 |

(34)

Y(t + 1) =
Y1 + Y2 + Y3

3
(35)

2.3.3. Attacking Prey

The grey wolf pack utilizes a hunting strategy to capture prey. As wolves gradually
approach the prey, the value of A undergoes changes. In the iterative calculation process,
Formula (35) indicates that as the value of a decreases from 2 to 0, the corresponding value
within the range of [−a, a] also changes accordingly. This dynamic adjustment allows the
wolf pack’s position to be anywhere between its current position and the position of the
prey in the subsequent iteration, provided that the wolf pack value falls within the interval
of [−1, 1]. This ability enables the wolves to continuously pursue and attack the prey.
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However, if the value of A falls outside the range of [−1, 1], the wolves will cease their
pursuit of the prey and resume their search for other potential targets.

2.3.4. Searching Prey

In the grey wolf pack, the α1 wolf assumes the role of the leader, while the other
wolves (α2 wolf, α3 wolf) collaborate with the α1 wolf to encircle, hunt, and attack the prey.
They also search for potential prey based on the positional information provided by the
α1 wolf, α2 wolf, and α3 Wolf. If the value of A exceeds the range of [−1, 1], the wolf pack
disengages from its current prey target and moves away from the prey. This behavior aids
the wolf pack in exploring and finding the best possible solution when searching for prey,
preventing the iterative process from getting trapped in the local optima. Additionally,
Formula (30) represents a randomly generated vector within the range of [0, 2]. This
randomness allows the wolf pack to perform random searches, further enhancing the
exploration capability of the grey wolf optimizer method and preventing it from getting
stuck in suboptimal solutions.

2.3.5. Application of the Grey Wolf Optimization Algorithm

Figure 8 presents the flowchart for the grey wolf optimizer method, outlining the
individual steps involved in the calculation. The detailed description of each step is
provided below [26].
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Step 1: Set the initial values for the maximum iteration count, population size, and
variable dimension in the grey wolf optimization algorithm.
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Step 2: Randomly assign positions to the members of the grey wolf group within the
specified upper and lower bound conditions, based on the real application scenario.

Step 3: Calculate the fitness score for each grey wolf and store the position of the grey
wolf with the best (smallest) fitness score as Yα1 . Retain the position information of a grey
wolf with a lower fitness value (sub-optimal) as Yα2 . Keep the position information of a
grey wolf with slightly better fitness value as Yα3 .

Step 4: Iterate to update the positions of individuals in the pack.
Step 5: Continuously update parameters a, A, and C.
Step 6: Update the ideal positions for three-headed wolves and calculate the fitness

values of grey wolves in the pack.
Step 7: Verify whether the maximum number of iterations, tmax, for the optimization

algorithm has been reached. If so, use the Yα1 value obtained during the optimization
process as the best solution. If the maximum number of iterations has not been reached,
repeat the process by returning to Step 4.

2.3.6. Grey Wolf Optimization Algorithm Calculation Results

In addition to the aforementioned calculations, the grey wolf optimization technique
is employed to tackle the following problems. The objective is to minimize the function
value in Formula (8) by finding the optimal values for a pair of variables, x1 and x2.

The variables x1 and x2 in Formula (8) are constrained within the range of [−20, 20].
The minimum value of this function is 0, and the optimal solution is obtained when

x1 = 0 and x2 = 0, as indicated by the function expression and the search space depicted in
Figure 2. The grey wolf optimization technique can be employed to address this problem.
The maximum number of iterations was set to 100, and the population size was 50. The
dimension of each individual in the grey wolf population was set to 2, corresponding to
the variables x1 and x2. The upper boundaries for x1 and x2 were both 20, while the lower
boundaries were −20 for both variables.

To address the optimization objective, Formula (35) was formulated as the fitness
function. The program’s iteration curve is depicted in Figure 9. At the end of the
optimization process, the grey wolf optimization algorithm yielded the output values
x1 = −7.7382 × 10−36, x2 =−7.4891× 10−36, and a function value of 6.7313× 10−141, which
represents the optimal solution. The obtained value (−7.7382 × 10−36, −7.4891 × 10−36),
as determined by the grey wolf optimization algorithm, was remarkably close to the theo-
retical optimal value (0, 0). This result serves as evidence of the remarkable optimization
capabilities of the grey wolf optimization algorithm.
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To gain a better understanding of the distribution of grey wolf individuals in each
generation, it is helpful to observe how their positions evolve during the initial and subse-
quent iterations of the algorithm. Figure 10 provides a visual representation of the shifting
positions of individual grey wolves as intermediate results are obtained.
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In each generation, it is possible to simultaneously track the best position, also known
as the elite grey wolf as well as the overall location of the wolf group. Additionally, the
positions of the α1 wolf, α2 wolf, and α3 wolf can be recorded in every generation. As the
number of iterations increases, the positions of these wolves gradually converge toward
their ideal locations, which in this case is (0, 0). According to the wolf technique, the
optimal position (0, 0) can be achieved with a relatively small number of iterations. The
grey wolf optimization algorithm demonstrates a tendency to approach its ideal position
more closely with each iteration.

When conducting the same number of iterations, the calculation result of the grey wolf
optimization algorithm was the most accurate and closest to the ideal position for function
f (x1, x2) = x1

4 + x2
4 within the interval of [−20, 20]. It has been demonstrated that

the grey wolf optimization algorithm outperforms the wind driven optimization method
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and the particle swarm optimization algorithm in terms of its strong global optimum
ability. Additionally, even with a relatively low number of iterations (10 times), the grey
wolf optimization algorithm can achieve a position that is extremely close to the optimal
solution while maintaining good computational efficiency. On the other hand, the particle
swarm optimization algorithm requires more than 20 iterations, and the wind driven
optimization algorithm requires 20 iterations to achieve comparable results.

2.4. One-to-One-Based Optimizer Algorithm

The concept of the one-to-one-based optimizer algorithm (OOBO) revolves around the
notion of enhancing the overall knowledge of individuals within the algorithm population.
The objective is to strike a balance between maximizing this knowledge and avoiding ex-
cessive reliance on particular individuals within a population such as the optimal, average,
or worst performers [27]. By establishing a correspondence between two distinct groups of
population individuals and selected individuals, the aim is to facilitate greater involvement
of all members in the process of updating the algorithm. Moreover, it is crucial to note that
each population individual is exclusively chosen as a bootstrap once and solely utilized to
update another individual within the population through this one-to-one interaction.

2.4.1. Boundary Range of OOBO Algorithm

Boundary ranges are set for the OOBO algorithm. When the variable exceeds the
upper limit, it can only take the value of the upper boundary. When the variable is lower
than the lower limit, it can only take the value of the lower boundary. Therefore, the
constraint conditions for the particle swarm unit are shown in Equation (36).

unew =

{
ub, u > umax
Ib, u < umin

(36)

In Equation (36), ub and Ib represent the upper and lower bounds of the variable,
respectively.

2.4.2. Initialization of Parameters of OOBO Algorithm

In the OOBO algorithm, each group member can participate in the solution of this
problem. Each member has a mathematical vector representation with the same number of
elements as the number of decision variables. A population member can be used as the
initial population to generate the OOBO algorithm. Population members are randomly
localized in the search space, as shown in Equations (37) and (38).

→
Xi = {xi1, xi2, · · · , xiC, · · · , xiE}, i = 1, 2, · · · , M (37)

xi,C = IbC + (ubC − IbC)× rand(), C = 1, 2 · · · E (38)

2.4.3. Physical Modeling and Population Updating Methods

Individual positions are regularly updated during the optimization seeking procedure
using previous heuristic clever optimization algorithms. The method of population update
is heavily reliant on the best individual. However, it frequently leads to a loss in the
algorithm exploring capabilities. It is easy to fall into a local optimum, making finding a
globally optimal solution in the issue space challenging. Moving the population toward
the optimal individual may, in fact, lead to convergence to an incorrect local solution for
complex optimization problems. Instead of constantly updating the optimization search
process with the best individuals, the OOBO algorithm’s modeling design achieves a global
search by transferring the algorithm population to different regions of the search space
to boost the OOBO searching capabilities. All individuals in the OOBO algorithm are
involved in the population update throughout this step. As a result, each population
member is chosen at random just once, guiding the search space to produce various results
for population.
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The OOBO algorithm is described mathematically below.

(1) Each individual is a positive integer from 1 to N and is chosen randomly.
(2) Individuals are not duplicated.
(3) No member has a value equal to its position in the N tuple.

All individuals in the OOBO algorithm are involved in population update throughout
this step. As a result, each population member is chosen at random just once, guiding
the search space to produce various results for population. As demonstrated in Equa-

tion (39), utilize matrix
→
K to bootstrap a set of member locations using aggregate as the

stochastic process.

→
K =

{
[k1, · · · , kq, · · · , kN ] ∈ PN ; ∀q ∈ N : kq 6= q

}
(39)

In the above equation, N represents the {1, 2, · · · , N} set. PN is the arrangement of
all N sets. In the OOBO algorithm, the process of calculating new states of population
members in the search space is modeled, as shown in Equations (40) and (41).

xnew
i,C =

{
xi.C + rand() · (xki ,C − Ixi,C), fki

< fi
xi.C + rand() · (xi,C − xki ,C), otherwise

(40)

I = round(1 + rand()) (41)

In the above equation, xnew
i,C is the new state of the ith individual member in the C

dimension. xki ,C is the ith individual member guided by the selected member under the C
dimension. fi denotes the value of the objective function based on Xi. The variable I takes
the value of 1 or 2.

A member’s proposed new state is acceptable if it improves the value of the objective
function. Otherwise, the proposed new status is rejected, and the individual remains in the
existing position. Equation (42) represents the selection process.

Xi =

{
Xnew

i , f new
i < fi

Xi, otherwise
(42)

where Xnew
i represents the new state of the individual member of the ith population in the

search space in the preceding Equation (42). f new
i is the objective function’s value.

2.4.4. Selection of Fitness Function for One-to-One-Based Optimizer

The OOBO optimization algorithm assesses the fitness value of each population
member by monitoring changes made to them. The number of unique objective function
values recorded in each iteration is equivalent to the number of population members.

2.4.5. Calculation Results of One-to-One-Based Optimizer Algorithm

Combined with the calculation idea of the OOBO algorithm above-mentioned, the
OOBO algorithm was used to solve the following problems: solve a group of x1 and x2 to
minimize the function value as the same as Formula (8).

In Formula (8), the value ranges of x1 and x2 were [−20, 20] and [−20, 20], respectively.
From the function expression and search space in Figure 2, the minimum value of this

function was 0, and the optimal solution was x1 = 0 and x2 = 0. The OOBO algorithm can
be used to solve this problem. The population number was 50 and the maximum iteration
number was 100. Since x1 and x2 were solved, the dimension of individual units was set as
2, the upper boundary of individual units was set as ub = [20, 20], and the lower boundary
was set as Ib = [−20, −20].
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According to the optimization objective problem, the fitness function designed can be
seen in Formula (8). The iteration curve of the program is shown in Figure 11. Finally, the
output result of the OOBO algorithm was x1 = 1.3085 × 10−17, x2 = 1.2944 × 10−17, and the
function value corresponding to optimal solution was 5.7381 × 10−68. According to the
results calculated by the OOBO algorithm, the final value (1.3085 × 10−17, 1.2944 × 10−17)
was obviously close to the theoretical optimal value (0, 0). This indicates that the OOBO
algorithm has strong optimization ability.
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3. Performance Comparison and Study of Various Algorithms
3.1. Descriptive Statistical Analysis

We first wanted to fully compare the performance of four intelligent algorithms: parti-
cle swarm optimization (PSO), wind driven optimization (WDO), grey wolf optimization
(GWO), and the one-to-one-based optimizer (OOBO). For specific parameters, the popula-
tion number was set to 100 and the maximum iteration number was set to 1000, as shown
in Table 1.

Table 1. Parameters set by the four algorithms.

Algorithm Name Set Value of the Algorithm Parameters

Particle Swarm Optimization
(PSO)

The population size was set to 100 individuals, the
maximum number of iterations was 1000, and the
speed range was confined to the interval [−2, 2].

Wind Driven Optimization
(WDO)

The population size was set to 100 individuals, the
maximum number of iterations was 1000.

Grey Wolf Optimization
(GWO)

The population size was set to 100 individuals, the
maximum number of iterations was 1000.

One-to-One-Based Optimizer
(OOBO)

The population size was set to 100 individuals, the
maximum number of iterations was 1000.

Benchmark functions (M1–M12) were selected to compare and analyze the perfor-
mance of the algorithms [28,29], as shown in Table 2. Unimodal test functions (M1–M7)
can be used to evaluate the development ability of intelligent algorithms. The variable di-
mension of the test function was 30. These functions only contain one global optimal value
and are in the form of single peak. Multimodal test functions (M8–M12) have multi-peak
forms with a variable dimension of 30. These functions contain multiple local optima and
can be used to test the algorithm’s ability to find the global optimum.

In Table 3, the M13–M22 test functions are fixed-dimensional multimodal functions [30]
that can be used to test the algorithms’ ability to find the global optimum more comprehensively.
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Table 2. The unimodal and multimodal experimental test functions (M1–M12).

Test Function Dimension n Variables Range Optimal Solution

M1 =
n
∑

k=1
x2

k 30 [−100, 100] 0

M2 =
n
∑

k=1
|xk|+

n
∏

k=1
|xk| 30 [−10, 10] 0

M3 =
n
∑

k=1
(

k
∑

i=1
xi)

2 30 [−100, 100] 0

M4 = max|xk|, (1 ≤ k ≤ n) 30 [−10, 10] 0

M5 =
n−1
∑

k=1
[100(xk+1 − x2

k)
2
+ (xk − 1)2] 30 [−30, 30] 0

M6 =
n
∑

k=1
(|xk + 0.5|)2 30 [−100, 100] 0

M7 =
n
∑

k=1
kx4

k + random(0, 1) 30 [−1.28, 1.28] 0

M8 =
n
∑

k=1
[x2

1 − 10 cos(2πxk) + 10] 30 [−5.12, 5.12] 0

M9 = −20e
−0.2

√
1
n

n
∑

k=1
x2

k
− e

1
n

n
∑

k=1
cos(2πxk)

+ 20 + e
30 [−32, 32] 0

M10 = 1
4000

n
∑

k=1
x2

k −Πn
k=1 cos( xk√

k
) + 1 30 [−600, 600] 0

M11 = π
n {10 sin(πz1) +

n
∑

k=1
(zk − 1)2[1 + 10 sin(πzk+1)] + (zn − 1)2}

+
n
∑

k=1
U(xk, 10, 100, 4)

zk = 1 + xk+1
4 , U(xk, p, q, r) =


q(xk − p)r, xk > p
0,−p < xk < p
q(−xk − p)r, xk < −p

30 [−50, 50] 0

M12 = 0.1{sin2(3πx1) +
n
∑

k=1
(xk − 1)2[1 + sin2(3πxk + 1)]+

(xn − 1)2[1 + sin2(2πxn)]}+
n
∑

k=1
U(xk, 5, 100, 4)

30 [−50, 50] 0

Table 3. Experimental test functions (M13–M22).

Test Function Dimension n Variables Range Optimal Solution

M13 = [ 1
500 +

25
∑

i=1

1

i+
2
∑

k=1
(xk−aki)

6
]
−1

2 [−65, 65] 1

M14 =
11
∑

k=1
[ak −

x1(b2
k+bk x2)

b2
k+bk x3+x4

]
2 4 [−5, 5] 0.0003

M15 = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

M16 = (x2 − 5.1
4π2 x2

1 +
5
π x1 − 6)

2
+ 10(1− 1

8π ) cos x1 + 10 2 [−5, 5] 0.398

M17 = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2
)]

×[30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)]

2 [−2, 2] 3

M18 = −
4
∑

k=1
dke
−

3
∑

i=1
pki(xi−oki)

2
3 [0, 1] −3.86

M19 = −
4
∑

k=1
dke
−

6
∑

i=1
pki(xi−oki)

2
6 [0, 1] -3.32

M20 = −
5
∑

k=1
[(Y− pk)(Y− pk)

T + dk]
−1 4 [0, 10] −10.1532

M21 = −
7
∑

k=1
[(Y− pk)(Y− pk)

T + dk]
−1 4 [0, 10] −10.4028

M22 = −
10
∑

k=1
[(Y− pk)(Y− pk)

T + dk]
−1 4 [0, 10] −10.5363
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In Tables 2 and 3, each test function (M1–M22) was run 50 times repeatedly. The
optimal value, worst value, average fitness value, and standard deviation results were
calculated statistically to compare the calculation performance of the four algorithms.

(1) The optimal value [31]

The ideal value represents the best performance achieved by the algorithms after mul-
tiple function tests. When comparing the optimal values obtained by different algorithms
after running for the same number of iterations, if one algorithm consistently outperforms
the others, it suggests that the algorithm has the ability to discover superior solutions in
similar situations.

Equation (43) elegantly formulates the optimal solution that effectively tackles the
minimal problem at hand.

Optimal Value = min{x1, x2, x3, · · · , xn} (43)

Equation (44) precisely characterizes the optimal solution that effectively resolves the
maximum problem under consideration.

Optimal Value = max{x1, x2, x3, · · · , xn} (44)

(2) The worst value [32]

The algorithm’s worst performance can be quantified by the maximum value obtained
across multiple test function trials. When subjected to an equal number of iterations, this
algorithm consistently yields a higher worst value compared to other algorithms. This
observation implies that under identical conditions, this particular algorithm tends to
produce inferior solutions.

Equation (45) elegantly formulates the worst solution that effectively tackles the
minimal problem at hand.

Worst Value = max{x1, x2, x3, · · · , xn} (45)

Equation (46) precisely characterizes the worst solution that effectively resolves the
maximum problem under consideration.

Worst Value = min{x1, x2, x3, · · · , xn} (46)

(3) The average value [33]

In the realm of data analysis, the concept of average value serves as a valuable metric in
capturing the central tendency of the dataset. This essential statistical measure is computed
by summing up all values present in a given dataset and subsequently dividing the sum by
the total number of data points. The mathematical formula that articulates this calculation
is represented as Formula (47).

X =

n
∑

k=1
xk

n
(47)

Let n denote the total number of data points, and let X denote the average value of
data. In scenarios where the mean values computed from multiple datasets are all positive,
and the optimal solution of the objective function is 0, the dataset with a lower mean
value is considered more desirable. Average value serves as a measure of the algorithm’s
convergence accuracy.

(4) The standard deviation [34]

In the domain of mathematics, standard deviation, symbolized by σ, assumes a
significant role as it characterizes the dispersion present within a particular dataset. Its
definition involves the computation of the arithmetic mean of squared differences between
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every individual data point and the mean value of the dataset. To mathematically determine
standard deviation, one must square deviations, sum them, divide the result by the total
number of data points in the set, and ultimately extract the square root. The precise
expression of this relationship is elegantly captured in Formula (48).

σ =

√√√√√ n
∑

k=1
(xk − x)2

n
(48)

Let n denote the number of data points, and X represent the average value of the
dataset. The standard deviation, denoted as σ, provides a measure of dispersion or scatter
within the data. A larger standard deviation indicates greater variability in data points, re-
sulting in poorer repetition performance. Conversely, a smaller standard deviation suggests
that data points are more closely clustered, leading to better repetition performance.

Table 4 presents a comprehensive overview of the performance metrics for various
algorithms, specifically their optimal, worst, mean values, and standard deviations. These
metrics were obtained by executing 50 independent test functions denoted as M1 to M22.
Notably, the most exceptional results achieved by the four distinct algorithms for each
test function are highlighted in bold within the table. To gain further insight into the
convergence behavior of these algorithms, Figures 12–33 visually illustrate the changing
patterns of the convergence curves across the test functions (M1–M22).

Table 4. Results obtained from conducting tests on each test function using different algorithms.

Test Function Algorithm Name Optimal Value Worst Value Average Value Standard Deviation

M1

PSO 8.80 × 100 1.49 × 101 1.19 × 101 1.42 × 100

WDO 5.67 × 10−47 1.66 × 10−37 3.42 × 10−39 2.35 × 10−38

GWO 9.22 × 10−88 2.81 × 10−84 3.11 × 10−85 5.64 × 10−85

OOBO 1.91 × 10−185 3.01 × 10−183 4.53 × 10−184 0

M2

PSO 1.31 × 101 4.57 × 106 1.05 × 105 6.47 × 105

WDO 4.08 × 10−22 2.45 × 10−17 6.50 × 10−19 3.48 × 10−18

GWO 4.00 × 10−49 1.90 × 10−47 5.09 × 10−48 4.29 × 10−48

OOBO 1.49 × 10−94 2.84 × 10−93 7.47 × 10−94 5.19 × 10−94

M3

PSO 1.89 × 101 4.84 × 101 3.20 × 101 6.65 × 100

WDO 9.65 × 10−38 1.84 × 10−30 7.09 × 10−32 2.67 × 10−31

GWO 4.02 × 10−33 2.57 × 10−25 1.10 × 10−26 4.18 × 10−26

OOBO 1.45 × 10−57 4.77 × 10−47 9.62 × 10−49 6.74 × 10−48

M4

PSO 1.18 × 100 1.52 × 100 1.36 × 100 7.98 × 10−2

WDO 1.80 × 10−22 6.05 × 10−18 2.98 × 10−19 9.13 × 10−19

GWO 2.98 × 10−23 3.53 × 10−21 7.11 × 10−22 7.30 × 10−22

OOBO 6.04 × 10−79 1.23 × 10−77 5.03 × 10−78 2.99 × 10−78

M5

PSO 1.53 × 103 5.70 × 103 2.60 × 103 7.93 × 102

WDO 2.79 × 101 2.87 × 101 2.84 × 101 3.17 × 10−1

GWO 2.48 × 101 2.79 × 101 2.63 × 101 7.58 × 10−1

OOBO 2.30 × 101 2.47 × 101 2.40 × 101 2.17 × 10−1

M6

PSO 7.49 × 100 1.53 × 101 1.19 × 101 1.65 × 100

WDO 5.41 × 10−2 3.12 × 10−1 1.53 × 10−1 5.77 × 10−2

GWO 2.05 × 10−6 7.11 × 10−1 1.74 × 10−1 2.01 × 10−1

OOBO 2.54 × 10−10 1.77 × 10−8 3.65 × 10−9 3.99 × 10−9

M7

PSO 1.02 × 102 2.93 × 102 1.92 × 102 4.86 × 101

WDO 9.14 × 10−6 1.50 × 10−4 5.44 × 10−5 3.69 × 10−5

GWO 4.70 × 10−5 1.10 × 10−3 2.89 × 10−4 1.94 × 10−4

OOBO 1.95 × 10−5 2.72 × 10−4 1.44 × 10−4 6.59 × 10−5
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Table 4. Cont.

Test Function Algorithm Name Optimal Value Worst Value Average Value Standard Deviation

M8

PSO 1.80 × 102 2.53 × 102 2.13 × 102 1.48 × 101

WDO 0 1.92 × 102 6.07 × 101 3.15 × 101

GWO 0 5.70 × 100 3.39 × 10−1 1.36 × 100

OOBO 0 0 0 0

M9

PSO 3.81 × 100 2.10 × 101 1.35 × 101 8.41 × 100

WDO 0 2.09 × 101 4.19 × 10−1 2.96 × 100

GWO 2.06 × 101 2.09 × 101 2.08 × 101 7.97 × 10−2

OOBO 4.00 × 10−15 7.55 × 10−15 4.85 × 10−15 1.53 × 10−15

M10

PSO 3.12 × 10−1 5.87 × 10−1 4.74 × 10−1 4.52 × 10−2

WDO 0 6.91 × 10−2 2.70 × 10−3 1.04 × 10−2

GWO 0 1.29 × 10−2 9.00 × 10−4 3.10 × 10−3

OOBO 0 0 0 0

M11

PSO 1.55 × 10−1 1.05 × 101 1.35 × 100 2.26 × 100

WDO 2.80 × 10−3 4.66 × 10−1 4.03 × 10−2 8.85 × 10−2

GWO 2.64 × 10−7 3.32 × 10−2 1.27 × 10−2 9.06 × 10−3

OOBO 1.32 × 10−11 4.44 × 10−10 6.61 × 10−11 6.56 × 10−11

M12

PSO 1.42 × 100 2.33 × 100 1.87 × 100 2.24 × 10−1

WDO 3.99 × 10−2 3.45 × 100 6.51 × 10−1 1.07 × 100

GWO 4.18 × 10−6 6.10 × 10−1 1.43 × 10−1 1.22 × 10−1

OOBO 1.32 × 10−11 4.44 × 10−10 6.61 × 10−11 6.56 × 10−11

M13

PSO 9.98 × 10−1 1.99 × 100 1.02 × 100 1.41 × 10−1

WDO 9.98 × 10−1 1.36 × 101 3.83 × 100 3.25 × 100

GWO 9.98 × 10−1 1.08 × 101 1.75 × 100 1.58 × 100

OOBO 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 0

M14

PSO 5.03 × 10−4 1.23 × 10−3 7.89 × 10−4 1.33 × 10−4

WDO 3.08 × 10−4 2.04 × 10−2 1.20 × 10−3 3.96 × 10−3

GWO 3.07 × 10−4 5.65 × 10−2 2.25 × 10−3 8.78 × 10−3

OOBO 3.07 × 10−4 3.07 × 10−4 3.07 × 10−4 4.16 × 10−18

M15

PSO −1.03 × 100 −1.03 × 100 −1.03 × 100 8.04 × 10−5

WDO −1.03 × 100 −1.03 × 100 −1.03 × 100 2.39 × 10−5

GWO −1.03 × 100 −1.03 × 100 −1.03 × 100 4.31 × 10−10

OOBO −1.03 × 100 −1.03 × 100 −1.03 × 100 2.56 × 10−16

M16

PSO 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 4.63 × 10−5

WDO 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 4.36 × 10−5

GWO 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 2.04 × 10−8

OOBO 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 0

M17

PSO 3.00 × 100 3.00 × 100 3.00 × 100 1.05 × 10−4

WDO 3.00 × 100 3.02 × 100 3.00 × 100 3.73 × 10−3

GWO 3.00 × 100 3.00 × 100 3.00 × 100 8.14 × 10−7

OOBO 3.00 × 100 3.00 × 100 3.00 × 100 5.46 × 10−16

M18

PSO −3.86 × 100 −3.85 × 100 −3.86 × 100 3.14 × 10−3

WDO −3.86 × 100 −3.85 × 100 −3.86 × 100 3.76 × 10−3

GWO −3.86 × 100 −3.85 × 100 −3.86 × 100 1.88 × 10−3

OOBO −3.86 × 100 −3.86 × 100 −3.86 × 100 1.28 × 10−15

M19

PSO −3.25 × 100 −3.00 × 100 −3.13 × 100 6.17 × 10−2

WDO −3.32 × 100 −3.02 × 100 −3.22 × 100 1.03 × 10−1

GWO −3.32 × 100 −3.09 × 100 −3.24 × 100 7.27 × 10−2

OOBO −3.32 × 100 −3.32 × 100 −3.32 × 100 9.19 × 10−16

M20

PSO −1.00 × 101 −2.57 × 100 −7.83 × 100 2.32 × 100

WDO −1.00 × 101 −2.43 × 100 −6.78 × 100 2.25 × 100

GWO −1.02 × 101 −5.10 × 100 −9.75 × 100 1.38 × 100

OOBO −1.02 × 101 −1.02 × 101 −1.02 × 101 3.31 × 10−15

M21

PSO −1.03 × 101 −2.69 × 100 −8.91 × 100 1.93 × 100

WDO −1.02 × 101 −2.73 × 100 −7.21 × 100 2.28 × 100

GWO −1.04 × 101 −5.09 × 100 −9.98 × 100 1.46 × 100

OOBO −1.04 × 101 −1.04 × 101 −1.04 × 101 1.32 × 10−15

M22

PSO −1.05 × 101 −5.05 × 100 −9.71 × 100 1.01 × 100

WDO −1.04 × 101 −2.24 × 100 −7.66 × 100 2.28 × 100

GWO −1.05 × 101 −1.05 × 101 −1.05 × 101 2.30 × 10−5

OOBO −1.05 × 101 −1.05 × 101 −1.05 × 101 1.78 × 10−15

Note: The bold results in Table 4 are the minimum values of the three algorithms under different indicators.
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Figure 12. Results of test function M1: (a) average convergence curve of test function M1;
(b) calculation boxplot of test function M1.
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Figure 13. Results of test function M2: (a) average convergence curve of test function M2;
(b) calculation boxplot of test function M2.
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Figure 14. Results of test function M3: (a) average convergence curve of test function M3;
(b) calculation boxplot of test function M3.
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Figure 15. Results of test function M4: (a) average convergence curve of test function M4;
(b) calculation boxplot of test function M4.
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Figure 16. Results of test function M5: (a) average convergence curve of test function M5;
(b) calculation boxplot of test function M5.
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Figure 17. Results of test function M6: (a) average convergence curve of test function M6;
(b) calculation boxplot of test function M6.
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Figure 18. Results of test function M7: (a) average convergence curve of test function M7;
(b) calculation boxplot of test function M7.
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Figure 19. Results of test function M8: (a) average convergence curve of test function M8;
(b) calculation boxplot of test function M8.
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Figure 20. Results of test function M9: (a) average convergence curve of test function M9;
(b) calculation boxplot of test function M9.
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Figure 21. Results of test function M10: (a) average convergence curve of test function M10;
(b) calculation boxplot of test function M10.
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Figure 22. Results of test function M11: (a) average convergence curve of test function M11;
(b) calculation boxplot of test function M11.
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Figure 23. Results of test function M12: (a) average convergence curve of test function M12;
(b) calculation boxplot of test function M12.
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Figure 24. Results of test function M13:(a) average convergence curve of test function M13;
(b) calculation boxplot of test function M13.
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Figure 25. Results of test function M14: (a) average convergence curve of test function M14;
(b) calculation boxplot of test function M14.
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Figure 26. Results of test function M15: (a) average convergence curve of test function M15;
(b) calculation boxplot of test function M15.
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Figure 27. Results of test function M16: (a) average convergence curve of test function M16;
(b) calculation boxplot of test function M16.
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Figure 28. Results of test function M17: (a) average convergence curve of test function M17;
(b) calculation boxplot of test function M17.
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Figure 29. Results of test function M18: (a) average convergence curve of test function M18;
(b) calculation boxplot of test function M18.
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Figure 30. Results of test function M19: (a) average convergence curve of test function M19;
(b) calculation boxplot of test function M19.
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Figure 31. Results of test function M20: (a) average convergence curve of test function M20;
(b) calculation boxplot of test function M20.
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Figure 32. Results of test function M21: (a) average convergence curve of test function M21;
(b) calculation boxplot of test function M21.
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Figure 33. Results of test function M22: (a) average convergence curve of test function M22;
(b) calculation boxplot of test function M22.

According to the comprehensive analysis conducted in this study, the convergence
curves presented from Figures 12–33 as well as the corresponding test results in Table 4,
specifically, when considering the unimodal test functions M1–M7, it is evident that the
OOBO algorithm exhibited the fastest convergence rate. This conclusion is supported by
the observation that the convergence curves of the OOBO algorithm were consistently
below those of other algorithms. In other words, at any given moment, the fitness value
obtained by the OOBO optimization algorithm was comparatively smaller. Focusing on the
performance of the OOBO algorithm in optimizing test functions M1–M6, the final results
indicate that the average fitness value achieved by this algorithm was closer to the theoreti-
cal optimal value of 0. In contrast, the particle swarm optimization algorithm displayed
a tendency to prematurely halt its convergence process, resulting in poor performance.
Additionally, the fitness value of the particle swarm optimization algorithm exhibited
instability, and the numerical distribution was more discrete in nature. Further analysis
considering the optimal value, worst value, and standard deviation results revealed that the
OOBO algorithm consistently yielded the smallest values throughout the 50 test iterations.
This finding signifies the robustness of the OOBO algorithm in locating the optimum for
functions M1–M6. Moreover, the repeatability accuracy of the OOBO algorithm surpassed
that of other algorithms. As for the optimization results of test function M7, the wind
driven optimization algorithm (WDO) demonstrated the highest level of stability, while the
one-to-one-based optimizer (OOBO) was the second-best algorithm in terms of stability.

In the context of multimodal test functions M8–M12, the convergence curves exhibited
similarities to those observed in the unimodal test functions. Remarkably, the OOBO
optimization algorithm continued to outperform other algorithms, also showcasing its
superiority in these scenarios. The convergence speed of the curves became even more
pronounced, emphasizing the effectiveness of the OOBO algorithm. In the case of the M8
and M10 functions, the OOBO optimization algorithm displayed an exceptional capability
to converge directly to 0, achieving the optimal results. Regarding the M9, M11, and
M12 functions, the OOBO algorithm outshone the other algorithms with its remarkable
performance. The convergence values attained by the OOBO algorithm were at least
four orders of magnitude lower compared to the alternative optimization algorithms,
underscoring its unmatched efficacy.

In the study conducted to analyze the performance of various heuristic intelligent
optimization algorithms, specifically for test functions M13–M22, it was observed that the
OOBO algorithm outperformed other algorithms in terms of convergence speed, conver-
gence optimal value, and result stability. This finding suggests that the OOBO algorithm
demonstrates superior capabilities in optimizing these test functions.
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Through meticulous analysis of the boxplot diagrams presented in Figures 12–33, it is
apparent that the optimization outcomes obtained from the OOBO algorithm showcase
an exceptional concentration degree and remarkably narrow range. This observation
implies that the OOBO algorithm attained the highest level of stability among the examined
heuristic intelligent optimization algorithms. Conversely, manifestations of the grey wolf
optimization algorithm demonstrated a suboptimal level of stability, whereas the wind
driven optimization algorithm manifested a moderately stable behavior. Notably, the
particle swarm optimization algorithm exhibited the lowest stability, as evidenced by its
wider range of optimization results.

Further analysis revealed that the particle swarm optimization algorithm tended to
suffer from premature convergence during the calculation process of test functions, result-
ing in lower accuracy. The convergence curve of the fitness degree for the particle swarm
optimization algorithm was significantly inferior to that of wind driven optimization algo-
rithm, grey wolf optimization algorithm, and one-to-one-based optimizer algorithm. In
comparison to the other three optimization algorithms, the particle swarm optimization
algorithm was more prone to becoming trapped in the local optima, exhibiting a relatively
poor ability to escape from local regions. Conversely, the convergence speed of the grey
wolf optimization algorithm experienced a slowdown after approximately 600 iterations
in test functions. Similarly, the wind driven optimization algorithm also encountered a
deceleration after approximately 50 iterations in the test functions. The convergence curve
of the grey wolf optimization algorithm showcased a rapid convergence rate in the initial
iterations and demonstrated a commendable ability to escape from local extremums. This
can be attributed to the presence of a random variable in the grey wolf optimization algo-
rithm, which assumes a random value within the interval of [0, 2]. The incorporation of this
variable influences the wolves’ positional adjustments toward the target prey, facilitating a
more randomized search. As a result, the algorithm avoids falling into the local optima
during the optimization iteration process [35]. Remarkably, the one-to-one-based optimizer
algorithm exhibited the capability to approach the optimal solution when the number of
iterations reached about 100.

3.2. Complexity Analysis of Algorithms

In this paper, the computational complexity of the algorithms was focused on ana-
lyzing, specifically, in terms of space complexity and time complexity [36]. To investigate
this, the average optimization time of three algorithms was compared: particle swarm
optimization (PSO), wind driven optimization (WDO), grey wolf optimization (GWO), and
one-to-one-based optimizer (OOBO). The analysis was conducted for all four algorithms,
and additionally, the average optimization time of GWO in various spatial dimensions
were examined. To perform computational analysis, MATLAB R2023a was utilized as the
software platform. The hardware configuration of the computer used for analysis consisted
of 12th Gen Intel(R) Core (TM) i7-12700H CPU @ 2.30 GHz @ 15.7 GB RAM.

The optimization time of the different algorithms is presented in Table 5. The op-
timization time was measured in seconds. From Table 5, it is evident that the particle
swarm optimization algorithm exhibited the shortest optimization time for test functions
M10–M13 and M17. The OOBO algorithm takes the least optimization time for test func-
tions M1–M9, M14–M16 and M18–M22. The wind Driven Optimization algorithm and
grey wolf optimization algorithm took a longer time to optimize. It was observed that
the OOBO algorithm, being a newer heuristic optimization algorithm, possessed superior
control capabilities during the optimization process. The calculation process of the OOBO
algorithm is simple. Furthermore, the time required to run the algorithm is also related to
the number of times the objective function is called during the algorithm optimization.
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Table 5. Total optimization time for the PSO, WDO, GWO, and OOBO algorithms.

Test Function PSO WDO GWO OOBO

M1 124.84 141.64 252.19 18.21
M2 164.82 189.57 288.32 19.24
M3 83.69 88.55 359.98 46.03
M4 67.19 75.68 252.44 50.33
M5 152.42 170.51 239.31 19.78
M6 52.03 58.68 248.02 39.56
M7 65.53 70.62 295.72 32.71
M8 55.89 61.67 283.99 40.12
M9 54.09 58.45 189.70 17.11

M10 55.59 59.49 286.42 179.16
M11 56.51 61.22 404.10 193.20
M12 301.68 328.69 429.65 377.48
M13 94.61 99.99 88.67 130.31
M14 58.38 70.73 51.73 17.83
M15 27.21 31.41 27.01 17.90
M16 84.24 108.38 63.63 62.39
M17 19.14 22.58 16.75 52.94
M18 50.07 62.08 41.34 18.46
M19 89.01 104.55 83.23 18.73
M20 37.61 42.93 36.26 26.64
M21 27.77 33.27 28.82 23.18
M22 30.88 35.25 32.29 23.83

Table 6 provides the optimization time required by the grey wolf optimization al-
gorithm in various dimensions for each test function. It can be seen from Table 6 that
as the spatial dimension increased, the algorithm progressively faced more challenging
optimization tasks, resulting in longer optimization times. The time complexity serves
as a metric for quantifying the running time of an algorithm. It is not only evaluated
based on the specific calculated time, but can also be expressed by using the O notation,
which represents asymptotic complexity. Different algorithms exhibit various forms of time
complexity representations such as constant time O(1), linear time O(n), and so on.

Table 6. The optimization time in different dimensions.

Test
Function

Five
Dimensions

Ten
Dimensions

Fifteen
Dimensions

Twenty
Dimensions

Twenty-Five
Dimensions

Thirty
Dimensions

M1 74.64 132.27 169.67 193.74 212.27 252.19
M2 83.31 140.04 151.74 140.8 247.75 288.32
M3 107.39 154.49 175.64 224.92 312.99 359.98
M4 78.59 120.41 150.56 186.84 250.18 252.44
M5 86.99 144.78 160.22 164.93 172.09 239.31
M6 41.44 129.24 139.13 185.97 190.61 248.02
M7 87.47 87.81 135.67 195.84 204.18 295.72
M8 79.57 97.59 120.83 151.63 236.02 283.99
M9 87.28 94.01 109.18 109.40 184.07 189.70

M10 112.66 140.00 165.53 176.59 270.12 286.42
M11 153.39 176.45 195.9 265.19 324.81 404.10
M12 157.78 214.7 245.1 302.79 393.51 429.65

Upon analyzing the specific data presented in Table 6, we can provide a detailed
analysis of the time complexity of grey wolf optimization algorithm. The GWO algorithm
consists of three main components: population initialization, searching for prey (including
encircling, pursuing and attacking), and termination judgment. N represents the number of
individuals in the initialized wolf population, t denotes the maximum number of algorithm
iterations, and n represents the dimension of the space. During the population initialization
process, each individual grey wolf’s value is initialized in each dimension, resulting in
the time complexity of O(N × n). The process of encircling, pursuing, attacking, and
searching for prey within grey wolf population involves nested loops that are dependent
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on the number of algorithm iterations. Thus, the time complexity of this part of the
algorithm involves N, t, and n, resulting in the time complexity of O(t × N × n). The
termination judgment process does not involve a loop, resulting in the time complexity of
O (1). Therefore, the overall time complexity of the grey wolf optimization algorithm is
given by O(t × N × n) + O(N × n) + O(1). Furthermore, the time complexity is influenced
by the number of objective functions called during the optimization process. Additionally,
the algorithm’s running time is impacted not only by the algorithm itself, but also by the
environment in which it operates, the computer hardware performance, programming
language, code structure, and other factors.

The space complexity reflects the memory occupied by the algorithm during runtime
and serves as an important indicator of its complexity. In the grey wolf optimization
algorithm, the number of individuals in the initialized wolf population is N, and the
dimension of space is n. Throughout the optimization process, the number of individuals in
the wolf population remains constant, and the space dimension is fixed at n. Consequently,
the space complexity of the grey wolf optimization algorithm is O(N × n).

3.3. Nonparametric Test Evaluation of Algorithms

When comparing the optimization performance of different heuristic intelligent opti-
mization algorithms across various test functions, there is a lack of a standardized measure,
and the presentation of algorithm results may not be visually intuitive. To address this issue,
this paper introduced a nonparametric test method known as the Friedman test, which
provides an accurate and reliable assessment of the algorithm optimization performance.
Nonparametric tests are essential statistical tests that are particularly suitable when the
overall distribution of data is unknown or when the assumption of specific distribution
is not required. These tests enable a comparison of the overall distributions of multiple
samples to determine whether there are any significant differences. The nonparametric test
is more flexible and applicable in scenarios involving non-normal and small sample sizes as
it has wider range of application and less restriction compared to the parametric test [37].

The Friedman test method is based on the fundamental principle of assigning ranks
(sorting) to indicate the relative positions of each sample within each group category. It
then calculates the average rank for each group category and determines the presence
of significant difference in the overall distribution of samples based on the differences
between the rank. The underlying assumption of the Friedman test method is that there is
no significant difference in the overall distribution of multiple samples. This assumption
can be expressed mathematically as Formula (49).

H0 : Z1 = Z2 = · · · Zn
H1 : ∃i, j, Zi 6= Zj

(49)

In Equation (49), Zi represents the rank ordering of the i sample (i = 1, 2, · · · , n), where
i represents the number of samples under consideration. The null hypothesis, denoted as
H0, implies that multiple samples are drawn from populations that are not significantly
different. On the other hand, H1 represents the rejection of the null hypothesis, indicating
that multiple samples are derived from populations that exhibit significant differences.

The specific steps of the Friedman test method are as follows.
Step 1: First, the ranks of samples in each degree of freedom are calculated. Then,

the ranks of the degrees of freedom in each sample are added. For instance, if there are k
samples with n freedom degrees to be tested, it can be represented in Equation (50). By
arranging data in a matrix form, Equation (51) is obtained.

xij(i = 1, 2, · · · , n; j = 1, 2, · · · , k) (50)
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X =

x11 · · · x1k
...

. . .
...

xn1 · · · xnk

 (51)

Data groups are sequentially sorted with n degrees of freedom in sample matrix X.
That is, first sort x11, · · · , x1k, then sort x21, · · · , x2k, and so on, until the sort xn1, · · · , xnk is
carried out. Finally, n groups of rank data (the number of k in each group) can be obtained,
as shown in Equation (52).

rij(i = 1, 2, · · · , n; j = 1, 2, · · · , k) (52)

The rank sum of k samples is seen in Formula (53).

Rj =
n

∑
i=1

rij(j = 1, 2, · · · , k) (53)

Step 2: Next, we calculate the Friedman statistic. The value of this statistic can be
calculated according to Formula (54), containing the rank sum number, the number of
freedom degrees, and the number of samples.

Y2 = [
12

nk(k + 1)

k

∑
j=1

R2
j ]− 3n(k + 1) (54)

Step 3: When the sample size is large, it theoretically follows the χ2 distribution of
the number of groups minus one, as shown in Equation (55). When the sample size is
small (typically less than 40), the results deviate from the χ2 distribution, so a special F-test
threshold table can be used to compare with the statistics, as shown in Equation (56).

Y2 > χ2
θ(k−1)

(55)

Y2 > Fθ(n,k) (56)

According to significance level θ, the number of sample groups k, and the number of
freedom degrees n, the critical value can be queried. If the calculated statistic is greater
than the critical value (or significance level corresponding to statistic is less than the set
significance level θ), the null hypothesis H0 is rejected and hypothesis H1 is accepted, and
the difference of each sample is considered to be significant. Otherwise, the null hypothesis
H0 is accepted and hypothesis H1 is accepted, and the difference of each sample can be
considered as insignificant.

The testing procedure described in the previous section was followed. The hypothesis
proposed in this paper based on the Friedman test method is shown in Equation (57).

H0 : Z1 = Z2 = Z3
H1 : ∃i, j, Zi 6= Zj

(57)

where H0 represents no significant difference between the four optimization algorithms
(PSO, WDO, GWO, OOBO). H1 represents a significant difference between the four opti-
mization algorithms (PSO, WDO, GWO). The average value and standard deviation of
the results of the four optimization algorithms described in this paper were sorted inde-
pendently, the rank was obtained, and then the rank sum of each group’s samples was
calculated. As shown in Table 7, the freedom degree of n was equal to 12 and the sample
size k was equal to 4.
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Table 7. The rank results of the average and standard deviation of the algorithms.

Average Value Standard Deviation Value

Test Function PSO WDO GWO PSO WDO GWO

rij

M1 4 3 2 1 4 3
M2 4 3 2 1 4 3
M3 4 2 3 1 4 2
M4 4 3 2 1 4 3
M5 4 3 2 1 4 2
M6 4 2 3 1 4 2
M7 4 1 3 2 4 1
M8 4 3 2 1 4 3
M9 2 4 3 1 4 3

M10 4 3 2 1 4 3
M11 4 3 2 1 4 3
M12 4 3 2 1 3 4
M13 2 4 3 1 2 4
M14 2 3 4 1 2 3
M15 4 3 2 1 4 3
M16 4 3 2 1 4 3
M17 4 3 2 1 3 4
M18 4 3 2 1 3 4
M19 4 3 2 1 2 4
M20 4 3 2 1 4 3
M21 3 4 2 1 3 4
M22 3 4 2 1 3 4

Rj 35 21 16 34 23 15

The statistical value of the mean and standard deviation for the different algorithms
were calculated separately according to Table 7.

Average : Y1
2 =

12
22× 4× 5

× (802 + 662 + 512 + 232)− 3× 22× 5 = 48.71

Standard deviation : Y2
2 =

12
22× 4× 5

× (772 + 682 + 502 + 252)− 3× 22× 5 = 43.04

The sample size was small, so it was not suitable to use the χ2 distribution and the
Friedman test critical value was used, as shown in Table 8. The calculated statistic value
was greater than the critical value, so null hypothesis could be rejected at a significance
level of 0.05. Four algorithms (PSO, WDO, GWO, and OOBO) were significantly different.

Table 8. The evaluation results of the Friedman test.

Algorithm Name Sample Size k Freedom
Degree n

Significance Level
Set θ

F-Test Critical Value
Fθ (n, k)

Statistics
Calculated Value

Friedman test result
(Average value) 4 22 0.05 5.79 48.71

Friedman test result
(Standard deviation value) 4 22 43.04

In addition, Table 9 shows that the rank mean of the OOBO algorithm was the smallest
in terms of the mean and standard deviation of the optimization results for the different
algorithms. Combined with the results of the three algorithms in Table 4 after optimizing
22 test functions, 50 times, it can be found that the OOBO algorithm had the largest
amount of data highlighted in bold. In conclusion, compared with the other optimization
algorithms, the OOBO algorithm had the best algorithm optimization ability.
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Table 9. The optimization results in rank-mean ordering with the mean and standard deviation.

PSO WDO GWO OOBO

Mean-rank ordering (Mean) 3.64 3.00 2.32 1.04
Mean-rank ordering (Standard deviation) 3.50 3.09 2.27 1.14

3.4. Algorithmic Control Parameters Effect on Results

In this section, the particle swarm optimization algorithm was delved to elucidate
the impact of the algorithm control parameters on the heuristic intelligent optimization
outcomes. Based on the previous exposition on the particle swarm optimization algorithm,
it can be ascertained that the optimization efficacy of the algorithms is contingent upon
several factors including but not limited to the number of populations, particle dimensions,
iteration counts, inertia weights, and learning factors. These considerations play a crucial
role in influencing the overall performance of the algorithms.

In the context of the particle swarm optimization algorithm, the parameter denoting
the number of population M assumes the paramount importance. It is worth noting that a
smaller population size renders the algorithm susceptible to local optimization, whereby
suboptimal solutions are obtained. Conversely, a larger population size facilitates the
enhanced convergence of the optimization curve, enabling algorithms to swiftly converge
upon the global optimal solution. However, it is imperative to consider that an augmented
population size amplifies the computational burden per iteration. Beyond a certain thresh-
old, augmenting the population size yields diminishing returns [38]. To navigate this
trade-off effectively, it is recommended to select a population size from the range of val-
ues [20, 1000]. For simpler problems, a population size of 20–100 is generally deemed
appropriate, whereas more intricate or class-specific problems necessitate a population
size of 100–1000.

The particle dimension E represents the dimension of the particle search space, and
this parameter is related to the space in which the actual problem is solved.

The number of iterations, denoted as Q, signifies the frequency at which the heuristic
intelligent optimization algorithm executes. If the number of iterations is too limited, it may
lead to unstable solution outcomes. Conversely, an excessively large number of iterations
will result in a time-consuming solution process, yielding only marginal improvements
to the final result [39]. Consequently, it is crucial to adjust the number of iterations based
on the specific circumstances of optimization calculation. The recommended range for the
number of iterations is typically between 50 and 100, with exemplary values such as 60, 70,
and 100. By analyzing the iteration patterns of various algorithms on distinct test functions,
it becomes apparent that when the number of iterations approaches approximately 100, the
solutions converge significantly toward the desired target.

Researchers Yuhui Shi and Russell Eberhart [40] introduced the notion of the inertia
coefficient w within the elementary particle swarm algorithm. Their proposal involves
dynamically adjusting this coefficient to achieve a balance between the global convergence
capabilities and convergence speed [41]. The inertia coefficient plays a vital role in de-
termining the impact of the particle velocities of the previous generations on the current
velocities. Essentially, it reflects the level of confidence particles have in their current motion
state and influences their inertial movements based on their own velocities. By preserving
the inertia of motion and promoting an inclination for exploring an extended solution
space, the particle is able to strike a harmonious balance between global exploration and
local convergence. The magnitude of the inertia coefficient directly influences the particle’s
ability to explore novel regions, thus affecting its global optimization capabilities. A higher
inertia coefficient value enhances the particle’s capacity to traverse unexplored territories,
thereby bolstering its global optimization prowess. However, this comes at the expense of
weaker local optimization abilities. Conversely, a lower inertia coefficient value strengthens
the particle’s proficiency in a local search, facilitating faster convergence toward the optimal
solution. Larger inertia coefficient values are particularly advantageous for conducting
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a global search, enabling particles to venture beyond the local optima and avoid being
trapped within them. On the other hand, smaller inertia coefficient values excel at a local
search, facilitating rapid convergence to an optimal solution. When confronted with a vast
problem search space, it is essential to strike a balance between the search speed and search
accuracy. In such cases, optimization algorithms can be designed to emphasize high global
search abilities during the initial stages in order to obtain suitable particles. Subsequently,
in later stages, greater emphasis can be placed on local search capabilities to enhance the
convergence accuracy [42]. By adopting this approach, a harmonious trade-off between
the search speed and search accuracy can be achieved, leading to superior optimization
outcomes in a complex search space.

When w is 1, the algorithm is an elementary particle swarm algorithm. When w is 0,
particles themselves loses the thought of experience. The recommended range of values for
the inertia coefficient is [0.4, 2], with typical values such as 0.9, 1.2, 1.5, and 1.8.

In the context of optimization problems for practical engineering applications, it is
common to employ a two-step approach: a global search followed by a local fine search.
This strategy allows the search space to converge swiftly to a specific region using the global
search, and subsequently, a local fine search can be conducted to obtain a highly accurate
solution. To enhance the algorithm’s adaptive ability, an adaptive tuning strategy can be
implemented, which involves linearly reducing the value of the inertia coefficient as the
iterations progress. The adjustment of the inertia coefficient, as depicted in Equation (58) of
this paper, follows a linear change strategy commonly employed in such scenarios. Specif-
ically, the inertia coefficient decreases with an increase in the number of iterations [43].
This approach endows the particle swarm optimization algorithm with a robust global
convergence ability during the initial stage, and a potent local convergence ability during
the later stage. Consequently, the algorithm’s searching adaptive ability is significantly
improved. By incorporating this adaptive tuning strategy, the particle swarm optimization
algorithm becomes more effective in solving optimization problems for practical engineer-
ing applications.

w = wmax − (wmax − wmin)
Q

Qmax
(58)

The learning factors, c1 and c2, play a crucial role in the particle swarm optimization
algorithm. Formula (5) provides insight into their significance. Specifically, c1 represents the
influence of an individual particle’s own experience, guiding it toward its personal optimal
position. On the other hand, c2 represents the impact of the collective experience of other
particles, encouraging the particle to move toward the group’s optimal position. When c1 is
set to 0, the algorithm becomes a selfless particle swarm algorithm, prioritizing the collective
welfare over individual gains. This may lead to a rapid loss in group diversity, making the
algorithm susceptible to becoming trapped in the local optima and restricting its ability to
escape. Conversely, setting c2 to 0 transforms the algorithm into a self-cognizant particle
swarm algorithm, emphasizing individual exploration without any social information
sharing. Consequently, convergence of the algorithm becomes slow due to the absence of
collaborative learning. To strike a balance between individual and collective learning, it is
recommended to set both c1 and c2 to non-zero values, forming a complete particle swarm
algorithm. This choice enables the algorithm to maintain a reasonable convergence speed
while preserving an effective search capability. It is important to note that setting learning
factors too low may cause particles to remain outside the target area, while excessively
high values may result in particles crossing the target area directly [44]. Learning factors
typically fall within the range of [0, 4], with commonly employed values like c1 = c2 = 2,
c1 = 1.6, c2 = 1.8, or c1 = 1.6, c2 = 2. These values strike a balance between individual and
social learning, facilitating efficient convergence and effective search performance.

The above analysis of factors affecting the particle swarm optimization algorithm
shows that a variety of factors can affect the results of the particle swarm optimization
algorithm. Upon the identification of a research problem requiring resolution, it becomes
imperative to determine the particle dimension, followed by setting appropriate values
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for the number of populations, iterations, inertia coefficient, and learning factor. Notably,
the distinct values assigned to these parameters will invariably influence the outcome
of the algorithmic optimization process. In the research conducted by Liu Xinwei [45],
the influence of particle population parameters including the population number, inertia
coefficient, learning factor, and velocity correlation coefficient on the simulation results of
the Xin’anjiang River water conservancy model was studied. Five different levels were
considered for each parameter, and an L25(56) orthogonal table was applied to design the or-
thogonal test. The test results were analyzed to determine the effects of these parameters on
the performance of the particle swarm optimization algorithm in this model. Additionally,
the optimal parameter combination scheme was derived. This finding highlights the impor-
tance of selecting appropriate values for the population size and inertia coefficient when
using the particle swarm optimization algorithm in this specific model. Another study
conducted by Liu Zhixiong [46] focused on continuous function optimization problems
and job shop scheduling problems. Researchers controlled the random parameter variables
using the particle swarm optimization algorithm and performed experimental analysis.
These results demonstrated that setting different values for random number parameters
such as the number of populations, particle dimensions, and iterations in the particle swarm
optimization algorithm significantly influenced its optimization performance. Overall,
these studies emphasize the need to carefully select and configure the particle swarm
optimization algorithm’s parameters to achieve the optimal results in various applications.

Through the aforementioned analysis presented in this research article, it is evident
that the particle swarm optimization algorithm’s selection of different control parameters
exerts a substantial influence on the optimization outcomes. When a specific research
target is established, the number of particle dimensions can be determined, resulting in the
recommended range of controlling the number of populations within [20, 1000]. Similarly,
the number of iterations should be confined to [50, 100]. By employing a linear variation
strategy, the inertia factor can be modulated within the interval [0.4, 2], whereas the learning
factor is advised to be set between [0, 4]. In order to address practical application problems,
it is suggested to employ heuristic intelligent optimization algorithms as referenced in the
literature [45,46]. By employing an orthogonal test design, it becomes possible to identify
influential parameter combinations and subsequently analyze the optimization outcomes
associated with different combinations. Subsequently, an optimal parameter combination
scheme can be derived to enhance the overall effectiveness of the optimization process.

4. Conclusions

The study investigated four heuristic intelligent optimization algorithms and em-
ployed a set of twenty-two test functions, comprising seven unimodal test functions, five
multimodal test functions, and ten mixed combination test functions. The objective was
to analyze and evaluate the algorithms’ performance from four perspectives: descriptive
statistics analysis, algorithm complexity, nonparametric statistics, and influence of algorith-
mic parameters on results. The evaluation results were subsequently presented. Ultimately,
this paper is concluded by summarizing the key characteristics of heuristic intelligent
optimization algorithms.

By examining the particle swarm optimization algorithm, wind driven optimization
algorithm, grey wolf optimization algorithm and one-to-one-based optimizer algorithm,
it becomes evident that heuristic intelligent optimization algorithms can be dissected
into the following stages from a computational standpoint: population initialization and
updating, the establishment of target fitness functions, and the verification of boundary
constraint conditions. These algorithms share several common traits, namely each agent is
represented by multiple particles, individuals within a population possess a relative sense
of independence, solution space exploration occurs through positional changes governed
by specific rules, and the addition of random numbers enhances the comprehensiveness of
the search process.
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In terms of the final average convergence values, the one-to-one-based optimizer
algorithm had the lowest optimization result in single-peak test functions M1–M6. The
wind driven optimization algorithm had slightly lower results than the one-to-one-based
optimizer algorithm in single-peak test function M7. For multi-peak test functions M8–M12
and combined hybrid test functions M13–M22, the one-to-one-based optimizer algorithm
had significantly smaller result values than the other algorithms. Combined with the
perspectives of stability and convergence speed, the one-to-one-based optimizer algorithm
had the best performance compared to other heuristic intelligent optimization algorithms.

Algorithm complexity encompasses two crucial factors regarding space complexity
and time complexity. When it comes to the wind driven optimization algorithm and grey
wolf optimization algorithm, their time complexities were notably high, and is contingent
upon the number of individuals, maximum iteration count, and space dimension. On
the other hand, the space complexity of an algorithm is influenced by the number of
individuals and the space dimension. It is worth noting that as the space dimension
expands, the algorithm’s time complexity will experience an increase. The time complexity
and space complexity of the particle swarm optimization algorithm and the one-to-one-
based optimizer algorithm were comparatively small. The one-to-one-based optimizer
algorithm had the best performance.

In this paper, the Friedman test method of nonparametric statistics was used by in-
troducing parametric statistics and comparing them with statistics under the assumed
significance level. It was found that there were significant differences between the particle
swarm optimization algorithm, wind driven optimization algorithm, grey wolf optimiza-
tion algorithm and one-to-one-based optimizer algorithm. At the same time, combined
with the nonparametric test results of the mean and standard deviation, the performance of
one-to-one-based optimizer algorithm was evaluated to be the best.

The results of the heuristic intelligent optimization algorithm solution are not necessar-
ily for all optimal solutions. It may be one of the local optimal solutions, resulting in falling
into the local optimum value. Although the current development of heuristic intelligent
optimization algorithms is rapid, the control parameters selected by the algorithms are
different for optimization problems in various application contexts. Therefore, specific
problems need to be treated with specific analysis.
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