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Abstract: In the fields of structural and geotechnical engineering, improving the understanding
of soil–structure interaction (SSI) effects is critical for earthquake-resistant design. Engineers and
practitioners often resort to finite element (FE) software to advance this objective. Unfortunately, the
availability of software equipped with boundary representation for absorbing scattered waves and
ensuring consistent input ground motion prescriptions, which is necessary for accurately representing
SSI effects, is currently limited. To address such limitations, the authors developed Seismo-VLAB
(SVL v1.0-stable) an open-source software designed to perform SSI simulations. The methodology
considers the integration of advanced techniques, including the domain decomposition method
(DDM), perfectly matched layers (PMLs), and domain reduction method (DRM), in addition to
parallel computing capabilities to accelerate the solution of large-scale problems. In this work, the
authors provide a detailed description of the implementation for addressing SSI modeling, validate
some of the SVL’s features needed for such purpose, and demonstrate that the coupled DRM–PML
technique is a necessary condition for accurately solving SSI problems. It is expected that SVL
provides a significant contribution to the SSI research community, offering a self-contained and
versatile alternative. The software’s practical application in analyzing SSI and directionality effects
on 3D structures under seismic loading demonstrates its capability to model real-world earthquake
responses in structural engineering.

Keywords: finite element program; soil–structure interaction; perfectly matched layer; domain
reduction method; high-performance computing

MSC: 74S05; 74H15; 74G15

1. Introduction

In the fields of structural and geotechnical engineering, the finite element method
(or FEM, see [1–4], to name a few) is the preferred approach for approximating both
linear and nonlinear responses of structures [5]. The literature consistently demonstrates
that the FEM can effectively replicate the responses of physical experiments (e.g., [6–8])
as well as real-world monitored structures (e.g., [9–11]) with a high degree of accuracy.
Unsurprisingly, powerful commercial software such as MSC Nastran [12], ANSYS [13],
ABAQUS [14], or LS-DYNA [15] offers several sophisticated material and element libraries
for modeling complex structural systems. Nevertheless, in practical civil engineering
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applications, it is common to lean towards the use of commercial software such as ETABS,
Perform3D, SAP2000 [16–18], and FLAC [19] to handle this particular task. Typically, these
software enable the modeling of the structural components with limited (usually elastic)
soil materials, if they offer any. Unfortunately, these software usually fail to adequately
account for wave propagation in semi-infinite domains, a critical aspect in SSI analyses.
For example, the celebrated domain reduction method (or DRM, see [20–22]) proposed
by Bielak et al., a powerful approach for modeling semi-infinite domains under remote
excitation, is rarely available in commercial software. Similarly, the implementation of
absorbing boundary conditions, such as perfectly matched layers (or PML, see [23–25]), to
mitigate spurious wave reflections from far-field boundaries is often absent or limited.

The lack of numerical tools for appropriate modeling SSI problems has increased soft-
ware development during the last two decades. Some software examples are Mastodon [26],
Code_Aster [27], ACS-SASSI [28], Real-ESSI [29], and OpenSEES [30], to name a few. These
platforms have contributed significantly by providing some capabilities to address the
aforementioned limitations. However, it is worth noting that while these open-source
software offers important features, several present practical challenges for users. For in-
stance, certain software packages can be difficult to install, modifying their source code
can be a formidable task due to a lack of proper comments within the source files, or
implementing new features becomes cumbersome due to the source code length. Moreover,
running SSI simulations with such software can often prove to be time-consuming and
resource-intensive. Motivated by this need, the authors developed Seismo-VLAB (or SVL, as
referenced in [31,32]), an open-source software designed to perform SSI simulations. SVL is
developed with a focus on simplicity and good coding practices. It incorporates the Eigen
C++ Template library [33], which makes it easy for users to make modifications. Addition-
ally, implementations prioritize straightforward methods, avoiding complexity, excessive
parameters, local variables, and overuse of multiple inheritances, ensuring straightforward
code modifications. While SVL was initially created to solve computationally efficient wave
propagation for earth dam problems, topographic amplification, and basin effects, it has
been extended to incorporate other systems, such as building clusters and lifelines. The
most important features of the software include perfectly matched layers as absorbing
boundaries [24,25,34]; domain reduction for modeling wavefield incoherency in truncated
domains [21]; domain decomposition for optimal parallel computing [35]; material and
geometric nonlinearity [36–38]; and interfaces with message passing interface (or MPI,
see [39]) and open multi-processing (or OpenMP, see [40]) parallelization.

It is believed that SVL’s features are necessary for efficiently solving SSI problems
regarding (1) modeling of spatial variability of soil properties for uncertainty quantification
in linear and nonlinear models of engineering structures [41–46], (2) inverse problems for
parameter estimation as well as reliability-based performance analysis in nonlinear finite
element models of engineering structures [31,47–53], (3) site response analysis for the study
of amplification or deamplification of seismic waves considering topographic and basin
effects [54–62], and (4) specific topics concerning SSI models with time lag effects [63], 3D
seismic wave propagation [64], seismic fragility and demand hazard analyses for earth
slopes [65], coupled FEM techniques for SSI analyses [66], and earthquake-induced struc-
tural pounding between buildings [67]. Thus, SVL’s innovativeness lies in its open-source
nature, integration of advanced techniques, parallel computing capabilities, modeling of
wave propagation in half-spaces, user friendliness, versatility, and applicability to diverse
SSI scenarios. This combination makes SVL a valuable and pioneering tool for researchers
and engineers in the field of soil–structure interaction. In fact, a few researchers have al-
ready used SVL in some peer-reviewed journals (see [68–72] as examples) for such purpose.

This work describes the most important feature requirements implemented in SVL for
modeling half-spaces in homogeneous and heterogeneous media. A particular emphasis
is placed on (a) the domain decomposition for parallel execution in cases involving large
domains and (b) the symmetric hybrid PML formulation and its implementation using
the Newmark-beta implicit time integration scheme. This implementation is subjected to
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rigorous verification by comparing results between Seismo-VLAB truncated domains with
PML against those from enlarged domains with fixed boundaries. Lastly, the DRM imple-
mentation, a critical approach for modeling semi-infinite domains, is carefully examined. A
comprehensive verification process follows comparing DRM-generated free-field responses
with solutions from existing literature. The study concludes by utilizing the coupled DRM–
PML method and the parallel computing capabilities of Seismo-VLAB to investigate SSI
effects on site and structural responses for a 3D linear elastic building subjected to seismic
excitation at various angles of incidence. The later application showcases the software’s
capability to model real-world earthquake responses in structural engineering and how
these features can help to solve SSI problems in other research areas efficiently.

2. Implementation and Verification for Modeling Half-Space

Seismo-VLAB consists of two primary and self-contained processes: the Pre-Analysis
and the Run-Analysis, which are depicted in Figure 1.

Figure 1. Seismo-VLAB global software structure. The Pre-Analysis is an interface to provide the
files to be executed, and the Run-Analysis is the main core that performs the finite element analysis.
The Pre-Analysis main task is to transform the Script.py into JSON input files for the Run-Analysis,
which in turn converts this information into objects and executes the simulation.

The Pre-Analysis allows users to create, import, adjust, and manipulate FE models,
encouraging the development of complex geometries. However, users are required to
manually provide node, material, section, and element or utilize external tools to prepare
this information for storage in JSON files. Conversely, the Run-Analysis performs the FE
analysis, encompassing tasks such as matrix generation, assembly, linear system solution,
and stores the solution. Specifically, the Run-Analysis offers the following elements:

(a) Linearized solid and structural elements such as two- and three-node truss (i.e.,
lin2DTruss2, lin2DTruss3, lin3DTruss2, and lin3DTruss3), three- and six-node
triangular (i.e., lin2DTria3 and lin2DTria6), four- and eight-node quadrilateral (i.e.,
lin2DQuad4 and lin2DQuad8), four- and ten-node tetrahedron (i.e., lin3DTetra4 and
lin3DTetra10), eight- and twenty-node hexahedron (i.e., lin3DHexa8 and lin3D-
Hexa20), two-node frame (i.e., lin2DFrame2 and lin3DFrame2), and four-node shell
(i.e., lin3DShell4) elements are currently available.

(b) Finite kinematics solid and structural elements such as two-node truss (i.e., kin-
2DTruss2 and kin3DTruss2), four-node quadrilateral (i.e., kin2DQuad4), eight-node
hexahedron (i.e., kin3DHexa8), and two-node frame (i.e., kin2DFrame2 and kin3D-
Frame2) elements currently allow large deformation [3,73,74].

(c) The perfectly matched layer (PML) can be specified for emulating semi-infinite half-
spaces in 2D and 3D simulations. Currently, four- and eight-node quadrilateral
(PML2DQuad4 and PML2DQuad8), and eight- and twenty-node hexahedron (PML3DHexa8
and PML3DHexa20) elements are implemented.

The element’s properties are computed using numerical integration. This process al-
lows the selection of various quadrature rules, such as Gauss–Legendre and Gauss–Lobatto.
Depending on the specific element type, the number of integration points can be cho-
sen within a defined range: 1 to 7 for line elements (e.g., lin3DTruss2, lin3DTruss3,
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lin3DFrame2), 1 to 49 for area elements (e.g., lin2DTria6, lin2DQuad4, lin3DShell4,
PML2DQuad4), and 1 to 343 for volume elements (e.g., lin3DTetra10, lin3DHexa8, PML-
3DHexa8). This selection considers a uniform grid of points for integration.

Technical details regarding the SVL software’s architecture, functionalities, and scal-
ability are presented in [32]. This section presents the essential ingredients a numerical
software (or toolbox) must have to perform parallel SSI simulations. In particular, it is
demonstrated that the domain decomposition, domain reduction method, and absorbing
boundary conditions are necessary to simulate truncated half-space behavior properly.

2.1. Domain Decomposition

Domain decomposition is employed to perform a parallel execution. Here, the model
domain (i.e., group of objects such as Node, Element, Material, Section, and Load) is
divided so that the number of elements is almost uniform across processors. The aim of
performing the mesh partitioning with Metis [35] is to minimize the load imbalance [75]
by distributing roughly the same number of elements across processors. However, other
graph partitioning programs such as SCOTCH [76] or Zoltan [77] can be incorporated to
reach the same purpose.

2.1.1. Implementation

A hypergraph, denoted asH = (X , E), consists of a set of vertices, represented by X ,
and hyperedges, represented by E . In this structure [78], every hyperedge is essentially a
subset of the set of vertices X . In this regard, the k-way hypergraph partitioning problem
is defined as follows: given a hypergraph H = (X , E), partition set X into k disjoint
subsets, i.e., X1, X2, . . . , Xk, such that X =

⋃k
j=1 Xj. The reader may refer to [79] for more

details on how this is performed. The hypergraphH is constructed internally using Metis
subroutines, where the vertices X and edges E data in SVL are generated using the Mesh
element’s connectivity information. In order to minimize the processor load imbalance,
a weight is specified for each vertex proportional to the number of degrees of freedom
(Nn

dof) of each Node. Thus, the element’s load, computed as the square of the number of
nodes multiplied by the number of degrees of freedom, offers an approximate measure
of the computational complexity required to calculate a matrix. The latter gives a rough
estimation of the relative load of an element compared to others, allowing for clustering
groups of elements where the sum of individual loads is similar. This process is performed
using the k-way hypergraph partitioning in Metis, from which the information is collected
to construct the subdomains to be distributed to each processor. The OpenMPI [40,80–82]
interface allows each partition to be sent to different processor units, so that the element
mass Me ∈ RNe

dof×Ne
dof , damping Ce ∈ RNe

dof×Ne
dof , and stiffness Ke ∈ RNe

dof×Ne
dof matrices,

and force Fe ∈ RNe
dof vector (Ne

dof is the total number of degrees of freedom of the e-th
element) can be generated for each subdomain. The contribution to the global stiffness
matrix and force vector is assembled locally. However, the full assembly to the stiffness
matrix Keff ∈ RNfree×Nfree and force vector Feff ∈ RNfree (Nfree is the number of free degrees
of freedom) is handled by PETSc [83–85] and MUMPS [86,87] APIs.

2.1.2. Verification

The verification case considers a 3D SSI model. The soil domain size has, approx-
imately, a horizontal length 100 × 100 m2 and a vertical length 90 m. This domain is
discretized using 121,944 Node, 105,825 Element, 25 Material, and 26,247 Constraint
objects that allow for tying together both PML/soil and shells/soil element interfaces.
Similarly, the building model size is approximately 50× 50 m2 in plan view and 60 m in ele-
vation. The building domain is discretized using 7861 Node, 9552 Element, and 19 Section
objects in total. The 3D linearized eight-node hexahedron (i.e., lin3DHexa8) elements to
model the soil, and 3D linearized eight-node hexahedron perfectly matched layer (i.e.,
PML3DHexa8) elements to truncate the semi-infinite half-space, are employed. Moreover,
3D linearized two-node beam (i.e., lin3DFrame2) and 3D linearized four-node shell (i.e.,



Mathematics 2023, 11, 4530 5 of 24

lin3DShell4) elements are employed to model the building slabs, walls, columns, and
beams. The finite element mesh partition is shown in Figure 2 for five (left) and eleven
(right) processors, respectively. This figure also shows how elements are uniformly clus-
tered, leading to similar colored volumes. The partitioning process does not enhance the
solution’s accuracy; its impact is mainly on performance in terms of execution time. Parallel
simulations generally outpace their serial counterparts, making clustering, especially in
linear analysis cases, beneficial for faster computation of element vectors and matrices as
well as solving linear systems handled by the MUMPS and PETSc APIs.

Figure 2. Domain decomposition of a 3D SSI building model using 5 (left) and 11 (right) processors.

2.2. Domain Reduction Method

The boundary element methods (BEMs) and their variants have been extensively used
to investigate the problems where incident plane waves (P, SV, SH, Rayleigh) interact with
canyons, basins, and buildings [88–92]. However, the majority of research efforts have
focused on analyzing simple topographies and homogeneous half-spaces, which provide an
oversimplified representation of the soil domain in reality. Moreover, the problem is solved
in the frequency domain, making it challenging to incorporate the nonlinear behavior of
both soil and structures. Currently, substructure and direct approaches employing the
FEM are the most commonly used techniques for studying SSI effects. In particular, the
direct approach has proven to be enormously powerful since complex foundation shapes
and nonlinear responses of soil and structure are explicitly taken into account. However,
one of the main problems in the direct approach is to specify consistent input ground
motions inside the near field [93,94]. In general, this process involves using an FE model
with enlarged domains to simulate the transition of seismic waves from far field to near
field. However, addressing the near field is challenging due to the need for an accurate FE
mesh that represents topographic characteristics and local soil variations. This leads to a
computationally demanding task to model interactions among the structure, foundation,
and soil. In this regard, the DRM developed by [21] is an effective FE methodology for
modeling earthquake ground motion in highly heterogeneous localized regions.

One of the most remarkable capabilities of SVL is its approach for modeling the
propagation of a plane wave in layered media for site amplification and 3D SSI problems in
the time domain. This approach comprises two main steps: (i) the displacement fields of
the incident waves in layered soils are initially obtained by, e.g., the stiffness matrix method
(SMM) or thin layer method (or TML, see [95]); and (ii) these signals are subsequently
fed into the domain reduction method (or DRM, as described in [21,22]), enabling the
computation of effective input nodal forces for FE models. This approach, implemented in
SVL, offers several advantages: (i) it can be applied to horizontally layered soil media and
any topographical features inside the DRM layer, such as complex 3D shapes of embedded
foundations, canyons, and basins; (ii) the analyses are performed in the time domain,
which facilitates the use of contact interfaces and nonlinear material models; and (iii) by
using DRM to map incoming waves from the far-field to the near-field domain, along
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with absorbing boundaries, the computational cost is significantly reduced. The proposed
method is presented in more detail in [69] for the case of Rayleigh waves. This section
briefly describes the framework for simulating P and SV waves in layered media using
SMM and DRM.

2.2.1. Implementation

The proposed methodology to simulate SV wave propagation in layered media using
FEM in the time domain is described below. Note that the process for P waves is identical,
except for different polarization and wave velocities.

(a) Choose a reference incoming signal f0(x0, y0, t) at a reference point (x0, y0), propagat-
ing at an angle θ with respect to vertical axis. This time series can be a predefined or a
recorded signal during a seismic event. For example, incoming signals can be obtained
from the PEER Ground Motion Database, hosted at https://ngawest2.berkeley.edu/
(accessed on 2 May 2023); see [96] for details. This task is not difficult when consider-
ing linear elastic homogeneous and inhomogeneous half-space.

(b) Transform the reference signal into the frequency domain by applying the fast Fourier
transform (FFT). Denote f̂0,j(x0, y0, ωj) as the component of the transformed signal
corresponding to discrete angular frequency ωj.

(c) Calculate horizontal displacement û(x0, y, ω) = {ûj(x0, y, ωj)} and vertical displace-
ment v̂(x0, y, ω) = {v̂j(x0, y, ωj)} using SMM, which is described later on.

(d) Compute the horizontal displacement û(x, y, ω) = ûj(x, y, ωj) and vertical displace-
ment v̂(x, y, ω) = v̂j(x, y, ωj) at the DRM nodes. These free-field displacements for
each ωj are determined as follows:

k j =
ωj sin θ

Vs
, and

[
ûj(x, y, ωj)
v̂j(x, y, ωj)

]
=

[
ûj(x0, y, ωj)
v̂j(x0, y, ωj)

]
exp

(
−i k j(x− x0)

)
, (1)

where k j is the horizontal wavenumber, i is the imaginary number, and i2 = −1. The
exponential term exp

(
−i k j(x− x0)

)
represents the phase lag due to finite horizontal

apparent velocity when the SV wave travels through a distance (x− x0).
(e) Use inverse FFT to obtain the time histories of those displacements, u(x, y, t) and

v(x, y, t).
(f) Calculate the effective input forces for the FEM model using DRM.
(g) Apply those input forces at the corresponding locations of the DRM layer and perform

the FEM analysis.

The SMM needed in (c) is now described for a layered medium with N interfaces, i.e.,
N− 1 layers over a homogeneous half-space. In Figure 3a, the displacements at interfaces
are obtained by solving the following system of equations:

K11 K12 · · · 0

K21 K22
. . .

...

0
. . . . . . KN−1,N

0 · · · KN,N−1 KNN + Khalf




u1
u2
...

uN

 =


0
...
0

Kfull u∗full

 , (2)

where Kij , Khalf , and Kfull are the 2 × 2 component stiffness matrices of a soil layer,
half-space, and imaginary full space (by joining two half-spaces), respectively; uk with
1 ≤ k ≤ N is the displacement vector at the k-th interface; and u∗full is the displacement
vector at the surface location of the half-space given free propagation of plane waves in the
imaginary full space. For each frequency ωj, u∗full is calculated as

u∗full =

[
cos θ
i sin θ

]
f̂0,j(x0, y0, ωj) exp

(
−i

ωj cos θ

Vs
(yN − y0)

)
, (3)

https://ngawest2.berkeley.edu/
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where yN is the y-coordinate of the half-space surface. Figure 3b illustrates the assembly
of the element stiffness matrices of soil layers required to form the global stiffness matrix.
Once the motions at the interfaces are obtained, the displacements at the interior of the soil
layer are calculated by means of analytic continuation. Interested readers can refer to [95]
for further details.

(a) Layered soil media (b) Assembly of element matrices

Figure 3. Conceptual representation of the stiffness matrix method used for free-field motion.

The derived free-field motions represented in Figure 4a (i.e., displacements, velocity,
and acceleration) are subsequently used to calculate effective input forces for the FEM
simulations, as is represented in Figure 4b. The generated free-field motion files can be
provided in SVL as plain text files with columns specifying displacement, velocity, and
acceleration for each component.

(a) Free-field wave propagation (b) Effective forces applied to the near field

Figure 4. The domain reduction method schematic representation.

The effective input forces Peff vector acting within the layer of elements is

Peff =

Peff
i

Peff
b

Peff
e

 =

 0
−MΩ+

be ü0
e − CΩ+

be u̇0
e −KΩ+

be u0
e

MΩ+

eb ü0
b + CΩ+

eb u̇0
b + KΩ+

eb u0
b

 , (4)

where the subscripts i, b, and e denote the regions corresponding to the interior of the
designated domain, the boundary, and the area outside the DRM layer. The matrices
MΩ+

, CΩ+
, and KΩ+

represent the portions of the mass, damping, and stiffness matrices
that are situated off the main diagonal. These matrices are constructed using the data
from the DRM layer positioned between two boundaries denoted as Γb and Γe. Lastly,
u0, u̇0, and ü0 are the free-field displacements, velocity, and acceleration of the back-
ground layered soil. These forces are computed internally at the element level using
the Element::ComputeDomainReductionForces() member function, which returns the
Peff ∈ RNe

dof force vector to be assembled.
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The propagation of plane waves (P, SV, Rayleigh) in a 3D space is readily determined
by recognizing that, at a specific moment in time, the spatial variation remains constant
across a plane that is perpendicular to the direction of propagation. As illustrated in
Figure 5, the displacement fields within any 3D coordinate system (x1, x2, x3) are derived
through a rotation matrix,

u(x1, x2, x3) =

u
v
w

 =

 cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

u1
0
u2

 , (5)

where ϕ is the azimuth angle, u(x1, x2) = (u1, u2) is the free-field motion in 2D, and
u(x1, x2, x3) = (u, v, w) is the free-field motion in 3D, respectively.

Figure 5. Displacement, velocity, and acceleration mapping from 2D to 3D coordinate systems.

2.2.2. Verification

The DRM implementation in SVL is demonstrated, and the solution is verified using
solutions presented in [55,97,98].

A 3D soil domain with a horizontal length of 120× 120 m2 and a vertical length of
80 m is considered. Within this domain, isotropic linear elastic materials, characterized by
a density of ρs = 2000 kg/m3 and Poisson’s ratio of νs = 0.25, are employed. The DRM is
used to transmit the ground motion generated by an in-plane SV wave propagating within
the near field at an angle of 15◦ degrees. The incident ground motion is defined using
a Ricker function similar to Equation (15). This numerical example considers a central
frequency of f0 = 2.0 Hz and shear wave velocity of Vs = 120 m/s. Three control points
at coordinates P1 = (−40,−40, 0), P2 = (40, 40,−60) and P3 = (40, 40, 0) are selected for
the purpose of comparing the time series with results presented in [55]. The model has
87,778 nodes, 25,635 restrains, and 100,335 elements divided into 73,728 3D linearized eight-
node hexahedron elements (i.e., lin3DHexa8) used to discretized the linear and elastic soil
domain, and 25,635 1D two-node zero-length elements (i.e., ZeroLength1D) placed along
the boundary to absorb possible scatter waves. The simulation time is set to be Tsim = 4.0 s,
with a temporal discretization of ∆t = 0.004 s, leading to a number of nt = 1001 time steps.
The simulation is performed using three processors, and an execution time of 68 min is
required to complete the simulation on a Lenovo laptop equipped with an Intel(R) Core(TM)
i7-4720HQ CPU running at 2.60 GHz and x86_64 architecture.

Figure 6 displays the velocity time series comparison at the three control points.
The results show a perfect agreement with the solution presented in [55,97,98] for each
component. In addition, Figure 7 shows the velocity amplitude field at (a) t = 2.0 s,
(b) t = 2.5 s, and (c) t = 3.0 s. Since the truncated soil domain, in this case, has no
features that can generate scattering waves, the near-field response has to match the
free-field conditions imposed at the DRM elements. This fact demonstrates the proper
implementation of DRM in 3D settings in SVL. The reader should note that the DRM
implementation is correct, since the wave field is fully contained in the DRM box. A
wrong implementation will generate scatter waves outside the DRM layer of elements
represented by the blue volume in Figure 7. In this regard, the lysmer dashpots will not be
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enough to absorb the scattered field efficiently due to the proximity of the wave field to the
boundaries.

Figure 6. Timeseries of the 3D velocity vector field components u, v, and w computed using the
DRM at the control points P1, P2, and P3 for an inclined wave at an incident angle of 15◦ degrees in a
homogeneous half-space.

(a) (b) (c)

Figure 7. Snapshots of the 3D velocity amplitude field computed at time steps (a) t = 2.0 s,
(b) t = 2.5 s, and (c) t = 3.0 s using the DRM load modeling for an inclined wave at an incident angle
of 15◦ degrees in a homogeneous half-space. The red and blue colors represent a velocity magnitude
of 1 m/s and 0 m/s, respectively.

2.3. Absorbing Boundary Conditions

Seismo-VLAB offers perfectly matched layer (PML) functionality for simulating semi-
infinite half-spaces in both 2D and 3D simulations. Currently, the software includes
implementations of various PML elements, such as 2D linearized four-node quadrilateral
(PML2DQuad4), 2D linearized eight-node quadrilateral (PML2DQuad8), 3D linearized eight-
node hexahedron (PML3DHexa8), and 3D linearized twenty-node hexahedron (PML3DHexa20).
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These implementations are based on fully mixed symmetric formulations presented in [24,25,99]
for plane-strain (2D) and 3D settings.

2.3.1. Implementation

The key idea in PML is the use of complex coordinate stretching. The complex
coordinate stretching function in direction s, which can be x, y, or z directions in the
Cartesian coordinate system, is defined as

εs(s, ω) = αs(s) +
βs(s)
iω

, (6)

where i is the imaginary number, and αs and βs are scaling and attenuation functions,
defined as

αs(s) =

1 0 ≤ s ≤ s0

1 + (m+1)b
2 Lpml

log 1
R

[
(s−s0)ns

Lpml

]m
s0 ≤ s

, (7)

βs(s) =

0 0 ≤ s ≤ s0
(m+1)Vref

2 Lpml
log 1

R

[
(s−s0)ns

Lpml

]m
s0 ≤ s

, (8)

where m is the user-defined degree of the stretching polynomial; ns is the s-th component of
the outward normal to the interface between the PML region and the regular (soil) domain
(Figure 8); Lpml is the thickness of the PML region in the s direction (Figure 8); s0 is the s-th
component of the reference point where stretching is defined; b is a characteristic length, set
to Lpml/10; Vref is a reference velocity, set to be the P wave velocity; and R is a user-defined
reflection coefficient.

(a) 2D PML domain (b) 3D PML domain
Figure 8. Illustration of PML domain attached to the soil domain. The soil domain is represented in
yellow, whereas the PML domain is represented in grey.

The weak form of the PML formulation presented in [24,99] yields a second- and a
third-order ODE, respectively, for the governing equation of motion, with a mixed free
variable U consisting of both displacement and stress fields. The second-order ODE arising
in the plane-strain PML problems can be solved seamlessly using conventional numerical
time integration methods such as the Newmark-beta method. For solving the third-order
ODE of the 3D PML problems, i.e.,

M
...
Un+1 + C Ün+1 + K U̇n+1 + G Un+1 = Ṙ(i)

n+1 . (9)

Fathi et al. [99] suggested using the extended Newmark-beta method. This requires
introducing an internal state variable U =

∫
Udt to reduce the order of the third-order
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ODE, such that M Ün+1 + C U̇n+1 + K Un+1 + G Un+1 = R(i)
n+1, and approximating the

mixed response field and their derivatives as follows:

Un+1 = Un + ∆t Un +
∆t2

2
U̇n +

(
1
6
− β

)
∆t3 Ün + β∆t3 Ün+1 , (10)

Un+1 = Un + ∆t U̇n +

(
1
2
− γ

)
∆t2 Ün + γ∆t2 Ün+1 , (11)

U̇n+1 = U̇n + (1− α)∆t Ün + α∆t Ün+1 . (12)

This time integration scheme has been implemented in SVL for (β, γ, α) = (1/12 , 1/4 , 1/2),
which results in solving Keff ∆U = Feff with

Keff = K(i−1)
n+1 +

4
∆t2 M +

2
∆t

C +
∆t
3

G , (13)

Feff = R(i)
n+1 − F(i−1)

n+1 + M
(

4
∆t

U̇n + Ün

)
+ CU̇n −G

(
Un + ∆t Un +

∆t2

6
U̇n

)
. (14)

The matrix G is the PML history matrix, R(i)
n+1 is the external force vector, F(i−1)

n+1 is the
internal force vector, and i is the nonlinear iteration step. The structures and explicit forms
of the PML matrices are omitted, but they can be found in [24,25,99].

2.3.2. Verification

The PML implementation in SVL is demonstrated, and the solution is verified using
enlarged domain solutions.

A 3D soil domain with a horizontal length of 150× 150 m2 and vertical length of
100 m is considered. Within this domain, isotropic linear elastic materials for the soil,
characterized by a density of ρs = 2000 kg/m3 and Poisson’s ratio of νs = 0.25, are
considered. In addition, a PML zone of 20 m thickness is placed next to the truncated
domain. A downward point load F(t), applied at the center of the free surface, is prescribed
as an effective force Ricker function, proportional to Equation (15):

F(t) =
(

1− 2 (π f0)
2(t− t0)

2
)

exp
(
−(π f0)

2(t− t0)
2
)

. (15)

In this numerical example, a central frequency of f0 = 2.0 Hz and a soil shear wave
velocity of Vs = 200 m/s are employed. The soil domain is now discretized using 13,500
3D linearized eight-node hexahedron (i.e., lin3DHexa8) elements, and the PML layer of
25 m is discretized using 18,500 3D linearized eight-node hexahedron perfectly matched
layer (i.e., PML3DHexa8) elements. Three control points at coordinates P1 = (0, 0,−40),
P2 = (30, 30,−40), and P3 = (30, 30, 0) are defined to compare the time series against
results of an enlarged model with fixed boundaries. The simulation is performed using
three processors, and the execution time of 16 min is reported using a Lenovo laptop using
an Intel(R) Core(TM) i7-4720HQ CPU 2.60 GHz with eight cores and x86_64 architecture.

Figure 9 shows the velocity time series comparison at the three control points P1,
P2, and P3, respectively. The results show a perfect agreement with the enlarged model
solution. In addition, in Figure 10, the velocity field amplitude for the truncated soil
domain at (a) t = 1.00 s, (b) t = 1.20 s, and (c) t = 1.75 s are displayed, convincingly
showing that there are no reflections generated from the boundary and demonstrating the
proper implementation of PML in 3D settings in SVL. The reader should note that the PML
implementation is correct since the wave field is fully absorbed in the boundaries. A wrong
implementation will generate waves that bounce back from the boundaries, noticeable after
2 s in the time series provided.
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Figure 9. Time series of the 3D velocity vector field components u, v, and w computed using the
truncated model using PML at the control points P1, P2, and P3 in a homogeneous half-space.

(a) (b) (c)

Figure 10. A snapshot of the velocity amplitude field in 3D under vertical loading at the surface
of the domain at time steps (a) t = 1.00 s, (b) t = 1.20 s, and (c) t = 1.75 s. The red and blue colors
represent a velocity magnitude of 0.05 m/s and 0 m/s, respectively.

3. Evaluation of the SSI Effects on a 3D Building Subjected to a Seismic Excitation for
Different Attack Angles

In this application case, the model’s dimension and the domain element’s distribution
are depicted in Figure 11. Because the model discretization rendered a large number of
elements, a parallel execution for which the same domain’s partition is represented in
Figure 2 on the left is considered. For simplicity, and due to the small magnitude of the
seismic excitation considered in this analysis, a linearized formulation for the elements and
material is assumed. The main goal of this application case is threefold: (a) to showcase
some of the relevant features encountered in SSI, (b) to verify that the coupled DRM–
PML technique is necessary for accurately solving SSI problems, and (c) to demonstrate
SVL’s capacity to model real-world earthquake responses in structural engineering due to
directionality effects.
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(a) Finite element model’s dimensions (m) (b) Finite element domain distribution

Figure 11. Finite element model considered for the evaluation of the SSI effects on a 3D building
subjected to a sv seismic excitation. The purple, orange, red, and green volumes represent the
PML, soil, foundation, and building domains, respectively. The green, blue, and red line interfaces
represent areas where the PML-Soil constraints, Foundation-Soil constraints, and PML restraints are
applied, respectively.

The soil domain is a square prism with horizontal lengths of 100 × 100 m2 and
vertical lengths of 90 m. Standard 3D linearized eight-node hexahedron elements (i.e.,
lin3DHexa8) are employed to discretize the domain. Linear elastic material with proper-
ties of ρs = 2000 kg/m3, νs = 0.30, and Vs = 150 m/s are considered to describe the soil
behavior. A PML zone discretized using a perfectly matched layer of eight-node hexa-
hedron elements (i.e., PML3DHexa8) of 25 m thickness is placed next to the boundaries to
emulate the half-space condition. On the other hand, the reinforced concrete main tower
(superstructure) has sixteen floors with a total height of 53.2 m. The basement (substruc-
ture) has three floors designed for parking and is buried −9.72 m below the ground level.
The substructure surface area is approximately 2100 m2, while the superstructure surface
area is approximately 750 m2. A core of walls is provided around the elevator to control
the horizontal deformations. The reinforced concrete elasticity modulus varies between
20–26 GPa depending on the element, with a density of ρc = 2500 kg/m3 and Poisson’s
ratio of νc = 0.20. Slabs in the main tower (i.e., from floors 1 through 16) are considered
to behave as a rigid diaphragm. The building model is discretized using 3D linearized
two-node beam elements (i.e., lin3DFrame2) for beams and columns, and 3D linearized
four-node shell elements (i.e., lin3DShell4) for walls and slabs. As solid elements (i.e., soil)
and structural elements (i.e., beams, columns, and shells) have different numbers of degrees
of freedom per node, it becomes necessary to establish an indirect coupling between them.
To ensure a clean and numerically stable approach, kinematic constraints following the
recommendations of [3,100,101] at the contact interface, as illustrated in the blue interface
in Figure 11b, are used. In this method, the connections are established by linking the
nodes of frame and shell elements with nodes of solid elements solely for translational
degrees of freedom (three for each node). Meanwhile, the rotational degrees of freedom
(three for each) from beam, column, and shell elements are left unconnected. This sort
of connection imposes identical displacements on the soil nodes at the soil–foundation
interface; however, some localized deformations in the surrounding soil may be induced
using this approach. Therefore, columns at the bottom, as well as the foundation elements,
are not in direct contact with the soil (see, Figure 11a interface between the red and orange
domain). The same coupling between soil and PML elements is achieved through kinematic
constraints on the displacement degree of freedom (see, Figure 11b represented by the
green interface). Finally, the rigid diaphragm behavior of the floors is imposed by adding
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an auxiliary node with three degrees of freedom (i.e., diaphragm node) and then imposing
kinematic constraints on all nodes at the floor level.

The domain reduction method (DRM, represented in Figure 11b by the white layer of
soil elements) is used in order to transmit an SV wave ground motion. The input signal is
propagated upwards at different angles with respect to the horizontal x-axis. In particular,
the angles α = 0◦, 30◦, 60◦, and 90◦ degrees are considered. The incident ground motion
velocity u̇g(t) is a Ricker pulse, expressed as

u̇g(t) = u̇P

(
1− 2γ(t− t0)

2
)

exp
(
−γ(t− t0)

2
)

, (16)

where u̇P is the characteristic value of the pulse velocity, γ = (πf0)
2, f0 is the characteristic

frequency, and t0 is the time position where the velocity attains its maximum. In all
simulations, a characteristic value of u̇P = 10 cm/s, characteristic frequency of f0 = 2.0 Hz,
and a peak velocity time of t0 = 1.0 s are considered. The characteristic frequency f0 is
selected to generate an input signal with frequency content ranging between 0–7.5 Hz,
which emulates most real earthquake signals. The simulation time is Ts = 10.0 s with a
temporal discretization of ∆t = 0.002 s, leading to a time step number of nt = 5001 for the
entire simulation. All simulations were carried out in a server with an Intel(R) Xeon(R) CPU
E5-2687W v3 3.10 GHz, x86_64 architecture, and 40 CPU cores. Overall, the simulation
took 520 min using five partitions (i.e., using only five processors), and employed 35.9 GB
in evolving 5001 time steps.

In Figure 12, the first three fixed-base mode shapes for the building are represented.
The figure displays the deformed configuration in solid colors, whereas black lines represent
the undeformed configuration. In particular, Figure 12a displays a decoupled translational
mode shape along the y-direction generated at a fundamental frequency of 0.75 s. On the
other hand, Figure 12b shows a coupled translational and rotational mode shape along the
x-direction. Note that the coupling is a result of a concrete reinforcement wall on one side,
which creates a misalignment between the center of mass and the structural stiffness. The
second fixed-base mode shape is obtained at a fundamental frequency of 0.68 s. Finally,
Figure 12c illustrates the third fixed-base mode shape, which is purely torsional, vibrating
at a frequency of 0.47 s.

In Figure 13, both the velocity field amplitude and deformed configuration at time
(a) t = 1.20 s, (b) t = 1.60 s, (c) t = 2.32 s, (d) t = 3.52 s, (e) t = 5.20 s, and (f) t = 8.00 s
for α = 30◦ degrees are displayed. Note how in Figure 13a,b, inside the DRM (near-
field) domain, the SV wave propagating upwards is successfully generated. However,
because of the building, a scattered field is generated outside the DRM (far-field) domain in
Figure 13c–e. In particular, at time t = 3.52 s, the wavefront generated by the building due
to the so-called inertial interaction is shown. Inertial interaction refers to the displacements
and rotations occurring at the foundation level of a structure as a consequence of inertial
forces that emerge during the motion. These displacements and rotations can represent a
significant source of energy dissipation within the soil–structure system. In practice, inertial
interaction induces two distinct effects: (a) it leads to a period elongation because of the
deformable soil underneath, and (b) it alters the damping characteristics of the structure,
primarily due to the contributions from the hysteresis damping of the surrounding soil
and radiation of energy in the form of stress waves transmitted from the foundation to the
soil half-space, known as radiation damping. Similarly, comparing time t = 1.20 and 1.60 s
shows how the foundation barely deforms, averaging the velocity at the interface due to
the so-called kinematic interaction. Kinematic interaction arises due to the presence of rigid
foundation elements within or on the soil, causing movements at the foundation level to
differ from those in the free field. One cause of these deviations is base-slab averaging,
which occurs because the stiffness of the foundation system leads to the averaging of
ground motion variations within the foundation’s footprint, causing deviations from the
free-field motions. Another cause of such deviation is embedment effects, which occur as a
result of a reduction in foundation-level motions due to the attenuation of ground motion
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as depth increases beneath the free surface. This demonstrates that the coupled DRM–PML
system can adequately reproduce the half-space conditions and SSI effects.

(a) T1 = 0.75 s (b) T2 = 0.68 s (c) T3 = 0.47 s

Figure 12. Fixed-base modal shape for the first three modes. The first mode exhibits pure translational
behavior, while the second and third modes display rotational behavior. The 3D visualization depicts
the deformed configuration in solid white (slabs) and grey (walls) colors, whereas black lines represent
the undeformed configuration.

(a) (b) (c)

(d) (e) (f)

Figure 13. Velocity field amplitude and deformed configuration at time (a) t = 1.20 s, (b) t = 1.60 s,
(c) t = 2.32 s, (d) t = 3.52 s, (e) t = 5.20 s, and (f) t = 8.00 s for the problem. The blue color represents
a velocity amplitude of 0.0 m/s, while the red color represents a velocity amplitude of 0.2 m/s.
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3.1. SSI Effects on Site Response

It is of interest to study the influence of the vibration of the building over the sur-
rounding areas. In order to evaluate the radiated wavefields generated by the building, the
perturbed displacement field is calculated as

up(x, t) = uSSI(x, t)− uFFM(x, t) , (17)

where up(x, t), uSSI(x, t), uFFM(x, t) : R3 × R+ → R3 are the perturbation displacement
field, the displacement field due to the presence of the building, and the displacement field
at the far field (or motion on the soil surface in absence of the building), respectively. These
fields are evaluated at coordinate x ∈ R3 on the soil surface at time t ∈ R+. The perturbed
velocity field vp(x, t) as well as the perturbed acceleration field ap(x, t) can be obtained in
a similar manner, as in Equation (17).

The SSI effects on site response are thus defined in the following manner:

(a) The peak ground displacement (PGD : R3 → R+) of the perturbed displacement field,

PGD(x) = max
t∈ [0,Ts]

∥∥up(x, t)
∥∥

2 , (18)

where Ts the simulation time, and ‖·‖2 : R→ R+ is the Euclidean or `2 vector norm.
(b) The pseudo-spectral acceleration (PSA : R3 ×R+ → R+) of the perturbed accelera-

tion field,

PSA(x, ω) = ω2 max
t∈ [0,Ts]

|usdof(x, t)| , (19)

where usdof(x, t) is the displacement response evaluated at x ∈ R3 on the soil surface
for a single-degree-of-freedom system when ap(x, t) is employed as the input, ω is
the angular frequency of a single-degree-of-freedom system, and | · | : R→ R+ is the
absolute value function.

Figure 14 shows the PGD distribution on the soil surface generated by the vibration
of the building for different angles of incidence. This figure shows traces of two important
SSI phenomena. First, an outward-propagating wavefield is qualitatively similar regardless
of incident angle. Second, significant perturbations are generated in the sharp corners
of the foundation layout. In particular, a maximum PGD of 4.5 mm is reached when
α = 30◦, while a minimum PGD of 0.8 mm is reached when α = 90◦. Overall, a minimum
displacement wavefield of magnitude 1 mm is developed by the building in the surround-
ing areas. In essence, the soil compliance allows the rocking of the building to generate
outgoing waves, as if the vibration building was a source force acting on a half-space. The
geometrical complexity of the foundation gives rise to a complex pattern of outgoing waves
that may affect other structures near the building, and that can be captured and scrutinized
using our 3D FE model.

Figure 14. The peak ground displacement (PGD) distribution on the soil surface generated by the
vibration of the building for different angles of incidence. The red solid circle and red solid square
represent the location where the maximum and minimum PSA are attained.
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In a similar fashion, Figure 15 shows the pseudo-spectral acceleration (PSA) for differ-
ent angles of incidence. This output corresponds to the maximum basal shear experienced
by an SDOF system whose fundamental mode has a certain period [102]. In this figure, the
grey lines represent the PSA for all points on the soil surface; the black line is the average
of all cases; and the red and blue lines correspond to the maximum and minimum PSA,
respectively, whose locations are displayed in Figure 14 as a red solid circle and square,
respectively. Maxima of PSA = 5.6 m/s2 when α = 0◦, PSA = 4.5 m/s2 when α = 30◦,
PSA = 6.3 m/s2 when α = 60◦, and PSA = 7.3 m/s2 when α = 90◦ are obtained. Note
that the vibration of the building triggers amplification in hypothetical SDOF between
0.20–0.40 s, which suggests that most of the frequency content of the soil deformation
induced by the scattered wavefield stays in that range. It is worth mentioning that this
range contains periods substantially shorter than that of the building (the fixed-base period
of the building was computed to be 0.75 s using modal analysis, so one would expect the
elongated period due to SSI effects to be larger). The prior numbers can be interpreted in
terms of geometrical considerations: the shape of the foundation defines the perturbance
introduced to the soil at each portion of the interface between the two, the superposition
of the different contributions at one point rendering the unique deformation time history
of each ground surface location and, by extension, a unique spectrum. Such a spectrum
describes a supplementary potential base shake to be felt by surrounding structures. Thus,
the simulation allows one to conclude that the building–soil deformation can induce vi-
brations that may affect structures with very different typologies when compared to the
building acting as a source: the level of amplification due to SSI can increase in seismic
demand on secondary structures in surrounding areas. In particular, structures such as
footbridges, low-rise structures, or social events areas could be potentially affected.

Figure 15. The pseudo-spectral acceleration (PSA) generated by the vibration of the building for
different angles of incidence. The grey lines represent the PSA for all points on the soil surface, the
black line represents its average, and the red and blue lines are the maximum and minimum PSA.

Finally, Figure 16 shows the vertical component for the perturbed velocity field vp(x, t)
considering different angles of incidence. In this figure, the maximum vertical response
magnitude is attained at t∗ = 1.20 s for the four angles. In particular, a maximum value
of vz

p(x, t∗) = −0.063 and 0.050 m/s at the southwest (square marker) and east (circle
marker) foundation sectors when α = 0◦, a maximum value of vz

p(x, t∗) = −0.075 and
0.046 m/s at the southwest and east foundation sectors when α = 30◦, a maximum value
of vz

p(x, t∗) = −0.068 and 0.046 m/s at the southwest and north foundation sectors when
α = 60◦, and a maximum value of vz

p(x, t∗) = −0.042 and 0.051 m/s at the southwest and
north foundation sectors when α = 0◦, are obtained. Note that, once again, these maximum
values are attained at these places as a consequence of the perfect bonding between the
foundation and the soil that is imposed through kinematic constraints.
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Figure 16. The vertical velocity component for the perturbed velocity field vp(x, t) generated by the
vibration of the building for different angles of incidence. The positions where the maximum positive
and negative velocity magnitudes occur are indicated with a red solid circle and square, respectively.

3.2. SSI Effects on Structural Response

Let x ∈ R3 be the coordinate of the center of the rigid diaphragm, H be the inter-storey
height, Ts be the simulation time, and | · | : R→ R+ be the absolute value function. Then,
the following structural response quantities can be defined.

(a) The maximum inter-storey drift ratio (ISD : R3 → R+) along a certain direction at
i-th storey:

ISD(x) = 1
H

max
t∈ [0,Ts]

|ui(x, t)− ui-1(x, t)|, (20)

where ui(x, t) is the displacement component along the said direction at the diaphragm
center of the i-th floor.

(b) The maximum inter-storey rotation (ISR : R3 → R+) at the i-th storey:

ISR(x) = 1
H

max
t∈ [0,Ts]

|θi(x, t)− θi-1(x, t)|, (21)

where θi(x, t) is the rotation along the z-axis of the diaphragm.
(c) The maximum relative storey acceleration (MSA : R3 → R+) at the i-th storey:

MSA(x) = max
t∈ [0,Ts]

∣∣ai(x, t)− ag(x, t)
∣∣, (22)

where ai(x, t) is the acceleration response evaluated at the center of the rigid di-
aphragm, and ag(x, t) is the acceleration evaluated at the ground level.

Figure 17 shows how the drift changes as the angle of incidence of the impinging wave
increases. See how when α = 0 degrees (the shake is aligned with the x-direction), the
maximum drift occurs along the same direction, and, likewise, a similar result happens for
α = 90 degrees and the y-direction. In these two limit scenarios, the drift is concentrated
along one of the two orthogonal directions, which in turn can also be identified with
the main axes of inertia: the x-direction corresponds to the stiffest direction, while the
y-direction corresponds to the least stiff direction. Therefore, it is logical that the maximum
drift, among all the possibilities, corresponds to the y-direction when α = 90 degrees, as it
can be acknowledged immediately by comparing the first and second panels in Figure 17.

The two intermediate cases, α = 30, 60 degrees, display drift along both orthogonal
directions simultaneously, with magnitudes bounded by those of the two limit cases. It
is also worth remarking on how the drift increases from the base to the first floor, then
decreases, and then increases again until it almost reaches the top, with a slight decrease
at the very top. This behavior belongs to the reinforcement of intermediate floors, which
prompts some intermediate floors to move together with less differential deflections among
them. The third panel in Figure 17 shows inter-storey rotation, i.e., the differential torsion
between consecutive floors, going from bottom to top. It can be observed from this output
that the maximum rotations happen in the case of α = 0 degrees, and the minimum occur
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when α = 90 degrees. The building layout explains this behavior: there is a significant
stiffness asymmetry due to a concrete reinforcement wall on one of the flanks that produces
a misalignment between the center of mass of the structure and its main axis of inertia,
which in turn leads to induced torsion as the building bends. However, such asymmetry
is not so acute when considering the orthogonal axis. Hence, the induced torsions are
much weaker and more uniform when loading along the y-direction, so the ISR remains
substantially smaller. The simulations allow us to quantify these numerically in case of
seismic events.

Figure 17. Inter-storey drifts (ISD) along each direction as a function of the angle.

Inter-storey drift and rotation, measuring the differential deformation between con-
secutive floors, are thus directly correlated with the internal forces that develop within
the columns that connect consecutive levels. To account for inertial forces at the different
floors, the maximum storey acceleration (with respect to the ground-level acceleration)
MSA is introduced. This output indicates the sudden jerk that people and equipment
will experience during the seismic event. Therefore, it is an important variable to consider
when it comes to utility design and the comfort and safety of occupants (serviceability
limit states). TheMSA results are represented in Figure 18. Unsurprisingly, the maximum
accelerations are experienced at the top floors, and are aligned again with the direction
of loading in all four cases. Conversely, it is interesting to note how the stiffening of the
intermediate floors also translates into a non-monotonic evolution of the acceleration; this
result suggests that the building deforms predominately following a modal shape that is
more complex than a simple cantilever beam simplified model.

Lastly, the reader may consider that nonlinear materials and large deformation can also
be specified for more accurate analysis in Seismo-VLAB. Introducing nonlinear soil behavior
opens the door to energy dissipation mechanisms that can reduce building vibrations.
However, this can also lead to increased deformation, potentially caused by substantial
displacements and rotations developing at the soil–foundation interface. Additionally, in-
troducing geometric nonlinearity into the structural system, primarily driven by significant
displacements, may trigger effects such as P-delta, plastic hinges within the beam and
column elements, and yield lines within slab elements. The former mechanism introduces
an extra source of dissipation within the structural system. Although incorporating a
nonlinear analysis may capture a more accurate response, the execution time increases
drastically. It is essential to underscore that while these considerations hold significant
relevance in structural engineering, their detailed exploration lies outside the scope of this
particular example. More technical details regarding this illustrative example can be found
in the performance cases H01 provided with the SVL software package.
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Figure 18. Maximum storey acceleration (MSA) along each direction as a function of the angle.

4. Discussion and Conclusions

Seismo-VLAB represents a remarkable advancement in the field of soil–structure in-
teraction (SSI) analysis. Its innovative open-source approach, combining state-of-the-art
techniques, advanced parallel computing capabilities, and user-friendly implementation,
makes it a pioneering tool for engineers and researchers. By addressing critical limitations
in existing software, such as modeling wave propagation in half-spaces and facilitating
code customization, SVL empowers users to explore complex SSI scenarios with efficiency
and precision. Its versatility and applicability to various SSI problems make it an indis-
pensable resource for the seismic engineering community. SVL not only fills a vital gap,
but also propels the field forward, contributing to the analysis for safer and more resilient
structures in the face of seismic events.

Building upon its innovative open-source approach and versatile capabilities, Seis-
mo-VLAB’s methodology employs state-of-the-art methods for appropriately emulating
truncated half-space. A detailed procedure for the validation of DRM and PML for 3D
settings is described. The PML implementation includes (1) a recent symmetric hybrid
formulation suitable for existing FE codes and (2) a compatible version of DRM for inclined
plane incident P, SV, and Rayleigh waves. The DRM and PML implementation is verified
using a set of verification cases through problems involving vertical and inclined incident
SV waves for inhomogeneous 3D soil. Additionally, a practical application for assessing the
SSI effects on the site and structural response for a real 3D building when a vertical SV wave
of small amplitude is applied. In particular, the latter application case not only showcases
SVL’s current modeling and parallel computing capabilities, but also demonstrates its
capacity to model real-world earthquake responses in structural engineering.

Furthermore, the coupled DRM–PML technique proves to be a key factor for solving
SSI problems. Therefore, the Seismo-VLAB project will be disseminated for broader use,
since the already-implemented features will allow enthusiastic developers and users to
explore other research fields. Some fields where SVL can be useful are (1) the modeling of
spatial variability of soil properties for uncertainty quantification in linear and nonlinear
models of engineering structures, (2) inverse problems for parameter estimation as well as
reliability-based performance analysis in nonlinear finite element models of engineering
structures, and (3) site response analysis for the study of amplification or deamplification
of seismic waves considering topographic and basin effects. SVL has already proved its
suitability to analyze the seismic response of structural systems. The Seismo-VLAB project
can be downloaded at https://github.com/SeismoVLAB/SVL (accessed on 2 May 2023),

https://github.com/SeismoVLAB/SVL
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and the documentation is available at http://www.seismovlab.com/ (accessed on 2 May
2023) for more specific details.
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